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Abstract
Financial institutions and insurance companies that analyse the evolution and sources
of profits and losses often look at risk factors only at discrete reporting dates, ignor-
ing the detailed paths. Continuous-time decompositions avoid this weakness and also
make decompositions consistent across different reporting grids. We construct a large
class of continuous-time decompositions from a rearranged version of Itô’s formula,
and uniquely identify a preferred decomposition from the axioms of exactness, sym-
metry and normalisation. This unique decomposition turns out to be a stochastic limit
of recursive Shapley values, but it suffers from a curse of dimensionality as the num-
ber of risk factors increases. We develop an approximation that breaks this curse when
the risk factors almost surely have no simultaneous jumps.

Keywords Profit and loss attribution · Sequential decompositions · Change
analysis · Risk decomposition · Itô’s formula
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1 Introduction

Profit and loss (P&L) attribution, also known as change analysis, has a long history
in risk management. P&L attribution is the process of analysing the change between
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two valuation dates and explaining the evolution of the P&L by the movement of
the sources (risk factors) between the two dates; see Candland and Lotz [4]. In other
words, the change in the P&L over time is decomposed in terms of the different risk
factors to explain how each factor contributes to the P&L. In the literature, there
are many ways to obtain a P&L attribution. For example, consider a portfolio in EUR
consisting of a long position in the S&P 500, Y for short. The P&L of such a portfolio
is driven by two risk factors, namely Y and the USD/EUR exchange rate, X for short.
To decompose the P&L over one year, we look for two random variables DX and DY

such that

X1Y1 − X0Y0 = DX + DY .

The numbers DX and DY are interpreted as the contributions of X and Y to the P&L.
In the literature, we can find many desirable properties that a decomposition should
possess; see Shubik [28], Friedman and Moulin [12] and Shorrocks [26] among many
others. The authors argue that a decomposition should be symmetric, i.e., the contri-
butions of the risk factors should be independent of the way in which the risk factors
are labelled or ordered. These authors also require that the sum of all contributions
equals the P&L; such decompositions are called exact. Further, Christiansen [6] ar-
gues that a decomposition should be normalised, i.e., if a risk factor remains constant,
its contribution to the P&L should be zero. It is also desirable for a decomposition
to consider the full path of each risk factor, i.e., to use all available information; see
Mai [18] and Flaig and Junike [9].

A common method for creating decompositions is to sequentially update the risk
factors one by one while “freezing” all other risk factors. This idea dates back at
least to Oaxaca [20] and Blinder [3], who developed a sequential updating (SU)
decomposition technique in a one-period setting. The SU decomposition is given by

DX = X1Y0 − X0Y0, DY = X1Y1 − X1Y0,

when we update the risk factor X first. Alternatively, one may update Y first to obtain

DX = X1Y1 − X0Y1, DY = X0Y1 − X0Y0.

Each SU decomposition is exact, but if there are d risk factors, there are d! different
updating orders and therefore d! different SU decompositions. Candland and Lotz [4]
call the one-period SU decomposition waterfall and apply it to P&L attribution. See
Fortin et al. [10] for an overview on how the SU decomposition is used in various
fields of economics.

The SU decomposition can also be defined in a multi-period setting by dividing
the time horizon into subintervals and applying the SU decomposition recursively
on each subinterval. Jetses and Christiansen [16] and Christiansen [6] analysed the
limit of the SU decomposition when the mesh size of the time grid converges to zero.
In the limit, the decomposition takes the whole path into account, and the limiting
SU decomposition is called the infinitesimal sequential updating (ISU) decomposi-
tion. The ISU decomposition is independent of any time grid, which is helpful “to
prevent inconsistencies when using conflicting subintervals for different purposes”;
see Flaig and Junike [9, Sect. 1].
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The averaged sequential updating (ASU) decomposition, also known as the Shap-
ley value, is simply the arithmetic average of the d! possible SU decompositions. It
has many desirable properties; in particular, it is exact and symmetric. Shapley [27]
introduces the ASU decomposition for cooperative games. Shubik [28] defines the
ASU decomposition for cost functions. Sprumont [29] and Friedman and Moulin [12]
provide an axiomatisation of the ASU decomposition for cost functions. Jetses
and Christiansen [16] define the infinitesimal averaged sequential updating (IASU)
decomposition as the average of the d! possible ISU decompositions.

We now summarise our main contributions. In this paper, we start directly in a
time-continuous setting. If the portfolio is a C2-function of the risk factors and the
latter have continuous paths, Itô’s formula provides a natural additive decomposition
of the portfolio. Our main contributions are as follows. In order to treat risk factors
with jumps, we provide a rearranged version of Itô’s formula and use it to define
a large class of reasonable decompositions, which we call Itô decompositions and
which include all d! ISU and the IASU decompositions as special cases. We prove
that there is a unique Itô decomposition (up to indistinguishability) that satisfies the
three axioms of exactness, symmetry and normalisation. We show that it is indistin-
guishable from the IASU decomposition. We further show that the IASU decompo-
sition can be interpreted as the limiting case of the ASU decomposition. Compared
to Jetses and Christiansen [16], who assume that the covariations between the risk
factors are zero, we use much weaker assumptions to prove the convergence of the
SU/ASU decompositions to the ISU/IASU decompositions.

In summary, we propose to use the IASU decomposition to obtain a P&L attribu-
tion because it considers the whole paths of the risk factors and satisfies the axioms
of exactness, symmetry and normalisation. However, in practical applications, the
IASU decomposition has two drawbacks: a) similarly to the ASU decomposition, it
suffers from the curse of dimensionality; b) the IASU decomposition is defined by
stochastic integrals, which somehow must be approximated in practice. Naively ap-
proximating these integrals can lead to decompositions that are no longer exact. As
another important contribution of this paper, we show that the IASU decomposition
does not suffer from the curse of dimensionality if the risk factors do not have simul-
taneous jumps. In this case, the IASU decomposition is indistinguishable from the
average of two (suitably selected) ISU decompositions. To avoid point b), we suggest
approximating ISU/IASU by SU/ASU.

Up to now, most practitioners have applied an arbitrary SU decomposition in a
one-period setting to obtain an annual P&L attribution; see Candland and Lotz [4].
Working with real market data, Flaig and Junike [9] empirically show that the SU de-
composition depends significantly on the order or labelling of the risk factors, and that
some SU decompositions may even ignore relevant risk factors, which may “lead to
wrong trading and hedging decisions”; see Flaig and Junike [9, Sect. 1].

Our theoretical analysis suggests using the average of only two SU decompositions
with a sufficiently fine time grid to obtain a P&L attribution, since such a decomposi-
tion is arbitrarily close to the IASU decomposition when the risk factors do not have
simultaneous jumps. To obtain these two SU decompositions, define one SU decom-
position in any order, e.g. alphabetically ascending, and another SU decomposition
by the reverse order, e.g. alphabetically descending; see Theorem 3.10 for details.
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Thus our analysis is highly relevant for practitioners: we recommend computing two
SU decompositions instead of one and using a finer grid than just annual data to
obtain a decomposition that is much closer to the IASU decomposition than a single
SU decomposition. While the choice of the decomposition (the average of two SU de-
compositions) is theoretically justified, we have only numerical experiments available
to estimate the time grid, and we recommend using monthly or weekly data.

Is there any other way to break the curse of dimensionality? Christiansen [6]
proves that the ISU decomposition is symmetric if it is stable with respect to small
perturbations in the empirical observation of the risk factors. In Appendix A.3, we
show that the ISU decomposition of a simple product of two correlated Brownian
motions is not stable. This shows that stability is a rather strong assumption.

There are other decomposition principles as well. There is the so-called one-at-
a-time (OAT) decomposition, which is also known as bump and reset; see Cand-
land and Lotz [4]. The OAT decomposition is closely related to the SU decompo-
sition. It is symmetric, but in general not exact. Frei [11] analyses the limit of the
OAT decomposition when the mesh size of the time grid converges to zero.

There are also completely different approaches. Fischer [8] uses a conditional ex-
pectations approach. Rosen and Saunders [24] use the Hoeffding method for a de-
composition of credit risk portfolios. Frei [11] and Bielecki et al. [1] use the Euler
principle for risk attribution. Ramlau-Hansen [23] and Norberg [19] decompose sur-
plus in life insurance by heuristic integral representations, where the integrators are
interpreted as the driving forces of change and determine the attribution. A similar
idea is used in Schilling et al. [25] based on the martingale representation theorem.

This article is structured as follows. In Sect. 2, we establish some notation. In
Sect. 3, we develop a rearranged version of Itô’s formula and introduce the fam-
ily of Itô decompositions. We show that the IASU decomposition is the only exact
and symmetric Itô decomposition, and we break the curse of dimensionality of the
IASU decomposition in Theorem 3.10. In Sect. 4, we prove that the IASU decompo-
sition can be approximated by the ASU decomposition. In Sect. 5, we provide some
numerical applications. Section 6 concludes.

2 Notation

Let (Ω,ℱ ,𝔽 = (ℱt )t≥0, P ) be a filtered probability space satisfying the usual con-
ditions, i.e., ℱ0 contains all nullsets and 𝔽 is right-continuous. Let 𝒳 be the set of
all real-valued 𝔽-semimartingales. A so-called risk basis or information basis is a
d-dimensional semimartingale X ∈ 𝒳 d , and its d components are called risk factors
or sources of risk. We denote the stopped semimartingale by Xσ = (X1,σ , . . . , Xd,σ )

for a stopping time σ . Equality of random variables is understood in the almost sure
sense, and equality of stochastic processes is understood up to indistinguishability.
Let C2 be the set of twice continuously differentiable functions from ℝ

d to ℝ. For
f ∈ C2 and i, j = 1, . . . , d , we write fi and fij for the partial derivatives ∂if and
∂i∂jf . By x ∧ y, we denote the minimum of two real numbers x and y. We call a
map F : 𝒳 d → 𝒳 non-anticipative if for any stopping time σ , it holds that for all
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X ∈ 𝒳 d ,

Ft(X
σ ) = Ft∧σ (X), t ≥ 0. (2.1)

Such a non-anticipative mapping depends only on the information up to time
t , i.e., on Xt . By ℳ, we denote some subspace of all non-anticipative map-
pings. By ℳ(C2), we denote the space of functionals F : 𝒳 d → 𝒳 such that
F(X) = (f (Xt ))t≥0 for X ∈ 𝒳 d and some f ∈ C2, which are clearly non-
anticipative. By σd , we denote the set of all d! permutations of {1, . . . , d}. Let id ∈ σd

be the identity. In a slight abuse of notation, we define for π ∈ σd ,

π(x) = (xπ(1), . . . , xπ(d)), x ∈ ℝ
d,

π(X) = (Xπ(1), . . . , Xπ(d)), X ∈ 𝒳 d .

For two one-dimensional semimartingales Z and Y and a càglàd process H , we denote
by

∫︁ t

0 HsdZs := ∫︁
(0,t] HsdZs the stochastic integral. In particular,

∫︁ 0
0 HsdZs = 0

by convention. We further set Z0− = 0,

Zt− = lim
ε↘0

Zt−ε, t > 0,

ΔZt = Zt − Zt−, t ≥ 0,

[Z, Y ] = ZY − Z0Y0 −
∫︂ ·

0
Zu−dYu −

∫︂ ·

0
Yu−dZu,

[Z, Y ]c = [Z, Y ] −
∑︂

0<s≤·
ΔZsΔYs.

We write
p→ for the convergence in probability of a sequence of random variables.

For A ⊆ {1, . . . , d}, we define the projection

pA : ℝd → ℝ
d, x ↦→ (︁

x11A(1), . . . , xd1A(d)
)︁
,

where the function 1A(h) is 1 if h ∈ A and 0 otherwise.

3 Family of Itô decompositions

Similarly to Shorrocks [26], Christiansen [6], we define a decomposition as follows.

Definition 3.1 A map

δ : ℳ × 𝒳 d → 𝒳 d , (F,X) ↦→ (︁
δ1(F,X), . . . , δd(F,X)

)︁

is called a decomposition.
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We interpret δi
t (F,X) as the contribution of Xi to the profit and loss Ft(X)−F0(X)

in [0, t]. We recall the following three axioms from the literature:
i) A decomposition is called exact if for all F ∈ ℳ and X ∈ 𝒳 d , it holds that

F(X) − F0(X) = δ1(F,X) + · · · + δd(F,X).

ii) A decomposition is called symmetric if for all π ∈ σd , F ∈ ℳ and X ∈ 𝒳 d , it
holds that

F(X) = F
(︁
π(X)

)︁ =⇒ δi(F,X) = δπ−1(i)
(︁
F, π(X)

)︁
.

iii) A decomposition is called normalised if for all 0 ≤ r < s < ∞, i = 1, . . . , d,
F ∈ ℳ and X ∈ 𝒳 d , it holds that

Xi is indistinguishable from a constant process on (r, s]
=⇒ δi(F,X) is indistinguishable from a constant process on (r, s].

Axiom i) ensures that a decomposition is able to fully explain the P&L; see
Shorrocks [26] and Christiansen [6]. Axiom ii) considers symmetric maps F and
states that if F does not depend on the order or labelling of the risk factors, then
neither does the decomposition. The symmetry axiom is motivated by the fact that
δi(F,X) represents the contribution of Xi and that the term δπ−1(i)(F, π(X)) also
describes the contribution of

(︁
π(X)

)︁π−1(i) = (︁
Xπ(1), . . . , Xπ(d)

)︁π−1(i) = Xi.

The symmetry axiom has already been mentioned in similar form in Friedman and
Moulin [12] and Shorrocks [26]. Finally, for axiom iii), if the risk factor Xi remains
constant during (r, s], it does not contribute to Fs(X)−Fr(X), and so the contribution
of Xi in (r, s] should also be zero. This is exactly reflected by the normalisation
axiom, taken from Christiansen [6].

Next, we indicate how Itô’s formula helps to define decomposition principles. Let
f : ℝd → ℝ be in C2. For i, j = 1, . . . , d , let

I i :=
∫︂ ·

0
fi(Xs−)dXi

s, I ij :=
∫︂ ·

0
fij (Xs−)d[Xi,Xj ]cs , (3.1)

S :=
∑︂

0<s≤·

(︃

f (Xs) − f (Xs−) −
d∑︂

i=1

fi(Xs−)ΔXi
s

)︃

. (3.2)

Itô’s formula states that for t ≥ 0, we have for any semimartingale X ∈ 𝒳 d that

f (Xt ) − f (X0) =
d∑︂

i=1

I i
t + 1

2

d∑︂

i=1

I ii
t + 1

2

d∑︂

i,j=1
i≠j

I
ij
t + St . (3.3)
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If we assume that X has continuous paths without interaction effects, i.e., I ij = 0,
i ≠ j , and S = 0, then (3.3) provides a natural way to additively decompose the P&L
f (Xt ) − f (X0). Indeed, by the normalisation axiom, I i and I ii should be assigned
to δi , which is interpreted as the contribution of Xi . To see this, assume that some δj

depends on I i or I ii for i ≠ j . Assume that Xj is constant everywhere. According to
the normalisation axiom, we should then have δj = 0. So δj must not depend on I i

or on I ii .
However, how to handle the interaction effects I ij , i ≠ j , and the jump part S

is not so obvious. Therefore, we provide in Proposition 3.3 a rearranged version of
Itô’s formula. Based on that result, we define the large family of Itô decompositions
in Definition 3.4 and show in Sect. 3 that this family contains many well-known
decomposition principles as special cases. Within the family of Itô decompositions,
we identify a single decomposition that satisfies the axioms of exactness, symmetry
and normalisation. For A ⊆ {1, . . . , d}, i ∈ {1, . . . , d} and s > 0, define

Y i,A
s := f

(︁
Xs− + pA(ΔXs)

)︁ − f
(︁
Xs− + pA\{i}(ΔXs)

)︁ − fi(Xs−)ΔXi
s

and

Si,A(X) :=
∑︂

0<s≤·
Y i,A

s .

For π ∈ σd , define

Si,π (X) := Si,{j :π(j)≤π(i)}(X). (3.4)

To obtain Si,π (X), all time points s where Xi jumps are considered. All risk factors
except Xi are fixed at s or s−, depending on the choice of π , and only Xi varies
between s− and s.

Lemma 3.2 Fix i ∈ {1, . . . , d}, X ∈ 𝒳 d and A ⊆ {1, . . . , d}. If i ∈ A, then Si,A(X)

is a semimartingale with a.s. paths of finite variation on compacts.

Proof Fix X ∈ 𝒳 d . Let N be a nullset such that u ↦→ |Xi
u(ω)|, i = 1, . . . , d , is

càdlàg for ω ∈ Ω \ N and

d∑︂

h,j=1

∑︂

0<s≤t

|ΔXh
s (ω)ΔX

j
s (ω)| < ∞, ω ∈ Ω \ N, t ≥ 0. (3.5)

Such an N exists as X is a semimartingale. Let ω ∈ Ω \ N and t ≥ 0. Let Mω ⊆ ℝ
d

be the closure of the set {Xu(ω) : u ∈ [0, t]}, which is compact. The function f and
its derivatives are continuous and reach a maximum and minimum on the convex hull
of Mω, which is compact by Carathéodory’s theorem; see Grünbaum [14, Sect. 2.3].
Hence f and its derivatives are bounded on the convex hull of Mω. For s ∈ (0, t], we
develop f around Xs−(ω) using a Taylor expansion. We have that

f
(︂
Xs−(ω) + pA

(︁
ΔXs(ω)

)︁)︂ = f
(︁
Xs−(ω)

)︁ +
∑︂

h∈A

fh

(︁
Xs−(ω)

)︁
ΔXh

s (ω) + R(ω),
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where R(ω) is the remainder term of the Taylor expansion, i.e., for some
θ(ω) ∈ [0, 1], it holds that

R(ω) = 1

2

∑︂

h,j∈A

fhj

(︂
Xs−(ω) + θ(ω)pA

(︁
ΔXs(ω)

)︁)︂
ΔXh

s (ω)ΔX
j
s (ω).

The term f (Xs−(ω)+pA\{i}(ΔXs(ω))) can be treated similarly. Since i ∈ A, it holds
for some C(ω) > 0, which does not depend on s or θ(ω), that

Y i,A
s ≤ C(ω)

∑︂

h,j∈A

|ΔXh
s (ω)ΔX

j
s (ω)|.

It follows by (3.5) that

∑︂

0<s≤t

|Y i,A
s (ω)| < ∞, ω ∈ Ω \ N. (3.6)

Since t was arbitrary, (3.6) implies that u ↦→ S
i,A
u (X)(ω), ω ∈ Ω \ N , is càdlàg and

of finite variation on compacts. Therefore Si,A(X) is a semimartingale. □

Proposition 3.3 Let π ∈ σd , f ∈ C2 and X ∈ 𝒳 d . For all t ≥ 0, it holds that

f (Xt ) − f (X0) =
d∑︂

i=1

(︃

I i
t + 1

2
I ii
t + 1

2

d∑︂

j=1
j≠i

I
ij
t + S

i,π
t

)︃

,

where I i and I ij are defined in (3.1) and Si,π is defined in (3.4).

Proof Since the series telescopes, we have that

f (Xs) − f (Xs−)

=
d∑︂

i=1

f
(︁
Xs− + p{j :π(j)≤π(i)}(ΔXs)

)︁ − f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs)

)︁
.

By (3.6), it holds for any t ≥ 0 that

d∑︂

i=1

S
i,π
t (X) =

∑︂

0<s≤t

d∑︂

i=1

Y
i,{j :π(j)≤π(i)}
s = St , (3.7)

where S is defined in (3.2). The claim then follows by Itô’s formula. □

Definition 3.4 Let λij ∈ [0, 1] for i, j = 1, . . . , d . Let μπ ∈ [0, 1] for π ∈ σd . The
decomposition

δItô : ℳ(C2) × 𝒳 d → 𝒳 d, (F,X) ↦→ (︁
δItô,1(F,X), . . . , δItô,d (F,X)

)︁
,
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where

δItô,i (F,X) = I i + 1

2
I ii +

d∑︂

j=1
j≠i

λij I
ij +

∑︂

π∈σd

μπSi,π (X), i = 1, . . . , d,

is called Itô decomposition with parameters (λij )i,j=1,...,d and (μπ)π∈σd
.

The definition of the Itô decomposition is motivated by Proposition 3.3 and the
normalisation axiom. Below (3.3), we already argued that I i and I ii should be at-
tributed to Xi in order to satisfy the normalisation axiom. If parts of the interaction
effect I ij were assigned to the contribution of Xh for h /∈ {i, j}, the decomposi-
tion would no longer be normalised. Therefore only the risk factors Xi and Xj are
assigned shares λij and λji of the interaction effect I ij .

Note that Si,π (X) contains only jumps in the ith component. If Si,π (X) were
assigned to the contribution of some Xj , j ≠ i, the normalisation axiom would be
violated if Xj is constant. Therefore Si,π should be assigned to the contribution of Xi .
Since there are d! different ways to decompose the jumps and violate neither the
normalisation axiom nor the exactness axiom, we propose to assign to Xi a weighted
average of all Si,π (X), π ∈ σd .

Remark 3.5 Since each Itô decomposition is linear in the first argument F , a portfolio
can be decomposed by decomposing each individual instrument.

We recall some special members of the family of Itô decompositions, namely
the IASU and the d! different ISU decompositions, which were introduced in Jet-
ses and Christiansen [16]. All Itô decompositions are normalised. We shall prove that
the IASU decomposition is the only Itô decomposition that is exact and symmetric.
We also see that the ISU decomposition is closely related to the IASU decomposition
and that the IASU decomposition is the limiting case of the well-known ASU decom-
position (also known as Shapley value), which is defined over a discrete time grid in
Sect. 4.

Definition 3.6 The IASU (infinitesimal averaged sequential updating) decomposition
δIASU : ℳ(C2) × 𝒳 d → 𝒳 d is defined by

δIASU,i (F,X) = I i + 1

2

d∑︂

j=1

I ij + 1

d!
∑︂

π∈σd

Si,π (X), i = 1, . . . , d.

Remark 3.7 The Itô decompositions are overparametrised: in view of (A.3) below
in Lemma A.2, we can represent the IASU decomposition as

δIASU,i (F,X) = I i + 1

2

d∑︂

j=1

I ij +
∑︂

A⊆{1,...,d}
i∈A

Si,A(X)ξi,A,
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where

ξi,A :=
∑︂

π∈σd{j :π(j)≤π(i)}=A

1

d! = (|A| − 1)!(d − |A|)!
d! . (3.8)

So the computational effort to obtain δIASU,i can be reduced from 𝒪(d!) to 𝒪(2d−1)

for d → ∞.

Definition 3.8 Let π ∈ σd . The ISU (infinitesimal sequential updating) decomposi-
tion δISU,π : ℳ(C2) × 𝒳 d → 𝒳 d with updating order π is defined by

δISU,i,π (F,X) = I i + 1

2
I ii +

d∑︂

j=1
π(j)<π(i)

I ij + Si,π (X), i = 1, . . . , d.

Theorem 3.9 Every Itô decomposition that is symmetric and exact is indistinguish-
able from the IASU decomposition. The IASU decomposition is related to the ISU de-
composition by

δIASU,i (F,X) = 1

d!
∑︂

π∈σd

δISU,i,π (F,X), i = 1, . . . , d,X ∈ 𝒳 d , F ∈ ℳ(C2).

(3.9)

Proof First, we show that the IASU decomposition is exact and symmetric and sat-
isfies (3.9). By Proposition 3.3, it follows that δIASU is an exact Itô decomposition.
Use (A.4) to see that the IASU decomposition is symmetric. If d = 1, (3.9) is trivially
true. Assume d ≥ 2. Fix i ∈ {1, . . . , d}. Note that

∑︂

π∈σd

1{π(j)<π(i)} =
{︄

d!
2 , j ≠ i,

0, j = i.

It follows that

1

d!
∑︂

π∈σd

d∑︂

j=1
π(j)<π(i)

I ij =
d∑︂

j=1

I ij 1

d!
∑︂

π∈σd

1{π(j)<π(i)}

= 1

2
I i1 + · · · + 1

2
I i(i−1) + 1

2
I i(i+1) + · · · + 1

2
I id

= 1

2

∑︂

j≠i

I ij . (3.10)

Equation (3.10) implies (3.9).
Now we show that all exact and symmetric Itô decompositions are indistinguish-

able from the IASU decomposition. Let δ be a symmetric and exact Itô decomposition



P&L decomposition in continuous time and approximations 1085

with parameters (λij )i,j=1,...,d and (μπ)π∈σd
. Since the Itô decomposition is over-

parametrised, we use the alternative parametrisation according to (A.3). To prove
that δ is indistinguishable from the IASU decomposition, we show that λij and ξi,A,id

are equal to the coefficients 1
2 and ξi,A defined in (3.8).

Suppose that λhk ≠ 1
2 . Let X ∈ 𝒳 d have continuous paths with Xi = 1, i /∈ {h, k},

and [Xh,Xk] ≠ 0. Let F(X) = ∏︁d
i=1 Xi . Then F(X) = F(π(X)) for π ∈ σd . Note

that I kh = Ihk . As δ is exact, we have

d∑︂

i=1

δi(F,X) = Ih + I k + λhkI
hk + λkhI

kh = F(X) − F0(X) = Ih + I k + Ihk,

hence λkh = 1 − λhk ≠ λhk . Let π ∈ σd be such that π−1(h) = k. Then we get

δπ−1(h)
(︁
F, π(X)

)︁ = δk
(︁
F, π(X)

)︁ = Ih + λkhI
kh ≠ Ih + λhkI

hk = δh(F,X).

This means that δ is not symmetric, which is a contradiction to our assumption. So
we necessarily have λij = 1

2 , i, j = 1, . . . , d .
Now let a ∈ {1, . . . , d}. Let A,B ⊆ {1, . . . , d} with |A| = |B| = a and

i ∈ A, j ∈ B for i, j ∈ {1, . . . , d}. Then there is a permutation η ∈ σd such
that η−1(A) = B and j = η−1(i). By (A.6), it follows that

ξi,A,id = ξj,B,id. (3.11)

Let A1, . . . , Ad ⊆ {1, . . . , d} with j ∈ Aj and |Aj | = a, j = 1, . . . , d . Since

⃓
⃓
{︁
A ⊆ {1, . . . , d} : j ∈ A, |A| = a

}︁⃓
⃓ =

(︃
d − 1

a − 1

)︃

, (3.12)

we obtain by (A.7), (3.11) and (3.12) that

1 =
d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=a,j∈A

ξj,A,id =
d∑︂

j=1

(︃
d − 1

a − 1

)︃

ξj,Aj ,id = d

(︃
d − 1

a − 1

)︃

ξi,A,id

for A ⊆ {1, . . . , d} with i ∈ A and |A| = a. Therefore we can conclude that

ξi,A,id = 1

d
(︁

d−1
|A|−1

)︁ = (|A| − 1)!(d − |A|)!
d! .

□

The next result shows that the curse of dimensionality of the IASU decomposition
can be broken if there are no simultaneous jumps.

Theorem 3.10 Let X ∈ 𝒳 d and F ∈ ℳ(C2). If ΔXhΔXj = 0 for all
h, j ∈ {1, . . . , d} with h ≠ j , then for any π ∈ σd and π ′ = d + 1 − π ,

δIASU,i (F,X) = 1

2

(︁
δISU,i,π (F,X) + δISU,i,π ′

(F,X)
)︁
, i = 1, . . . , d. (3.13)
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Proof Fix 0 < s < ∞. If ΔXi
s = 0, we have

f
(︁
Xs− + p{j :π(j)≤π(i)}(ΔXs)

)︁ − f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs)

)︁

= f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs

)︁)︁ − f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs)

)︁

= 0.

If ΔXi
s ≠ 0, we have X

j
s = X

j
s− for all j ≠ i and hence

f
(︁
Xs− + p{j :π(j)≤π(i)}(ΔXs)

)︁ − f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs)

)︁

= f (Xs) − f (Xs−).

Hence for π ∈ σd and i = 1, . . . , d , it holds that

δISU,i,π = I i + 1

2
I ii +

d∑︂

j=1
π(j)<π(i)

I ij

+
∑︂

0<s≤·
ΔXi

s≠0

(︁
f (Xs) − f (Xs−) − fi(Xs−)ΔXi

s

)︁
. (3.14)

Due to (3.9) and (3.10), we have that

δIASU,i (F,X) = I i + 1

2

d∑︂

j=1

I ij

+
∑︂

0<s≤·
ΔXi

s≠0

(︁
f (Xs) − f (Xs−) − fi(Xs−)ΔXi

s

)︁
. (3.15)

For π ∈ σd , let δISU,i,π be the ISU decomposition with updating order π and define
π ′(i) = d + 1 − π(i), i = 1, . . . , d . Note that

d∑︂

j=1
π(j)<π(i)

+
d∑︂

j=1
π ′(j)<π ′(i)

=
d∑︂

j=1
π(j)<π(i)

+
d∑︂

j=1
π(j)>π(i)

=
d∑︂

j=1
i≠j

. (3.16)

Equations (3.14)–(3.16) imply (3.13). □

Remark 3.11 Theorem 3.10 can be generalised to the case where some, but not
all, risk factors have simultaneous jumps. For example, suppose d = 3 and
ΔX1ΔXj = 0, j ∈ {2, 3}, but possibly ΔX2ΔX3 ≠ 0. It is then easy to see that
(3.13) still holds. Or, if d = 4 and ΔX1ΔXj = 0, j ∈ {2, 3, 4}, the IASU decomposi-
tion can be written as a weighted average of four ISU decompositions instead of eight
ISU decompositions, which would be necessary if all risk factors had simultaneous
jumps.
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Corollary 3.12 Let X ∈ 𝒳 d and F ∈ ℳ(C2). If [Xh,Xj ] = 0 for all
h, j ∈ {1, . . . , d} with h ≠ j , then

δIASU,i (F,X) = δISU,i,π (F,X), i = 1, . . . , d,

where π ∈ σd is arbitrary.

Proof The assumption [Xi,Xj ] = 0 for i ≠ j implies ΔXiΔXj = Δ[Xi,Xj ] = 0.
Therefore Si,π1 = Si,π2 , π1, π2 ∈ σd ; see the proof of Theorem 3.10. The assertion
follows directly from Definitions 3.6 and 3.8. □

Example 3.13 How does the IASU decomposition deal with simultaneous jumps?
Let d = 2 and assume that X = (X1, X2) is a pure-jump semimartingale of finite
variation. Then the IASU decomposition is given by

δIASU,1(F,X) = 1

2

∑︂

0<s≤·

(︂(︁
f (X1

s , X
2
s−) − f (Xs−)

)︁ + (︁
f (Xs) − f (X1

s−, X2
s )

)︁)︂
,

δIASU,2(F,X) = 1

2

∑︂

0<s≤·

(︂(︁
f (Xs) − f (X1

s , X
2
s−)

)︁ + (︁
f (X1

s−, X2
s ) − f (Xs−)

)︁)︂
.

The latter formulas are averages of sequential updates from time s− to time s.

Example 3.14 We decompose the P&L of the portfolio P = X1X2 of a foreign stock,
where X1 is the foreign exchange rate and X2 the stock price in the foreign currency.
The instantaneous P&L of the foreign stock in domestic currency is given by

dPt = X1
t−dX2

t + X2
t−dX1

t + d[X1, X2]t ,

i.e., it can be decomposed into the variation of the exchange rate, the variation of the
stock price and interaction effects; compare with Mai [18]. The IASU decomposition
equally distributes the interaction effect between δIASU,1 and δIASU,2. To see this,
observe that

δIASU,1(F,X) =
∫︂ ·

0
X2

s−dX1
s + 1

2
[X1, X2]c

+ 1

2

∑︂

0<s≤·

(︁
(X1

s X
2
s− − X1

s−X2
s−) + (X1

s X
2
s − X1

s−X2
s )

− 2X2
s−(X1

s − X1
s−)

)︁

=
∫︂ ·

0
X2

s−dX1
s + 1

2
[X1, X2],

where F(X) = X1X2. For δIASU,2, the reasoning is similar.
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4 SU and ASU decompositions and their limits

The time-dynamic SU and ASU decompositions are defined on discrete time grids;
see Jetses and Christiansen [16] and Christiansen [6]. A light introduction to the
SU decomposition can be found in Candland and Lotz [4]. In this section, we recall
the definitions of these decompositions and provide sufficient conditions such that
the SU and the ASU decompositions converge to the ISU and IASU decompositions,
respectively, as the mesh size of the discrete time grid converges to zero. We recall
the following definition from Protter [21, Sect. II.5].

Definition 4.1 An infinite sequence of finite stopping times 0 = σ0 < σ1 < · · · such
that supk σk = ∞ a.s. is called an unbounded random partition. A sequence (γn)n∈ℕ
of unbounded random partitions γn = {0 = σn

0 < σn
1 < · · · } is said to tend to the

identity if supk |σn
k+1 − σn

k | → 0 a.s. for n → ∞.

Definition 4.2 Let γ = {0 = σ0 < σ1 < · · · } be an unbounded random partition. The
SU (sequential updating) decomposition δSU,π,γ : ℳ × 𝒳 d → 𝒳 d with updating
order π ∈ σd is defined by

δSU,i,π,γ (F,X) =
∞∑︂

ℓ=0

(︂
F

(︁
Xσℓ + p{j :π(j)≤π(i)}(Xσℓ+1 − Xσℓ)

)︁

− F
(︁
Xσℓ + p{j :π(j)<π(i)}(Xσℓ+1 − Xσℓ)

)︁)︂
. (4.1)

In words, divide the time horizon [0, t] into finitely many subintervals, and to
obtain the contribution of Xi , fix all risk factors at the beginning σℓ or the end σℓ+1
of each subinterval (depending on the updating order π) and allow only Xi to vary
between σℓ and σℓ+1.

Proposition 4.3 The decomposition δSU,π,γ : ℳ×𝒳 d → 𝒳 d is well defined by (4.1)
and exact. The sum in (4.1) evaluated at t ∈ [0,∞) is a.s. finite.

Proof Let X ∈ 𝒳 d , F ∈ ℳ, π ∈ σd , n ∈ ℕ and t ≥ 0. Using (2.1) twice, we get

δ
SU,i,π,γ
t∧σn

(F,X) =
∞∑︂

ℓ=0

(︂
Ft

(︁
Xσℓ∧σn + p{j :π(j)≤π(i)}(Xσℓ+1∧σn − Xσℓ∧σn)

)︁

− Ft

(︁
Xσℓ∧σn + p{j :π(j)<π(i)}(Xσℓ+1∧σn − Xσℓ∧σn)

)︁)︂
(4.2)

=
n−1∑︂

ℓ=0

(︂
Ft∧σn

(︁
Xσℓ + p{j :π(j)≤π(i)}(Xσℓ+1 − Xσℓ)

)︁

− Ft∧σn

(︁
Xσℓ + p{j :π(j)<π(i)}(Xσℓ+1 − Xσℓ)

)︁)︂
(4.3)

since all summands with ℓ ≥ n on the right hand-side of (4.2) are equal to zero.
By (4.3), for each n, the process δSU,i,π,γ (F,X) stopped at σn is a finite sum of
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semimartingales and hence a semimartingale. By Protter [21, Sect. II.2] and since
σn → ∞ a.s. for n → ∞, the process δSU,i,π,γ (F,X) is a semimartingale and the
decomposition δSU,π,γ is therefore well defined. The fact that σn → ∞ a.s. implies
that the sum in (4.1) evaluated at t is a.s. finite.

We show exactness. Let x ∈ ℝ
d . Since

p{j :π(j)≤π(π−1(d))}(x) = x and p{j :π(j)<π(π−1(1))}(x) = 0,

we have for any t ∈ [0,∞) and n ∈ ℕ by (4.3) that

d∑︂

i=1

δ
SU,i,π,γ
t∧σn

(F,X)

=
d∑︂

i=1
i≠π−1(d)

n−1∑︂

ℓ=0

Ft∧σn

(︁
Xσℓ + p{j :π(j)≤π(i)}(Xσℓ+1 − Xσℓ)

)︁ +
n−1∑︂

ℓ=0

Ft∧σn(X
σℓ+1)

−
d∑︂

i=1
i≠π−1(1)

n−1∑︂

ℓ=0

Ft∧σn

(︁
Xσℓ + p{j :π(j)<π(i)}(Xσℓ+1 − Xσℓ)

)︁ −
n−1∑︂

ℓ=0

Ft∧σn(X
σℓ).

For each i ∈ {1, . . . , d} \ {π−1(d)}, there is exactly one k ∈ {1, . . . , d} \ {π−1(1)}
such that

p{j :π(j)≤π(i)}(x) = p{j :π(j)<π(k)}(x),

since π(k) = π(i) + 1 if and only if k = π−1(π(i) + 1). Thus we get

d∑︂

i=1

δ
SU,i,π,γ
t∧σn

(F,X) =
n−1∑︂

ℓ=0

Ft∧σn(X
σℓ+1) −

n−1∑︂

ℓ=0

Ft∧σn(X
σℓ)

= Ft∧σn(X
σn) − Ft∧σn(X

σ0)

= Ft∧σn(X) − F0(X).

Since t and n were arbitrary and σn → ∞ a.s., the decomposition δSU,π,γ is exact.
To see the last point, note that two processes with càdlàg paths are indistinguishable
if they are modifications. □

Example 4.4 Assume d = 2. The SU decomposition with respect to γ defines
d! = 2 decompositions, namely δSU,id,γ (F,X) and δSU,ϱ,γ (F,X) with ϱ(1) = 2
and ϱ(2) = 1, by

δSU,1,id,γ (F,X) =
∞∑︂

ℓ=0

(︁
F(X1,σℓ+1 , X2,σℓ) − F(X1,σℓ , X2,σℓ)

)︁
,

δSU,2,id,γ (F,X) =
∞∑︂

ℓ=0

(︁
F(X1,σℓ+1 , X2,σℓ+1) − F(X1,σℓ+1 , X2,σℓ)

)︁
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and

δSU,1,ϱ,γ (F,X) =
∞∑︂

ℓ=0

(︁
F(X1,σℓ+1 , X2,σℓ+1) − F(X1,σℓ , X2,σℓ+1)

)︁
,

δSU,2,ϱ,γ (F,X) =
∞∑︂

ℓ=0

(︁
F(X1,σℓ , X2,σℓ+1) − F(X1,σℓ , X2,σℓ)

)︁
.

Definition 4.5 Let γ = {0 = σ0 < σ1 < · · · } be an unbounded random partition.
The ASU (averaged sequential updating) decomposition δASU,γ : ℳ×𝒳 d → 𝒳 d is
defined by

δASU,i,γ (F,X) = 1

d!
∑︂

π∈σd

δSU,i,π,γ (F,X), i = 1, . . . , d.

Remark 4.6 As in Shorrocks [26], we observe that

δASU,i,γ (F,X) = 1

d!
∑︂

π∈σd

δSU,i,π,γ (F,X) =
∑︂

A⊆{1,...,d}
i∈A

δSU,i,A,γ (F,X)ξi,A

for ξi,A defined in (3.8) and

δSU,i,A,γ (F,X)

:=
∞∑︂

ℓ=0

(︂
F

(︁
Xσℓ + pA(Xσℓ+1 − Xσℓ)

)︁ − F
(︁
Xσℓ + pA\{i}(Xσℓ+1 − Xσℓ)

)︁)︂
.

Thereby, the computational cost to obtain δASU,i,γ can be reduced from 𝒪(d!)
to 𝒪(2d−1).

Theorem 4.7 Fix π ∈ σd and let (γn)n∈ℕ be a sequence of unbounded random par-
titions tending to the identity. Let F ∈ ℳ(C2), X ∈ 𝒳 d , t ≥ 0 and i ∈ {1, . . . , d}.
Then it holds for n → ∞ that

δ
SU,i,π,γn
t (F,X)

p−→ δ
ISU,i,π
t (F,X),

δ
ASU,i,γn
t (F,X)

p−→ δ
IASU,i
t (F,X).

Proof See Appendix A.2. □

The next example shows that the assumption F ∈ ℳ(C2) in Theorem 4.7 is
important to ensure convergence.

Example 4.8 Let Z be a stochastic process with independent increments and Z0 = 0.
Suppose the jumps of Z only occur at fixed times J = {2 − ℓ−1 : ℓ ∈ ℕ}, and for
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each ℓ ∈ ℕ, the process jumps by ±ℓ−1 with equal probability. The process Z stays
constant between jumps. Then Z is a semimartingale; see Černý and Ruf [5]. Let

f (x1, x2) = |x1 − x2|
so that f /∈ C2. Let (γn = {0 = σn

0 < σn
1 < · · · })n∈ℕ be a deterministic se-

quence of unbounded partitions tending to the identity such that γn contains the
first n smallest elements of J , but the intersection with (2−n−1, 2] is empty. Assume
that X = (Z,Z). Then for t ≥ 2, it follows that

∞∑︂

ℓ=0

(︁
f (X

1,σ n
ℓ+1

t , X
2,σ n

ℓ
t ) − f (X

1,σ n
ℓ

t , X
2,σ n

ℓ
t )

)︁ =
n∑︂

ℓ=1

ℓ−1,

which is divergent for n → ∞; so the SU decomposition does not converge for the
map Ft(X) := f (Xt ), t ≥ 0.

How can the IASU decomposition be computed efficiently in practice? If we
naively approximate the integrals in Definition 3.6 numerically, we may lose exact-
ness of the decomposition, which is undesirable in many applications. Theorem 4.7
suggests using the ASU decomposition as an approximation of the IASU decom-
position. However, this becomes computationally infeasible for moderately large d

since the computational cost to obtain δASU,i,γ scales like 𝒪(2d−1). The next result
provides an elegant solution when there are no simultaneous jumps.

Definition 4.9 Let γ = {0 = σ0 < σ1 < · · · } be an unbounded random partition. The
2SU (average of two sequential updating) decomposition δ2SU,π,γ : ℳ×𝒳 d → 𝒳 d

with updating order π ∈ σd is defined by

δ2SU,i,π,γ (F,X) = 1

2

(︁
δSU,i,π,γ (F,X) + δSU,i,π ′,γ (F,X)

)︁
, i = 1, . . . , d,

where π ′ = d + 1 − π .

Corollary 4.10 Fix π ∈ σd and let (γn)n∈ℕ be a sequence of unbounded random
partitions tending to the identity. Let F ∈ ℳ(C2), X ∈ 𝒳 d , i ∈ {1, . . . , d} and
t ≥ 0.

i) If ΔXhΔXj = 0 for all h, j ∈ {1, . . . , d} with h ≠ j , then

δ
2SU,i,π,γn
t (F,X)

p−→ δ
IASU,i
t (F,X), n → ∞.

ii) If [Xh,Xj ] = 0 for all h, j ∈ {1, . . . , d} with h ≠ j , then

δ
SU,i,π,γn
t (F,X)

p−→ δ
IASU,i
t (F,X), n → ∞.

Proof If ΔXhΔXj = 0, h ≠ j , Theorem 3.10 implies that

δIASU,i (F,X) = 1

2

(︁
δISU,i,π (F,X) + δISU,i,π ′

(F,X)
)︁
,
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Fig. 1 Overview of discrete approximations of the IASU decomposition

which is the limit of δ2SU,i,π,γn(F,X) by Theorem 4.7. If [Xh,Xj ] = 0, h ≠ j ,
apply Corollary 3.12 and Theorem 4.7. □

In particular, the 2SU decomposition with arbitrary updating order π is exact and
approximates the IASU decomposition when the risk factors do not have simulta-
neous jumps. In this case, the computationally expensive averaging to obtain the
ASU decomposition can be omitted and the computational complexity to approxi-
mate δIASU,i decreases from 𝒪(2d−1) to 𝒪(1). Theorem 4.7 and Corollary 4.10 are
also illustrated in Fig. 1.

Finally, we define the OAT decomposition. To obtain the contribution of Xi , all
risk factors are fixed at the origin and only Xi is allowed to change from the beginning
of a subinterval to the end of that subinterval.

Definition 4.11 Let γ = {0 = σ0 < σ1 < · · · } be an unbounded random partition.
The OAT (one-at-a-time) decomposition δOAT,γ : ℳ × 𝒳 d → 𝒳 d is defined by

δOAT,i,γ (F,X)

=
∞∑︂

ℓ=0

(︁
F(X1,σℓ , . . . , Xi−1,σℓ , Xi,σℓ+1 , Xi+1,σℓ , . . . , Xd,σℓ) − F(Xσℓ)

)︁
.

Remark 4.12 The OAT decomposition is symmetric, but in general not exact. Let
(γn)n∈ℕ be a sequence of unbounded random partitions tending to the identity. For
each i ∈ {1, . . . , d}, choose a permutation πi ∈ σd such that πi(i) = 1. Then
δOAT,i,γn is indistinguishable from δSU,i,πi ,γn . If F ∈ ℳ(C2), Theorem 4.7 gives
for t ≥ 0 that

δ
OAT,i,γn
t (F,X)

p−→ δ
ISU,i,πi
t (F,X), i = 1, . . . , d,

for n → ∞. Thus by Corollary 3.12, the three decompositions principles OAT, SU
(with arbitrary order π ∈ σd ) and ASU are asymptotically indistinguishable if there
are no interaction effects.

5 Applications

Investment portfolios of financial institutions or insurance companies may include in-
struments such as stocks, plain vanilla or callable bonds, convertible bonds, inflation-
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linked bonds, contingent convertible bonds (CoCos), basket options, foreign ex-
change options and structured products. These instruments often depend on multi-
ple risk factors such as different foreign exchange rates, interest rates for different
maturities, credit spreads, inflation rate, some trigger activations for CoCos, multiple
equities and time decay. Candland and Lotz [4] also considered defaults and rating
changes as risk factors.

In order to obtain a P&L attribution of such instruments, we propose the IASU de-
composition because it is exact, symmetric and normalised, and it takes into account
the whole paths of the risk factors, i.e., uses all available information. The last point
also avoids inconsistencies when reporting a P&L attribution for different time grids,
e.g. on an annual, quarterly, monthly and weekly basis. The IASU decomposition
involves a stochastic integral. To approximate the IASU decomposition, we propose
the ASU or 2SU decomposition with a sufficiently fine time grid, as such an ap-
proximation is always an exact decomposition. The use of the 2SU decomposition is
theoretically justified when the risk factors do not have simultaneous jumps.

In Sect. 5.1, we provide an exemplary decomposition of a plain vanilla call option
with stochastic interest rates on a foreign stock. A change in the P&L of this option
can be explained by movements in the stock, the yield curve, the foreign exchange
rate and time decay. Thus there are d = 4 risk factors. We analyse the unexplained
P&L of the OAT decomposition, the range of the SU and 2SU decompositions over
all possible updating orders π ∈ σd for different time grids, and the convergence of
the ASU decomposition to the IASU decomposition.

Computing the ASU decomposition to approximate the IASU decomposition be-
comes infeasible when the number of risk factors d is moderately large; for example,
a plain vanilla bond paying coupons may depend on d yield curves. A basket option
may depend on d stocks. In practice, d = 30 is a common case for basket options;
see Grzelak et al. [15]. In Sect. 5.2, we decompose a digital cash-or-nothing basket
put option. We illustrate that it is impossible to obtain the ASU decomposition in
reasonable time when d = 30, and we show how the 2SU decomposition is able to
break the curse of dimensionality.

5.1 Decomposing a call option with stochastic interest rates

In this section, we allocate the P&L of the price of a plain vanilla European call op-
tion with strike K and maturity T = 10 with stochastic interest rates and foreign
exchange exposure. The stock price S is given by a Black–Scholes model with con-
stant volatility σS > 0 and with stochastic interest rates r . The dynamics under the
risk-neutral measure are given by

dSt = rtStdt + σSStdBS
t ,

drt = κ(η − rt )dt + σrdBr
t

with constant volatility σr > 0, long-term mean η ∈ ℝ and speed κ > 0 of mean-
reversion. Under the physical measure, the stock has drift μS ∈ ℝ, and the foreign
exchange rate Y is assumed to follow a geometric Brownian motion with drift μY ∈ ℝ
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and volatility σY > 0 driven by the Brownian motion BY . The Brownian motions are
assumed to have correlations

d⟨BS,Br ⟩t = ρSrdt, d⟨BS,BY ⟩t = ρSY dt, d⟨BY ,Br ⟩t = ρYrdt.

The time to maturity is denoted by τ(t) = T − t . The price pcall(t) at time t of the
plain vanilla call option is given by a C2-function f : ℝd → ℝ, see Rabinovitch [22],
i.e.,

pcall(t) = f
(︁
St , rt , Yt , τ (t)

)︁ =: Ft(S, r, Y, τ ), t > 0,

with

f (s, r, y, τ ) = ysΦ
(︁
d+(s, r, τ )

)︁ − yKP(r, τ )Φ
(︁
d−(s, r, τ )

)︁
,

where Φ denotes the distribution function of a standard normal distribution and

d±(s, r, τ ) = 1√
v(τ)

(︃

log
s

KP (r, τ )
± 1

2
v(τ)

)︃

,

v(τ ) = σ 2
S τ + σ 2

r

τ − 2gκ(τ ) + g2κ(τ )

κ2
− 2ρSrσSσr

τ − gκ(τ )

κ
,

gκ(τ ) = 1 − e−κτ

κ
.

The bond price P(r, τ ) is given by

P(r, τ ) = A(τ)e−gκ (τ)r ,

where

A(τ) = exp

(︃(︂
η + σ 2

r λ

κ
− σ 2

r

2κ2

)︂(︁
gκ(τ ) − τ

)︁ − 1

κ

(︂σrgκ(τ )

2

)︂2
)︃

and λ denotes the market price of risk. For simplicity, we set the market price of
risk to zero and hence assume that the dynamics of r under the physical and the
risk-neutral measure are identical. Björk [2, Sect. 24.2] describes how to estimate the
parameters for r from market data. We simulate 1000 paths of the stock, interest rate
and foreign exchange rate under the physical measure over one year. For each path,
we decompose the price of the call option at time t = 1 with respect to the d = 4
risk factors X := (S, r, Y, τ ). We use the following parameters: K = S0 = 100,
μS = 0.05, σS = 0.4, Y0 = 1.1, μY = 0, σY = 0.05, r0 = 0.08, κ = 0.1, η = 0.05,
σr = 0.01 and ρSr = −0.7, ρSY = −0.4, ρYr = 0.7.

Figure 2 shows the relative unexplained P&L of the OAT decomposition, i.e.,

|(F1(X) − F0(X)) − ∑︁d
i=1 δ

OAT,i,γ

1 (F,X)|
|F1(X) − F0(X)| .
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Fig. 2 Relative unexplained
P&L for the OAT decomposition
of a plain vanilla call option in a
foreign currency at time t = 1
for different time grids

Fig. 3 Relative range of all SU
and 2SU decompositions for the
risk factor S

We use as time grids γ annual, quarterly, monthly, weekly and daily time steps.
As observed in Flaig and Junike [9], we also see that the unexplained P&L of the
OAT decomposition is significant for all time grids.

Figure 3 shows the relative range of the d! SU decompositions for the risk factor S,
i.e.,

max
π∈σd

δ
SU,1,π,γ

1 (F,X)

δ
IASU,1
1 (F,X)

− min
π∈σd

δ
SU,1,π,γ

1 (F,X)

δ
IASU,1
1 (F,X)

,

and the relative range of the d!
2 2SU decompositions for the risk factor S. The limiting

IASU decomposition is approximated by an ASU decomposition with 10’000 time
steps per year. We observe that the range is significant for the SU decompositions and
insignificant for the 2SU decompositions.

The speed of convergence of the ASU to the IASU decomposition is illustrated
in Fig. 4 for the risk factor S, i.e., we show the convergence

δ
ASU,1,γ

1 (F,X)

δ
IASU,1
1 (F,X)

−→ 1 as γ tends to the identity.

Figures 3 and 4 look similar for other risk factors.
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Fig. 4 Convergence of the ASU
decomposition to the IASU
decomposition for the risk factor
S

In further numerical experiments, we calculate the relative difference between the
ASU decomposition and the 2SU decompositions,

⃓
⃓
⃓
⃓
δ

2SU,i,π,γ

1 (F,X) − δ
ASU,i,γ

1 (F,X)

δ
IASU,i,γ

1 (F,X)

⃓
⃓
⃓
⃓,

over all risk factors i ∈ {1, . . . , d}, time grids γ and updating orders π ∈ σd , and
observe values of less than 0.6% in 95% of the simulations. In conclusion, we find
that the ASU decomposition and the 2SU decompositions are strongly dependent
on the time grid, but using monthly or weekly instead of annual time steps signif-
icantly reduces the deviation of the ASU and 2SU decompositions from the IASU
decomposition.

5.2 Decomposing a basket option

In this section, we compare the computational cost of obtaining a one-year P&L at-
tribution of a basket option using a naive SU decomposition with annual time grid
to the computational cost of obtaining an ASU and a 2SU decomposition based on a
monthly time grid, respectively. We consider d risk factors, namely time decay and
d − 1 different stocks. A digital cash-or-nothing basket put option pays $1 at matu-
rity T if S1

T ≤ K, . . . , Sd−1
T ≤ K and zero otherwise. The stock prices are given by

a Black–Scholes model. We set the interest rate r to zero. We set Si
0 = K = 100,

i = 1, . . . , d − 1 and T = 2. The price of the option at time t ∈ [0, T ) is equal to
Φ(log K, . . . , log K), where Φ is the distribution function of a (d − 1)-dimensional
normal distribution with location

(︃

log S1
t −

(︂
r − 1

2
σ 2

)︂
(T − t), . . . , log Sd−1

t −
(︂
r − 1

2
σ 2

)︂
(T − t)

)︃

∈ ℝ
d−1

and covariance matrix Σ(T − t), where we set σ = 0.2, ρ = 0.5 and

Σij =
{︄

σ 2, i = j,

ρσ 2, i ≠ j.
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Table 1 CPU time to compute the d contributions of the SU, ASU and 2SU decompositions of a basket
option over one year using different time grids. The CPU time of Φ is obtained from a Monte Carlo
simulation. The CPU times in brackets are estimated using the CPU time of Φ and the known complexities
of the three decompositions

Number of
evaluations of Φ

d = 4 d = 15 d = 30

Evaluation of Φ 1 0.018 s 0.15 s 0.54 s

SU with annual grid d + 1 0.09 s 2.4 s 16.7 s

2SU with monthly grid (12d + 1)2 1.76 s 54.3 s 390 s

ASU with monthly grid (12d + 1)2(d−1) 7.06 s 123.6 hr 3318.7 yrs

Basket options are often priced by using Monte Carlo techniques; see Glasser-
man [13, Sect. 3.2.3]. For moderate dimensions, many basket options can also be
priced by using faster Fourier techniques; see Eberlein et al. [7] and Junike and
Stier [17]. We compute Φ by using a simple Monte Carlo simulation implemented in
C++ with 100’000 simulations. The experiments are performed on a laptop with Intel
i7-11850H processor and 32 GB RAM.

Table 1 shows the CPU time needed to obtain Φ for d ∈ {4, 15, 30}. We mea-
sure CPU times by averaging over 100 runs. Since in some cases, the arguments of
Φ to obtain an SU decomposition with a certain update order π are the same for
different contributions, we need to evaluate Φ only dL + 1 times, where L is the
number of subintervals of [0, T ], to obtain the d individual contributions. For exam-
ple, (12d + 1)2 and (12d + 1)2d−1 evaluations of Φ are required for the 2SU and
ASU decompositions with a monthly time grid.

Table 1 also shows the CPU time to compute the SU, ASU and 2SU decomposi-
tions. A naive SU decomposition based on an annual time grid is at most 24 times
faster than a 2SU decomposition with a monthly time grid. The computational cost
of the 2SU decomposition for each contribution is dimension-independent, except
for the longer time required to evaluate Φ. Compared to the ASU decomposition,
the 2SU decomposition is 2d−2 times faster. The ASU decomposition cannot be
computed in reasonable time for d ≥ 30.

Remark 5.1 To reduce the computational time, it is possible to compute the d contri-
butions for the SU, 2SU and ASU decompositions in parallel, which would reduce
the numerical effort by a factor of d . Furthermore, the sums for the SU, 2SU and
ASU decompositions can also be parallelised. For example, for the 2SU decomposi-
tion, we need to perform 2(dL+1) function evaluations to obtain all d contributions.
If a function evaluation takes 0.54 s in d = 30 dimensions as in Table 1, the com-
putation time for the 2SU decomposition with monthly time grid could be reduced
from 390 s to about 0.54 s using 722 cores for parallelisation.

6 Conclusions

We showed that the IASU decomposition is the only (up to indistinguishability) exact
and symmetric decomposition in the family of Itô decompositions, which is a large
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class of normalised decompositions based on a rearranged version of Itô’s formula.
This axiomatic result, together with the fact that the IASU decomposition is grid-
independent and considers the full paths of the risk basis, makes it a decomposition
of choice from a theoretical perspective. In practice, the calculation of the IASU de-
composition comes with two challenges: it involves stochastic integrals that must be
approximated, and the computational effort explodes as the number of risk factors
increases.

We have shown that the IASU decomposition can be approximated by the ASU de-
composition (which is always exact and symmetric) if we use a sufficiently fine time
grid, but the ASU decomposition also suffers from the curse of dimensionality as
the number of risk factors increases. For applications where different risk factors
may have interactions, but almost surely do not have simultaneous jumps, we have
shown that the IASU decomposition is indistinguishable from the average of two ISU
decompositions, thus breaking the curse of dimensionality. Therefore, from a theo-
retical point of view, the 2SU decomposition with a sufficiently fine time grid is an
appropriate approximation of the IASU decomposition.

Based on our own numerical experiments and the empirical analysis of Flaig and
Junike [9], we recommend using monthly or even weekly instead of annual time
steps.

The additional computational cost of our two recommendations is moderate, but
the theoretical properties of the decomposition are dramatically improved.

Appendix

A.1 Auxiliary results

Lemma A.1 Let i, j ∈ {1, . . . , d}. Let π, η ∈ σd and x ∈ ℝ
d . Then it holds that

η−1
(︂
p{j :π(j)≤π(η−1(i))}

(︁
η(x)

)︁)︂ = p{j :π(η−1(j))≤π(η−1(i))}(x). (A.1)

Proof Let k ∈ {j : π(j) ≤ π(η−1(i))}, which is equivalent to

η(k) ∈{︁
j : π

(︁
η−1(j)

)︁ ≤ π
(︁
η−1(i)

)︁}︁
.

Since (η−1(x))η(k) = xk and (η(x))k = xη(k), we obtain that

(︃

η−1
(︂
p{j :π(j)≤π(η−1(i))}

(︁
η(x)

)︁)︂
)︃

η(k)

=
(︂
p{j :π(j)≤π(η−1(i))}

(︁
η(x)

)︁)︂

k

= (︁
p{j :π(η−1(j))≤π(η−1(i))}(x)

)︁
η(k)

,

which leads to (A.1). □
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Lemma A.2 Let η ∈ σd , i ∈ {1, . . . , d}, X ∈ 𝒳 d , F ∈ ℳ(C2) and
(μπ)π∈σd

⊆ [0, 1]. If F(η(X)) = F(X), then it holds that

∑︂

π∈σd

μπSη−1(i),π
(︁
η(X)

)︁ =
∑︂

A⊆{1,...,d}
i∈A

Si,A(X)ξi,A,η

with

ξi,A,η :=
∑︂

π∈σd

{j :π(η−1(j))≤π(η−1(i))}=A

μπ . (A.2)

In particular, for an Itô decomposition δ with parameters (λij )i,j=1,...,d and
(μπ)π∈σd

, we have

δi(F,X) = I i + 1

2
I ii +

d∑︂

j=1
j≠i

λij I
ij +

∑︂

A⊆{1,...,d}
i∈A

Si,A(X)ξi,A,id. (A.3)

Proof Let η ∈ σd and Ft(X) = f (Xt ), t ≥ 0, with F(η(X)) = F(X) for X ∈ 𝒳 d .
Let i ∈ {1, . . . , d}. By (A.1), it holds for s > 0 that

f
(︂
η(Xs−) + p{j :π(j)≤π(η−1(i))}

(︁
η(ΔXs)

)︁)︂

= f

(︃

η

(︃

Xs− + η−1
(︂
p{j :π(j)≤π(η−1(i))}

(︁
η(ΔXs)

)︁)︂
)︃)︃

= f
(︂
η
(︁
Xs− + p{j :π(η−1(j))≤π(η−1(i))}(ΔXs)

)︁)︂

= f
(︁
Xs− + p{j :π(η−1(j))≤π(η−1(i))}(ΔXs)

)︁
.

The last equality follows from the symmetry of f . Similarly, if we replace “≤”
in (A.2) with “<”, we get that

f
(︂
η(Xs−) + p{j :π(j)<π(η−1(i))}

(︁
η(ΔXs)

)︁)︂

= f
(︁
Xs− + p{j :π(η−1(j))<π(η−1(i))}(ΔXs)

)︁
.

Let η ∈ σd and f ∈ C2. If f (x) = f (η(x)), x ∈ ℝ
d , it is straightforward to see

that for x ∈ ℝ
d , it holds that

fi(x) = fη−1(i)

(︁
η(x)

)︁
, fij (x) = fη−1(i)η−1(j)

(︁
η(x)

)︁
,

(︁
η(x)

)︁
η−1(i)

= xi. (A.4)

Therefore it follows that

Sη−1(i),π
(︁
η(X)

)︁ = Si,π◦η−1
(X). (A.5)
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Thus similarly to Shorrocks [26], for any re-ordering η(X) of the risk basis X, we
can conclude from (A.5) that

∑︂

π∈σd

μπSη−1(i),π
(︁
η(X)

)︁ =
∑︂

π∈σd

μπSi,π◦η−1
(X)

=
∑︂

A⊆{1,...,d}
i∈A

∑︂

π∈σd

{j :π(η−1(j))≤π(η−1(i))}=A

μπSi,π◦η−1
(X)

=
∑︂

A⊆{1,...,d}
i∈A

Si,A(X)
∑︂

π∈σd

{j :π(η−1(j))≤π(η−1(i))}=A

μπ

=
∑︂

A⊆{1,...,d}
i∈A

Si,A(X)ξi,A,η.

Equation (A.3) follows directly for η = id. □

Lemma A.3 Let δ be an Itô decomposition with parameters (λij )i,j=1,...,d and
(μπ)π∈σd

. Let i ∈ {1, . . . , d}. If δ is symmetric and exact, it follows that

ξi,A,id = ξη−1(i),η−1(A),id (A.6)

for any η ∈ σd , where ξi,A,id is defined in (A.2) and η(A) := {η(j) : j ∈ A}.
Furthermore, for any a ∈ {1, . . . , d}, it holds that

d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=a,j∈A

ξj,A,id = 1. (A.7)

Proof First, we show (A.6). Let A ⊆ {1, . . . , d} with i ∈ A. Let π, η ∈ σd . Because
{︁
j : π

(︁
η−1(j)

)︁ ≤ π
(︁
η−1(i)

)︁}︁ = A ⇐⇒ {︁
j : π(j) ≤ π

(︁
η−1(i)

)︁}︁ = η−1(A),

it holds that

ξi,A,η =
∑︂

π∈σd

{j :π(η−1(j))≤π(η−1(i))}=A

μπ

=
∑︂

π∈σd

{j :π(j)≤π(η−1(i))}=η−1(A)

μπ = ξη−1(i),η−1(A),id. (A.8)

Now let f (x) = ∏︁d
j=1 x2

j and Ft(X) = f (Xt ), t ≥ 0, so that F(X) = F(π(X)),
π ∈ σd . For B ⊆ {1, . . . , d} with i ∈ B and t ≥ 0, let

X
j
t =

{︄
1[1,∞)(t), j ∈ B,

1[0,1)(t), j /∈ B.
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Then it follows that

f
(︁
X1− + pA(ΔX1)

)︁ =
{︄

1, A = B,

0, A ≠ B,

and therefore

S
i,A
1 (X) =

{︄
1, A = B,

0, A ≠ B,

for A ⊆ {1, . . . , d} with i ∈ A. For η ∈ σd , it follows by Lemma A.2 that

δ
η−1(i)
1

(︁
F, η(X)

)︁ =
∑︂

A⊆{1,...,d}
i∈A

S
i,A
1 (X)ξi,A,η = ξi,B,η.

Since δ is symmetric, we have by (A.8) that

ξη−1(i),η−1(B),id = ξi,B,η = δ
η−1(i)
1

(︁
F, η(X)

)︁ = δi
1(F,X) = ξi,B,id.

Since B was arbitrary, we have shown (A.6).
Now we iteratively show (A.7). Let X

j
t = 1[1,∞)(t), t ≥ 0, j = 1, . . . , d , and let

f a ∈ C2 be such that for a ∈ {1, . . . , d},

f a(x) =
{︄

1,
∑︁d

j=1 xj = a,

0,
∑︁d

j=1 xj ∈ (−∞, a − 1] ∪ [a + 1,∞),

and f a
i (X) = 0 if

∑︁d
j=1 xj ≤ a − 1, i = 1, . . . , d . Let Fa

t (X) = f a(Xt ), t ≥ 0.
If a = d , then

S
j,A

1 (X) =
{︄

1, |A| = a,

0, otherwise,

for j = 1, . . . , d and A ⊆ {1, . . . , d} with j ∈ A. By exactness and Lemma A.2, it
follows that

1 = Fa
1 (X) − Fa

0 (X)

=
d∑︂

j=1

δ
j

1 (F a,X)

=
d∑︂

j=1

∑︂

A⊆{1,...,d}
j∈A

S
j,A

1 (X)ξj,A,id

=
d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=d,j∈A

ξj,A,id. (A.9)
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Now let a = d − 1; then

S
j,A

1 (X) =

⎧
⎪⎨

⎪⎩

1, |A| = a,

−1, |A| = a + 1,

0, otherwise,

for A ⊆ {1, . . . , d} with j ∈ A. Again by exactness, we have that

0 = Fa
1 (X) − Fa

0 (X)

=
d∑︂

j=1

δ
j

1 (F a,X)

=
d∑︂

j=1

∑︂

A⊆{1,...,d}
j∈A

S
j,A

1 (X)ξj,A,id

=
d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=d−1,j∈A

ξj,A,id −
d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=d,j∈A

ξj,A,id.

Using (A.9), we obtain that

d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=d−1,j∈A

ξj,A,id = 1.

Iteratively for any a ∈ {1, . . . , d}, it follows that

d∑︂

j=1

∑︂

A⊆{1,...,d}
|A|=a,j∈A

ξj,A,id = 1.

□

A.2 Proof of Theorem 4.7

Let t > 0. Fix i ∈ {1, . . . , d} and some permutation π . Since F ∈ ℳ(C2), there
is by definition an f ∈ C2 with Ft(X) = f (Xt ), t ≥ 0. We first show that

δ
SU,π,γn
t (F,X)

p→ δ
ISU,π
t (F,X) for n → ∞. Let γn = {0 = σn

0 < σn
1 < · · · },

n ∈ ℕ, be a sequence of unbounded random partitions tending to the identity. Let
α > 0 and define

𝒜α :=
{︂
s ∈ (0, t] : max

j=1,...,d
|ΔX

j
s | > α

}︂
,

the set of all time points in [0, t] where at least one component of a path u ↦→ Xu

has a jump greater than α. The SU decomposition δSU,i,π,γn with respect to γn can be
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written as

δ
SU,i,π,γn
t (F,X) =

∑︂

ℓ∈𝔸α

(︂
f

(︁
X

σn
ℓ

t + p{j :π(j)≤π(i)}(X
σn

ℓ+1
t − X

σn
ℓ

t )
)︁

− f
(︁
X

σn
ℓ

t + p{j :π(j)<π(i)}(X
σn

ℓ+1
t − X

σn
ℓ

t )
)︁)︂

+
∑︂

ℓ∈𝔸c
α

(︂
f

(︁
X

σn
ℓ

t + p{j :π(j)≤π(i)}(X
σn

ℓ+1
t − X

σn
ℓ

t )
)︁

− f
(︁
X

σn
ℓ

t + p{j :π(j)<π(i)}(X
σn

ℓ+1
t − X

σn
ℓ

t )
)︁)︂

, (A.10)

where 𝔸α = {ℓ ∈ ℕ0 : 𝒜α ∩ (σ n
ℓ , σ n

ℓ+1] ≠ ∅} and 𝔸
c
α = ℕ0 \ 𝔸α . The first sum on

the right-hand side of (A.10) converges a.s. for n → ∞ to

∑︂

s∈𝒜α

(︂
f

(︁
Xs− + p{j :π(j)≤π(i)}(ΔXs)

)︁ − f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs)

)︁)︂
. (A.11)

Using a Taylor expansion and the same arguments as in the proof of Itô’s formula,
one can show that the second sum on the right-hand side of (A.10) converges in
probability for n → ∞ to

I i
t + 1

2
Hii

t +
∑︂

π(j)<π(i)

H
ij
t −

∑︂

s∈𝒜α

(︃

fi(Xs−)ΔXi
s + 1

2
fii(Xs−)(ΔXi

s)
2

+
d∑︂

j=1
π(j)<π(i)

fij (Xs−)ΔXi
sΔX

j
s

)︃

, (A.12)

where Hij = ∫︁ ·
0 fij (Xs−)d[Xi,Xj ]s . The sum of (A.11) and (A.12) is

I i
t + 1

2
Hii

t +
∑︂

π(j)<π(i)

H
ij
t (A.13)

+
∑︂

s∈𝒜α

(︂
f

(︁
Xs− + p{j :π(j)≤π(i)}(ΔXs)

)︁

− f
(︁
Xs− + p{j :π(j)<π(i)}(ΔXs)

)︁ − fi(Xs−)ΔXi
s

)︂
(A.14)

−
∑︂

s∈𝒜α

1

2
fii(Xs−)(ΔXi

s)
2 (A.15)

−
∑︂

s∈𝒜α

d∑︂

j=1
π(j)<π(i)

fij (Xs−)ΔXi
sΔX

j
s . (A.16)
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Since X is a semimartingale and because of Lemma 3.2, we can see that the sums
(A.14)–(A.16) are absolutely convergent for α → 0 so that (A.13)–(A.16) converge
for α → 0 to δ

ISU,π
t (F,X), using that

I ij = Hij −
∑︂

0≤s≤·
fij (Xs−)ΔXi

sΔX
j
s .

By Theorem 3.9, we get δ
ASU,γn
t (F,X)

p→ δ
IASU,π
t (F,X) for n → ∞.

A.3 Stability

In this section, we use the notation of Christiansen [6]. Let τi : [0,∞) → [0,∞)

satisfy τi(t) ≤ t for all t ≥ 0 for i = 1, 2. The function τ(t) = (τ1(t), τ2(t)) is called
a delay. A delay is phased if there is an unbounded partition (sℓ)ℓ∈ℕ of [0,∞) with
{0 = s0 < s1 < · · · } such that on each interval (sℓ, sℓ+1], at most one component
of τ is nonconstant. Let (τn)n∈ℕ be a refining sequence of delays that increase to the
identity (rsdii), i.e.,

τn
i ([0, t]) ⊆ τn+1

i ([0, t]), n ∈ ℕ, and
⋃︂

n∈ℕ
τn
i ([0, t]) = [0, t], i = 1, 2.

Let 𝒯 be a set containing at least one phased rsdii. Let X = (X1, X2) be a
semimartingale and define

X ⋄ τ := (X1 ◦ τ1, X
2 ◦ τ2), τ ∈ 𝒯 .

Let

𝕏 = {X ⋄ τ : τ ∈ 𝒯 } ∪ {X}.
Let 𝔻0 be the set of càdlàg processes starting in zero and let ϱ : 𝕏 → 𝔻0. A mapping
δ : 𝕏 → 𝔻

2
0 is called a decomposition scheme of ϱ if ϱ = δ1 + δ2. The mapping δ

assigns to each Y ∈ 𝕏 a decomposition of ϱ(Y ). The ISU decomposition scheme is
abbreviated δISU. A decomposition scheme is called stable at X if

δt−(X ⋄ τn)
p−→ δt−(X), n → ∞,

at each t > 0 for all rsdii (τn)n∈ℕ ⊆ 𝒯 .

Proposition A.4 Assume that X = (X1, X2) with X1 = X2 = B for a Brownian
motion B. Let ϱ(Y ) = Y 1Y 2 be a simple product. Then there is a set 𝒯 of continuous
phased rsdii such that the ISU decomposition δISU of ϱ is not stable at X.

Proof Suppose that 𝒯 contains a continuous phased rsdii (τn) = (τn
1 , τ n

2 ), n ∈ ℕ,
with τn

1 ≤ τn
2 , n ∈ ℕ. For a partition (an

ℓ,i , b
n
ℓ,i], ℓ ∈ ℕ0, i = 1, 2 of [0,∞) such that

(τn
j )j≠i is constant on (an

ℓ,i , b
n
ℓ,i], let τn

1 (an
ℓ,2) = τn

2 (an
ℓ,2), n ∈ ℕ, ℓ ∈ ℕ0. In addition,
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let 𝒯 also contain (τ̃ n)n∈ℕ = ((τn
2 , τ n

1 ))n∈ℕ. Since τn
2 (an

ℓ,1) = τn
2 (bn

ℓ,1) = τn
1 (bn

ℓ,1)

and by the multidimensional Taylor theorem,

δ
ISU,1
t (X ⋄ τn) =

∑︂

ℓ

(︂
ϱ
(︁
(X ⋄ τn)

bn
ℓ,1∧t

)︁ − ϱ
(︁
(X ⋄ τn)

an
ℓ,1∧t

)︁)︂

=
∑︂

ℓ

ϱ1(︁(X ⋄ τn)
an
ℓ,1∧t

)︁(︁
X1

τn
1 (bn

ℓ,1∧t) − X1
τn

1 (an
ℓ,1∧t)

)︁
.

By the definitions of X1, X2 and ρ,

δ
ISU,1
t (X ⋄ τn) =

∑︂

ℓ

Bτn
2 (an

ℓ,1∧t)(Bτn
1 (bn

ℓ,1∧t) − Bτn
1 (an

ℓ,1∧t))

=
∑︂

ℓ

Bτn
1 (bn

ℓ,1∧t)(Bτn
1 (bn

ℓ,1∧t) − Bτn
1 (an

ℓ,1∧t))

=
∑︂

ℓ

Btℓ(Btℓ∧t − Btℓ−1∧t )

= 2
∑︂

ℓ

(Btℓ + Btℓ−1)

2
(Btℓ∧t − Btℓ−1∧t ) −

∑︂

ℓ

Btℓ−1(Btℓ∧t − Btℓ−1∧t )

for tnℓ := τn
1 (bn

ℓ,1) = τn
1 (an

ℓ+1,1) = τn
2 (bn

ℓ−1,2) = τn
2 (an

ℓ,2). Let
∫︁ t

0 Bs ◦ dBs denote

the Stratonovich integral and
∫︁ t

0 BsdBs the Itô integral. It holds that

δ
ISU,1
t (X ⋄ τn)

p−→ 2
∫︂ t

0
Bs ◦ dBs −

∫︂ t

0
BsdBs = 1

2
B2

t + 1

2
t

for n → ∞. By the same arguments,

δ
ISU,1
t (X ⋄ τ̃ n) =

∑︂

ℓ

(︂
ϱ
(︁
(X ⋄ τ̃ n)

bn
ℓ,2∧t)︁ − ϱ

(︁
(X ⋄ τ̃ n)

an
ℓ,2∧t)︁

)︂

=
∑︂

ℓ

ϱ1(︁(X ⋄ τ̃ n)
an
ℓ,2∧t)︁

(X2
τn

2 (bn
ℓ,2∧t) − X2

τn
2 (an

ℓ,2∧t))

=
∑︂

ℓ

Bτn
1 (an

ℓ,2∧t)(Bτn
2 (bn

ℓ,2∧t) − Bτn
2 (an

ℓ,2∧t))

=
∑︂

ℓ

Bτn
2 (an

ℓ,2∧t)(Bτn
2 (bn

ℓ,2∧t) − Bτn
2 (an

ℓ,2∧t))

=
∑︂

ℓ

Btℓ(Btℓ+1∧t − Btℓ∧t )

p−→
∫︂ t

0
BsdBs

= 1

2
B2

t − 1

2
t
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for n → ∞. Therefore,

p-limn→∞δ
ISU,1
t (X ⋄ τn) ≠ p-limn→∞δ

ISU,i
t (X ⋄ τ̃ n), i = 1, 2,

for t > 0, and hence the ISU decomposition of ϱ(X) cannot be stable at X. □
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