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Abstract
As machine learning (ML) systems are increasingly adopted in high-stakes decision-

making domains, ensuring fairness in their outputs has become a central challenge. At the
core of fair ML research are the datasets used to investigate bias and develop mitigation
strategies. Yet, much of the existing work relies on a narrow selection of datasets–often
arbitrarily chosen, inconsistently processed, and lacking in diversity–undermining the gen-
eralizability and reproducibility of results.

To address these limitations, we present FairGround : a unified framework, data corpus,
and Python package aimed at advancing reproducible research and critical data studies in
fair ML classification. FairGround currently comprises 44 tabular datasets, each annotated
with rich fairness-relevant metadata. Our accompanying Python package standardizes
dataset loading, preprocessing, transformation, and splitting, streamlining experimental
workflows. By providing a diverse and well-documented dataset corpus along with robust
tooling, FairGround enables the development of fairer, more reliable, and more reproducible
ML models. All resources are publicly available to support open and collaborative research.
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1 Introduction

The field of algorithmic fairness has grown rapidly, reflecting the increasing recognition of
fairness as a core concern in machine learning (Mehrabi et al., 2021; Pessach and Shmueli,
2023). Progress in this field is inevitably tied to data as the central ingredient to devel-
oping, testing and benchmarking more equitable algorithms. Given that these algorithms
and fairness-enhancing techniques are often deployed in high-risk contexts [e.g., healthcare
(Obermeyer et al., 2019; Barda et al., 2020), criminal justice (Angwin et al., 2016; Carton
et al., 2016), jobseeker profiling (Kern et al., 2024; Achterhold et al., 2025)], systematic
and transparent evaluations based on principled rather than ad-hoc selections of datasets
are critical to understand which method works reliably under which conditions and which
might not yet be ready for deployment.

Progress in Fair ML is challenged by (1) opacity in data practices and (2) critical limita-
tions of the most prominent datasets currently used. A number of studies have shown that
seemingly minor data processing and algorithmic design choices can significantly impact
fairness outcomes, raising important questions about the robustness and generalizability of
existing fairness interventions (Simson et al., 2024b; Friedler et al., 2019; Caton et al., 2022).
Compounding these concerns, recent work has also highlighted reproducibility challenges
that hinder consistent evaluation across settings (Cooper et al., 2024; Simson et al., 2024a).
Furthermore, large-scale comparisons of fairness algorithms not only show strong sensitivity
to data processing decisions, but also considerable performance differences between datasets,
underlining the importance of the exact collection of data used for benchmarking and eval-
uation (Agrawal et al., 2021). Unfortunately, current studies commonly still focus on a
narrow set of benchmark datasets–such as Adult (Kohavi, 1996), COMPAS (Angwin et al.,
2016) and German Credit (Hofmann, 1994)–which suffer from known limitations, including
contrived prediction tasks, noisy data, and severe coding mistakes (Ding et al., 2021; Bao
et al., 2022; Grömping, 2019a). Taken together, these practices can lead to evaluations
of fairness algorithms that are driven by methodological artifacts rather than representing
reliable performance tests that justify the (non-)deployment of a given method in practice.

Addressing these limitations, this work introduces FairGround : a framework that empha-
sizes reproducible data processing pipelines, standardized evaluation protocols, and diverse
collections of datasets tailored to specific needs (Figure 1). Our corpus contains 136 sce-
narios, i.e. combinations of 44 tabular datasets with available sensitive attributes. Each
dataset comes with rich metadata (35 annotated and 27 computed meta-features), which
allows for a principled selection of benchmarking collections and for failure testing of al-
gorithms to identify data scenarios under which a proposed method struggles to perform.
We further provide a data selection algorithm and associated collections of datasets that
are small but diverse, i.e., present challenging scenarios with data that capture the variabil-
ity present in the larger corpus. Our Python package facilitates transparent data practices
in fair ML through reproducible and standardized, but customizable, processing pipelines.
With FairGround, we contribute infrastructure that supports more robust and generalizable
evaluation of fairness-aware machine learning methods.
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2 Related work

2.1 Comparing fairness-enhancing algorithms

A number of prior studies have carried out systematic comparisons of fairness-enhancing
algorithms across different settings (Friedler et al., 2019; Agrawal et al., 2021; Biswas and
Rajan, 2020; Cruz and Hardt, 2024; Defrance et al., 2024; Han et al., 2023; Hort et al., 2021;
Islam et al., 2021; L. Cardoso et al., 2019). While these comparative efforts have contributed
valuable insights, they are often constrained by a narrow and inconsistently chosen set
of benchmark datasets. In many cases, dataset selection is neither well-documented nor
critically examined, resulting in evaluations that are difficult to reproduce and limited in
scope.

The broader field continues to face fundamental challenges related to reproducibility
and transparency in experimental design (Simson et al., 2024a; Cooper et al., 2024). One
prominent issue is the lack of principled approaches to dataset processing and selection.
Many existing works make ad hoc or arbitrary choices when selecting datasets (Ding et al.,
2021; Bao et al., 2022; Grömping, 2019a), often relying on convenience or popularity rather
than representativeness or relevance. These decisions can unintentionally bias results and
restrict the generalizability of conclusions. A core concern here is that the datasets typically
used in fairness evaluations do not adequately reflect the diversity and complexity of real-
world deployment scenarios. The dominance of a small set of benchmark datasets has led
to evaluations that cover only a limited subset of the problem space fairness algorithms are
meant to address (Fabris et al., 2022).

Compounding this, there remains little clarity around the specific data conditions under
which fairness methods are expected to succeed or fail. Without a systematic understanding
of these contexts, practitioners are left with limited guidance on which algorithms to apply
in practice (Richardson et al., 2021; Holstein et al., 2019), reducing the effectiveness and
reliability of fairness interventions in real-world systems.

2.2 Fairness toolkits and data studies

Fairness datasets have been examined from both granular and comparative perspectives.
Some works offer deep, dataset-specific critiques (Bandy and Vincent, 2021; Ding et al.,
2021; Bao et al., 2022; Birhane et al., 2023), while others survey broader patterns across
multiple datasets (Crawford and Paglen, 2021; Fabbrizzi et al., 2022; Fabris et al., 2022;
Zhao et al., 2024). In parallel, fairness-focused toolkits such as AIF360 (Bellamy et al.,
2018), Fairlearn (Weerts et al., 2023), and Aequitas (Jesus et al., 2024) implement popular
algorithmic interventions and metrics, providing an accessible entry point for numerical com-
parisons—while including only a few illustrative datasets (Table A3). Despite overlapping
goals, these two strands have remained largely disconnected. Toolkits often treat datasets
as ancillary components and dataset-focused studies fail to produce machine-readable re-
sources designed for seamless integration with software frameworks. Bridging critical data
studies and fairness toolkits is essential for advancing the field, as meaningful integration
can enable more rigorous, interpretable, and reproducible fairness evaluations–particularly
by linking dataset properties to the behavior and impact of fairness interventions (Li et al.,
2022; Favier et al., 2023).
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Web-Frontend Python Package

Corpus Collections

Evaluation Suites

Figure 1: The different components in the FairGround corpus. We provide a com-
prehensive corpus of datasets and extract diverse collections of datasets via a se-
lection algorithm. Both the corpus, collections and individual datasets are made
accessible via a Python package and web-frontend. Collections paired with repro-
ducible dataset loading and preparation allows for novel evaluation suites.

A recent article, most closely related to ours, lists several fairness resources and provides
a tool for data fetching, but does not address integrated processing or annotation pipelines
(Hirzel and Feffer, 2023). In this paper, we address this gap by introducing a benchmark
suite that combines (1) a curated corpus of datasets accompanied by rich quantitative and
qualitative annotations, (2) reproducible data fetching and processing pipelines, and (3)
standardized collections and evaluation protocols. Our annotations provide a foundation for
aligning datasets with fairness-aware methods in a consistent, reproducible, and extensible
manner.

3 Framework

We introduce a unified framework of resources designed to support reproducible research
and critical data studies in fair ML. While our current implementation focuses on tabular
classification, which is prominent in fair ML research Mehrabi et al. (2021); Caton and Haas
(2024), the underlying design is broadly applicable to other contexts.

3.1 Corpus

Building on and extending beyond prior surveys of datasets in fair ML research (Fabris
et al., 2022; Le Quy et al., 2022), we compile a curated corpus of N = 44 tabular datasets.
Each dataset is annotated with extensive fairness-relevant metadata, both quantitative and
qualitative. While an additional 11 datasets were partially annotated, we excluded them
from the final release due to issues such as dubious provenance or access restrictions (details
in Section C.7).
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Download

"downloaded" "loaded"

Extract & 
Load

• extract file(s) from
zip archives
• load various different
file formats
• custom loading functions 
for e.g. synthetic data

• dataset-specific 
preparation scripts
• e.g. calculating derivative 
columns, filtering data, ...

• apply equal 
transformations to all 
datasets
• e.g. handling missing data, 
encoding sensitive / target, ...
• configurable

• train-test /
train-test-val split
• stratification
• different seeds

• download 
original file(s) from 
the internet

"prepared"
"transformed" /

"binarized"

Transform / 
Binarize 

"split"

SplitPrepare

Figure 2: The pipeline of steps involved when loading and processing a dataset
in the package. Datasets can be accessed / exported after each of the steps in
the pipeline and most steps allow for configuration.

The corpus spans a wide range of dataset sizes, from 118 to over 3.2 million records, and
4 to 1,941 features. Most datasets originate from domains such as economics and law (each
23.4%), followed by finance (12.7%) and education (10.7%). Geographical representation
is notably skewed: nearly 60% of datasets originate from the United States, with limited
coverage from other regions (see Tables A and A2 for details). The dataset metadata can
be explored interactively at: https://reliable-ai.github.io/fairground/.

Following prior work (Fabris et al., 2022; Le Quy et al., 2022), we annotate each dataset
with contextual information (e.g., dataset name, domain), data-specific attributes (e.g.,
geography, time period), and technical metadata required for loading and preparing the
data. Where multiple variants of a dataset exist, each version is treated as a distinct entry
(cf. Section C.4). We also provide annotations relevant to fair ML tasks, including sensitive
attribute selection, target variable definitions, and required preprocessing. While we do not
claim our annotations are definitive, they serve as principled defaults that make implicit
modeling decisions explicit, encouraging transparency in fair ML research (Simson et al.,
2024a). Full details on our annotation procedure are provided in Sections C.4 and C.5.

In addition to manual annotations, we compute a range of metadata to support dataset
selection, benchmarking, and critical analysis. This includes structural properties (e.g.,
missing values, feature types), statistical characteristics (e.g., bivariate correlations, sensitive
AUC), and fairness-related properties (e.g., protected group prevalence, base rates, Gini-
Simpson index) (Brzezinski et al., 2024; Mecati et al., 2022; Holland et al., 2020). These
computed metadata features are detailed in Appendix C.6 and integrated into our Python
tooling for streamlined access.

3.2 Infrastructure

To enable reproducible and scalable use of the corpus, we provide a Python package that
operationalizes our framework. This package automates dataset acquisition, preprocessing,
transformation, and splitting, applying the annotations to prepare datasets for downstream
fair ML tasks (Figure 2). The package supports diverse data formats and includes default
transformations, such as standard feature selection, handling of missing values and encoding
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of sensitive attributes. We re-emphasize that defaults are not intended as universally correct,
but rather as transparent baselines that can be fully customized. By surfacing and stan-
dardizing preprocessing decisions, the package encourages methodological rigor and reduces
hidden variability in experimental pipelines (Simson et al., 2024b).

In particular, FairGround supports the following transformations to export data in a
readily usable format. Users can choose to retain either the complete set of columns in
a dataset or only the essential subset, which includes frequently-used features, sensitive
attributes, and the target variable (default). To handle missing values, the framework sup-
ports three options: dropping the entire column, removing only rows with missing values,
or imputing missing values using the median (default for numerical) or a placeholder value
(default for categorical). The target variable can be binarized in several ways: based on an
annotated preferable label, redefined to reflect a majority/minority split, or automatically
selected between these options depending on metadata availability (default is based on the
preferable label if provided). When multiple sensitive attributes exist, users can keep them
separate (default) or combine them into a single binary attribute that captures their inter-
section (default in the binarized setting). Sensitive attribute values can be left unchanged
or grouped into majority and minority categories (again, grouping is the default in bina-
rized datasets). For categorical features, FairGround supports either leaving them as-is or
converting them into binary indicators via dummy encoding (default). To control for high
cardinality in categorical or text fields, the package applies an optional limit–by default,
restricting each categorical or text column to a maximum of 200 unique values, with less
frequent categories grouped together once this limit is exceeded.

The package also supports automatic metadata extraction (see Section 3.1). Importantly,
we avoid redistributing raw data directly to respect licensing constraints and datasets are
instead downloaded from their original sources and optionally cached locally.
The package is open source and available at: https://github.com/reliable-ai/fairground
Releases are archived on Zenodo: https://doi.org/10.5281/zenodo.17288596
Package installation: pip install fairml-datasets
Package documentation: https://reliable-ai.github.io/fairground/docs/
Code examples are provided in Appendix C.3.

In parallel, we release an interactive website that allows browsing the dataset corpus,
metadata, and example usage. The site also offers sample code for specific datasets and is
available at https://reliable-ai.github.io/fairground/.

3.3 Collections

To further support reproducible benchmarking and targeted experimentation, we define sev-
eral curated dataset collections derived from the full corpus with an extensible algorithm.
These include: two collections (small and large) optimized for diversity in algorithmic per-
formance; three collections with permissive licenses; and three collections emphasizing geo-
graphic diversity (Tables A5–A7).

Combined with standardized data splits from our package, which are critical to fair ML
reproducibility (Friedler et al., 2019), these collections provide ready-to-use evaluation suites
for fair ML development.
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4 Experiments

Leveraging the full FairGround dataset corpus, we conduct a series of experiments to sys-
tematically investigate the extent to which the choice of dataset influences the evaluation
and observed performance of fairness-aware machine learning methods.

To reflect common practice in fairness research and enable broad coverage of method-
ological approaches, we evaluate a representative set of fairness-aware debiasing techniques
spanning the three main intervention stages in the ML pipeline: pre-processing, in-processing,
and post-processing. Specifically, we compare the following seven algorithms: Learning Fair
Representations (pre) (Zemel et al., 2013), Disparate Impact Remover (pre) (Feldman et al.,
2015), Adversarial Debiasing (in) (Zhang et al., 2018), Meta-Algorithm (in) (Celis et al.,
2019), Rich Subgroup Fairness / GerryFair (in) (Kearns et al., 2018), Grid Search Reduc-
tion (in) (Agarwal et al., 2018), and Group-Specific Thresholds (post) (Hardt et al., 2016).
We use logistic regression as a standard model for pre- and post-processing.

To satisfy the input constraints of all methods, datasets were converted to binarized
numerical representations using the default transformation settings provided by our ac-
companying Python package (see Section 3.2). This ensures compatibility while preserving
consistency across experiments.

Given that most fairness techniques are designed to optimize fairness with respect to
a single sensitive attribute, we adopt a principled approach to define sensitive attribute
configurations. For datasets containing fewer than four sensitive attributes, we evaluate
all individual attributes and their pairwise intersections. For datasets with four or more
sensitive attributes, we restrict evaluation to individual attributes to avoid combinatorial
complexity. We refer to each combination of a dataset and its corresponding sensitive
attribute selection as a unique scenario.

We apply each of the seven processing methods and a baseline to each of the n = 136
datasets and sensitive attribute combinations (scenarios) across five separate seeds and train-
test splits. This results in a total of N = 5440 different models that are trained and com-
pared. For each model, we compute two commonly used measures of performance (Balanced
Accuracy, Eq. 1; F1 Score, Eq. 2) and two measures of algorithmic fairness (Equalized Odds
Difference, Eq. 3; Demographic Parity Difference, Eq. 4). The computational infrastructure
(Section C.8) and software (Section C.9) used for experiments are described in the technical
appendix.

4.1 Results

The experiments reveal substantial variation in both fairness and performance metrics across
datasets and methods. F1 score, equalized odds difference, and demographic parity differ-
ence span the full [0, 1] range, while balanced accuracy varies from approximately 0.2 to 1.0.
To facilitate comparisons, we compute delta scores—metric differences relative to a logistic
regression baseline without fairness interventions (Eq. 5). Figure 3 illustrates this calcula-
tion for one dataset, scenario, seed, and metric, with dashed lines indicating differences from
the baseline.

The overall distribution of delta scores across all four metrics is shown in Figure B1.
Importantly, fairness interventions often lead to minor deviations in scores, as highlighted
by the large gray bar indicating an absolute change of ≤ 0.01, which correspond to scenarios
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Figure 3: Scores from a single dataset (Bank), scenario (sensitive attribute: Age), seed
(80539 ), and metric (Equalized Odds Difference) illustrating how delta scores
with respect to baseline logistic regression are calculated. Delta scores correspond
to dashed lines.

where popular fair ML methods are ineffective. A sizable portion produces meaningful
differences, typically reflecting the well-known tradeoff between fairness and performance
(Menon and Williamson, 2018; Islam et al., 2021): improvements in fairness often coincide
with declines in predictive accuracy.

4.2 Rankings of Debiasing Techniques are not Stable

To reflect how practitioners might compare processing techniques in practice, we analyze
the relative rankings of different methods. While some methods–such as LFR, Grid Search
Reduction, and Adversarial Debiasing–tend to rank favorably, their positions vary consid-
erably across scenarios, and no single method consistently outperforms the rest (Figure 4).
High-performing methods often come with caveats. For instance, LFR occasionally fails due
to convergence issues or label collapse during rebalancing, rendering it unusable in some
cases. Adversarial Debiasing often presents sharp tradeoffs between fairness and predictive
performance. These variations are influenced by the dataset and scenario characteristics.

4.3 Identifying Important Dataset Characteristics

To uncover which dataset properties affect method performance, we train simple machine
learning models (random forests (Ho, 1995)) for each debiasing technique. These models
use only computed metadata (Sections 3.1, C.6) to predict method effectiveness across in-
dividual scenarios. As shown in Figure B3, they capture substantial variance in observed
outcomes. We analyze feature importance scores from these models to assess which dataset
characteristics matter most. Figure 5 displays importances for predicting Equalized Odds
Difference. A key trend is that the predictability of sensitive features from non-sensitive ones
(meta_sens_predictability_roc_auc, top row) is influential across all methods. Base rate
differences are critical for some techniques but negligible for others. These metadata-derived
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F: Demographic Parity Difference F: Equalized Odds Difference P: Balanced Accuracy P: F1 Score
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Figure 4: Relative performance and efficacy of different fairness interventions
is highly variable. Relative ranking of different processing techniques across
datasets and seeds (A), as well as prevalence of practical and timeout errors (B).
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Gini Index of Base Rates

Diff. in Prevalence of Sens. Attr.

Base Rate of Target (Minority)

Ratio of Base Rates

Prop. of Integer Columns

Prop. of Boolean Columns

Maximum Absolute Correlation

Base Rate Difference

Average Absolute Correlation

Predictability of Sens. Attr. (AUC)
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Figure 5: The importance of different dataset characteristics can be highly vari-
able between debiasing algorithms. Normalized feature importance of the 10
most important computed metadata features to predict the difference in Equalized
Odds Difference across all processing methods, ordered by average importance.
Feature importance for Adversarial Debiasing (in) is highlighted in orange.

features help characterize the conditions under which fairness interventions are likely to suc-
ceed. Notably, Adversarial Debiasing, highlighted in orange, relies less on sensitive attribute
predictability and more on structural features such as the proportion of boolean and integer
columns. Relative importances for other metrics appear in Figure B2.

4.4 Developing Diverse Collections of Datasets

Evaluating fairness interventions across all possible datasets and scenarios is ideal but rarely
feasible due to practical constraints like limited compute. To address this, we construct eight
curated dataset collections, each optimized for a specific purpose. We use a principled al-
gorithm to construct subsets of scenarios that exhibit diverse properties. We explicitly
target predictive accuracy and fairness properties by building a collection of scenarios whose
pairwise spearman correlations of delta scores (Eq. 5), across Balanced Accuracy (Eq. 1),
F1 Score (Eq. 2), Equalized Odds Difference (Eq. 3) and Demographic Parity Difference
(Eq. 4) are as low as possible. The underlying assumption is that datasets where debi-
asing techniques yield divergent fairness-performance tradeoffs make for more informative
and challenging benchmarks. The algorithm greedily builds collections by adding the least
correlated scenario while fulfilling optional secondary constraints, including selecting only a
single scenario per dataset. The algorithm supports two different cutoff values, providing
either a fixed number of k scenarios or a fixed upper bound for dataset correlation (r̄jC < τ)
when added to the collection. The algorithm is described in detail in Section C.2. We use
this selection process both to construct benchmark collections and to define default scenarios
per dataset. We demonstrate how the FairGround corpus as well as its collections exhibit
higher diversity in algorithm performance compared to other dataset collections (Table A4).
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Figure 6: A large number of negatively intercorrelated datasets is available for
collection creation. Average Spearman correlation of delta scores between the
scenarios already in the collection and candidate scenarios at the time they are
added to the collection. The very first scenario minimizes the average correlation
with all other scenarios.

De-Correlated Datasets We construct two benchmark collections using the correlation-
based algorithm with cutoffs k = 5 and τ < 0, yielding sets of n = 5 and n = 22 scenarios, re-
spectively (Table A5). A UMAP projection (McInnes et al., 2018) from the high-dimensional
space of computed metadata (Figure 7) confirms that selected datasets span a wide range
of characteristics.

Permissively Licensed Datasets To facilitate open sharing and reuse, we build three
collections containing only datasets with permissive licenses. We construct these collections
by only allowing datasets to be added to the collection which (1) have licensing information
available and (2) are permissively licensed (e.g. Creative Commons, Apache, GNU licenses).
One collection uses a fixed k = 5 cutoff, one uses a τ < 0 threshold (n = 16), and one
includes all permissively licensed datasets without filtering (n = 32). All three are listed in
Table A6. We release these datasets in both prepared and binarized formats.

Geographically Diverse Datasets To address regional bias, we create three collec-
tions ensuring that no two datasets originate from the same country. We apply the selection
algorithm with constraints and cutoffs of k = 5 and τ < 0 (n = 6), as well as an unfiltered
collection (n = 10) (Table A7). While this offers greater geographic diversity than is typical
in ML fairness benchmarks, it remains insufficient. As prior work has emphasized (Sep-
tiandri et al., 2023; Mihalcea et al., 2025), future data efforts must expand beyond WEIRD
contexts while carefully balancing this goal with ethical data practices.
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Figure 7: Datasets in the de-correlated collections capture variability in the com-
puted metadata features well. Two dimensional mapping of datasets using
UMAP on computed metadata features. Scenarios in the de-correlated collections
are highlighted in different colors.

5 Limitations

While this work takes a substantial step toward improving reproducibility and empirical
rigor in fair ML, it also operates within known constraints. Benchmarking, particularly in
fairness research, can risk oversimplifying complex sociotechnical issues. Fairness cannot be
fully captured by metrics or solved solely through optimization, and responsible development
and evaluation of fair ML requires critical engagement with the broader context.

Our preprocessing and annotation decisions are not intended as universally optimal; their
suitability depends on the specific dataset and use case. The experimental results presented
here are illustrative rather than prescriptive—they demonstrate the kinds of analyses our
corpus enables but are not meant to be definitive benchmarks.

Importantly, our dataset corpus is designed to be dynamic. Gaps in representation,
especially with respect to geographic and demographic diversity, remain. We explicitly
encourage community contributions of new datasets to help close these gaps (cf. Section 3.1).
To support this, we provide a modular, versioned Python package that ensures transparency
and reproducibility as the corpus evolves.

While our current focus is on tabular classification–a core setting in fair ML research–
our framework is general. LLM evaluations, for example, may also benefit from the current
tabular corpus through approaches such as folktexts (Cruz et al., 2025). In future work, we
aim to extend our methodology and infrastructure to other data modalities, including text
and image domains.

6 Discussion

We introduce FairGround, a comprehensive framework, dataset corpus, and Python package
developed to address long-standing challenges in fair ML research. By curating a diverse
collection of 44 tabular datasets, encompassing 136 scenarios, and providing fairness-relevant
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metadata and reproducible preprocessing tools, FairGround enables transparent, rigorous,
and extensible experimentation. The accompanying Python package supports reproducibil-
ity by exposing (and providing defaults for) key data processing decisions. We demonstrate
its utility through a large-scale case study, illustrating how the framework facilitates robust
comparative evaluations of debiasing techniques. Specifically, we show how our provided
data collections better reflect the diverse performance of debiasing algorithms in compari-
son to collections currently used in fair ML research, while enabling new fairness analyses
by connecting algorithm performance to dataset characteristics.

The significance of this work extends beyond its immediate technical contributions. By
foregrounding the role of data infrastructure, FairGround highlights how dataset design,
composition, and documentation fundamentally shape research trajectories and outcomes.
These elements influence algorithmic behavior, reproducibility, and downstream system
impact–making them critical to both scientific rigor and ethical responsibility.

Our framework is designed not only to support method development but also to position
datasets as first-class research objects. It prompts researchers to interrogate representational
biases, data provenance, and the implications of dataset selection–core concerns for equitable
and socially responsible AI. In doing so, FairGround fosters deeper engagement with the
sociotechnical dimensions of ML, encouraging reflection on how benchmarks reflect and
reinforce power structures.

Additionally, FairGround lays essential groundwork for linking dataset characteristics to
model fairness outcomes. This connection has important implications for anti-discrimination
policy and regulation. For instance, under the EU AI Act, high-risk AI systems are sub-
ject to strict data governance requirements, including the obligation to assess datasets for
bias and representational gaps (European Parliament, 2024). The metadata and fairness-
relevant characteristics computed within FairGround can serve as a foundation for quanti-
tative dataset documentation aligned with these legal mandates.

Broader Impact Statement

Our work aims to improve data practices in the field of algorithmic fairness, which in
turn can lead to more robust and reproducible research, better and more ethical handling of
datasets and increased transparency around dataset usage. By highlighting and quantifying
the lack of geographic representation in popular datasets, we hope our work inspires the
collection of novel and geographically diverse datasets. These positive changes have the
possibility of affecting practices beyond research, ideally leading to the deployment of better
and fairer algorithmic decision making and ML systems in production settings. Beyond the
field of algorithmic fairness the FairGround framework provides a template for other fields
to start developing dataset corpora and collections.

While this work encourages better data practices, there is a risk of it contributing to
a benchmarking culture overly focused on quantitative and superficial notions of fairness,
which we explicitly want to warn against. While it is important to use a diverse collection of
datasets for evaluation, it is equally important, especially in applied contexts, to be aware
of the sociotechnical context (ML) systems are developed and deployed in.
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Appendix A. Supplementary Tables

This section includes supplementary tables that provide additional information supporting
the results presented in the main text.

Table A1: Overview of datasets in the corpus. Row and col-
umn counts apply to the prepared data prior to further trans-
formations.

Name and Citation Rows Columns License

1 Adult (Kohavi, 1996) 32,560 15 CC BY 4.0
2 Arrhythmia (Guvenir et al., 1998) 451 280 CC BY 4.0
3 Bank (additional + full) (Moro et al.,

2014)
41,188 21 CC BY 4.0

4 Bank (additional) (Moro et al., 2014) 4,119 21 CC BY 4.0
5 Bank (full) (Moro et al., 2014) 45,211 17 CC BY 4.0
6 Bank (Moro et al., 2014) 4,521 17 CC BY 4.0
7 Communities (Redmond, 2009) 1,993 128 CC BY 4.0
8 Communities (unnormalized) (Lahoti

et al., 2019)
2,214 147 CC BY 4.0

9 COMPAS (2 years) (Angwin et al., 2016) 6,172 53 ?
10 COMPAS (2 years, violent) (Angwin

et al., 2016)
4,743 54 ?

11 COMPAS (Angwin et al., 2016) 11,757 47 ?
12 CreditCard (Yeh, 2009) 30,000 25 CC BY 4.0
13 Drug (Fehrman et al., 2015) 1,885 32 CC BY 4.0
14 Dutch (Le Quy et al., 2022) 60,420 12 a

15 German Credit (Hofmann, 1994) 1,000 21 CC BY 4.0
16 German Credit (numeric) (Hofmann,

1994)
1,000 25 CC BY 4.0

17 South German Credit (Grömping, 2019b) 1,000 21 CC BY 4.0
18 German Credit (onehot) (Hofmann, 1994) 1,000 65 Apache License
19 Heart Disease (Janosi et al., 1988) 303 14 CC BY 4.0
20 HMDA (Consumer Financial Protection

Bureau, 2022)
2,000,000 19 ?

21 Law School (tensorflow) (Wightman,
1998)

22,407 39 CC BY-SA 4.0

22 Law School (LeQuy) (Wightman, 1998;
Le Quy et al., 2022)

18,692 12 CC BY-SA 4.0

23 MEPS (Panel 19, FY2015) (Agency for
Healthcare Research and Quality, 2018)

15,830 1,831 b

24 MEPS (Panel 20, FY2015) (Agency for
Healthcare Research and Quality, 2018)

17,570 1,831 b

25 MEPS (Panel 21, FY2016) (Agency for
Healthcare Research and Quality, 2018)

15,675 1,941 b
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Name and Citation Rows Columns License

26 Nursery (Rajkovic, 1989) 12,960 9 CC BY 4.0
27 ricci (Miao, 2010) 118 5 ?
28 Stop, Question and Frisk Data (New

York City Police Department, 2012)
8,947 83 c

29 Chicago Strategic Subject List (Chicago
Data Portal, 2020)

398,684 48 NA

30 Student (Cortez and Silva, 2008) 395 33 CC BY 4.0
31 Student (Language) (Cortez and Silva,

2008)
649 33 CC BY 4.0

32 generate_synthetic_data (Zafar et al.,
2017)

2,000 4 GPL-3.0

33 Lipton synthetic hiring dataset (Lipton
et al., 2018)

2,000 4 CC 0

34 synth (Donini et al., 2018) 6,400 4 ?
35 Folktables ACSIncome (Ding et al., 2021) 1,664,500 11 CC 0
36 Folktables ACSPublicCoverage (Ding

et al., 2021)
1,138,289 20 CC 0

37 Folktables ACSMobility (Ding et al.,
2021)

620,937 22 CC 0

38 Folktables ACSEmployment (Ding et al.,
2021)

3,236,107 17 CC 0

39 Folktables ACSTravelTime (Ding et al.,
2021)

1,466,648 17 CC 0

40 Folktables ACSIncome (small) (Ding
et al., 2021)

245,673 11 CC 0

41 Folktables ACSPublicCoverage (small)
(Ding et al., 2021)

174,178 20 CC 0

42 Folktables ACSMobility (small) (Ding
et al., 2021)

98,081 22 CC 0

43 Folktables ACSEmployment (small)
(Ding et al., 2021)

478,236 17 CC 0

44 Folktables ACSTravelTime (small) (Ding
et al., 2021)

216,385 17 CC 0

a Copyright 2001, Centraal Bureau voor de Statistiek (CBS) (Statistics Netherlands) and
Minnesota Population Center.

b See https://meps.ahrq.gov/data_stats/data_use.jsp.
c “All rights reserved”, see https://www.nyc.gov/home/terms-of-use.page.

Appendix B. Supplementary Figures

This section contains supplementary figures that complement the primary results and pro-
vide further context for the analyses discussed in the main manuscript.
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Table A2: Countries represented in fair ML data. Each count represents a dataset that
includes data from the specified country. There is one dataset representing data
from across the world and one representing data from Hungary, Switzerland and
the United States.

Country Count Percentage (%)

United States 28 59.57
Portugal 6 12.77
Germany 4 8.51
N/A 3 6.38
Hungary, Switzerland & United States 1 2.13

Netherlands 1 2.13
Slovenia 1 2.13
Taiwan 1 2.13
Turkey 1 2.13
World 1 2.13

Table A3: Quantitative comparison of datasets available in different fairness libraries. *Fair-
Ground allows for the input of any custom fairness methods by users.

Number of Meta- Collec-
Library Main Focus Datasets Methods Features tions
ABCFair methods, metrics 7 (5) 10 ✗ ✗

Aequitas Flow methods, metrics,
guides

11 (11) 10 ✗ ✗

AIF360 methods, metrics 8 (8) 15 ✗ ✗

Fairlearn methods, metrics,
guides

6 (4) 6 ✗ ✗

FairGround (ours) data 44 7* ✓ ✓
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Table A4: Comparison of dataset collections in FairGround and other work, showing
whether a debiasing method is ever the best performing method for any of the
datasets for Equalized Odds Difference (left) and Demographic Parity Difference
(right). For outside collections the closest matching scenarios within FairGround
are selected.

FairGround
All Open

(all)
Open
(lg.)

Open
(sm.)

ABC
Faira

AIF
360b

Fried-
lerc

Typ.
3d

DisparateImpactRemover (pre) ✓/ ✗ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✗/ ✓ ✓/ ✓ ✗/ ✗
LFR (pre) ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✗/ ✗ ✓/ ✓ ✓/ ✓ ✓/ ✓
GridSearchReduction (in) ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓
AdversarialDebiasing (in) ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓
MetaFairClassifier (in) ✓/ ✓ ✓/ ✓ ✓/ ✓ ✗/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓
GerryFairClassifier (in) ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✗/ ✗ ✗/ ✗
CalibratedEqOdds (post) ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✓/ ✓ ✗/ ✗ ✗/ ✗ ✗/ ✗

No. of Datasets 44 32 16 5 5 7 5 3
a Five out of seven datasets in ABCFair (Defrance et al., 2024) are used.
b Seven out of eight datasets in AIF360 (Bellamy et al., 2018) are used, the skipped dataset is

available in FairGround, but used as a regression dataset in AIF360.
c Friedler et al. (2019)
d “Typical 3” refers to Adult, Compas and German Credit, the three most commonly used datasets

in fairness research (Fabris et al., 2022).

P: Balanced Accuracy P: F1 Score

F: Demographic Parity Difference F: Equalized Odds Difference
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Figure B1: Delta scores across all four metrics are highly variable. Distribution of delta
values for metrics of performance and fairness across different processing algo-
rithms. Color-coding indicates whether the change is sizable (above an absolute
threshold of 0.01) and corresponds to better (green) or worse (red) scores. For
algorithmic fairness metrics lower scores are more desirable, whereas for metrics
of performance higher scores are more desirable.
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Table A5: Scenarios in the De-Correlated Datasets collection. Column C denotes collection
membership: k corresponds to the small collection with a cutoff value of k = 5;
τ corresponds to the bigger collection with a cutoff value of τ = 0. The larger
collection encompasses the smaller one. Scenarios are listed based on insertion
order.

C Dataset Sens. Attributes Domain

1 k folktables_acspubliccoverage RAC1P economics
2 k heart_disease sex cardiology
3 k hmda applicant_sex_name;

appli-
cant_race_name_1

finance

4 k stop_question_and_frisk_data SUSPECT_SEX;
SUS-
PECT_RACE_DESCRIPTION;
SUS-
PECT_REPORTED_AGE

law

5 k folktables_acsemployment_small RAC1P economics
6 τ folktables_acstraveltime RAC1P economics
7 τ compas sex; age law
8 τ folktables_acsincome_small RAC1P economics
9 τ compas_2_years age law

10 τ communities_unnormalized pct12-21 law
11 τ arrhythmia sex cardiology
12 τ folktables_acspubliccoverage_small RAC1P economics
13 τ compas_2_years_violent age law
14 τ south_german_credit age; foreign_worker finance
15 τ dutch age demography
16 τ folktables_acsmobility_small RAC1P economics
17 τ law_school_tensorflow gender education
18 τ german_credit_onehot <= 25 years finance
19 τ communities racePctAsian law
20 τ nursery finance education
21 τ german_credit_numeric age finance
22 τ chicago_strategic_subject_list RACE CODE CD law
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Table A6: Scenarios in the Permissively Licensed Datasets collection. Column C denotes
collection membership: k corresponds to the small collection with a cutoff value
of k = 5; τ corresponds to the bigger collection with a cutoff value of τ = 0; an
empty value corresponds to the full collection. The larger collections encompass
the smaller ones. Scenarios are ordered based on when they were added to the
collection.

C Dataset Sens. Attributes license

1 k folktables_acspubliccoverage RAC1P CC 0
2 k heart_disease sex CC BY 4.0
3 k communities_unnormalized pct12-21 CC BY 4.0
4 k lipton_synthetic_hiring_dataset sex CC 0
5 k bank age; marital CC BY 4.0
6 τ german_credit_onehot > 25 years Apache License
7 τ folktables_acsincome RAC1P CC 0
8 τ south_german_credit age CC BY 4.0
9 τ folktables_acsemployment_small RAC1P CC 0

10 τ german_credit_numeric age CC BY 4.0
11 τ student sex; age CC BY 4.0
12 τ folktables_acstraveltime_small RAC1P CC 0
13 τ folktables_acspubliccoverage_small RAC1P CC 0
14 τ communities agePct16t24 CC BY 4.0
15 τ folktables_acsmobility RAC1P CC 0
16 τ law_school_tensorflow gender CC BY-SA 4.0
17 arrhythmia sex CC BY 4.0
18 adult race CC BY 4.0
19 nursery finance; parents CC BY 4.0
20 folktables_acsincome_small RAC1P CC 0
21 creditcard SEX CC BY 4.0
22 folktables_acsmobility_small RAC1P CC 0
23 student_language age CC BY 4.0
24 drug ethnicity CC BY 4.0
25 law_school_lequy racetxt; male CC BY-SA 4.0
26 folktables_acstraveltime RAC1P CC 0
27 bank_additional_full age; marital CC BY 4.0
28 german_credit foreign_worker CC BY 4.0
29 generate_synthetic_data s1 GPL-3.0
30 bank_additional age CC BY 4.0
31 folktables_acsemployment RAC1P CC 0
32 bank_full age CC BY 4.0
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Table A7: Scenarios in the Geographically Diverse Datasets collection. Column C denotes
collection membership: k corresponds to the small collection with a cutoff value
of k = 5; τ corresponds to the bigger collection with a cutoff value of τ = 0; an
empty value corresponds to the full collection. The larger collections encompass
the smaller ones. Scenarios are ordered based on when they were added to the
collection.

C Dataset Sens. Attributes country

1 k folktables_acspubliccoverage RAC1P USA
2 k heart_disease sex HUN;CHE;USA
3 k dutch age; citizenship NLD
4 k creditcard SEX TWN
5 k german_credit_onehot > 25 years DEU
6 τ student sex PRT
7 arrhythmia sex TUR
8 nursery finance; parents SVN
9 synth sensible_feature NA

10 drug ethnicity WORLD
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Figure B2: Normalized feature importance of the 10 most important computed metadata
features to predict the difference in Balanced Accuracy (A), F1 Score (B), Equal-
ized Odds Difference (C) and Demographic Parity Difference (D) across different
processing methods.
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Figure B3: Comparison between observed and model-predicted values for Balanced Accu-
racy (A), F1 Score (B), Equalized Odds Difference (C) and Demographic Parity
Difference (D) across different processing methods.
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Appendix C. Technical Appendix

C.1 Metrics

Precision = Pr(y = 1|ŷ = 1)

Recall = Pr(ŷ = 1|y = 1)

Specificity = Pr(ŷ = 0|y = 0)

We use Balanced Accuracy (bAcc; Eq. 1) and F1 Score (Eq. 2) as measures of perfor-
mance. The two performance metrics are defined as follows:

bACC =
Specificity + Recall

2
(1)

F1 Score =
2

Precision−1 + Recall−1 (2)

We use Equalized Odds Difference (EOD; Eq. 3) and Demographic Parity Difference
(DPD; Eq. 4) as measures of algorithmic fairness. The two fairness metrics are defined as
follows:

EOD = max
g

Pr(ŷ = 1|y = 1, S = g)−min
g

Pr(ŷ = 1|y = 1, S = g) (3)

DPD = max
g

Pr(ŷ = 1|S = g)−min
g

Pr(ŷ = 1|S = g) (4)

When comparing different fairness aware methods, we use delta scores (∆a,b) for their
comparison. These scores are computed for each performance and fairness metric and are
defined as follows:

∆a,b = scorea,b − scorea,baseline (5)

C.2 Selection Algorithm

Given the corpus of datasets and their associated scenarios D = {D1, D2, . . . , DN}, where
each dataset Di consists of a set of scenarios Di = {si1, si2, . . . }, the goal is to construct a
collection of scenarios C such that the pairwise spearman correlations of delta scores (Eq. 5),
across Balanced Accuracy (Eq. 1), F1 Score (Eq. 2), Equalized Odds Difference (Eq. 3) and
Demographic Parity Difference (Eq. 4) between members of C are as low as possible across
different families of fair ML algorithms (Learning Fair Representations (Zemel et al., 2013),
Disparate Impact Remover (Feldman et al., 2015), Adversarial Debiasing (Zhang et al.,
2018), Meta-Algorithm (Celis et al., 2019), Rich Subgroup Fairness / GerryFair (Kearns
et al., 2018), Grid Search Reduction (Agarwal et al., 2018), Group-Specific Thresholds (Hardt
et al., 2016)). To control the number of scenarios in C, we use either a fixed number k or a
correlation threshold τ . While this work uses only one of these constraints at a time, they
can be combined if desired. The algorithm proceeds as follows:
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1. Let rab denote the Spearman rank correlation between scenarios sa and sb, where
sa, sb ∈

⋃N
i=1Di.

2. For each scenario sa, compute the average Spearman correlation to all other scenarios:

r̄a =
1

M − 1

∑
b̸=a

rab

where M is the total number of scenarios in the corpus. Select the scenario sm with
the lowest average correlation:

m = argmin
a

r̄a

Initialize the selected set C = {sm}, and the remaining pool R =
(⋃N

i=1Di

)
\Di(m),

where Di(m) is the dataset containing scenario sm.

3. Repeat the following until |C| = k or no candidate in R has an average Spearman
correlation strictly less than τ with all members of C:

(a) For each scenario sj ∈ R, compute the average correlation with the current set
C:

r̄jC =
1

|C|
∑
si∈C

rij

(b) Identify the scenario sj∗ with the lowest such average:

j∗ = argmin
j∈R

r̄jC

(c) If r̄j∗C < τ , add sj∗ to C, and remove all scenarios in the same dataset Di(j∗)

from R.

4. The algorithm terminates when |C| = k or no remaining scenario has an average
Spearman correlation below τ with the current set C. The resulting subset C is returned
as the final collection of minimally correlated scenarios.

C.3 Example Code using the Package

The following subsection contains exemplary code illustrating the usage of the Python
package. We recommend readers to review the online package documentation at https:
//brave-ocean-078c2100f.6.azurestaticapps.net/ for a more in-depth description of
the package’s functions.

C.3.1 Using a Dataset

from fairml_datasets import Dataset

# Get the dataset
dataset = Dataset.from_id("folktables_acsemployment")
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# Load as pandas DataFrame
df = dataset.load() # or df = dataset.to_pandas()
print(f"Dataset shape: {df.shape}")

# Get the target column
target_column = dataset.get_target_column()
print(f"Target column: {target_column}")

# Get sensitive attributes (before transformation)
sensitive_columns_org = dataset.sensitive_columns

# Transform to e.g. impute missing data
df_transformed, transformation_info = dataset.transform(df)
# Sensitive columns may change due to transformation
sensitive_columns = transformation_info.sensitive_columns

# Split into train and test sets
train_df, test_df = dataset.train_test_split(df, test_size=0.3)

# Run analyses on the data

C.3.2 Using a Collection of Datasets / Scenarios

from fairml_datasets.collections import DeCorrelatedSmall

collection = DeCorrelatedSmall()

# The collection consists of scenarios
for scenario in collection:

# Each scenario behaves just like a dataset

# Load as pandas DataFrame
df = scenario.load() # or df = scenario.to_pandas()
print(f"Dataset shape: {df.shape}")

# Get the target column
target_column = scenario.get_target_column()
print(f"Target column: {target_column}")

# Get sensitive attributes (before transformation)
sensitive_columns_org = scenario.sensitive_columns

# Transform to e.g. impute missing data
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df_transformed, transformation_info = scenario.transform(df)
# Sensitive columns may change due to transformation
sensitive_columns = transformation_info['sensitive_columns']

# Split into train and test sets
train_df, test_df = scenario.train_test_split(df, test_size=0.3)

# Run analyses on the data

C.4 Annotation Procedure

We started the annotation process by collecting all tabular datasets used for fair classification
tasks in a large survey of fair ML datasets (Fabris et al., 2022). This provided a list of
n = 37 unique datasets. Additionally, we added the folktables (Ding et al., 2021) collection
of datasets, due to its recent popularity and as the datasets specifically try to address issues
in the most popular dataset in the survey: Adult (Kohavi, 1996).

For each dataset, we annotated the information required to practically use the dataset
in a fair classification task, as well as key qualitative and quantitative data regarding the
information represented in each dataset. During this process, a critical issue quickly became
apparent: While datasets are commonly referenced by name as if they were uniquely iden-
tified, this is often not the case in practice. A striking example is the widely used Bank
dataset, one of the most frequently cited datasets in Fair ML (Fabris et al., 2022). Although
typically referred to as Bank or Bank Marketing, the primary source1 actually comprises
four distinct datasets, each differing in their respective number of instances and attributes.
Recognizing this ambiguity, we adapted our annotation methodology to explicitly capture
dataset variants, significantly increasing the number of distinct datasets in the corpus. In
our framework, we treat these variants as separate datasets while preserving their connection
to maintain clarity and traceability.

When collecting the information required to download and load datasets, we were forced
to exclude n = 11 datasets due to data not being publicly available or with restricted access.
We excluded a further n = 18 datasets, if there were issues with recreating how a dataset was
generated or the dataset’s usage did not fit into schema of a "classic" fairML classification
task including features, a target column and sensitive attribute(s). A detailed breakdown
of excluded datasets and the reasons for their exclusion is available in Section C.7.

After exclusion of non-eligible datasets and inclusion of different variants, we arrive at a
list of N = 44 datasets.

Datasets were annotated by two of the authors with help from research assistants. A
random subset of annotations was reviewed by a third author.

C.5 Annotated Columns

The following section provides descriptions of columns which were manually annotated for
each dataset in the corpus.

1. https://archive.ics.uci.edu/dataset/222/bank+marketing
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new_dataset_id A unique identifier for each dataset. Usually derived from the
dataset name.

dataset_name An official, common, or known name of the dataset that is unique
across datasets.

base_dataset_name In case there are different variants of the same dataset, this
field holds a common name to group all these variants together.

description_public This is a free-text field reporting (1) the aim/purpose of a data
artifact (i.e., why it was developed/collected), as stated by curators or inferred from context;
(2) a high-level description of the available features; (3) the labeling procedure for annotated
attributes, with special attention to sensitive ones, if any; (4) the envisioned ML task, if
any.

notes_public Any notes or comments regarding this dataset / task combination.
dataset_aliases Any names that this dataset is called by. While ’dataset_name’ only

contains the single most common name, this field holds possible aliases used to reference
this dataset.

affiliation Affiliation of the creators of the dataset. Based on reports, articles, or
official web pages presenting the dataset.

domain_class_main The main field where the data is used (e.g., computer vision
for ImageNet) or the field studying the processes and phenomena that produced the dataset
(e.g., radiology for CheXpert).

domain_class_multi The primary fields where the data is used (e.g., computer
vision for ImageNet) or the fields studying the processes and phenomena that produced the
dataset (e.g., radiology for CheXpert). Multiple domains are possible in this feature.

domain_freetext Fine-grained domain of the prediction task. Summarized with 1 -
2 words.

sample_size Dataset cardinality. Rough estimate of the size of the dataset.
year_last_updated The last known update to the dataset. For resources whose

collection and curation are ongoing (e.g., HMDA), we write “present”.
years_data The timespan covered in the data. This refers to the "social realities"

captured in the data i.e., data from which year(s) is present in the data.
citation The main / official source to cite this dataset in BibTeX format. For synthetic

datasets, this refers to the original paper where the dataset was first introduced.
main_url The main landing page or website related to the dataset. This is a website

with information on the dataset and not the dataset itself, which is referenced via ’down-
load_url’.

related_urls List of related links and resources to the dataset.
license Under which license is the dataset made available? A "?" indicates that no

license was found.
continent Continent(s) where the dataset is sourced. In two-letter format. If "n/a",

this concept is not applicable for a dataset (e.g., a synthetic one).
country Countrie(s) where the dataset is sourced. In ISO3 format. If "n/a", this

concept is not applicable for a dataset (e.g., a synthetic one).
dataset_variant_id This ID is used to identify different datasets belonging to the

same original dataset e.g., COMPAS has 3 unique smaller datasets belonging to this one
bigger one. In cases like this, each smaller dataset gets its own dataset_variant_id.
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dataset_variant_description Description outlining how this "sub-dataset" is dif-
ferent from the others. Only filled out if there are multiple "dataset_variant_ids".

is_accessible Is the dataset publicly accessible? "Manual download" indicates that
an automated download is not possible.

download_url URL to the dataset file itself, if it is publicly accessible.
custom_download Are there some extra steps needed to download the dataset itself,

e.g., unpacking a ZIP archive?
filename_raw Filename of the dataset for downloading it or finding it in a ZIP

archive.
format Format of the dataset. Corresponds to the format the data is in, not the

extension of the dataset e.g., CSV for comma-separated-values, TSV for tab-separated-
values, FIXED-WIDTH for fixed-width formats etc.

colnames Column names to use if the dataset file does not include them.
processing Does the dataset need some special pre-processing to be in the correct

format?
sensitive_attributes Sensitive attributes that are available in the dataset. Supports

multiple entries, separated with a semicolon and a space: ’; ’.
typical_col_sensitive All columns containing available sensitive attributes and the

information they contain in a categorical fashion. Covering the attributes listed in ’sensi-
tive_attributes’. Formatted as a JSON dictionary.

typical_col_features All columns typically used as features / predictors. Either a
list of column names indicating a positive selection or a list of column names prefixed with a
- indicating a negative selection i.e. all columns except the listed ones. A - indicates using
all available columns (except the target).

typical_col_target Column(s) which are being predicted. If more than one, sepa-
rated by semicolons.

target_lvl_good Which value of the target variable is considered desirable? Desir-
able here means good for any person impacted by a system built using this data.

target_lvl_bad Which value of the target variable is considered undesirable? Un-
desirable here means bad for any person impacted by a system built using this data.

dataset_size Whether a dataset is exceptionally large.

C.6 Computed Metadata

The following section provides descriptions of the computed metadata features which are
implemented in the Python package and computed for each of the datasets in the corpus.
The technical implementation can be reviewed in the publicly available source code of the
package.

Size As Ding et al. (2021) note, increasing dataset size does not necessarily reduce
observed disparities due to persistent structural inequalities. We try to cover a broad range
of dataset sizes in our corpus and compute dataset sizes by rows (samples) and columns (at-
tributes) of both prepared (meta_pretrans_n_rows, meta_pretrans_n_cols) and trans-
formed datasets (meta_n_rows, meta_n_cols).

Missing values To address potential bias from missing data (e.g. see Pessach
and Shmueli, 2022; Wang and Singh, 2021; Martínez-Plumed et al., 2019), we
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calculate the fraction of missing data per dataset. Metadata was computed prior
to processing to assess the proportion of rows (meta_pretrans_prop_NA_rows),
columns (meta_pretrans_prop_NA_cols) and cells (meta_pretrans_prop_NA_cells)
that contain missing values. We further calculate missingness within each group
of the protected attribute (only when binarizing; meta_prop_NA_sens_minority,
meta_prop_NA_sens_majority).

Attribute types We calculate the proportions of different numeric
(meta_prop_cols_float, meta_prop_cols_int) and logical (meta_prop_cols_bool) data
types in the data to assess their potential influence.

Sensitive AUC Non-sensitive attributes can act as proxies for sensitive ones (e.g.
see Pessach and Shmueli, 2022; Mehrabi et al., 2021; Fawkes et al., 2024). Identifying and
addressing such proxies can help mitigate unfairness (Pessach and Shmueli, 2022; Matloff
and Zhang, 2022). To assess this, we define Sensitive AUC as the ROC-AUC of a random
forest model (Ho, 1995) trained to predict the sensitive attribute using only non-sensitive
features (meta_sens_predictability_roc_auc). A higher Sensitive AUC suggests that
non-sensitive attributes may encode sensitive information.

Bivariate correlations Serving as an additional indicator of potential proxy variables,
we computed the correlation between each non-sensitive feature and the sensitive attribute,
using the average and maximum correlation values (meta_average_absolute_correlation,
meta_maximum_absolute_correlation).

Number of protected groups Some fairness methods require binary representations
of protected attributes, leading to the binarization of categorical or numerical sensitive at-
tributes during preprocessing. Documenting the original number of protected groups before
processing (meta_pretrans_unique_group_counts_pre_agg) helps track this process and
may provide insight into how such simplifications affect the performance and suitability of
fairness methods.

Prevalence We computed the proportions of minority and majority groups within the
dataset (only when binarizing; meta_prev_sens_minority, meta_prev_sens_majority),
along with the absolute difference between them (meta_prev_sens_difference) and the
imbalance ratio (meta_prev_sens_ratio). A smaller absolute difference and an imbalance
ratio closer to 1 indicate a more balanced distribution of the sensitive attribute.

Base Rate Similar to prevalence, we computed the probability of the favorable
outcome overall (meta_base_rate_target) and for each group (only when binarizing;
meta_base_rate_target_sens_minority, meta_base_rate_target_sens_majority)
along with the absolute difference (meta_base_rate_difference) and ratio
(meta_base_rate_ratio) between them.

Gini-Simpson Index The Gini-Simpson Index measures the probability that two ran-
domly selected individuals belong to different groups. Similar indices have been previously
used by Mecati et al. (2023) and Vetrò et al. (2021) to assess balance and detect potential
unfairness in datasets. We compute the Gini-Simpson Index for both group prevalence and
base rates

GS = 1−
∑
i

p2i ,
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where pi is the proportion of instances in group i ∈ {1, 2} (protected or non-protected).
For prevalence, this is is the proportion of individuals per group relative to the entire dataset
(meta_prev_sens_gini). For base rates, pi denotes the proportion of favorable outcomes
within each group (meta_base_rate_sens_gini).

C.7 Excluded Datasets

This subsection contains explanations for additional datasets that were excluded from the
corpus. The annotation procedure is described in detail in Section C.4.

2016 Presidential Elections (2 datasets) This dataset from the FiveThirtyEight
2016 Election Forecast was developed with the goal of providing an aggregated estimate of
the probability that Trump/Clinton wins the 2016 election based on multiple polls, weighting
each input according to sample size, recency, and historical accuracy of the polling orga-
nization. For each poll, the dataset provides the period of data collection, its sample size,
the pollster conducting it, their rating, and a url linking to the source data. The dataset
does not contain any sensitive attributes and was therefore excluded. One annotated but
excluded dataset came from ABC News, and another, potentially deviating, from (Sabato
and Yom-Tov, 2020).

Cancer Cases and Deaths (3 datasets) The main dataset reports state-level can-
cer prevalence for 18 cancer types, based on data from the CDC’s NPCR and the NCI’s
SEER program. Mortality data come from the CDC’s National Vital Statistics System.
As it contains only aggregated data on state-level, it was excluded from our analysis. Two
additional datasets provided the source data on new cases and deaths. As neither was used
in isolation in our annotations, both were excluded with the main dataset.

Clinical Annotations / Warfarin Dosage / PharmaGKB (4 datasets) The
data, collected by the International Warfarin Pharmacogenetics Consortium and co-curated
by PharmGKB, was used to study algorithmic estimation of optimal warfarin dosage. The
original data includes thousands of patient demographics, comorbidities, medications, genet-
ics, and effective warfarin doses. However, the available datasets do not contain demographic
details and only a specialty group column indicates few pediatric cases. Due to the absence
of sensitive attributes, these datasets were excluded. The excluded datasets comprised: 1)
meta-data for each clinical annotation; 2) genotype/allele-based annotation text with CPIC-
assigned function, if available; 3) supporting annotation details (variant, guideline, label);
and 4) clinical annotation history with creation and update dates.

COMPAS (4 datasets) We retain the original COMPAS data published by ProP-
ublica Angwin et al. (2016). Specific versions of the COMPAS dataset were excluded,
including an unofficial version published on Kaggle, used in one reviewed study (Jabbari
et al., 2020), and two others, each appearing in a single paper (Wang et al., 2019; Mandal
et al., 2020), due to a lack of clarity in the differences and processing from the original
ProPublica release. The COMPAS repository2 also includes a file with "raw" scores, named
compas-scores-raw.csv, which we decided not to include, as it is not further utilized in
the analysis.

FICO Credit Score, Credit Score Performance (2 datasets) The dataset orig-
inates from a 2007 Federal Reserve report to the US Congress on credit scoring and its

2. https://github.com/propublica/compas-analysis
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effects on the availability and affordability of credit. The collection, creation, processing,
and aggregation was carried out by the working group and is based on a sample of 301,536
TransUnion TransRisk scores from 2003. The dataset contains only aggregated statistics per
FICO score and race/ethnicity group and was therefore excluded. A second version with
unclear differences was also excluded.

Fifa 20 Complete Player This dataset was scraped by Stefano Leone and shared
on Kaggle. It contains player data from FIFA Career Mode (FIFA 15-20). We excluded this
dataset, because relevant sensitive attributes and target variables were unclear. A paper
by Awasthi et al. (2021) created a sensitive attribute by predicting nationality from player
names using LSTM, an approach that could introduce unnecessary uncertainty and therefore
may have reduced comparability.

Pima Diabetes This dataset was derived from a medical study of Native Americans
from the Gila River Community, often called Pima. Conducted by the National Institute
of Diabetes and Digestive and Kidney Diseases since the 1960s, the study found a large
prevalence of diabetes mellitus in this population. The dataset includes a subset of the
original study, focusing on women of age 21 or older. It reports diabetes test results and
eight key risk factors, such as number of pregnancies, skin thickness, and BMI. Relevant
sensitive attributes were not clear based on the papers we reviewed, so we decided to exclude
the dataset.

US Census (1990) This dataset is derived from the 1990 US Census. In the re-
viewed literature, the classification task was often unclear or unsuitable for our analysis
goals (e.g., Sabato and Yom-Tov, 2020). Another meta-analysis referenced 25 selected nu-
meric attributes without specifying them.

C.8 Computational Infrastructure

Experiments were run on a shared Linux compute cluster with partitions and compute infras-
tructure chosen based on availability of resources. Experiments were run as four consecutive
jobs, the first running experiments at high concurrency and the later re-running errored out
experiments at lower concurrency.

The first job was run on a node with access to 76 CPU cores and 512 GB of memory
over a duration of 11 hours. Later jobs were run on a node with 96 CPUs and 1 TB of
memory, using 5-fold parallelism and a maximum execution time of 2.5 hours for the second
and third run and 5 hours for the last run. Experiments were conducted using only CPU
compute.

C.9 Software

Simulation experiments were conducted using Python (Python Core Team, 2019) version
3.10 and the Python package multiversum (Simson, 2024) version 0.7.0. We used the
implementations of fairness-aware processing methods from the package AIF360 (Bellamy
et al., 2018) and used scikit-learn (Pedregosa et al., 2011) to fit logistic regressions.
Data were processed using the newly developed fairml_datasets package, utilizing pandas
(McKinney, 2010), fastparquet (Durant) and scikit-learn. Multiple other packages were
utilized as (peer) dependencies of the named packages. We use uv (Marsh, 2024) for virtual
environment management.
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Results from the experiments were analysed using R version 4.4.1 (R Core Team, 2024)
with packages from the tidyverse (Wickham et al., 2019), patchwork (Pedersen, 2024)
and tidymodels (Kuhn and Wickham, 2020). Color schemes are used from the R packages
awtools (Wehrwein, 2025) and wesanderson (Ram and Wickham, 2023). We use renv for
virtual environment management.

Lockfiles for both Python and R packages are provided with the codebase.
Experiments were executed using a docker container converted to the enroot format3.

3. https://github.com/NVIDIA/enroot
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