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Abstract

Background The €4 isoform of apolipoprotein E (ApoE) is the most significant genetic risk factor for Alzheimer’s
disease. Glial cells are the main source of ApokE in the brain, and in microglia, the €4 isoform of ApoE has been shown
to impair mitochondrial metabolism and the uptake of lipids and AB42. However, whether the €4 isoform alters
autophagy or lysosomal activity in microglia in basal and inflammatory conditions is unknown.

Methods Altogether, microglia-like cells (iMGs) from eight APOE3/3 and six APOE4/4 human induced pluripotent
stem cell (iPSC) lines were used in this study. The responses of iIMGs to ABR42, LPS and IFNy were studied by
metabolomics, proteomics, and functional assays.

Results Here, we demonstrate that iMGs with the APOE4/4 genotype exhibit reduced basal pinocytosis levels
compared to APOE3/3 iIMGs. Inflammatory stimulation with a combination of LPS and IFNy or AB42 induced PI3K/
AKT/mTORC signaling pathway, increased pinocytosis, and blocked autophagic flux, leading to the accumulation
of sequestosome 1 (p62) in both APOE4/4 and APOE3/3 iIMGs. Exposure to AR42 furthermore caused lysosomal
membrane permeabilization, which was significantly stronger in APOE4/4 iMGs and positively correlated with the
secretion of the proinflammatory chemokine IL-8. Metabolomics analysis indicated a dysregulation in amino acid
metabolism, primarily L-glutamine, in APOE4/4 iMGs.

Conclusions Overall, our results suggest that inflammation-induced metabolic reprogramming places lysosomes
under substantial stress. Lysosomal stress is more detrimental in APOE4/4 microglia, which exhibit endo-lysosomal
defects.
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Background
Lysosomal dysfunction is a common feature of aging-
associated  neurodegenerative  diseases, including

Alzheimer’s disease (AD), which is characterized by the
accumulation of toxic beta-amyloid (Ap) and tau protein
aggregates in the brain [1]. Since autophagy and endocy-
tosis/phagocytosis pathways deliver dysfunctional organ-
elles, extracellular material, and debris to lysosomes for
degradation, lysosomal dysfunction has been suggested
as a key factor promoting the accumulation of dysfunc-
tional organelles and protein aggregates in AD [2].

Lysosome biogenesis is controlled by the microphthal-
mia-associated transcription factor/transcription factor
E (MIT/TEE) family of transcription factors, including
TFEB, TFE3, MITF, and TFEC [3]. These transcription
factors bind to Coordinated Lysosomal Expression and
Regulation (CLEAR) motifs and co-operate to fine-tune
lysosomal gene expression in various conditions [4]. Dis-
ruption of TFEB-mediated signaling has been reported
to exacerbate tau pathology [4, 5], while TFEB overex-
pression in neurons and astrocytes may enhance the
clearance of AP and tau in mouse models of AD [6-8],
highlighting a strong link between lysosomal dysfunction
and AD pathology.

Apolipoprotein E (ApoE) is the primary carrier of cho-
lesterol and triglycerides in the bloodstream. In the brain,
it is primarily produced by astrocytes [9] and disease-
associated microglia [10]. Among the three human iso-
forms (€2, €3, and €4), ApoE €3 (further referred to as E3)
is considered neutral, while ApoE €4 (henceforth referred
to as E4) represents the most significant genetic risk fac-
tor for AD [11-13]. It is estimated that up to 50% of AD
patients carry at least one E4 allele [12].

E4 profoundly alters lipid metabolism in various cell
types [14-18] and impairs autophagy and lysosomal
activity in astrocytes and neurons [19-23]. In fibroblasts,
E4 may directly interfere with TFEB binding to CLEAR
motifs, thereby decreasing the transcription of lysosomal
genes [24].

Microglia, the immune cells of the brain, play a criti-
cal role in AD pathogenesis by regulating the clearance,
deposition, and propagation of Af and tau aggregates,
as well as mounting the inflammatory response [25-27].
Previous studies have reported that, compared to human
E3/E3 homozygous microglia, E4/E4 microglia exhibit
significant transcriptional alterations, impaired uptake
of lipids and AP, and deficits in mitochondrial metabo-
lism, calcium signaling, and migration [14—16, 28-30].
However, whether the E4 variant alters autophagy or
lysosomal activity in microglia in basal or inflammatory
conditions is unknown.

To address this question, we utilized human induced
pluripotent stem cell (iPSC)-derived microglia (iMGs)
with E4/E4 and E3/E3 genotypes to investigate whether
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E4/E4, as a significant genetic risk factor for AD, com-
promises microglial endocytosis-lysosome pathways or
autophagy in homeostatic or inflammatory conditions.
Our study provides evidence that the E4/E4 genotype
impairs pinocytosis and lysosomal activity via the mam-
malian target of rapamycin (mTORC)1 pathway in both
homeostatic and activated iMGs compared to the E3/E3
genotype. In contrast, autophagy appears unaffected by
the APOE genotype.

Materials and methods

Differentiation of human iPSC-derived microglia (iMGs)
The iPSC lines used in this study are listed in Supple-
mentary materials, Table 1. Human iPSC lines were
maintained in Essential 8 medium (Thermo Fisher Sci-
entific) on Matrigel (growth factor reduced; Corning;
1:200)-coated 3.5 cm dishes at 37 °C and 5% CO2. The
cells were passaged with 0.5 mM EDTA every 4-5 days.
The iMGs were differentiated from iPSCs as described
previously [31-33]. In brief, iPSC colonies were detached
using ReLeSR reagent (STEMCELL Technologies), plated
at density of 3-6 colonies per cm? on Matrigel-coated
6-well plates (1:200) in Essential 8 medium supplemented
with 5 uM ROCK inhibitor Y-27,632 (Selleckchem), and
differentiated into hematopoietic progenitors using the
commercial STEMdiff Hematopoietic kit (STEMCELL
Technologies) for 11-13 days. Floating hematopoietic
progenitors were then collected and plated at a density of
70008000 cells per cm? on new Matrigel-coated 6-well
plates. The cells were grown for 27 days in microglial dif-
ferentiation medium containing DMEM/F12, 2x insulin-
transferrin-selenite, 2x B27, 0.5x N2, 1x Glutamax, 1x
non-essential amino acids (all from Thermo Fisher Sci-
entific), 400 puM monothioglycerol (Merck Millipore),
5 pg/mL human insulin (Merck Millipore), 100 ng/mL
human interleukin-34 (IL-34) (Sino Biological), 50 ng/
mL human transforming growth factor beta 1 (TGF-$1),
and 25 ng/mL human macrophage colony-stimulating
factor (M-CSF) (Peprotech, Thermo Fisher Scientific).
Fresh medium was added every other day. To promote
microglial maturation, 100 ng/mL human CD200 (Biole-
gend) and 100 ng/mL human C-X3-C motif chemokine
ligand 1 (CX3CL1) (Peprotech, Thermo Fisher Scientific)
were added to the cells during the last 4 days of culture.
The generated cells exhibited immunopositivity for the
microglial markers Ibal (ionized calcium binding adaptor
molecule 1), CD18 (B2 integrin), CX3CR1 (C-X3-C motif
chemokine receptor 1), and TREM2 (triggering receptor
expressed on myeloid cells 2) (Supplementary Fig. 2A).

LPS and LPS plus IFNy treatment

The iMGs were replated at the density of 50,000 to 70,000
cells per cm? 4-5 days before the experiment in the mat-
uration medium. The cells were then treated with 100 ng/
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ml LPS (Merck Millipore) alone or with the combination
of 50 ng/ml LPS and 15 ng/ml human IFNy (Peprotech,
Thermo Fisher Scientific) for 24—48 h in iMG medium
containing only IL-34 and M-CSF but no other cytokines.

Soluble AB42 treatment

Human AP (1-42 trifluoroacetate, Bachem) was solubi-
lized completely using 1,1,1,3,3,3-Hexafluoro-2-propa-
nol (HIFP). After complete evaporation of HIFP using
SpeedVac Vacuum concentrator, A was reconstituted in
dimethyl sulfoxide (DMSO) at a final concentration of 2.5
mM and sonicated for 10 min in the water bath sonicator.

Then A was diluted to 100 pM concentration in cold
phosphate-buffered saline Dulbecco’s phosphate-buft-
ered saline (D-PBS; Thermo Fisher Scientific) and incu-
bated for three days at RT. The endotoxin concentration
(48 EU/ml) of the 100 uM Ap42 was quantitatively mea-
sured by using ToxinSensorTM Chromogenic LAL Endo-
toxin Assay Kit (GenScript, Cat L00350C) according to
the manufacturer’s instructions. Then AP42 was subse-
quently added to the cells at final concentration of 200
nM and incubated for 48 h at 37 °C before harvesting the
cells and media.

For Western blot (WB), the iMGs were maturated on
Matrigel-coated (1:100) 6-well plates at density of 47,000
cells per cm? for 4 days. The treatment was started 48 h
before collection by replacing half of the old media with
fresh iMG medium containing only IL-34 and M-CSF
cytokines with or without soluble AP42 oligomers. For
one E4/E4 cell line, rapamycin was given at a final con-
centration of 100 nM 24 h before collection. On a day
of collection, bafilomycin-treated cells were incubated
for 3 h at 37 °C with bafilomycin Al (Lysosomal Activ-
ity Assay Kit ab234622, Abcam), diluted according to the
manufacturer’s instructions) before lysing the cells.

L-leucyl-L-leucine Methyl ester (LLOMe) treatment

For studying the lysosomal membrane permeabilization
by the LLOMe treatment assay, the cells were plated at
a density of 45,500 cells per cm? onto coverslips coated
with Matrigel (1:100). On the treatment day, H-Leu-Leu-
OMe Hydrochloride (LLOMe) (#6491-83-4, Santa Cruz
Biotechnology) was dissolved in DMSO, old media was
removed from the cells and 250 pl of fresh iMG medium
without cytokines supplemented with DMSO (vehicle)
or 200 pM LLOME was added on top of the cells. The
iMGs were incubated for 2 h at 37 °C before fixation with
4% formaldehyde in D-PBS supplemented with 0.9 mM
CaCl, and 0.5 mM MgCl, at RT for 20 min.

Immunocytochemistry

The iMGs were permeabilized and unspecific binding
sites blocked with 0.3% Triton X-100 in 5% normal goat
serum in D-PBS at RT for 1 h. The iMGs were incubated
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with primary antibody (Supplementary materials,
Table 2) in 5% normal goat serum in D-PBS at 4 °C over-
night following secondary antibody incubation (Supple-
mentary materials, Table 2) at RT for 1 h. Nuclei were
visualized by DAPI (Merck Millipore) staining at RT for
5 min and the coverslips were mounted with Fluoro-
mount-G Mounting Medium (Thermo Fisher Scientific).
LGALS1 primary antibody was a generous gift from
Prof. P. Laakkonen, University of Helsinki. The images of
LGALSI1-stained cells were acquired with Zeiss LSM980
confocal microscope with C-Apochromat 63x/1.20 W
Korr UV VIS IR objective. LGALS1 puncta were quanti-
fied with Fiji Image] v. 1.53 software using the Gaussian
blur filter and the difference of Gaussians. The number
of puncta in the image was normalized by the number
of cell nuclei. Three images per iPSC line per treatment
were quantified.

Reverse transcription quantitative real-time PCR (RT-qPCR)
for in vitro iMGs

RNA was isolated by using Qiagen RNeasy Mini Kit
(#74106, Qiagen) according to manufacturer’s instruc-
tions. cDNA was synthetized from isolated RNA by using
Maxima reverse transcriptase enzyme (#£P0742, Thermo
Fisher Scientific) according to manufacturer’s instruc-
tions. The expression levels of genes of interest were
measured by using Maxima Probe/ROX qPCR Master
Mix (#11813923, Thermo Fisher Scientific) and the Taq-
man primers listed in Supplementary materials, Table 3
on Bio-Rad CFX96 Real-Time System (Bio-Rad). The
relative mRNA expression results were normalized to the
AC; averages of two housekeeping genes GAPDH and
ACTB using 27**“T method.

Cell Mito Stress mitochondrial function assay

The Seahorse XF Cell Mito Stress Test (Agilent) was
used to measure the key parameters of the mitochondrial
function in the cells. The manufacturer’s instructions
were followed for the workflow of the experiment. Briefly,
the cells were plated 40,000 cells per well in 200 pl matu-
ration medium one week before the experiment, and half
of the medium was replaced with a fresh medium every
other day. On the day of the experiment, the Seahorse XF
Assay medium was prepared by supplementing the Sea-
horse DMEM medium with Glutamax (Gibco, Thermo
Fisher Scientific) to a final concentration of 2 mM. The
cells were rinsed with 180 pl of Seahorse XF medium fol-
lowed by the addition of Seahorse XF medium to a final
volume of 180 pl. The cells were incubated in a non-CO,
incubator at 37 °C for 1 h before running on the XFe96
Analyzer (Agilent). At the beginning of the assay, glucose
and sodium pyruvate (Gibco) were added by the XFe96
Analyzer to cells to final concentrations of 10 mM and
1 mM, respectively. Next, modulators of the electron
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transport chain all 1 uM were injected in the following
order: oligomycin (Cayman Chemical) to inhibit ATP
synthase and determine ATP production of the cells,
Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone
(FCCP) (Cayman Chemical) to collapse the proton gra-
dient and disrupt the mitochondrial membrane poten-
tial and to determine the maximal and spare respiratory
capacity of the cells, a mixture of rotenone (Cayman
Chemical) and antimycin a (Merck Millipore) to inhibit
complexes I and III and to determine nonmitochon-
drial respiration of the cells. Oxygen consumption rate
(OCR) was directly measured by XFe96 Analyzer dur-
ing the assay. Results were normalized by the cell conflu-
ence analyzed by IncuCyte S3 at the Biomedicum Stem
Cell Center, University of Helsinki, before the beginning
of the assay and the key parameters of the mitochondrial
function of the cells were calculated using Seahorse Wave
Software and exported to Excel.

Glycolysis stress test

The Agilent Seahorse XF Glycolysis Stress Test was used
to measure the glycolytic function of the cells, and it was
performed simultaneously with the Agilent Seahorse
XF Cell Mito Stress Test. Extracellular acidification rate
(ECAR) was directly measured by the XFe96 Analyzer
during the assay. The manufacturer’s instructions were
followed for the workflow of the experiment. First, glu-
cose and sodium pyruvate were injected by XFe96 Ana-
lyzer on cells to final concentrations of 10 mM and 1
mM, respectively. Glucose was partially catabolized by
the cells through the glycolytic pathway to pyruvate, lead-
ing to a rapid increase in ECAR, which was reported as
glycolysis under basal conditions. Next oligomycin was
injected on cells to inhibit ATP synthase and to shift the
energy production to glycolysis. The following increase
in ECAR was used to determine the cellular maximum
glycolytic capacity. The obtained ECAR values were nor-
malized to the cell confluence assessed by IncuCyte S3,
and the key parameters of the glycolytic function of the
cells were calculated using Seahorse Wave Software and
exported to Excel.

Cytokine quantification
Media were collected and centrifuged at 16,000 G 10 min
4 °C to remove debris. The cells were lysed using RIPA
Lysis and Extraction Buffer (#89900) supplemented with
protease (#A32955) and phosphatase (#A32957) inhibi-
tors (all from Thermo Fisher Scientific). The protein
concentration was measured using BCA kit (#10741395,
Thermo Fisher Scientific). The media and lysates were
stored at -80 °C until analysis.

The levels of human TNFa (tumor necrosis factor
alpha), CCL5 (C-C motif chemokine ligand 5), CCL3
(C-C motif chemokine ligand 5), IL6 (interleukin-6), and
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IL8 (interleukin-8) in the media, were measured using
the mixture of corresponding Cytometric Bead Array
(CBA) Flex sets and Human Soluble Protein Master Buf-
fer Kit (both from BD Biosciences) according to manu-
facturer’s instructions. The samples were analyzed using
the BD Accuri C6 Plus flow cytometer with BD CSam-
pler Plus software (BD Biosciences) at the Biomedicum
Flow Cytometry Core Facility, University of Helsinki.
Mean PE-Height fluorescence intensity values were used
to construct the standard curves. Concentration values
were derived from standard curves using log-log regres-
sion and normalized to protein concentration in cell
lysates.

Western blot
To study the autophagic flux in basal conditions, the
iMGs were maturated on Matrigel-coated (1:200) 12-well
plates at 200,000 cells per well for 5 days. On the day of
the collection, the cells were treated with either rapamy-
cin only at a final concentration of 100 nM for 6 h, bafilo-
mycin Al only (Lysosomal Activity Assay Kit ab234622,
Abcam, diluted according to the manufacturer’s instruc-
tions) for 3 h or a combination of rapamycin (100 nM)
and bafilomycin A1 for 6 h before collecting the cells.
The cells were lysed with RIPA Lysis and Extraction
Buffer (#89900) supplemented with protease (#A32955)
and phosphatase (#A32957) inhibitors (all from Thermo
Fisher Scientific). The protein concentration was mea-
sured using BCA kit (#10741395, Thermo Fisher Sci-
entific) and the proteins were denatured by boiling in
4xSample Buffer (62.5mM Tris-HCl pH6.8, 2.5% SDS,
0.002% Bromophenol blue, 5% B-mercaptoethanol and
10% glycerol). Total amount of 5-10 pg of protein were
loaded and separated on a 4-20% Mini-PROTEAN®
TGX™ Gels (#4561094, Bio-Rad) and transferred to poly-
vinylidene fluoride (PVDF) membranes using the Trans-
Blot Turbo Transfer system (Bio-Rad). The membranes
were blocked in 5% fat-free milk in TBS-0.05% Tween
(TBST) buffer at RT for 1 h and incubated overnight
with the primary antibody diluted in 5% bovine serum
albumin — 0,02% Na azide in TBST at 4 °C. The follow-
ing day the membranes were washed and incubated with
the horseradish peroxidase (HRP)-conjugated secondary
antibodies for 1 h at RT. After washes the chemilumines-
cence signal was detected by using ECL Plus (#32132) or
ECL (#32106) Western Blotting Substrate (both Thermo
Fisher Scientific) and G: BOX Chemi XX6 (Syngene)
imaging system. Image] software was used for semi-
quantitive analysis of the membranes.

Lysosomal activity

For assaying lysosomal activity, we used the Lysosomal
Intracellular Activity Assay Kit (#ab234622, Abcam)
and the assay was conducted according to the protocol
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provided by the manufacturer. Briefly, the iMGs were
plated on 12-well plates at a density of 57,000 iMGs per
cm? and maturation was started 3-5 days prior to the
experiment. One day before the experiment half of the
media was replaced with iMG medium containing only
IL-34 and M-CSF cytokines. On the day of the experi-
ment the control cells and the cells to be treated with
bafilomycin A1l were pelleted by centrifuging the 12-well
plates at 300xg for 5 min at RT. After centrifugation the
old media was removed and replaced by fresh media with
or without bafilomycin Al and the cells were incubated
1 h at 37 °C with 5% CO,. After incubation the cells were
pelleted as above and after centrifugation the old media
was removed and 500 pl of new media supplemented
with Self-Quenched Substrate provided by the kit (15 ul
per 1 ml of media) with or without bafilomycin Al was
added on top of the cells. The cells were then incubated
1 hat 37 °C, 5% CO, before removing all the media and
adding 1 ml of ice-cold 1% bovine serum albumin in
D-PBS. The cells were scraped off, washed with ice-cold
1xAssay buffer and resuspended to 500 ul of D-PBS. The
mean fluorescence intensity (MFI) in FITC channel was
analyzed using the BD Accuri C6 Plus flow cytometer.

Endocytosis

For pHrodo dextran endocytosis assays, the cells were
plated at a density of 62,500 cells per cm? into a black-
walled 96-well imaging plate in 100 pl iMG medium
containing the maturation factors (CD200 and CX3CL1)
2-3 days before performing the assay. One day before
the experiment half of the media was removed and 50 pl
of fresh media containing treatments (final concentra-
tions 50 ng/ml LPS and 15 ng/ml IFNy) were added on
top of cells. On a day of the assay, Invitrogen"™pHrodo™
Red (#10361) or Green (#P35368) 10 kDa Dextran con-
jugates were dissolved in D-PBS in a final concentration
of 0.1 mg/ml. After removing 20 pl of old media from the
wells, added 20 pl of conjugate suspension on top of the
cells to a final concentration of 16,7-20 pg/ml. The endo-
cytosis assay was performed using IncuCyte S3 live cell
imaging system (Sartorius) at the Biomedicum Stem Cell
Center core facility, University of Helsinki. The cells were
imaged first every 30 min and after 4.5 h every 1 h for
20 h and the integrated intensity of the fluorescence sig-
nal was normalized to cell confluence assessed by Incu-
Cyte S3 before adding the pHrodo dextran conjugates. In
case of apilimod treatment, the treatments for the control
and apilimod treated cells were added on the day of the
assay by removing 20 ul of the old media and adding 20 pl
of fresh media with DMSO as a vehicle or apilimod in a
final concentration of 0.683 uM before the addition of the
conjugate suspension on top of the cells.
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Non-targeted metabolomics

Sample preparation. Non-targeted metabolomics analy-
sis was run by the company Afekta Technologies, Kuopio,
Finland (www.afekta.com). The cell pellets, containing
560,000 to 600,000 cells each, were dissociated with 60 pl
of Milli-Q water at RT. The suspension was sonicated for
5 min at RT to homogenize the cells, after which 240 pl
of cold 80% aqueous methanol was immediately added
to stop any remaining cellular activity and to extract the
metabolites. The samples were then vortexed for 10 s at
RT and let settle down for 5-10 min. The centrifugation
was performed at 13 000 rpm and 4 °C for 5 min. Imme-
diately after centrifugation, the supernatant was collected
carefully without disturbing the pellet with a 1 ml syringe
and injected into an HPLC vial with a glass insert. The
samples were stored at — 20 °C until analysis.

LC-MS analysis. The samples were analyzed by liq-
uid chromatography—mass spectrometry, consisting of a
Vanquish Flex UHPLC system (Thermo Fisher Scientific)
coupled with a high-resolution Orbitrap mass spectrom-
eter (Q Exactive Focus, Thermo Fisher Scientific) located
in the Biocenter Kuopio, University of Eastern Finland.
The analytical method has been described in detail pre-
viously [34, 35]. In brief, a Zorbax Eclipse XDB-C18
column (2.1x100 mm, 1.8 pum; Agilent Technologies)
was used for the reversed-phase (RP) separation and
an Aqcuity UPLC BEH amide column (Waters) for the
hydrophilic interaction chromatography (HILIC) separa-
tion. After each chromatographic run, the ionization was
carried out using jet stream electrospray ionization (ESI)
in the positive and negative mode, yielding four data files
per sample. The collision energies for the MS/MS analy-
sis were selected as 10, 20 and 40 V, for compatibility
with spectral databases.

Data analysis. Peak detection and alignment were per-
formed in MS-DIAL ver. 4.60 [36]. For the peak collec-
tion, m/z values between 50 and 1500 and all retention
times were considered. The amplitude of the minimum
peak height was set at 120,000. The peaks were detected
using the linear weighted moving average algorithm. For
the alignment of the peaks across samples, the retention
time tolerance was 0.05 min, and the m/z tolerance was
0.015 Da.

The differential features between the genotypes were
detected using featurewise linear mixed models, where
feature levels were predicted by genotype and cell ID
was used as a random effect. The mixed models were fit-
ted separately for samples in each of the two treatments.
Benjamini—-Hochberg false discovery rate (FDR) correc-
tion was performed on the p-values to account for mul-
tiple testing with results shown as q-values. All analyses
were conducted with R version 3.6.3 and notame version
0.0.6.
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Compound identification. The chromatographic and
mass spectrometric characteristics (retention time, exact
mass, and MS/MS spectra) of the significantly differential
molecular features were compared with entries in an in-
house standard library and publicly available databases,
such as METLIN and HMDB, as well as with published
literature. For molecular features without a match in
publicly available spectral databases, a secondary anno-
tation attempt was performed in MS-FINDER software
[37] by calculating the molecular formula based on
the isotopic pattern and exact mass and comparing the
experimental MS/MS (if available) with in silico MS/MS
spectra generated from databases of known natural and
other compounds.

Proteomics
The cells were maturated on original 6-well plates for
4 days prior to the experiment. Further, the cells were
treated for 48 h with 50 ng/ml LPS and 15 ng/ml IFNy in
iMG medium supplemented only with IL-34 and M-CSF
or left untreated. Then the cells were washed with 1 ml
of ice-cold D-PBS and harvested by scraping and centri-
fuging at 1000 G for 5 min at 4 °C. The cells were then
washed one more time with ice-cold D-PBS, and pellets
were frozen on dry ice and kept at -80 °C until analysis.
Samples were lysed in STET lysis buffer (1% (v/v)
Triton X-100, 150 mM NaCl, 2 mM EDTA, 50 mM
TrisHCI pH 7.5). Cell debris and undissolved material
was removed by centrifugation at 16,000 g at 4 °C for
10 min. The protein concentration was estimated using
the Pierce 660 nm assay (Thermo Fisher Scientific). A
modified protocol for single-pot solid-phase enhanced
sample preparation (SP3) was applied. In brief, 15 ug of
protein lysate MgCl, was added to a final concentration
of 10 mM. DNA was digested using 25 U of Benzonase
(Sigma-Aldrich) per sample at 37 °C for 30 min. Pro-
teins were reduced by adding dithiothreitol (Biozol) to a
final concentration of 10 mM, followed by incubation for
30 min at 37 °C. For cysteine alkylation, iodoacetamide
(Sigma-Aldrich) was added to a final concentration of
40 mM and samples were incubated 30 min at roo tem-
perature in the dark. The reaction was quenched with an
additional dose of dithiothreitol. Proteins were bound to
200 pg of a 1:1 mixture of hydrophilic and hydrophobic
magnetic Sera-Mag SpeedBeads (Cytiva) by adding etha-
nol (Sigma-Aldrich) to a final concentration of 80% (v/v)
and mixing on a thermomixer (Eppendorf) for 30 min
at RT. The beads were washed four times with 200 pL of
80% ethanol using a Dynamag-2 magnetic rack (Thermo
Fisher Scientific). For proteolytic digestion, 190 ng of
LysC and 190 ng of trypsin (Promega) were added in 40
pL of 50 mM ammonium bicarbonate, followed by 16 h
of incubation at RT. The supernatants were filtered using
0.22 pum spin-filters (Costar Spin-X, Corning) and then
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dried via vacuum centrifugation. The dried peptides
were re-dissolved in 20 pL of 0.1% formic acid. The pep-
tide concentration after digestion was quantified using
the Qubit protein assay (Thermo Fisher Scientific). An
amount of 350 ng of peptides per sample were subjected
to the LC-MS/MS proteomic analyses on a nanoElute
system (Bruker Daltonics) which was online coupled with
a timsTOF pro mass spectrometer (Bruker Daltonics)
equipped with an column oven. An amount of 350 ng of
Peptides were separated on a 15 cm (75 um ID) column
self-packed with ReproSil-Pur 120 C18-AQ resin (1.9 pm,
Dr. Maisch GmbH) using a 120 min long binary gradient
of water and acetonitrile supplemented with 0.1% formic
acid at a flow rate of 300 nL/min and a column tempera-
ture of 50 °C.

Data independent acquisition Parallel Accumula-
tion Serial Fragmentation (DIA-PASEF) was used. One
MS1 full scan was followed by 34 sequential DIA win-
dows with 26 m/z width for peptide fragment ion spec-
tra with an overlap of 1 m/z covering a scan range of 350
to 1200 m/z. The ramp time was fixed to 100 ms and 2
windows were scanned per ramp resulting in a total cycle
time of 1.9 s. For protein label free quantification (LFQ),
the LC-MS/MS raw data was analysed with the software
DIA-NN [38] (version 1.8) using a library-free search
against a canonical one-protein gene database of Homo
sapiens from UniProt (download: 2022-01-12, 20600
entries) supplemented with a contaminants database
from Maxquant (240 entries) [39]. Trypsin was defined as
protease and maximum 2 missed cleavages were allowed.
Acetylation of protein N-termini and methionine oxi-
dation were defined as variable modifications whereas
carbamidomethylation of cysteines was defined as fixed
modification. Tolerances for mass accuracy and ion
mobility were automatically optimized by DIA-NN. The
false discovery rates for precursors and proteins were set
to 1%.

For statistical analysis, the software Perseus (v 1.6.2.3)
[40] was used. Protein LFQ values were accepted on the
basis of at least 2 peptides. Contaminants were removed
and protein LFQ were log2 transformed. A Student’s ttest
was applied between the different groups for statistical
testing of abundance differences. A permutation-based
FDR correction for multiple hypotheses was applied with
a p-value of 0.05 and s0 of 0.1 [41]. The FDR thresholds
are visualized as hyperbolic curves.

The differentially expressed protein data that met the
p-value<0.05 and fold change>2 (in both directions)
cutoffs were further analyzed using QIAGEN Ingenuity
Pathway Analysis (IPA) as described [42].

Statistics
Statistical analysis was done using GraphPad Prism 9.2.0
(Insight Partners, New York, NY, USA) using Student’s
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t-test, Mann-Whitney non-parametric test or repeated  Results

measures two-way ANOVA, with Sidak’s-corrected
posthoc tests. Statistical significance was assumed at

p<0.05.

Basal levels of lipidated LC3 and macropinocytosis are
reduced in E4/E4 iMGs
To generate human iMGs, we used a protocol adapted
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Fig. 1 E4/4 iIMGs exhibited a decrease in basal levels of LC3-Il and macropinocytosis. A, representative Western blot images of iMGs in basal conditions.
B, quantification of the lipidated form of LC3 (Il) in iMGs in basal conditions. C, representative WB images of iMGs with (+) or without (-) rapamycin (rapa)
and bafilomycin (bafi) treatment. D, E, quantifications of the LC3 (Il) to LC3 (I) ratios in iMGs with (+) or without (-) rapamycin (rapa) and bafilomycin (bafi)
treatment. F, the relative expression of CTSD, CTSB, MAPTLC3B, and APOE mRNA as detected by RT-gPCR. G, the flow cytometry gating strategy, cleaved
lysosomal substrate emitted fluorescence in FITC channel. FSC-A, forward scatter area; SSC-A, side scatter area; FSC-H, forward scatter height. H, the mean
fluorescence intensity (MFI) of iMGs incubated for 1 h with the lysosomal substrate, which emits fluorescence following lysosomal degradation. |, the
MFI of control (E3/E3) iMGs with or without bafilomycin treatment. J, K, representative images (J) and the quantification of pHrodo signal (K) in iMGs
incubated with pHrodo dextran for different periods of time. Scale bar 300 um. Arrows, iIMGs with dextran in endo-lysosomal compartment. L, the quan-
tification of dextran uptake at 3 h. M, The quantification of dextran uptake in E3/3 and E4/4 iMGs in the presence or absence of apilimod, N=3iPSC lines.
Individual dots in the bar plots represent the mean values for individual iPSC lines derived from 1-3 independent experiments. The color coding of iPSC
lines is shown in Supplementary Table 1. Data in the graphs are shown as mean+ SEM. P values are derived from unpaired t-test (B, F, I), two-way ANOVA

(D, E) or Mann-Whitney test (H, L). *, p<0.05; **, p<0.01

from previously published studies [31, 32]. E3/E3 and E4/
E4 iMGs expressed similar levels of microglial marker
genes P2RY12 (purinergic receptor P2Y12) and TREM?2
(Supplementary Fig. 2B).

Autophagy is commonly studied by analyzing the
microtubule-associated protein light chain 3 (LC3),
which is conjugated to phosphatidylethanolamine (LC3-
II), using WB. During autophagy, cytosolic LC3-I is
converted into lipidated LC3-1I, which associates with
nascent phagophore membranes that enclose intracellu-
lar material to form autophagosomes. Under basal con-
ditions, E4/E4 iMGs exhibited significantly lower LC3-1I
levels compared to E3/E3 cells (Fig. 1A, B). As expected,
blocking autophagic flux by inhibiting lysosomal acidifi-
cation with bafilomycin A led to increased LC3-1I: LC3-1
ratio compared to the basal levels (Fig. 1C, D), but there
was no significant difference between the genotypes.
Similarly, treatment with rapamycin, an inhibitor of the
mTORCI1 complex and a well-known autophagy inducer,
did not reveal any significant differences between the
genotypes (Fig. 1C, E). Mitophagy, where defective mito-
chondria are degraded by autophagic machinery, is a
specific form of autophagy [43]. Mitochondrial mass
can be studied using the mitochondrial outer membrane
protein TOM-20, which is degraded if mitophagy is
increased [44]. Under basal conditions or after treatment
with bafilomycin A, there were no differences in TOM-
20 protein levels between the genotypes (Supplementary
Fig. 2C). Similarly, treatment with rapamycin, with or
without bafilomycin A, did not reveal any differences in
mitochondrial mass between the genotypes, suggesting
similar levels of mitophagy (Supplementary Fig. 2D). Col-
lectively, these results suggest that, compared to E3/E3
iMGs, E4/E4 iMGs exhibit reduced basal levels of LC3-
II but no significant differences in basal or rapamycin-
induced autophagic flux, indicating that autophagy is not
affected by the APOE genotype.

Since total levels of LC3 and many other endolyso-
somal proteins can be transcriptionally regulated by
TFEB, the master regulator of lysosomal biosynthesis
[45, 46], we assessed the mRNA levels of MAPILC3B, the
more abundant of two genes encoding for LC3, and two

abundant lysosomal endopeptidases, CTSD (cathepsin D)
and CTSB (cathepsin B). RT-qPCR analysis showed that
CTSD was significantly downregulated in E4/E4 iMGs,
while there was no difference in CTSB or MAP1LC3B
expression between the genotypes (Fig. 1F), suggesting
that LC3 protein levels were not primarily regulated by
transcription. There was a high variation in the average
APOE expression between different iPSC lines without a
significant genotype effect (Fig. 1F).

Since cathepsins play an essential role in lysosomal
degradation, we further analyzed lysosomal activity in
iMGs using flow cytometry with an Abcam’s propri-
etary self-quenched substrate and found that E4/E4
iMGs exhibited significantly lower lysosomal degrada-
tion activity compared to E3/E3 cells (Fig. 1G-H). Bafilo-
mycin-treated cells served as a negative control (Fig. 1I).
Lysosomal degradation activity can be influenced by the
efficiency of substrate uptake into endosomes. Addition-
ally, lipidated LC3-II associates not only with autophago-
somes but also with endosomes, macropinosomes, and
phagosomes, where it plays a role in vesicle recycling
[47, 48]. Therefore, we next investigated endocytosis in
iMGs. To assess pinocytosis (fluid-phase endocytosis),
we added pHrodo-conjugated dextran (MW 10 kDa) and
monitored intracellular fluorescence over 20 h using the
IncuCyte live imaging system (Fig. 1], K). Under basal
conditions, pinocytosis was significantly reduced in E4/
E4 iMGs compared to E3/E3 iMGs (two-way repeated
measures ANOVA, time x genotype p=0.01; Fig. 1], L).
Moreover, when endosome maturation and degradation
were blocked by apilimod, a significant accumulation of
dextran was observed over 24 h, irrespective of the APOE
genotype (repeated measures ANOVA, time x treatment
p<0.001, Fig. 1M). Interestingly, the APOE genotype did
not significantly affect the uptake of pHrodo-conjugated
zymosan-coated beads (Supplementary Fig. 2E-G) or
fibrillar AP42 (Supplementary Fig. 2H, I). There was no
significant genotype effect on cell migration as evaluated
using a Transwell assay, either (Supplementary Fig. 2J).
Collectively, these findings indicate that E4/E4 iMGs
exhibit reduced endocytosis under basal conditions but
no alteration in the rate of phagocytosis.
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Fig. 2 E4/4 iIMGs exhibit reduced metabolic flexibility and dysregulated amino acid metabolism. A, C, the oxygen consumption rate (OCR, A) and acidi-
fication rate (ECAR, C) assessed using the Seahorse analyzer. The graphs show the average of 3-4 iPSC lines obtained from one differentiation batch. B,
D, the quantification of basal ATP production, maximal mitochondrial respiration, proton leak, basal glycolysis, maximal glycolytic capacity, and non-
glycolytic acidification. E, the levels of cytokines/chemokines released into cell culture medium from iMGs in basal conditions and over 24 h and 48 h of
LPS+IFNy stimulation measured using the Cytometric Bead Array. F, non-glycolytic acidification, glycolysis, maximal glycolytic capacity, and glycolytic re-
serve in iMGs in basal conditions (NT) and following the 24 h of LPS + IFNy stimulation (LI) as measured using Seahorse analyzer. G, the oxygen consump-
tion rate (OCR) in basal conditions in glutamine (gln)-only medium and with the addition of pyruvate and glucose, the maximal and spare respiratory
capacity, and protein leak in iMGs in basal conditions (NT) and following the 24 h of LPS + IFNy stimulation (LI). Individual dots in the bar plots represent
the mean values for individual iPSC lines derived from 1-3 independent experiments. The color coding of iPSC lines is shown in Supplementary Table 1.
Data in the graphs are shown as mean + SEM. P values are derived from Mann-Whitney test (B) two-way ANOVA with Sidak’s post hoc tests (F,G). *, p < 0.05;
** p<0.01.H, a heatmap of some metabolites up (green)-or downregulated (purple) in iMGs following 48 h of LPS+IFNy stimulation. The metabolites

marked in bold letters were significantly affected by E4/4 genotype. The iPSC lines are indicated at the bottom of the heatmap

APOE 4/4 microglia exhibit reduced metabolic flexibility
and dysregulated amino acid metabolism

Pinocytosis serves as a mechanism to scavenge nutri-
ents and promote cell growth in low-nutrient conditions
[49]. The mitochondrial stress test, performed using Agi-
lent Seahorse XFe96 analyzer, revealed that E4/E4 iMGs
have similar basal respiration and ATP production but
lower maximal respiration capacity compared to E3/E3
cells (Fig. 2A, B). The finding aligns with previous studies
suggesting that E4/E4 iMGs may have a reduced ability
to rapidly enhance mitochondrial activity in response to
an acute increase in energy demand [28]. No significant
differences between the genotypes were observed in gly-
colysis or glycolytic capacity (Fig. 2C, D).

To investigate iMG metabolism under metabolic stress,
we induced strong classical activation of iMGs using a
combination of bacterial lipopolysaccharide (LPS) and
interferon-gamma (IFNy) (LPS/IFNy) [50]. As expected,
this inflammatory stimulation triggered the secretion of
proinflammatory cytokines and chemokines, including
TNFa, CCL5, CCL3, IL6, and IL8 (Fig. 2E). Inflamma-
tory stimulation did not significantly affect iMG cell con-
fluency, with no notable differences between genotypes
(Supplementary Fig. 3E). To meet the increased energy
demand during inflammation, microglia must signifi-
cantly enhance their metabolic rate. Accordingly, LPS/
IFNy stimulation induced glycolysis, glycolytic capacity,
basal and maximal respiration, and proton leak in mito-
chondria, with no significant effect of the APOE geno-
type (Fig. 2F, G).

When iMGs were subjected to 48-h LPS/IFNy inflam-
matory stimulation and analyzed using un-targeted
metabolomics, principal component analysis (PCA) of
normalized data revealed two distinct clusters corre-
sponding to unstimulated and stimulated cells, confirm-
ing that inflammatory stimulation induced metabolic
reprogramming in iMGs (Supplementary Fig. 3A, B).
Figure 2H highlights selected metabolites altered by
LPS/IENy treatment, including amino acids, fatty acids,
and glucose metabolites. While APOE genotypes did not
cause clear clustering of the samples, a total of 50 molec-
ular features were differentially produced (q-value<0.1)

between the E3/E3 and E4/E4 iMGs in the unstimu-
lated group and 132 molecular features in the stimulated
group. Ultimately, nine significantly altered metabolites
were reliably identified: L-glutamine and plasmalogen
PC O-38:7 under basal conditions (Fig. 2H; Table S1)
and seven metabolites (L-tryptophan, L-methionine,
L-kynurenine, phenylacetylglycine, tripeptide Pro-Ala-
Arg, adenine, and pyridoxine) in the stimulated group.
All identified metabolites were elevated in E4/E4 iMGs,
except for plasmalogen PC O-38:7 (Fig. 2H). The exact
identity of this plasmalogen could not be determined
from the data alone; however, in mammalian cells, the
most likely candidate is PC(P-16:0/22:6(4Z,7Z,10Z,13
7,167,19Z7)), with the longer fatty acid being docosa-
hexaenoic acid (DHA) [51]. Since inflammation induces
the hydrolysis of plasmalogens to generate pro- or
anti-inflammatory mediators [52], a lower basal level
of plasmalogen in E4/E4 iMGs may indicate a chronic
inflammatory state. There was no significant APOE geno-
type effect on cholesterol levels, and this was confirmed
using Amplex Red assay kit in a separate differentiation
batch (Supplementary Fig. 3C). Our metabolomics setup
did not allow for reliable measurement of non-polar lip-
ids such as triglycerides. Collectively, our metabolomics
results demonstrate that E4/4 iMGs exhibit dysregulated
amino acid and phospholipid metabolism.

Inflammation induces lysosomal dysfunction in iMG

To verify that LPS/IENY treatment changes the levels of
key proteins regulating amino acid metabolism, we con-
ducted proteomic analysis of five control E3/E3 iMG lines
(Supplementary Fig. 3D). In line with the metabolomics
data and existing literature [53], we detected an upregu-
lation in the levels of tryptophan-metabolizing pro-
teins (indoleamine 2,3-dioxygenase (IDO)1, kynurenine
3-monooxygenase (KMO) and kynureninase (KYNU))
following the 48 h LPS/IFNy stimulation (Table S2). We
also observed increased levels of some proteins involved
in glutamine uptake (SLC1AS5), synthesis (GLUL) and
hydrolysis (ASNS) (Table S2). When comparing the pro-
teome of two (isogenic to each other) E4/E4 lines with
E3/E3 lines, no significant differences (threshold 2-fold
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change, p<0.05) were observed in the levels of the pro-
teins involved in the tryptophan or glutamine metabo-
lism (Tables S4, S5).

The IPA analysis showed that in addition to common
inflammatory pathways, such as interferon alpha/beta
signaling, interferon gamma signaling and inflammasome
pathway, LPS/IFNy treatment induced PI3K/AKT signal-
ing and autophagy pathways (Fig. 3A). The autophagy
pathway included LC3 (MAP1LC3A/B) and SQSTM1/
p62, an autophagosomal cargo protein targeting ubiqui-
tinated substrates for degradation and linking autophagy
to the activation of pro-inflammatory transcription fac-
tor nuclear factor kappa B (NF-kB) [54] (Fig. 3B, Table
S3). We also observed increased levels of cholesterol
transfer protein GRAMDI1A (Fig. 3B, Table S2), which
was recently identified as a regulator of autophagosome
biogenesis [55]. In contrast, inflammatory stimula-
tion decreased the levels of several lysosomal proteases,
including cathepsin D (CTSD), lysosomal acid lipase
(LIPA), lysosomal alpha-mannosidase (MAN2B1), and
lysosomal pro-X carboxypeptidase (PRCP) (Fig. 3B, Table
S2), suggesting that strong inflammatory activation may
impair lysosomal degradation.

To validate the alterations identified by proteomic
analysis, immunoblotting was done using the samples
from an independent experiment. Consistent with the
proteomics data, this WB analysis confirmed that 48-h
stimulation with LPS/IENy strongly increased the accu-
mulation of LC3-II as well as glutamine synthetase
(GLUL), although the protein levels were not affected by
the APOE genotype (Fig. 3C, D).

To investigate whether the differences in protein lev-
els were determined by transcriptional regulation, we
performed RT-qPCR analysis on iMGs treated with LPS
for 24 h. In agreement with the proteomics data, CTSD
mRNA expression was significantly reduced following
the LPS treatment (Fig. 3E). In contrast, CTSB mRNA
was significantly upregulated by both LPS alone (two-
way ANOVA, p=0.015; Fig. 3E) and LPS/IFNy stimu-
lation (two-way ANOVA, p=0.015; Fig. 3F), which in
combination with lower protein levels at 48 h suggested
increased degradation or leakage of cathepsin B. The glu-
tamate transporter SLC1A2 has recently been implicated
in inflammatory responses in macrophages by sustaining
macropinocytosis and mTORC1 activation [56]. While
our iMGs did not express SLCIA2 under basal condi-
tion, the expression was upregulated in response to LPS
stimulation and was significantly stronger in E4/E4 iMGs
compared to E3/E3 iMGs (Fig. 3E). In contrast, there was
no APOE genotype effect on the mRNA levels of ILIB
(Fig. 3E). LPS/IFNy stimulation increased the rate of
pinocytosis in both E3/E3 and E4/E4 iMGs (Fig. 3G, H),
thereby placing a greater burden on the endo-lysosomal
system.
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APOE 4/4 iMGs exhibit higher lysosomal membrane
permeabilization upon AB42 exposure

To determine whether comparable results could be
achieved using an alternative inflammatory stimulus,
more relevant for AD, we treated iMGs for 48 h with sol-
uble AB42 oligomers containing 0.1 EU endotoxin per pug
peptide. First, we measured cytokine secretion after Ap42
treatment using CBA as above and found that iMGs of
both genotypes secreted cytokines at levels comparable
to those observed after LPS/IFNy treatment (Fig. 4A).

Further, we analyzed LC3-II levels by WB, and found
that, similarly to LPS/IFNy stimulation, AB42 strongly
increased intracellular LC3-II (p=0.04), irrespective of
the APOE genotype (Fig. 4B, C). Bafilomycin treatment
did not further increase LC3-II levels, suggesting that
AB42 stimulation blocked lysosomal degradation. Simi-
larly to LC3-II, SQSTM1/p62, levels were significantly
increased following AP42 stimulation (p=0.001); how-
ever, adding bafilomycin to AP42-stimulated iMGs did
not result in a significant change (Fig. 4D, E). Interest-
ingly, lysosomal-associated membrane protein 2 (LAMP-
2), a key mediator of autophagosome-lysosome fusion
[57, 58], was unaffected by AB42 stimulation but tended
to be reduced in E4/E4 iMGs (Fig. 4D, E). Since pro-
teomic analysis comparing two (isogenic to each other)
E4/E4 lines to E3/E3 lines revealed a downregulation of
two other lysosomal proteins MFSD1 and GLMP in E4/
E4 iMGs at basal conditions (Fig. 3B, Table S4), the over-
all lysosomal protein content may be reduced by E4/E4
genotype.

Phospho-NF-kB p65 (Ser536) is an active form of
NF-«xB (subunit p65), a key mediator of inflammation.
As expected, AP42 stimulation significantly increased
p-NE-kB p65 levels (p=0.02; Fig. 4B, C). Interestingly,
inhibition of lysosomal acidification with bafilomycin
further increased p-NF-«B p65 in E3/E3 iMGs but not in
E4/E4 iMGs, suggesting that lysosomal enzyme activity
selectively affected the inflammatory response in E3/E3
iMGs.

Since the accumulation of SQSTM1/p62 and LC3-II
following AP42 exposure suggested impaired lysosomal
degradation and elevated lysosomal stress, we next ana-
lyzed lysosomal membrane permeabilization (LMP)
using the lysosomal galectin puncta assay [59]. As shown
in Fig. 4F, H, the formation of galectin puncta, detected
with galectin (LGALS)-1-specific antibody, was signifi-
cantly higher in E4/E4 iMGs than in E3/E3 iMGs after
AP42 exposure, indicating increased lysosomal leak-
age in E4/E4 iMGs. A two-hour treatment with LLOME
served as a positive control (Fig. 4F, G). Interestingly, the
levels of secreted IL8 significantly correlated with galec-
tin puncta after AP42 stimulation, suggesting that lyso-
somal leakage exacerbated the inflammatory response
(Fig. 41). It has been demonstrated that IL8 production
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can be regulated by mTORCI1 activity [60]. Since
mTORCI is a critical regulator of lysosomal biogenesis
and autophagy [45, 61], we assessed its activity via WB
by measuring phosphorylation of the S6 ribosomal pro-
tein (Ser235/236), a downstream component of mTORC1
signaling complex. Figures 4], K show that phosphory-
lated S6 levels were significantly higher in E4/E4 iMGs
stimulated with AB42 as compared to E3/E3 iMGs, indi-
cating increased mTORCI activity in E4/E4 cells. Since
mTORCI1 can promote microglial proliferation [62], we
performed KI67 immunostaining to visualize proliferat-
ing cells. ApP42 stimulation significantly increased cell
proliferation; however, no effect of the APOE genotype
was observed under either basal or AB42-stimulated con-
ditions (Supplementary Fig. 4C, D). As expected, treat-
ment with the mTORCI inhibitor rapamycin reduced
NF-«xB p65 phosphorylation [63] by half in an E4/E4 line
(Fig. 4L, M), suggesting that mTORC1 activity promoted
inflammatory response in E4/E4 iMGs. In contrast to a
recent study by Haney and coworkers [64], we did not
find lipid droplet accumulation following Ap42 stimula-
tion and there were no differences between the genotypes
(Supplementary Fig. 4A, B).

Discussion

The €4 isoform of ApoE is the most prevalent genetic risk
factor for AD. In this study, E4/E4 iMGs showed dimin-
ished basal levels of pinocytosis and lipidated LC3 in
vitro. In macrophages and microglia, constitutive pinocy-
tosis primarily functions to continuously sample the envi-
ronment for pathogens [65]. Additionally, pinocytosis
has been shown to facilitate the uptake and clearance of
soluble AP species [66]. In agreement with our study, Lin
and coworkers have previously reported reduced uptake
of fluorescent soluble AB42 by E4/E4 iMGs [15]. Thus,
E4/E4 microglia may be less responsive to homeostatic
perturbations and less efficient at clearing soluble waste,
potentially contributing to impaired proteostasis in AD.
Endocytosis defects have also been previously reported
in E4/E4 astrocytes [67]. Contrary to the findings of
Haney and coworkers [64], we did not observe signifi-
cant differences in the uptake of solid particles, such as
zymosan-coated beads or fibrillar AB42. However, Haney
and coworkers used only one isogenic pair of iPSC lines
to conduct the experiment. In our study, E4/E4 iMGs
exhibited lower level of pHrodo zymosan-coated bead
phagocytosis than isogenic E3/E3 cells (Supplementary
Fig. 2D red open circle vs. red circle). Thus, other genetic
factors likely contributed to the high within-group varia-
tion in the uptake of zymosan beads, preventing us from
observing a significant APOE genotype effect. Interest-
ingly, Konttinen et al. [28] reported a slight reduction
in the numbers of internalized zymosan beads in E4/E4
iMGs, but did not observe any difference in fluorescence
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intensity. Overall, these results suggest that the APOE
genotype has a stronger impact on fluid-phase endocyto-
sis than on phagocytosis.

In our study, inflammatory stimulation strongly
increased autophagosome formation, pinocytosis, and
mTORC1 activity, while blocking autophagic flux and
abolishing genotype-related differences. The blockade
of autophagic flux was confirmed by elevated SQSTM1/
p62 levels, indicating that inflammatory conditions over-
ride basal autophagic and endocytic differences between
APOQOE genotypes.

Both autophagic and endocytic pathways culminate
in lysosomal degradation. Substrate overload can lead
to LMP, allowing intralysosomal components such as
cathepsins to be released into the cytoplasm, further
impairing lysosomal protein degradation [68]. LMP,
a hallmark of lysosomal dysfunction, has been impli-
cated in neurodegeneration and chronic inflamma-
tion. Interestingly, we observed an increased number
of LGALS1-positive puncta in AP42-stimulated E4/E4
iMGs, suggesting elevated LMP. Since damaged lyso-
somes are cleared by autophagy (lysophagy) [69], an
increased number of LGALS1 puncta may also indicate
impaired lysophagy. LMP can further induce inflam-
masome activation in macrophages and microglia [70-
73], a process which can be triggered by the leakage of
active cathepsin B from lysosomes into the cytosol [71,
72]. Overall, these findings suggest that E4/E4 microg-
lia exhibit heightened vulnerability to lysosomal leakage
and associated inflammatory cascades, potentially con-
tributing to chronic neuroinflammation in AD. Although
we did not directly assess inflammasome activation or
cathepsin B activity in our study, we found a significant
correlation between LMP and secreted IL8 (CXCLS),
a major neutrophil chemokine known to be involved in
AD [74] and regulated by inflammasome activation [75].
Furthermore, we found that bafilomycin, an inhibitor of
lysosomal acidification and protease activity, exhibited
a proinflammatory effect in E3/E3 iMGs, but not in E4/
E4 iMGs, indicating genotype-dependent differences in
lysosomal regulation of inflammation. In human iPSC-
derived macrophages, LMP has recently been linked to
metabolic reprogramming in mitochondria [76], and the
LMP-induced changes in mitochondrial respiration and
glycolysis were similar to those we observed in iMGs fol-
lowing LPS/IFNy stimulation. The mTORC1 pathway is
known to be the master regulator of metabolic repro-
gramming stimulating protein synthesis, promoting
aerobic glycolysis, suppressing autophagy, and reduc-
ing lysosomal acidification [45, 61, 77-79]. In our study,
mTORC1 was significantly stronger activated in E4/E4
iMGs following AP42 stimulation. This finding indicates
that targeting mTORC]1 signaling could be beneficial in
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mitigating lysosomal dysfunction and inflammation in
ApoE e4-associated neurodegeneration.

Our results are consistent with previous studies in
murine models, where prolonged exposure to AP42
resulted in the accumulation of autophagosomes, LMP,
and cathepsin D leakage in murine microglial cell line
[80]. Although it has been shown before that E4/E4
potentiates LMP in neuroblastoma cells after AP treat-
ment in vitro [81, 82], our study is the first to demon-
strate the effect of E4/E4 genotype on LMP in human
microglia, which play a central role in late-onset AD
pathophysiology.

Some earlier studies associated lysosomal dysfunc-
tion with cholesterol accumulation inside lysosomes in
E4/E4 glia, particularly astrocytes [16, 19]. We did not
detect APOE genotype effect on intracellular cholesterol
levels or lipid droplets. However, we cannot exclude the
possibility that the presence of ApoE &4 affected the dis-
tribution of cholesterol between different cellular com-
partments. Also, our metabolomics setup did not allow
for the reliable measurement of cellular triglycerides.

Interestingly, we observed elevated levels of amino
acids, particularly L-glutamine, in E4/E4 iMGs. This
was accompanied by increased mRNA expression of
the glutamate transporter SLCIA2 following inflamma-
tory stimulation. Increased levels of L-glutamine were
also reported in primary microglia from E4/E4 targeted
replacement mice [83]. Glutamine and glutamate metab-
olism are tightly linked. Glutaminase (GLS) catalyzes
glutamine conversion into glutamate, thus facilitating
its utilization in the TCA cycle and activating mTORC1
[79]. In microglia/macrophages, M1 polarization and
inflammasome activation require increased glutamine
utilization in the TCA cycle [79, 84]. Our mitochondrial
stress test results suggested that LPS/IFNy stimulation
increased glutamine utilization irrespective of the APOE
genotype. However, due to higher SLC1A2 mRNA expres-
sion it is possible that instead of enhanced glutamine-
to-glutamate conversion, E4/E4 iMGs exhibit increased
lysosomal glutamate efflux, sustaining mTORCI1 activa-
tion [56]. Additionally, the elevated kynurenine levels
detected in E4/E4 iMGs after LPS/IFNy stimulation may
have contributed to mTORC1 activation, as kynurenine
has been shown to directly activate mTORCI in human
lymphocytes [85].

Although we did not detect APOE genotype-associated
differences in basal autophagic flux, we found that E4/E4
iMGs exhibited lower expression level of key lysosomal
markers, including cathepsin D and LAMP2, suggesting
a reduced lysosomal content. These results are consistent
with the findings by TCW and coworkers [16] report-
ing downregulation in lysosomal genes in E4/E4 iMGs.
Notably, LAMP2 overexpression in ischemic cardiomyo-
cytes has been shown to restore autophagic flux, promote

Page 15 of 18

cathepsin trafficking, and mitigate LMP [86]. These
results highlight the potential therapeutic relevance of
enhancing lysosomal biogenesis in APOE4/4 carriers.

We could not replicate previously reported glycolytic
abnormalities in E4/E4 iMGs. Prior studies have reported
conflicting data regarding aerobic glycolysis levels in E4/
E4 iMGs. While Konttinen et al. [28] reported a signifi-
cant decrease in glycolysis and glycolytic capacity, Victor
et al. [29] found upregulation of the glucose transport-
ers GLUT1 (SLC2A1) and GLUTS3, suggesting increased
glycolysis. Additionally, a recent study of mouse E4/E4
microglia reported elevated aerobic glycolysis levels [83].
Given that glycolysis is often linked to inflammation-
driven metabolic reprogramming, its levels may be highly
dependent on experimental conditions.

Conclusion

Our study provides new insights into ApoE e4-mediated
alterations in microglial lysosomal function, metabolism,
and inflammation. Our findings suggest that inflam-
matory stimulation causes mTORCIl-mediated meta-
bolic reprogramming in human iPSC-derived microglia,
which leads to lysosomal stress and the suppression of
autophagic flux. These effects were exacerbated in Ap42-
stimulated microglia homozygous for APOE &4 allele.
Given the role of microglia in AD pathogenesis, these
results highlight the potential of targeting lysosomal
function and mTORCI1 signaling as therapeutic strategies
for ApoE e4-associated neurodegeneration. Since this
study used only simple monocultures, the results need to
be validated in more complex models that include other
brain cell types, such as neurons and astrocytes.
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