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Fine-mapping genomic loci refines bipolar 
disorder risk genes

Bipolar disorder is a heritable mental illness with complex etiology. While 
the largest published genome-wide association study identified 64 bipolar 
disorder risk loci, the causal SNPs and genes within these loci remain 
unknown. We applied a suite of statistical and functional fine-mapping 
methods to these loci and prioritized 17 likely causal SNPs for bipolar 
disorder. We mapped these SNPs to genes and investigated their likely 
functional consequences by integrating variant annotations, brain cell-type 
epigenomic annotations, brain quantitative trait loci and results from 
rare variant exome sequencing in bipolar disorder. Convergent lines of 
evidence supported the roles of genes involved in neurotransmission and 
neurodevelopment, including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, 
THSD7A, CACNA1B, TUBBP5, FKBP2, RASGRP1, FURIN, FES, MED24 and THRA 
among others in bipolar disorder. These represent promising candidates 
for functional experiments to understand biological mechanisms and 
therapeutic potential. Additionally, we demonstrated that fine-mapping 
effect sizes can improve performance of bipolar disorder polygenic 
risk scores across diverse populations and present a high-throughput 
fine-mapping pipeline.

Bipolar disorder (BD) is a heritable mental illness with complex etiol-
ogy1. Heritability estimates from twin studies range between 60% and 
90%2–4, while SNP-based heritability (h2

SNP) calculations suggest that 
common genetic variants can explain up to 20% of the phenotypic 
variance of BD5. Genome-wide association studies (GWAS) of common 
variants have been successful in identifying associated genetic risk 
loci for BD5–15. For example, the largest published BD GWAS to date, 
conducted by the Psychiatric Genomics Consortium (PGC), comprised 
more than 40,000 BD cases and 370,000 controls from 57 cohorts of 
European ancestry, and identified 64 genome-wide significant (GWS) 
risk loci16. However, identifying the causal SNPs within these loci (that is, 
SNPs responsible for the association signal at a locus and with a biologi-
cal effect on the phenotype, as opposed to those associated owing to 
linkage disequilibrium (LD) with a causal variant) is a major challenge.

Computational fine-mapping methods aim to identify independ-
ent causal variants within a genomic locus by modeling LD structure, 
SNP association statistics, number of causal variants and/or prior 
probabilities of causality based on functional annotations. There are 
a variety of fine-mapping models ranging from regression to Bayesian 

methods, with different strengths and limitations17–19. For example, the 
sum of single effects (SuSiE) model uses iterative Bayesian selection 
with posterior probabilities20, FINEMAP uses a stochastic search algo-
rithm for SNP combinations21, and POLYgenic FUNctionally-informed 
fine-mapping (PolyFun) computes functional priors to improve 
fine-mapping accuracy18,22. Bayesian fine-mapping methods typically 
generate a posterior inclusion probability (PIP) of causality per SNP and 
‘credible sets’ of SNPs, which represent the minimum set of SNPs with a 
specified probability of including the causal variant(s). Many methods 
can assume one or multiple causal variants per locus and can now be 
applied to GWAS summary statistics from large and well-powered stud-
ies. This is highly advantageous for fine-mapping GWAS meta-analyses; 
however, the specification of appropriate LD structure is crucial for 
accurate fine-mapping. When LD cannot be obtained from the original 
cohort(s) (for example, owing to data access restrictions), it should 
instead be obtained from a sufficiently large sample that is ancestrally 
similar to the GWAS population23.

Fine-mapping methods have recently been applied to GWAS of 
psychiatric disorders. For example, a recent study using FINEMAP 
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The union consensus set (PIP > 0.5) comprised 17 SNPs (from  
16 GWS loci), indicating that many of the same SNPs were prioritized 
regardless of which LD reference panel was used (Fig. 3). There were 15 
SNPs consistently prioritized as the likely causal variant across all LD 
options (Fig. 3 and Supplementary Fig. 4). Notably, while rs11870683 
met consensus SNP criteria, it was only prioritized using single-variant 
(no LD) fine-mapping, and the multivariant fine-mapping methods 
were unable to resolve the signal in this locus (Fig. 3). The distribution 
of SNPs with PIP > 0.50 for each GWS locus across different methods 
and LD options is provided in the Supplementary Fig. 4.

Variant annotation of the union consensus SNPs via Variant Effect 
Predictor26 indicated that 5 of the 17 fall in intronic regions (Supple-
mentary Table 4). Two of the union consensus SNPs are missense 
variants—rs17183814 in SCN2A (Combined Annotation Dependent 
Depletion (CADD): 20, ClinVar benign for seizures and developmental 
and epileptic encephalopathy) and rs4672 in FKBP2 (CADD: 22.5, not 
in ClinVar). More details about the variant annotations of the union 
consensus SNPs through different online databases are provided in 
Supplementary Table 4.

QTL integrative analyses and overlap with epigenomic peaks
Summary data-based Mendelian randomization (SMR)27,28 was used to 
identify putative causal relationships between union consensus SNPs 
and BD via gene expression, splicing or methylation, by integrating the 
BD GWAS association statistics with brain expression quantitative trait 
locus (eQTL), splicing QTL (sQTL) and methylation QTL (mQTL) sum-
mary statistics. eQTL and sQTL data were based on the BrainMeta study 
(2,865 brain cortex samples from 2,443 unrelated individuals of EUR 
ancestry)29 and mQTL data were from the Brain-mMeta study (adult 
cortex or fetal brain samples in 1,160 individuals)30. Union consensus 
SNPs with GWS cis-QTL P values (P < 5 × 10−8) and their correspond-
ing gene expression, slicing or methylation probes were selected as 
target SNP–probe pairs for SMR, yielding 13, 57 and 40 SNP–probe 
pairs for eQTL, sQTL and mQTL analyses, respectively. In the eQTL 
analyses, five union consensus SNPs with significant PSMR passed the 
HEIDI (heterogeneity in dependent instruments) test for nine differ-
ent genes, suggesting that their effect on BD is mediated via gene 
expression in the brain (Fig. 4 and Supplementary Table 5). Three of 
the union consensus SNPs showed evidence of causal effects on BD 
via expression of more than one gene in their cis region. In the sQTL 
analyses, there were six union consensus SNPs with significant PSMR 
results, and passing the HEIDI test, implicating 11 genes (Fig. 4 and Sup-
plementary Table 5). In the mQTL analyses, there were 20 SNP–probe 
pairs passing the PSMR and PHEIDI thresholds, of which two methylation 
probes were annotated to specific genes (FKBP2 and PLCB3; Fig. 4 and 
Supplementary Table 5).

There were 11 union consensus SNPs that physically overlapped 
with active enhancers or promoters of gene expression in brain cell 
types31, particularly neurons (Fig. 4). Four union consensus SNPs were 
located in active promoters of the SCN2A, THSD7A, FKBP2 and THRA 
genes. We explored enhancer–promoter interactions using PLAC-seq 
data, specifically for enhancers in which there is a physical overlap with 
the union consensus SNPs, and prioritized their genes (Fig. 4). Among 
the implicated target genes through enhancer–promoter interactions 
are INSYN2B, SYNE1, RASGRP1, CRTC3, DPH1 and THRA.

Candidate risk genes based on convergence of evidence
By aggregating multiple lines of fine-mapping validation evidence, we 
present results for high-confidence genes for BD. Specifically, a gene 
was characterized as high-confidence if it was linked to a fine-mapped 
SNP via active promoters or enhancers, brain gene expression, splic-
ing or methylation, or if the fine-mapped SNP was a missense variant 
(Fig. 4 and Supplementary Fig. 5). Assuming that a single variant 
may act through multiple risk genes, we took the union of the prior-
itized genes across the different lines of evidence described above. 

and integrating functional genomic data identified more than 100 
genes likely to underpin associations in risk loci for schizophrenia24. 
Several fine-mapped candidates had particularly strong support for 
their pathogenic role in schizophrenia owing to convergence with 
rare variant associations24. Here we use a suite of tools to conduct 
statistical and functional fine-mapping of 64 GWS risk loci for BD16 and 
assess the impact of the LD reference panel and fine-mapping window 
specifications. We link the likely causal SNPs to their relevant genes 
and investigate their potential functional consequences by integrating 
functional genomic data, including brain cell-type-specific epigenomic 
annotations and quantitative trait loci data. We also fine-mapped the 
major histocompatibility complex (MHC) separately by imputing 
human leukocyte antigen (HLA) variants, and assessed the effect of 
fine-mapping on polygenic risk score (PRS) predictions. Finally, we 
present a comprehensive fine-mapping pipeline implemented via 
Snakemake25 as a rapid, scalable and cost-effective approach to prior-
itize likely variants from GWS risk loci. This strategy yielded promising 
candidate genes for future experiments to understand the mechanisms 
by which they increase the risk of BD.

Results
Fine-mapping identifies likely causal BD variants
Stepwise conditional analyses using the COJO tool from the 
Genome-Wide Complex Trait Analysis software (GCTA-COJO) were 
performed in each of the 64 PGC3 BD GWS loci (Supplementary Table 2), 
conditioning associations on their top lead SNP and any subsequent 
conditionally independent associations, to identify loci that contained 
independent signals (conditional P < 5 × 10−6). This analysis supported 
the existence of one association signal at 62 loci (Supplementary 
Table 3) and two independent association signals within the MSRA 
locus on chromosome 8 and the RP1-84O15.2 locus on chromosome 8 
(Supplementary Table 3).

Excluding the MHC, GWS loci were fine-mapped via a suite of 
Bayesian fine-mapping tools (SuSiE, FINEMAP, PolyFun + SuSiE and Pol-
yFun + FINEMAP) to prioritize SNPs likely to be causal for BD and exam-
ine the impact of different LD reference options (Methods and Fig. 1). 
Figure 2 shows the number of SNPs with a PIP > 0.95 and PIP > 0.50 in 
each fine-mapping analysis, alongside the Jaccard index of concord-
ance in results between each pair of the 16 fine-mapping analyses, 
calculated based on SNPs with PIP > 0.5 and part of a 95% credible set. 
Jaccard indices ranged from 0.25 to 1 (mean = 0.54, s.d. = 0.20), with 
higher values indicating more similar fine-mapping results (Fig. 2). A 
breakdown of the Jaccard indices for analyses grouped by LD option, 
statistical or functional fine-mapping and fine-mapping method are 
provided in the Supplementary Fig. 2.

Functional fine-mapping analyses yielded significantly more 
fine-mapped SNPs compared to the corresponding statistical 
fine-mapping analyses at PIP > 0.95 and PIP > 0.5 (P = 6.47 × 10−4 and 
P = 0.03, respectively; Fig. 2). There were no significant differences 
in the numbers of SNPs fine-mapped between the four LD options, 
between the two statistical fine-mapping methods or between the two 
functional fine-mapping methods. Approximately one-quarter of GWS 
loci (n = 16) had high PIP SNPs (>0.50). Using different fine-mapping 
methods and LD reference panels revealed a substantial number of 
consensus SNPs with PIP > 0.50 (17 SNPs), but fewer met the stricter 
threshold of PIP > 0.95 (6 SNPs; Fig. 3). The number of 95% credible sets 
per locus varied based on the fine-mapping method (Supplementary 
Fig. 3).

The smallest 95% CS per locus for every fine-mapping method and 
LD reference panel (Supplementary Fig. 3) was also calculated. Approxi-
mately one of five (n = 10–19) or half (n = 32–41) of the 63 fine-mapped 
loci had 95% CSs with a small number of SNPs (nSNPs < 10). The percentage 
of fine-mapped loci harboring 95% CSs with nSNPs < 10 was dependent on 
the fine-mapping method, with FINEMAP and PolyFun + FINEMAP har-
boring smaller 95% CSs and SuSiE and PolyFun + SuSiE larger 95% CSs.

http://www.nature.com/natureneuroscience
https://www.ncbi.nlm.nih.gov/snp/?term=rs11870683
https://www.ncbi.nlm.nih.gov/snp/?term=rs17183814


Nature Neuroscience | Volume 28 | July 2025 | 1393–1403 1395

Article https://doi.org/10.1038/s41593-025-01998-z

Together, the data support the roles of the following 23 genes in BD: 
SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, 
PLCB3, AP001453.3, PRDX5, KCNK4, CRTC3, TRPT1, FKBP2, DNAJC4, 
RASGRP1, FURIN, FES, DPH1, GSDMB, MED24 and THRA (Supplemen-
tary Table 6). Supplementary Fig. 5 provides multitrack locus plots 
depicting GWAS association statistics, fine-mapping results, overlap 
with epigenomic peaks from neurons or astrocytes and gene tracks 
for the majority of GWS loci. We assessed the high-confidence genes 
for evidence of rare variant associations with BD, using data from the 
Bipolar Exome (BipEx) collaboration study32. Among the 23 genes 
examined, THSD7A, CACNA1B, SCN2A and TRANK1 had a significant 
burden (P < 0.05) of damaging missense or loss-of-function (LoF) 
variants in BD versus controls. Many high-confidence genes were 
classified as druggable based on the Open Targets platform (SCN2A, 
CACNA1B, PRDX5, THRA, MED24, SYNE1, KCNK4, FKBP2, RASGRP1, 
PLCB3, DCLK3, FURIN and FES). Detailed literature information about 
the biological relevance of the high-confidence genes can be found 
in the Supplementary Table 6.

Dissecting the MHC locus
In the original GWAS, the most significant SNP in the extended MHC 
was rs13195402 (26.4 Mb, P = 5.8 × 10−15), which is a missense variant in 
BTN2A1. Conditional analysis on this SNP suggested a single associa-
tion signal across the extended MHC, and there were no associations 
between structural haplotypes of the complement component four 
genes (C4A/C4B; ~31.9 Mb) and BD16. Here, we performed association 
analyses of variants in the MHC region (chromosome 6, 29–34 Mb) 
including HLA alleles, amino acids, SNPs and insertion/ deletion vari-
ants, in a sample of 33,781 BD cases and 53,869 controls. The most 
significant variant in the classical MHC was rs1541269 (30.1 Mb, 
P = 6.71 × 10−12, LD r2 = 0.55 with the original index SNP rs13195402 in 
European populations)16. While initially some variants in HLA genes 
reached GWS (Supplementary Table 7), none remained after condition-
ing on rs1541269, suggesting the associations were driven by LD with 
more strongly associated variants located upstream (Supplementary 
Fig. 6 and Supplementary Table 8).

Leveraging fine-mapping to improve BD PRSs
We assessed whether fine-mapping results could be used to improve the 
performance of BD PRS in twelve testing cohorts: three EUR cohorts that 
were independent of the PGC3 BD GWAS, two East Asian cohorts, four 
admixed African American cohorts, and three Latino cohorts33–35. Stand-
ard PRS were calculated using the PRS-CS method, and fine-mapping 
informed PRS were calculated via PolyPred, to integrate statistical 
fine-mapping results (SuSiE + PRS-CS) or functional fine-mapping 
results (PolyPred-P). Across PRS methods, PRS were substantially higher 
in BD cases versus controls in all EUR target cohorts and most non-EUR 
cohorts (Fig. 5 and Supplementary Tables 9). Using PRS-CS, the effective 
sample size-weighted phenotypic variance explained on the liability 
scale was 12.26% in EUR ancestries, 2.41% in East Asian ancestries, 0.20% 
in African American ancestries and 0.28% in Latino ancestries (Fig. 5 
and Supplementary Table 10). Examining fine-mapping-informed PRS, 
SuSiE + PRS-CS or PolyPred-P explained more phenotypic variance than 
PRS-CS in all cohorts, with PolyPred-P showing the best performance 
(Fig. 5). However, increased variance explained by SuSiE + PRS-CS or 
PolyPred-P compared with PRS-CS was only statistically significant in 
the Japanese BD cohort (P = 1.22 × 10−5 and P = 2.29 × 10−6, respectively), 
one African American (P = 0.035 and P = 0.044, respectively) and one 
Latino cohort (P = 0.046 and P = 0.002, respectively; Supplementary 
Table 9 and Fig. 5).

Discussion
In the most comprehensive fine-mapping study of BD GWAS risk loci 
to date, we applied a suite of statistical and functional fine-mapping 
methods to prioritize 17 likely causal SNPs for BD in 16 genomic loci. 
We linked these SNPs to genes and investigated their likely functional 
consequences by integrating variant annotations, brain cell-type epi-
genomic annotations and brain QTLs. Convergence of evidence across 
these analyses prioritized 23 high-confidence genes, which are strong 
candidates for functional validation experiments to understand the 
mechanisms by which they increase the risk of BD.

We defined a union consensus set of SNPs representing those 
likely causal for BD based on the convergence between fine-mapping 
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Fig. 1 | Schematic workflow of the fine-mapping pipeline developed for PGC3 
BD GWAS risk loci. Conditional analyses were performed within GWS loci using 
GCTA-COJO, based on the LD structure of the Haplotype Reference Consortium 
(HRC) reference panel. Fine-mapping was conducted using statistical (SuSiE 
and FINEMAP) and functionally-informed (PolyFun) methods, according to the 
LD structure of the HRC, UK Biobank (UKB) and a subset  
of the GWAS data (‘in-sample LD’), as well as implementing single-variant  
(no LD) fine-mapping. PolyFun functional priors were based on the published  

baseline-LF2.2 UKB model22. Fine-mapping results were validated 
computationally via VEP annotations and functional consequences, overlap 
with epigenomic peaks from brain cell types, SMR with brain expression, 
splicing and methylation QTL data, convergence with rare variant associations 
from the BipEx sequencing collaboration and testing whether fine-mapping 
effect sizes improve PRSs (PRS-CS and PolyPred). Asterisk indicates that the 
MHC was fine-mapped using separate procedures (see ‘Fine-mapping the MHC 
locus’ section). VEP, variant effect predictor.
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methods and LD reference panels. This comprised 17 SNPs (from 16 
GWS loci), indicating that many of the same SNPs were prioritized 
across fine-mapping analyses (Fig. 3). Linking these SNPs to genes and 
investigating their likely functional consequences using computational 
approaches and relevant datasets, prioritized 23 high-confidence genes 
(Fig. 4). Overall, we hypothesized that a single putative causal SNP may 
influence multiple genes due to various factors, such as the impact of 
enhancer elements on multiple genes’ expression, overlap of eQTLs 
and sQTLs with epigenomic annotations and missense variants, and 
overlapping genomic coordinates of genes29,36,37.

This study uncovered new insights into BD. Six of the genes prior-
itized have synaptic functions, including two with presynaptic and four 

with postsynaptic annotations. The functions of these genes encom-
pass both cellular excitability (regulation of neurotransmitter levels 
and membrane potential) and cellular organization (arrangement of 
the actin cytoskeleton, endocytosis, and the postsynaptic specializa-
tion). Prioritized genes implicate a variety of neurotransmitters, both 
excitatory and inhibitory. These findings highlight the impact of BD 
risk variants on diverse aspects of synaptic signaling. Although all pri-
oritized genes are expressed in the brain and most display enrichment 
of expression in several brain cell types, three of the genes prioritized 
have enhanced expression in cells of the gut, including gastric mucous 
secreting cells and proximal and distal enterocytes. These cells have 
roles in intestinal permeability, inflammation and the enteric nervous 
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system, and our findings lend genetic support to the involvement of 
the microbiota–gut–brain axis in BD38. The PLCB3, KCNK4 and DPH1 
genes prioritized have previously been linked to neurodevelopmental 
delay39–41, but not BD. Our study also provides new insights into the 
potential molecular mechanisms underlying known BD risk genes. For 
example, results suggest that fine-mapped variants impact BD through 
alternate splicing of SCN2A and CACNA1B in the brain, findings which 
may inform functional laboratory experiments.

In the MHC, there were several polymorphic alleles and amino 
acid variants in the HLA-C and HLA-B genes associated with BD at GWS 
(chromosome 6, 31.2–31.3 Mb). The HLA-C*07:01 and HLA-B*08:01 
alleles were negatively associated with BD, in line with previous studies 
reporting their protective effects on schizophrenia42,43. However, these 
associations were removed after conditioning on the top lead variant in 
the MHC (rs1541269, 30 Mb), suggesting the effects were driven by LD 
with more strongly associated variants located upstream. This is consist-
ent with published findings in the PGC BD data, showing no association 
between the structural variants in the complement component four 
genes (C4A/C4B, ~31.9 Mb) and BD, either before or after conditioning 
on the most associated MHC SNP (rs13195402, 26.4 Mb)16. Overall, this 
analysis of HLA variation in BD again suggests a single association signal 
across the MHC, and that the causal variants and genes are outside the 
classical MHC locus, in contrast to findings in schizophrenia44.

Fine-mapping-informed PRS, developed by combining GWAS 
effect sizes and genome-wide fine-mapping effect sizes using 
PolyPred, explained a greater proportion of phenotypic variance 
compared with PRS based on GWAS effect sizes alone. This adds 
support to our fine-mapping results, as leveraging information on 
causal effect sizes rather than relying solely on association statis-
tics should improve genetic risk prediction. Under the assumption 
that the causal variants are shared across ancestries, we anticipated 

that fine-mapping-informed PRS would improve the transferability 
of BD PRS into diverse genetic ancestries. Indeed, there was a modest 
increase in the phenotypic variance explained relative to standard PRS 
in all genetic ancestry groups. However, the performance of all PRS in 
non-European cohorts still lagged greatly behind that in Europeans 
(Fig. 5 and Supplementary Tables 9 and 10), emphasizing the need for 
larger studies in diverse genetic ancestries and further development 
of methods to improve PRS transferability between ancestries.

Our strategy of applying a suite of fine-mapping methods and 
examining the convergence of the results was driven by the variety 
of the underlying fine-mapping algorithms and their corresponding 
strengths and limitations. Consistent with previous literature, we 
detected more SNPs with high PIPs when incorporating functional 
priors using PolyFun18. FINEMAP, using a shotgun stochastic algorithm, 
refines promising SNP sets efficiently by focusing on a subset with 
higher PIPs, making it well-suited for dense genomic data. By contrast, 
SuSiE’s Bayesian algorithm accommodates LD structure and identifies 
multiple causal signals within loci, offering credible sets that increase 
confidence in the discovered variants. As expected, the specification 
of LD structure, fine-mapping window and number of causal variants 
impacted fine-mapping results. Considering ‘in-sample’ LD from the 
PGC BD data (albeit a subset of available cohorts) as the gold standard, 
using the HRC reference panel yielded the most similar fine-mapping 
results. This observation may be explained by the HRC being used 
as an imputation reference panel for almost all cohorts in the GWAS 
(53/57 cohorts). Results suggest that a large and well-matched LD ref-
erence panel to the GWAS sample can be used to achieve high-quality 
fine-mapping results. This has advantageous implications in scenarios 
when calculating in-sample LD is not possible owing to data sharing 
restrictions, or when obtaining LD information from many cohorts 
becomes increasingly challenging as GWAS meta-analyses grow.
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Fig. 3 | Plot of union consensus SNPs across all 16 fine-mapping analyses, 
including different LD options and fine-mapping methods. The color of the 
points corresponds to the LD option used—UKB (pink), HRC (blue), in-sample LD 
(purple) and no LD (single-variant fine-mapping; gray). Circles indicate statistical 
fine-mapping methods and squares indicate functional fine-mapping methods. 
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denote SNPs with PIP above 0.95. On the x axis, analyses are named according 
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Although there were some differences in the number of SNPs 
fine-mapped (threshold of PIP > 0.5 and in a 95% credible set) by 
the same method using different LD options (Fig. 2), our strategy of 
requiring SNPs to be fine-mapped using two methods was used to 
safeguard against false positives. Moreover, although conditional 
analysis indicated one causal variant per GWS locus, our results are 
highly consistent when using LD reference panels and allowing up to 
five causal variants per GWS locus. The latter analyses also yielded a 
greater number of likely causal SNPs. As an exception, we note that one 
consensus SNP (rs11870683) was prioritized using single-variant (no 
LD) fine-mapping only, and we caution that there may be an additional 
or different causal SNP at this locus, since multivariant fine-mapping 
methods were unable to resolve the signal. To facilitate rapid and scal-
able fine-mapping of GWAS loci, we developed a fine-mapping pipeline 
(GitHub, https://github.com/mkoromina/SAFFARI) with options to 
specify multiple fine-mapping methods, GWAS summary statistics, 
fine-mapping windows and LD reference panels.

Several limitations of this study and future directions must be 
noted. First, our fine-mapping focused exclusively on EUR ances-
try data, owing to the composition of the PGC3 BD GWAS. However, 
this enabled us to investigate the impact of LD reference panels on 
fine-mapping, which would be challenging for diverse ancestry data, 
given the limited availability of such panels at present. Increasing 
ancestral diversity in BD GWAS is an active area of research33 and in 

future, the differences in LD structure between populations could be 
leveraged to aid fine-mapping45 and PRS predictions46. Second, we 
approximated ‘in-sample LD’ of the GWAS as we only had access to a 
subset of the individual-level data (73% of the total effective sample 
size), we used best guess genotypes to represent imputed dosages 
and we merged genotypes across cohorts and calculated LD, in con-
trast to the GWAS, which was a meta-analysis between cohorts. Third, 
we applied a conservative approach focusing on SNPs with high PIPs 
(>0.50) that were part of credible sets and were supported by different 
fine-mapping methods. Thus, we prioritized likely causal variants or 
genes at 16 of the 64 GWS loci. The improvements in PRS performance 
after integrating genome-wide fine-mapping results suggest that our 
analyses capture meaningful information on causality in other genomic 
regions that did not meet the stringent criteria we applied to fine-map 
GWS loci. Fourth, these statistical analyses prioritize variants and 
genes with high probabilities of being causal risk factors for BD; how-
ever, computational approaches fall short of proving causality and 
have limited capacity to uncover mechanisms. Finally, the enhancer, 
promoter and QTL data used may be incomplete owing to cell-type or 
context-specific effects, or incomplete mapping of active enhancers 
to their target genes, and therefore some union consensus SNP effects 
may not have been detected in our analysis.

In summary, we conducted a comprehensive statistical and func-
tional fine-mapping analysis of BD genomic loci, yielding a resource of 
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likely causal genes and variants for the disorder. These genes and vari-
ants now require investigation in functional laboratory experiments 
to validate their roles, understand mechanisms of risk, and examine 
opportunities for therapeutic intervention in BD.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
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Methods
Ethics statement
Ethics approval was obtained from the ethics committees of the Medi-
cal Schools of the Universities of Marburg (approval identifier studie 
07/2014) and Münster, in accordance with the Declaration of Helsinki, 
with all participants providing written informed consent.

GWAS summary statistics and BD risk loci
Summary statistics from the latest published BD GWAS by the Psy-
chiatric Genomics Consortium (‘PGC3’ study) were used as input to 
the fine-mapping pipeline16. This GWAS comprised 41,917 BD cases 
and 371,549 controls of European (EUR) ancestry from 57 cohorts 
(Supplementary Table 1). Of these cohorts, 53 were imputed using 
the HRC EUR ancestry reference panel v1.0 (ref. 47). GWAS summary 
statistics were cleaned using DENTIST software48, yielding a total of 
7,598,903 SNPs. The GWAS meta-analysis identified 64 independent 
loci associated with BD at GWS, which were selected for fine-mapping. 
Each GWS locus window was established around the GWS significant 
‘top lead’ SNP (P < 5 × 10−8), with boundaries defined by the positions 
of the 3′-most and 5′-most SNPs, requiring an LD r2 > 0.1 with the top 
lead SNP within a 3 Mb range, according to the LD structure of the 
HRC EUR reference panel16. Owing to the complexity and long-range 
LD of the MHC/HLA region, this locus was analyzed separately (see 
‘Fine-mapping the MHC locus’ section). Supplementary Table 2 shows 
the top lead SNP from each GWS locus, association statistics, locus 
boundaries, locus size, and locus names (as defined in the original 
GWAS)16. Excluding the MHC, GWS locus windows ranged between 
14,960–3,730,000 bp in size.

Conditional analysis
Figure 1 shows an overview of the fine-mapping pipeline. First, condi-
tional analyses were conducted using a stepwise selection procedure 
(--cojo-slct) via GCTA49,50 to explore potential independent association 
signals within each locus, according to the LD structure of the HRC 
EUR reference panel. In brief, this procedure iteratively adds SNPs to 
a conditional model until no conditional tests are significant (condi-
tional P > 5 × 10−6)50 to estimate the number of independent association 
signals per locus.

LD reference panels
Statistical and functional fine-mapping methods require information 
on LD between variants and selection of a genomic region (‘window’) 
to fine-map. To examine the impact of LD on fine-mapping, analyses 
were performed using LD information from the HRC EUR reference 
panel, published LD matrices based on EUR ancestry individuals in 
the UK Biobank18, and ‘in-sample’ LD calculated from a subset of 48 
BD cohorts in the PGC BD GWAS for which individual-level genetic 
data were available within the PGC (33,781 cases, 53,869 controls, all 
of EUR ancestry), representing 73% of the total effective sample size of 
the GWAS. In brief, HRC-imputed dosage data were converted to hard 
calls with a genotype call probability cut-off of 0.8 and PLINK binary 
files were merged across cohorts, restricting to the set of unrelated 
individuals included in the GWAS, using PLINK v1.90 (ref. 51). Missing-
ness rates per SNP were calculated in each cohort, and SNPs absent in 
all individuals from any one cohort were excluded from the merged 
dataset, yielding 7,594,494 SNPs overlapping with the GWAS summary 
statistics. Individual-level genetic data per chromosome were used as 
an ‘in-sample’ LD reference panel for fine-mapping. We also performed 
single-variant fine-mapping without any LD.

Statistical and functional fine-mapping
GWS loci were fine-mapped using a suite of Bayesian fine-mapping 
methods that can be applied to GWAS summary statistics—SuSiE, 
FINEMAP, PolyFun + SuSiE and PolyFun + FINEMAP (Fig. 1). SuSiE 
and FINEMAP are statistical fine-mapping methods, while PolyFun 

incorporates functional annotations as prior probabilities to improve 
subsequent fine-mapping accuracy18,20,21. Since these methods have 
different underlying assumptions, strengths and limitations, results 
were compared to examine convergence of evidence across methods. 
Briefly, each Bayesian method generates SNP-wise posterior inclusion 
probabilities of causality (PIP), and a 95% credible set (95% CS), defined 
as the minimum subset of SNPs that cumulatively have at least 95% 
probability of containing the causal SNP(s). PIP refers to the marginal 
probability that a SNP is included in any causal model, conditional 
on the observed data, hence providing weight of evidence that a SNP 
should be considered potentially causal.

First, single-variant fine-mapping, which makes the simple 
assumption of one causal variant per locus (K = 1) and does not 
require LD information18,20,21, was performed within each GWS locus 
fine-mapping window. FINEMAP and SuSiE can assume multiple 
causal variants per locus, modeling the LD structure between them. 
Fine-mapping was additionally performed assuming the default 
maximum of five causal variants per locus (K = 5) and separately 
using the HRC, UKB and ‘in-sample’ LD structures. Finally, PolyFun 
was used to incorporate 187 published functional annotations from 
the baseline-LF2.2.UKB model22 to compute prior causal probabili-
ties (priors) via an L2-regularized extension of stratified LD-score 
regression52, and subsequently perform fine-mapping using FINEMAP 
and SuSiE18. Briefly, functional annotations included epigenomic and 
genomic annotations, minor allele frequency (MAF) bins, binary or 
continuous functional annotations, LD-related annotations such as 
LD level, predicted allele age, recombination rate, and CpG content22. 
Functionally-informed fine-mapping was also performed using the 
three LD reference panels.

In total, 16 fine-mapping analyses were conducted (12 multivari-
ant analyses using four fine-mapping methods and three LD refer-
ence panels and four LD-independent single-variant fine-mapping 
analyses), varying parameters to examine their impact and the con-
vergence of results. We used the Jaccard index (or Jaccard similarity 
coefficient) to summarize the concordance in the results between 
pairs of fine-mapping analyses. The Jaccard index was calculated as 
the number of fine-mapped SNPs (PIP > 0.5 and in a 95% CS) in both 
fine-mapping methods (intersection), divided by the total number of 
fine-mapped SNPs across either method (union) and ranges from 0 
(no concordance between the methods) to 1 (complete concordance 
between the methods). ‘Consensus SNPs’ were defined as those in the 
95% CS from at least two methods (either statistical and/or functional 
fine-mapping) that used the same LD option and with a PIP > 0.95 or 
>0.50 (24 opportunities for a SNP to be a consensus SNP). The ‘union 
consensus’ set of SNPs was defined as all consensus SNPs across LD 
options PIP > 0.50, excluding SNPs identified only with the UKB LD 
reference panel. The number of SNPs fine-mapped at PIP > 0.95 and 
PIP > 0.50 between different methods and different LD options was 
compared using two-sided paired t tests.

All steps of the statistical and functional fine-mapping analyses 
have been compiled into a high-throughput pipeline named Statistical 
and Functional Fine-mapping Applied to GWAS Risk Loci (SAFFARI). 
SAFFARI is implemented through Snakemake in a Linux environment25, 
with options to provide sets of GWAS summary statistics, lists of 
fine-mapping windows, and to specify LD reference panels, in the 
form of LD matrices or individual-level genetic data (GitHub, https://
github.com/mkoromina/SAFFARI).

Effect of LD options and locus windows on fine-mapping
We aimed to investigate the impact of using an LD reference panel 
for fine-mapping or performing single-variant fine-mapping with no 
LD compared with using LD information calculated from the origi-
nal GWAS data. The latter is typically considered the gold-standard 
approach; however, it is difficult in practice due to data availability 
and sharing restrictions. We performed several comparative analyses, 
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including calculating Jaccard indices and correlation of PIP values for 
fine-mapped SNPs, and found that the HRC reference panel, a panel 
that closely resembles the genetic ancestry of the GWAS, achieves 
comparable fine-mapping resolution with in-sample LD estimates 
(Supplementary Note). We also compared results from fine-mapping 
the GWS locus windows versus fixed 3 Mb windows, which indicated 
substantial differences between them, and that the GWS locus windows 
best represent the GWS association signals from the original GWAS 
(Supplementary Note).

Annotation of union consensus SNPs
Union consensus SNPs were characterized using the Variant Effect 
Predictor (GRCh37) Ensembl release 109 (ref. 26). When SNPs were 
mapped to multiple transcripts, the most severe variant consequence 
was retained for annotation, and when SNPs fell within intergenic or 
regulatory regions, no genes were annotated26. If annotated genes 
overlapped and the SNP had the same severity consequence, then 
both genes were annotated. Additional annotations included the 
CADD scores (https://cadd.gs.washington.edu/), which denote 
the likelihood of the variant being deleterious or disease-causing 
(CADD ≥ 20) and ClinVar annotations (https://www.ncbi.nlm.nih.
gov/clinvar/) describing the association of variants with diseases 
(that is, benign, pathogenic, etc). Union consensus SNPs were further 
annotated with RegulomeDB (version 2.2) to determine whether they 
have functional consequences and lie in noncoding regions and to 
annotate them to the relevant regulatory elements53. RegulomeDB 
probability and ranking scores are positively correlated and predict 
functional variants in regulatory elements. Probability scores closer 
to 1 and ranking scores below 2 provide increased evidence of a vari-
ant to be in a functional region53. Probability of being LoF intolerant 
(pLI) and LoF observed/expected upper bound fraction (LOEUF) 
scores were retrieved from the Genome Aggregation Database (gno-
mAD) v4.0.0. Genes were classified as intolerant to LoF variants if 
LOEUF < 0.6 or pLI ≥ 0.9. We also used the Open Targets platform54 
to detect druggable genes among our set of high-confidence genes 
for BD risk.

QTL integrative analyses
Union consensus SNPs were investigated for putative causal relation-
ships with BD via brain gene expression, splicing or methylation, using 
SMR (version 1.03)27,28. Data on eQTLs and sQTLs were obtained from 
the BrainMeta study (version 2), which comprised RNA-sequencing 
data of 2,865 brain cortex samples from 2,443 unrelated individuals 
of EUR ancestry with genome-wide SNP data29. Data on mQTLs were 
obtained from the Brain-mMeta study30, a meta-analysis of adult cortex 
or fetal brain samples, comprising 1,160 individuals with methylation 
levels measured using the Illumina HumanMethylation450K array. We 
analyzed cis-QTLs, which were defined as those within 2 Mb of each 
gene29. Of the union consensus SNPs, ten were present in the BrainMeta 
QTL data and ten were present in the Brain-mMeta data. Using the 
BD GWAS16 and QTL summary statistics29, each union consensus SNP 
was analyzed as the target SNP for probes within a 2 Mb window on 
either side using the --extract-target-snp-probe option in SMR. Only 
probes for which the union consensus SNP was a GWS QTL (P < 5 × 10−8) 
were analyzed, to ensure robustly associated instruments for the SMR 
analysis27,28. A Bonferroni correction was applied for 13 tests in the eQTL 
(PSMR < 3.84 × 10−3), 57 tests in the sQTL (PSMR < 8.77 × 10−4) and 40 tests in 
the mQTL analyses (PSMR < 1.25 × 10−3). The significance threshold for the 
HEIDI test (heterogeneity in dependent instruments) was PHEIDI ≥ 0.01 
(ref. 28). The HEIDI test is used to identify potential violations of the 
Mendelian randomization assumptions, specifically the assumption 
of no horizontal pleiotropy. An SNP passing the Bonferroni-corrected 
PSMR and the PHEIDI thresholds indicates either a direct causal role or a 
pleiotropic effect of the BD-associated SNPs on gene expression, splic-
ing or methylation level.

Overlap with epigenomic peaks and rare variant association 
signal
Union consensus SNPs were examined for physical overlap with pro-
moters or enhancers of gene expression in human brain cell types. Data 
on epigenomic peaks were obtained from purified bulk, H3K27ac and 
H3K4me3 ChIP–seq of neurons and astrocytes previously published 
and used to detect active promoters and enhancers31. Physical overlap 
was visually examined via locus plots using R (version 4.1.2). For SNPs 
located in promoters, we assigned the corresponding gene name. For 
active enhancers, the target gene was assigned based on PLAC-seq data31 
on enhancer–promoter interactions. Genes linked to union consensus 
SNPs via overlap with epigenomic peaks, SMR, or missense annotations, 
were further assessed for convergence with findings from an exome 
sequencing study of BD published by the BipEx collaboration32. Using 
the BipEx browser32, genes annotated to union consensus SNPs were 
compared for an overlap against BipEx genes characterized by a sig-
nificant (P < 0.05) burden of either damaging missense or LoF variants.

Fine-mapping the MHC locus
The MHC locus was fine-mapped separately due to its complex genetic 
variation and long-range LD structure55. The HLA alleles and amino acid 
variants were imputed in the PGC BD data, using the 1000 Genomes 
phase 3 reference panel comprising 503 EUR individuals56 with HLA 
alleles determined via sequencing. This reference was obtained from 
the CookHLA GitHub repository57 (CookHLA version 1.0.1) and included 
151 HLA alleles (65 two-digit and 86 four-digit) with a MAF > 0.01 and 
<0.99, 1,213 amino acid variants, and 1,268 SNPs within the MHC region 
(chromosome 6, 29–34 Mb).

Variation in the MHC was imputed for 48 BD cohorts where 
individual-level genotyped SNP data were available within the PGC 
(33,827 BD and 53,953 controls), using IMPUTE2, implemented via the 
Rapid Imputation and Computational Pipeline for GWAS (RICOPILI)58. 
RICOPILI was used to perform association analysis, under an additive 
logistic regression model in PLINK v1.90 (ref. 51), covarying for the 
first five principal components of genetic ancestry and any others 
associated with case-control status within each cohort, as per the BD 
GWAS16. To control test statistic inflation at variants with low MAF in 
small cohorts, variants were retained only if cohort MAF was greater 
than 1% and minor allele count was greater than ten in either cases or 
controls (whichever had smaller n). Meta-analysis of the filtered asso-
ciation statistics was conducted using an inverse-variance-weighted 
fixed-effects model in METAL (version 25 March 2011) via RICOPILI59.

Conditional analysis of the MHC-association results was per-
formed to identify whether there are any additional independent 
associations, by conditioning on the top lead variant within the locus. 
In brief, the dosage data for the top lead variant in the meta-analysis 
were extracted for each cohort, converted into a single value represent-
ing the dosage of the A1 allele (range = 0–2) and added as a covariate 
in the analysis. Association testing, filtering of results per cohort, and 
the meta-analysis were carried out as described above.

Polygenic risk scoring
Fine-mapping results were further evaluated by testing whether 
fine-mapping effect sizes could improve the performance of PRS in 
independent cohorts using PolyPred46, a method that combines effect 
sizes from fine-mapping with those from a standard PRS approach, such 
as PRS-CS60. PRS were calculated for individuals in 12 testing cohorts 
of BD cases and controls that were independent of the PGC3 BD GWAS: 
three new PGC cohorts of EUR ancestries, two cohorts of East Asian 
ancestries, four cohorts of admixed African American ancestries, and 
three cohorts of Latino ancestries, some of which have been described 
previously16 (Supplementary Note).

An analytical workflow outlining the steps of the PolyPred pipeline 
that we followed is shown in Supplementary Fig. 1. First, the stand-
ard approach used was PRS-CS, which uses a Bayesian regression 
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framework to place continuous shrinkage priors on effect sizes of 
SNPs in the PRS, adaptive to the strength of their association signal 
in the BD GWAS16, and the LD structure from an external reference 
panel60. The UKB EUR ancestry reference panel was used to estimate 
LD between SNPs, matching the ancestry of the discovery GWAS16. 
PRS-CS yielded weights for approximately 1 million SNPs to be included 
in the PRS. Second, genome-wide fine-mapping was performed on the 
BD GWAS summary statistics16, using both SuSiE and PolyFun-SuSiE 
as previously described, with LD information obtained from the HRC 
reference panel, to derive causal effect sizes for all SNPs across the 
genome. Third, PolyPred was used to combine the SNP weights from 
PRS-CS with SuSiE effect sizes (SuSiE + PRS-CS) and SNP weights from 
PRS-CS with PolyFun-SuSiE effect sizes (PolyPred-P). In brief, Polypred 
‘mixes’ the effect sizes from the two predictors via the non-negative 
least squares method, assigning a weight to each predictor that yields 
the optimally performing PRS in a specific testing cohort. Each testing 
cohort was used to tune the optimal PolyPred weights. Fourth, three 
PRS were calculated for each individual in the testing cohorts, using 
PLINK v1.90 (ref. 51) to weight SNPs by their effect sizes from PRS-CS, 
SuSiE + PRS-CS and PolyPred-P, respectively, and sum across all SNPs 
in each PRS. Finally, PRS were tested for association with case versus 
control status in each testing cohort using a logistic regression model 
including principal components as necessary to control for genetic 
ancestry33. In each testing cohort, the amount of phenotypic variance 
explained by the PRS (R2) and the 95% confidence intervals were calcu-
lated on the liability scale61, using the r2redux R package62, assuming a 
lifetime prevalence of BD in the general population of 2%. The R2 of each 
fine-mapping-informed PRS was statistically compared against the R2 
of PRS-CS using the r2redux package (r2_diff function)62. In addition, 
we computed the effective sample size-weighted combined R2 values 
from PRS across different ancestries. Specifically, we transformed 
each R2 to a correlation coefficient, applied the Fisher z transforma-
tion, computed the effective sample size (neff)-weighted mean of the 
Fisher z values, and then back-transformed to obtain a combined R2.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
GWAS data were retrieved from ref. 16 from the following figshare 
link: https://figshare.com/articles/dataset/PGC3_bipolar_disorder_
GWAS_summary_statistics/14102594. The PGC’s policy is to make 
genome-wide summary results public. All results are made available 
through the Figshare open access repository at the following DOI links: 
https://doi.org/10.6084/m9.figshare.27871677.v2, https://doi.org/ 
10.6084/m9.figshare.27880524.v1, https://doi.org /10.6084/
m9.figshare.27886110.v1. Data provided include MHC fine-mapping 
analyses of the PGC3 BIP study, as well as aggregated fine-mapping 
results using various methods (PolyFun + SuSiE, PolyFun + FINEMAP, 
SuSiE, FINEMAP) across four LD reference panels (UKB, HRC, LD, no 
LD) and GWS locus windows, provided in both .txt.gz and .merged.csv 
formats. Additional files include genome-wide fine-mapping results 
from SuSiE and PRS-CS protocols, and a detailed Excel file on credible 
sets for 12 fine-mapping analyses, specifying the SNPs and loci involved 
(https://doi.org/10.6084/m9.figshare.28027706.v1).
Individual-level genetic data are accessible via secondary analy-
sis proposals to the Bipolar Disorder Working Group of the PGC  
(https://www.med.unc.edu/pgc/shared-methods/how-to/). This study 
included some publicly available datasets accessed through dbGaP—
PGC bundle phs001254.v1.p1.
Additional annotations were retrieved from the following databases: 
gnomAD database v4.0.0 (https://gnomad.broadinstitute.org), CADD 
(https://cadd.gs.washington.edu/) and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar/).

Code availability
Analysis scripts are available online at GitHub (https://github.com/
mkoromina/SAFFARI). Additional scripts to recreate the visuals/
graphs are available online at GitHub (https://github.com/Mullins-Lab/
Post-finemap_processing/). Other software used include DENTIST 
(GitHub: https://github.com/Yves-CHEN/DENTIST), PolyPred (GitHub: 
https://github.com/omerwe/polyfun/wiki/6.-Trans-ethnic-polygeni
c-risk-prediction-with-PolyPred), PRS-CS (GitHub: https://github.com/
getian107/PRScs), r2redux (GitHub: https://github.com/mommy003/
r2redux) and RICOPILI (GitHub: https://github.com/Ripkelab/ricopili). 
All software used is publicly available at the URLs or references cited.
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GWAS data were retrieved from (Mullins et al., 2021) from the following Figshare link: https://figshare.com/articles/dataset/
PGC3_bipolar_disorder_GWAS_summary_statistics/14102594. The PGC’s policy is to make genome-wide summary results public. All results are made available 
through the Figshare open access repository at the following DOI links: (https://doi.org/10.6084/m9.figshare.27871677.v2, https://doi.org/10.6084/
m9.figshare.27880524.v1, https://doi.org/10.6084/m9.figshare.27886110.v1 ). Data provided include MHC fine-mapping analyses of the PGC3 BIP study, as well as 
aggregated fine-mapping results using various methods (PolyFun+SuSiE, PolyFun+FINEMAP, SuSiE, FINEMAP) across four LD reference panels (UKB, HRC, LD, noLD) 
and GWS locus windows, provided in both .txt.gz and .merged.csv formats. Additional files include genome-wide fine-mapping results from SuSiE and PRS-CS 
protocols, and a detailed Excel file on credible sets for 12 fine-mapping analyses, specifying the SNPs and loci involved (https://doi.org/10.6084/
m9.figshare.28027706.v1). 
Individual-level  genetic data are accessible via Secondary Analysis Proposals to the Bipolar Disorder Working Group of the PGC (https://www.med.unc.edu/pgc/
shared-methods/how-to/). This study included some publicly available datasets accessed through dbGaP - PGC bundle phs001254.v1.p1.   
Additional annotations were retrieved from the following databases: gnomAD database v4.0.0 (https://gnomad.broadinstitute.org), CADD (https://
cadd.gs.washington.edu/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/). 
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Reporting on sex and gender While sex and gender-based analyses are important, they are beyond the scope of the present study, which addresses a 
broader analytical framework for fine-mapping.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Only genetic ancestry information is used in this study.

Population characteristics We did not have extensive access to detailed covariate-relevant population characteristics of the human research 
participants. As such, information such as age, socioeconomic status, and other relevant demographics was unavailable.

Recruitment This is fully described in the Supplementary Note.

Ethics oversight All local IRBs approved of this study. This is fully described in the Supplementary Note.
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Sample size We used summary statistics and cohort data from the latest published bipolar disorder GWAS. Sample sizes in that GWAS were larger than 
previous analyses, which revealed some significant findings and showed that additional true positives remained to be discovered. Most GWAS 
fine-mapping methods require a sample size of at least 20,000 samples (Weissbrod et al., 2020) and the current one had an effective sample 
size of 101,962. Therefore, there is efficient sample size to perform robust fine-mapping.

Data exclusions Predetermined phenotypic data exclusions, for both cases and controls, have been described in detail in the initial GWAS. In brief, genotype 
data exclusions were also predetermined and were performed for quality control; these included high missing call rate, high or low 
heterozygosity, inconsistent genotype versus clinical data sex, and ancestry outlier status based on visual inspection of genotype principal 
component analysis results. 
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available biological datasets to further validate our findings. We also wish to note that all fine-mapping analyses have been performed 5 times 
confirming the robustness of the results.

Randomization Randomization processes have been described in detail in the initial GWAS study. This information is not relevant to our study. In this study, 
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principal components analysis were included in association tests, which were logistic regression. 

Blinding Standard quality control and analysis pipelines were run such that blinding is not relevant to this study. 
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