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Bipolar disorder is a heritable mentalillness with complex etiology. While
the largest published genome-wide association study identified 64 bipolar
disorderriskloci, the causal SNPs and genes within these loci remain
unknown. We applied a suite of statistical and functional fine-mapping

methods to these loci and prioritized 17 likely causal SNPs for bipolar
disorder. We mapped these SNPs to genes and investigated their likely
functional consequences by integrating variant annotations, brain cell-type
epigenomic annotations, brain quantitative trait loci and results from

rare variant exome sequencing in bipolar disorder. Convergent lines of
evidence supported the roles of genes involved in neurotransmission and
neurodevelopment, including SCN2A, TRANK1, DCLK3, INSYN2B, SYNEI,
THSD7A, CACNAIB, TUBBPS, FKBP2, RASGRP1, FURIN, FES, MED24 and THRA
among othersinbipolar disorder. These represent promising candidates
for functional experiments to understand biological mechanisms and
therapeutic potential. Additionally, we demonstrated that fine-mapping
effect sizes canimprove performance of bipolar disorder polygenic

risk scores across diverse populations and present a high-throughput
fine-mapping pipeline.

Bipolar disorder (BD) is a heritable mental illness with complex etiol-
ogy'. Heritability estimates from twin studies range between 60% and
90%>*, while SNP-based heritability (h%y) calculations suggest that
common genetic variants can explain up to 20% of the phenotypic
variance of BD’. Genome-wide association studies (GWAS) of common
variants have been successful in identifying associated genetic risk
loci for BD* ™. For example, the largest published BD GWAS to date,
conducted by the Psychiatric Genomics Consortium (PGC), comprised
more than 40,000 BD cases and 370,000 controls from 57 cohorts of
Europeanancestry, and identified 64 genome-wide significant (GWS)
riskloci®. However, identifying the causal SNPs within these loci (that s,
SNPs responsible for the association signal at alocus and with abiologi-
cal effect on the phenotype, as opposed to those associated owing to
linkage disequilibrium (LD) with a causal variant) is a major challenge.

Computational fine-mapping methods aim toidentify independ-
ent causal variants within a genomic locus by modeling LD structure,
SNP association statistics, number of causal variants and/or prior
probabilities of causality based on functional annotations. There are
avariety of fine-mapping models ranging from regression to Bayesian

methods, with different strengths and limitations” ™. For example, the
sum of single effects (SuSiE) model uses iterative Bayesian selection
with posterior probabilities?®, FINEMAP uses a stochastic search algo-
rithm for SNP combinations?, and POLYgenic FUNctionally-informed
fine-mapping (PolyFun) computes functional priors to improve
fine-mapping accuracy'®*. Bayesian fine-mapping methods typically
generate a posterior inclusion probability (PIP) of causality per SNP and
‘credible sets’ of SNPs, which represent the minimum set of SNPs with a
specified probability of including the causal variant(s). Many methods
can assume one or multiple causal variants per locus and can now be
applied to GWAS summary statistics from large and well-powered stud-
ies. Thisis highly advantageous for fine-mapping GWAS meta-analyses;
however, the specification of appropriate LD structure is crucial for
accurate fine-mapping. When LD cannot be obtained from the original
cohort(s) (for example, owing to data access restrictions), it should
instead be obtained fromasufficiently large sample that is ancestrally
similar to the GWAS population®.

Fine-mapping methods have recently been applied to GWAS of
psychiatric disorders. For example, a recent study using FINEMAP
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and integrating functional genomic data identified more than 100
genes likely to underpin associations in risk loci for schizophrenia®.
Several fine-mapped candidates had particularly strong support for
their pathogenic role in schizophrenia owing to convergence with
rare variant associations®*. Here we use a suite of tools to conduct
statistical and functional fine-mapping of 64 GWSrisk loci for BD'* and
assess theimpact of the LD reference panel and fine-mapping window
specifications. We link the likely causal SNPs to their relevant genes
andinvestigate their potential functional consequences by integrating
functional genomicdata, includingbrain cell-type-specific epigenomic
annotations and quantitative trait loci data. We also fine-mapped the
major histocompatibility complex (MHC) separately by imputing
human leukocyte antigen (HLA) variants, and assessed the effect of
fine-mapping on polygenic risk score (PRS) predictions. Finally, we
present a comprehensive fine-mapping pipeline implemented via
Snakemake?® as arapid, scalable and cost-effective approach to prior-
itize likely variants from GWS risk loci. This strategy yielded promising
candidate genes for future experiments to understand the mechanisms
by which theyincrease the risk of BD.

Results

Fine-mappingidentifies likely causal BD variants

Stepwise conditional analyses using the COJO tool from the
Genome-Wide Complex Trait Analysis software (GCTA-COJO) were
performedineach of the 64 PGC3 BD GWS loci (Supplementary Table 2),
conditioning associations on their top lead SNP and any subsequent
conditionally independent associations, to identify loci that contained
independent signals (conditional P <5 x 107°). This analysis supported
the existence of one association signal at 62 loci (Supplementary
Table 3) and two independent association signals within the MSRA
locus on chromosome 8 and the RP1-84015.21ocus on chromosome 8
(Supplementary Table 3).

Excluding the MHC, GWS loci were fine-mapped via a suite of
Bayesian fine-mappingtools (SuSiE, FINEMAP, PolyFun + SuSiE and Pol-
yFun + FINEMAP) to prioritize SNPs likely to be causal for BD and exam-
ine the impact of different LD reference options (Methods and Fig. 1).
Figure 2 shows the number of SNPs with a PIP > 0.95 and PIP > 0.50 in
each fine-mapping analysis, alongside the Jaccard index of concord-
ance in results between each pair of the 16 fine-mapping analyses,
calculated based on SNPs with PIP > 0.5 and part of a 95% credible set.
Jaccard indices ranged from 0.25 to 1 (mean = 0.54, s.d. = 0.20), with
higher values indicating more similar fine-mapping results (Fig. 2). A
breakdown of the Jaccard indices for analyses grouped by LD option,
statistical or functional fine-mapping and fine-mapping method are
provided in the Supplementary Fig. 2.

Functional fine-mapping analyses yielded significantly more
fine-mapped SNPs compared to the corresponding statistical
fine-mapping analyses at PIP > 0.95 and PIP > 0.5 (P=6.47 x10"*and
P=0.03, respectively; Fig. 2). There were no significant differences
in the numbers of SNPs fine-mapped between the four LD options,
between the two statistical fine-mapping methods or between the two
functional fine-mapping methods. Approximately one-quarter of GWS
loci (n=16) had high PIP SNPs (>0.50). Using different fine-mapping
methods and LD reference panels revealed a substantial number of
consensus SNPs with PIP > 0.50 (17 SNPs), but fewer met the stricter
threshold of PIP > 0.95 (6 SNPs; Fig. 3). The number of 95% credible sets
per locus varied based on the fine-mapping method (Supplementary
Fig.3).

The smallest 95% CS per locus for every fine-mapping method and
LD reference panel (Supplementary Fig. 3) was also calculated. Approxi-
mately one of five (n =10-19) or half (n = 32-41) of the 63 fine-mapped
locihad 95% CSs with asmall number of SNPs (ng, <10). The percentage
of fine-mapped lociharboring 95% CSs with ng,, < 10 was dependent on
the fine-mapping method, with FINEMAP and PolyFun + FINEMAP har-
boring smaller 95% CSs and SuSiE and PolyFun + SuSiE larger 95% CSs.

The union consensus set (PIP > 0.5) comprised 17 SNPs (from
16 GWS loci), indicating that many of the same SNPs were prioritized
regardless of which LD reference panel was used (Fig.3). There were 15
SNPs consistently prioritized as the likely causal variant across all LD
options (Fig. 3 and Supplementary Fig. 4). Notably, while rs11870683
met consensus SNP criteria, it was only prioritized using single-variant
(no LD) fine-mapping, and the multivariant fine-mapping methods
were unable toresolve the signalin this locus (Fig. 3). The distribution
of SNPs with PIP > 0.50 for each GWS locus across different methods
and LD optionsis provided in the Supplementary Fig. 4.

Variant annotation of the union consensus SNPs via Variant Effect
Predictor®® indicated that 5 of the 17 fall in intronic regions (Supple-
mentary Table 4). Two of the union consensus SNPs are missense
variants—rs17183814 in SCN2A (Combined Annotation Dependent
Depletion (CADD): 20, ClinVar benign for seizures and developmental
and epileptic encephalopathy) and rs4672 in FKBP2 (CADD: 22.5, not
in ClinVar). More details about the variant annotations of the union
consensus SNPs through different online databases are provided in
Supplementary Table 4.

QTL integrative analyses and overlap with epigenomic peaks
Summary data-based Mendelian randomization (SMR)*** was used to
identify putative causal relationships between union consensus SNPs
and BD via gene expression, splicing or methylation, by integrating the
BD GWAS association statistics with brain expression quantitative trait
locus (eQTL), splicing QTL (sQTL) and methylation QTL (mQTL) sum-
mary statistics. eQTL and sQTL data were based on the BrainMeta study
(2,865 brain cortex samples from 2,443 unrelated individuals of EUR
ancestry)” and mQTL data were from the Brain-mMeta study (adult
cortex or fetal brain samplesin1,160 individuals)*°. Union consensus
SNPs with GWS cis-QTL Pvalues (P <5 x107®) and their correspond-
ing gene expression, slicing or methylation probes were selected as
target SNP-probe pairs for SMR, yielding 13, 57 and 40 SNP-probe
pairs for eQTL, sQTL and mQTL analyses, respectively. In the eQTL
analyses, five union consensus SNPs with significant Py, passed the
HEIDI (heterogeneity in dependent instruments) test for nine differ-
ent genes, suggesting that their effect on BD is mediated via gene
expression in the brain (Fig. 4 and Supplementary Table 5). Three of
the union consensus SNPs showed evidence of causal effects on BD
via expression of more than one gene in their cis region. In the sQTL
analyses, there were six union consensus SNPs with significant Py
results, and passing the HEIDI test, implicating 11 genes (Fig. 4 and Sup-
plementary Table 5).In the mQTL analyses, there were 20 SNP-probe
pairs passing the Py and Py, thresholds, of which two methylation
probes were annotated to specific genes (FKBP2and PLCB3; Fig. 4 and
Supplementary Table 5).

There were 11 union consensus SNPs that physically overlapped
with active enhancers or promoters of gene expression in brain cell
types”, particularly neurons (Fig. 4). Four union consensus SNPs were
located in active promoters of the SCN2A, THSD7A, FKBP2 and THRA
genes. We explored enhancer-promoter interactions using PLAC-seq
data, specifically for enhancersin which thereis a physical overlap with
the union consensus SNPs, and prioritized their genes (Fig.4). Among
theimplicated target genes through enhancer-promoter interactions
are INSYN2B, SYNE1, RASGRP1, CRTC3, DPHI and THRA.

Candidate risk genes based on convergence of evidence

By aggregating multiple lines of fine-mapping validation evidence, we
present results for high-confidence genes for BD. Specifically, agene
was characterized as high-confidence if it was linked to a fine-mapped
SNP via active promoters or enhancers, brain gene expression, splic-
ing or methylation, or if the fine-mapped SNP was a missense variant
(Fig. 4 and Supplementary Fig. 5). Assuming that a single variant
may act through multiple risk genes, we took the union of the prior-
itized genes across the different lines of evidence described above.
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Fig.1|Schematic workflow of the fine-mapping pipeline developed for PGC3
BD GWAS risk loci. Conditional analyses were performed within GWS loci using
GCTA-CQJO, based on the LD structure of the Haplotype Reference Consortium
(HRC) reference panel. Fine-mapping was conducted using statistical (SuSiE
and FINEMAP) and functionally-informed (PolyFun) methods, according to the
LD structure of the HRC, UK Biobank (UKB) and a subset
of the GWAS data (‘in-sample LD’), as well as implementing single-variant
(no LD) fine-mapping. PolyFun functional priors were based on the published

In-sample

No LD

BD GWAS + GW fine-mapping

baseline-LF2.2 UKB model®. Fine-mapping results were validated
computationally via VEP annotations and functional consequences, overlap
with epigenomic peaks from brain cell types, SMR with brain expression,
splicing and methylation QTL data, convergence with rare variant associations
from the BipEx sequencing collaboration and testing whether fine-mapping
effect sizes improve PRSs (PRS-CS and PolyPred). Asterisk indicates that the
MHC was fine-mapped using separate procedures (see ‘Fine-mapping the MHC
locus’ section). VEP, variant effect predictor.

Together, the data support theroles of the following 23 genes in BD:
SCN2A, TRANK1,DCLK3, INSYN2B, SYNE1, THSD7A, CACNAIB, TUBBPS,
PLCB3, AP001453.3, PRDXS, KCNK4, CRTC3, TRPTI1, FKBP2, DNAJC4,
RASGRPI, FURIN, FES, DPH1, GSDMB, MED24 and THRA (Supplemen-
tary Table 6). Supplementary Fig. 5 provides multitrack locus plots
depicting GWAS association statistics, fine-mapping results, overlap
with epigenomic peaks from neurons or astrocytes and gene tracks
for the majority of GWS loci. We assessed the high-confidence genes
for evidence of rare variant associations with BD, using data from the
Bipolar Exome (BipEx) collaboration study®’. Among the 23 genes
examined, THSD7A, CACNAIB, SCN2A and TRANKI had a significant
burden (P < 0.05) of damaging missense or loss-of-function (LoF)
variants in BD versus controls. Many high-confidence genes were
classified as druggable based on the Open Targets platform (SCN2A,
CACNAIB, PRDXS, THRA, MED24, SYNE1, KCNK4, FKBP2, RASGRP1,
PLCB3,DCLK3, FURIN and FES). Detailed literature information about
the biological relevance of the high-confidence genes can be found
in the Supplementary Table 6.

Dissecting the MHC locus

In the original GWAS, the most significant SNP in the extended MHC
was rs13195402 (26.4 Mb, P=5.8 x 107), which is a missense variantin
BTN2A1. Conditional analysis on this SNP suggested a single associa-
tion signal across the extended MHC, and there were no associations
between structural haplotypes of the complement component four
genes (C4A/C4B; -31.9 Mb) and BD*. Here, we performed association
analyses of variants in the MHC region (chromosome 6, 29-34 Mb)
including HLA alleles, amino acids, SNPs and insertion/ deletion vari-
ants, in a sample of 33,781 BD cases and 53,869 controls. The most
significant variant in the classical MHC was rs1541269 (30.1 Mb,
P=6.71x107",LD r?=0.55 with the original index SNP rs13195402 in
European populations)'®. While initially some variants in HLA genes
reached GWS (Supplementary Table 7), none remained after condition-
ing on rs1541269, suggesting the associations were driven by LD with
more strongly associated variants located upstream (Supplementary
Fig. 6 and Supplementary Table 8).

Leveraging fine-mapping to improve BD PRSs

We assessed whether fine-mapping results could be used toimprove the
performance of BD PRS in twelve testing cohorts: three EUR cohorts that
wereindependent of the PGC3 BD GWAS, two East Asian cohorts, four
admixed African American cohorts, and three Latino cohorts® . Stand-
ard PRS were calculated using the PRS-CS method, and fine-mapping
informed PRS were calculated via PolyPred, to integrate statistical
fine-mapping results (SuSiE + PRS-CS) or functional fine-mapping
results (PolyPred-P). Across PRS methods, PRS were substantially higher
inBD cases versus controlsin all EUR target cohorts and most non-EUR
cohorts (Fig. 5and Supplementary Tables 9). Using PRS-CS, the effective
sample size-weighted phenotypic variance explained on the liability
scalewas12.26%in EUR ancestries, 2.41% in East Asian ancestries, 0.20%
in African American ancestries and 0.28% in Latino ancestries (Fig. 5
and Supplementary Table 10). Examining fine-mapping-informed PRS,
SuSiE + PRS-CS or PolyPred-P explained more phenotypic variance than
PRS-CSin all cohorts, with PolyPred-P showing the best performance
(Fig. 5). However, increased variance explained by SuSiE + PRS-CS or
PolyPred-P compared with PRS-CS was only statistically significantin
theJapanese BD cohort (P=1.22x10°and P=2.29 x 107, respectively),
one African American (P=0.035 and P= 0.044, respectively) and one
Latino cohort (P=0.046 and P=0.002, respectively; Supplementary
Table 9 and Fig. 5).

Discussion
In the most comprehensive fine-mapping study of BD GWAS risk loci
to date, we applied a suite of statistical and functional fine-mapping
methods to prioritize 17 likely causal SNPs for BD in 16 genomic loci.
We linked these SNPs to genes and investigated their likely functional
consequences by integrating variant annotations, brain cell-type epi-
genomicannotations and brain QTLs. Convergence of evidence across
these analyses prioritized 23 high-confidence genes, which are strong
candidates for functional validation experiments to understand the
mechanisms by which they increase the risk of BD.

We defined a union consensus set of SNPs representing those
likely causal for BD based on the convergence between fine-mapping
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Fig. 2| Results and comparison of 16 fine-mapping analyses conducted. The
barplot displays the number of SNPs fine-mapped with PIP > 0.5 and part of a
95% credible set on the y axis and each fine-mapping analysis on the x axis.
Theblack bordered bars indicate the number of SNPs fine-mapped with

PIP > 0.95 and part of a 95% credible set. Each analysis is named according to

(LD option)_(fine-mapping method). The heatmap displays the Jaccard index of
concordance in results between each pair of fine-mapping analyses, calculated
based on SNPs with PIP > 0.5 and part of a95% credible set. Jaccard indices ranged
from 0.25to1(mean = 0.54,s.d.=0.20), with higher values indicating more
similar fine-mapping results.

methods and LD reference panels. This comprised 17 SNPs (from 16
GWS loci), indicating that many of the same SNPs were prioritized
across fine-mapping analyses (Fig. 3). Linking these SNPs to genes and
investigating their likely functional consequences using computational
approachesandrelevant datasets, prioritized 23 high-confidence genes
(Fig.4). Overall, we hypothesized that a single putative causal SNP may
influence multiple genes due to various factors, such as the impact of
enhancer elements on multiple genes’ expression, overlap of eQTLs
and sQTLs with epigenomic annotations and missense variants, and
overlapping genomic coordinates of genes?>**,

This study uncovered new insightsinto BD. Six of the genes prior-
itized have synaptic functions, including two with presynaptic and four

with postsynaptic annotations. The functions of these genes encom-
pass both cellular excitability (regulation of neurotransmitter levels
and membrane potential) and cellular organization (arrangement of
the actin cytoskeleton, endocytosis, and the postsynaptic specializa-
tion). Prioritized genes implicate a variety of neurotransmitters, both
excitatory and inhibitory. These findings highlight the impact of BD
risk variants on diverse aspects of synaptic signaling. Although all pri-
oritized genes are expressed in the brain and most display enrichment
of expressionin several brain cell types, three of the genes prioritized
have enhanced expressionin cells of the gut, including gastric mucous
secreting cells and proximal and distal enterocytes. These cells have
rolesinintestinal permeability, inflammation and the enteric nervous
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Fig. 3| Plot of union consensus SNPs across all 16 fine-mapping analyses,
including different LD options and fine-mapping methods. The color of the
points corresponds to the LD option used—UKB (pink), HRC (blue), in-sample LD
(purple) and no LD (single-variant fine-mapping; gray). Circles indicate statistical
fine-mapping methods and squares indicate functional fine-mapping methods.
Small shapes denote SNPs with PIP between 0.50 and 0.90, while large shapes

denote SNPs with PIP above 0.95. On the x axis, analyses are named according

to (LD option)_(fine-mapping method). On the y axis, the PGC3 locus nameis
displayed in parentheses after each fine-mapped SNP and indicates the name
assigned to identify the locus in the original PGC3 BD GWAS publication, which is
not necessarily the causal gene.

system, and our findings lend genetic support to the involvement of
the microbiota-gut-brain axis in BD*®. The PLCB3, KCNK4 and DPH1
genes prioritized have previously been linked to neurodevelopmental
delay®***, but not BD. Our study also provides new insights into the
potential molecular mechanisms underlying known BD risk genes. For
example, results suggest that fine-mapped variantsimpact BD through
alternate splicing of SCN24 and CACNA1B in the brain, findings which
may inform functional laboratory experiments.

In the MHC, there were several polymorphic alleles and amino
acid variants in the HLA-C and HLA-B genes associated with BD at GWS
(chromosome 6, 31.2-31.3 Mb). The HLA-C*07:01 and HLA-B*08:01
alleles were negatively associated with BD, inline with previous studies
reporting their protective effects onschizophrenia****, However, these
associations were removed after conditioning on the top lead variantin
the MHC (rs1541269, 30 Mb), suggesting the effects were driven by LD
withmorestrongly associated variants located upstream. Thisis consist-
entwith published findingsin the PGC BD data, showing no association
between the structural variants in the complement component four
genes (C4A/C4B, -31.9 Mb) and BD, either before or after conditioning
on the most associated MHC SNP (rs13195402, 26.4 Mb)*°. Overall, this
analysis of HLA variation in BD again suggests asingle association signal
across the MHC, and that the causal variants and genes are outside the
classical MHC locus, in contrast to findings in schizophrenia**.

Fine-mapping-informed PRS, developed by combining GWAS
effect sizes and genome-wide fine-mapping effect sizes using
PolyPred, explained a greater proportion of phenotypic variance
compared with PRS based on GWAS effect sizes alone. This adds
support to our fine-mapping results, as leveraging information on
causal effect sizes rather than relying solely on association statis-
tics should improve genetic risk prediction. Under the assumption
that the causal variants are shared across ancestries, we anticipated

that fine-mapping-informed PRS would improve the transferability
of BD PRS into diverse genetic ancestries. Indeed, there was amodest
increaseinthe phenotypic variance explained relative to standard PRS
inallgeneticancestry groups. However, the performance of all PRS in
non-European cohorts still lagged greatly behind that in Europeans
(Fig.5and Supplementary Tables 9 and 10), emphasizing the need for
larger studies in diverse genetic ancestries and further development
of methods to improve PRS transferability between ancestries.

Our strategy of applying a suite of fine-mapping methods and
examining the convergence of the results was driven by the variety
of the underlying fine-mapping algorithms and their corresponding
strengths and limitations. Consistent with previous literature, we
detected more SNPs with high PIPs when incorporating functional
priors using PolyFun'®. FINEMAP, using a shotgun stochastic algorithm,
refines promising SNP sets efficiently by focusing on a subset with
higher PIPs, making it well-suited for dense genomic data. By contrast,
SuSiE’s Bayesian algorithm accommodates LD structure and identifies
multiple causal signals within loci, offering credible sets thatincrease
confidence in the discovered variants. As expected, the specification
of LD structure, fine-mapping window and number of causal variants
impacted fine-mapping results. Considering ‘in-sample’ LD from the
PGCBD data (albeit a subset of available cohorts) as the gold standard,
using the HRC reference panel yielded the most similar fine-mapping
results. This observation may be explained by the HRC being used
as an imputation reference panel for almost all cohorts in the GWAS
(53/57 cohorts). Results suggest that alarge and well-matched LD ref-
erence panel to the GWAS sample can be used to achieve high-quality
fine-mappingresults. This has advantageousimplications in scenarios
when calculating in-sample LD is not possible owing to data sharing
restrictions, or when obtaining LD information from many cohorts
becomes increasingly challenging as GWAS meta-analyses grow.
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Fig. 4| Summary of analyses performed to link each fine-mapped SNP to the
relevant gene(s). The y axis shows the 17 union consensus SNPs with the PGC3
locus name displayed in parentheses after each one, which indicates the name
assigned to identify the locus in the original PGC3 BD GWAS publication and not
necessarily the causal gene. On the x axis, the columns depict the results of eight
analyses performed to link the fine-mapped SNPs to the relevant gene(s). The
analysis method and the dataset used are labeled above and below the figure,

GSDMB MED24

%

respectively. Colored cells denote significant results and the relevant gene names
are printed within each cell. For fine-mapped SNPs located in active enhancers,
therelevant genes were obtained using data on PLAC-seq interactions with gene
promoters. A colored cell includes no gene name when there was no known
interaction between the enhancer and a promoter, or when the methylation
probe was not annotated to any gene. Empty cells are those with nonsignificant
results or where the SNP was not present in the dataset used.

Although there were some differences in the number of SNPs
fine-mapped (threshold of PIP > 0.5 and in a 95% credible set) by
the same method using different LD options (Fig. 2), our strategy of
requiring SNPs to be fine-mapped using two methods was used to
safeguard against false positives. Moreover, although conditional
analysis indicated one causal variant per GWS locus, our results are
highly consistent when using LD reference panels and allowing up to
five causal variants per GWS locus. The latter analyses also yielded a
greater number of likely causal SNPs. As an exception, we note that one
consensus SNP (rs11870683) was prioritized using single-variant (no
LD) fine-mapping only, and we caution that there may be an additional
or different causal SNP at this locus, since multivariant fine-mapping
methods were unable to resolve the signal. To facilitate rapid and scal-
able fine-mapping of GWAS loci, we developed a fine-mapping pipeline
(GitHub, https://github.com/mkoromina/SAFFARI) with options to
specify multiple fine-mapping methods, GWAS summary statistics,
fine-mapping windows and LD reference panels.

Several limitations of this study and future directions must be
noted. First, our fine-mapping focused exclusively on EUR ances-
try data, owing to the composition of the PGC3 BD GWAS. However,
this enabled us to investigate the impact of LD reference panels on
fine-mapping, which would be challenging for diverse ancestry data,
given the limited availability of such panels at present. Increasing
ancestral diversity in BD GWAS is an active area of research® and in

future, the differences in LD structure between populations could be
leveraged to aid fine-mapping* and PRS predictions*. Second, we
approximated ‘in-sample LD’ of the GWAS as we only had accessto a
subset of the individual-level data (73% of the total effective sample
size), we used best guess genotypes to represent imputed dosages
and we merged genotypes across cohorts and calculated LD, in con-
trast to the GWAS, which was ameta-analysis between cohorts. Third,
we applied a conservative approach focusing on SNPs with high PIPs
(>0.50) that were part of credible sets and were supported by different
fine-mapping methods. Thus, we prioritized likely causal variants or
genesat16 ofthe 64 GWSloci. Theimprovements in PRS performance
afterintegrating genome-wide fine-mapping results suggest that our
analyses capture meaningful information on causality in other genomic
regions that did not meet the stringent criteriawe applied to fine-map
GWS loci. Fourth, these statistical analyses prioritize variants and
genes with high probabilities of being causal risk factors for BD; how-
ever, computational approaches fall short of proving causality and
have limited capacity to uncover mechanisms. Finally, the enhancer,
promoter and QTL dataused may be incomplete owing to cell-type or
context-specific effects, or incomplete mapping of active enhancers
totheir target genes, and therefore some union consensus SNP effects
may not have been detected in our analysis.

Insummary, we conducted acomprehensive statistical and func-
tional fine-mapping analysis of BD genomic loci, yielding aresource of
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Fig. 5| Phenotypic variance in BD explained by standard PRS (PRS-CS) and
fine-mapping-informed PRS (SuSiE + PRS-CS and PolyPred-P) in target
cohorts of diverse genetic ancestries. The x axis displays the target cohorts,
grouped by genetic ancestry, and the PRS method used. The name of each cohort
and the number of BD cases and controls are shown below each barplot. The
yaxis shows the percentage variance explained on the liability scale (assuming a

2% population prevalence of BD) with error bars indicating the 95% confidence
interval around each R?value. Pvalues for the association of PRS with case versus
control status are printed on top of each bar. Significant Pvalues (P < 0.05) for
the test of difference in variance explained by the fine-mapping informed PRS
versus PRS-CS are provided above the horizontal lines, using the F test for nested
models.

likely causal genes and variants for the disorder. These genes and vari-
ants now require investigation in functional laboratory experiments
to validate their roles, understand mechanisms of risk, and examine
opportunities for therapeutic intervention in BD.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary infor-
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Methods

Ethics statement

Ethics approval was obtained from the ethics committees of the Medi-
cal Schools of the Universities of Marburg (approval identifier studie
07/2014) and Miinster, inaccordance with the Declaration of Helsinki,
with all participants providing written informed consent.

GWAS summary statistics and BD risk loci

Summary statistics from the latest published BD GWAS by the Psy-
chiatric Genomics Consortium (‘PGC3’ study) were used as input to
the fine-mapping pipeline'. This GWAS comprised 41,917 BD cases
and 371,549 controls of European (EUR) ancestry from 57 cohorts
(Supplementary Table 1). Of these cohorts, 53 were imputed using
the HRC EUR ancestry reference panel v1.0 (ref. 47). GWAS summary
statistics were cleaned using DENTIST software*, yielding a total of
7,598,903 SNPs. The GWAS meta-analysis identified 64 independent
lociassociated with BD at GWS, which were selected for fine-mapping.
Each GWS locus window was established around the GWS significant
‘top lead’ SNP (P < 5 x1078), with boundaries defined by the positions
of the 3’-most and 5-most SNPs, requiring an LD r*> 0.1 with the top
lead SNP within a 3 Mb range, according to the LD structure of the
HRC EUR reference panel'®. Owing to the complexity and long-range
LD of the MHC/HLA region, this locus was analyzed separately (see
‘Fine-mapping the MHC locus’ section). Supplementary Table 2 shows
the top lead SNP from each GWS locus, association statistics, locus
boundaries, locus size, and locus names (as defined in the original
GWAS)*. Excluding the MHC, GWS locus windows ranged between
14,960-3,730,000 bp insize.

Conditional analysis

Figure 1shows an overview of the fine-mapping pipeline. First, condi-
tional analyses were conducted using a stepwise selection procedure
(--cojo-slct) via GCTA**° to explore potential independent association
signals within each locus, according to the LD structure of the HRC
EUR reference panel. In brief, this procedure iteratively adds SNPs to
a conditional model until no conditional tests are significant (condi-
tional P>5x107%)* to estimate the number of independent association
signals per locus.

LD reference panels

Statistical and functional fine-mapping methods require information
on LD between variants and selection of a genomic region (‘window’)
to fine-map. To examine the impact of LD on fine-mapping, analyses
were performed using LD information from the HRC EUR reference
panel, published LD matrices based on EUR ancestry individuals in
the UK Biobank'®, and ‘in-sample’ LD calculated from a subset of 48
BD cohorts in the PGC BD GWAS for which individual-level genetic
data were available within the PGC (33,781 cases, 53,869 controls, all
of EURancestry), representing 73% of the total effective sample size of
the GWAS. In brief, HRC-imputed dosage data were converted to hard
calls with a genotype call probability cut-off of 0.8 and PLINK binary
files were merged across cohorts, restricting to the set of unrelated
individualsincluded in the GWAS, using PLINK v1.90 (ref. 51). Missing-
ness rates per SNP were calculated in each cohort, and SNPs absent in
allindividuals from any one cohort were excluded from the merged
dataset, yielding 7,594,494 SNPs overlapping with the GWAS summary
statistics. Individual-level genetic data per chromosome were used as
an‘in-sample’ LD reference panel for fine-mapping. We also performed
single-variant fine-mapping withoutany LD.

Statistical and functional fine-mapping

GWS loci were fine-mapped using a suite of Bayesian fine-mapping
methods that can be applied to GWAS summary statistics—SuSiE,
FINEMAP, PolyFun + SuSiE and PolyFun + FINEMAP (Fig. 1). SuSiE
and FINEMAP are statistical fine-mapping methods, while PolyFun

incorporates functional annotations as prior probabilities toimprove
subsequent fine-mapping accuracy'®***. Since these methods have
different underlying assumptions, strengths and limitations, results
were compared to examine convergence of evidence across methods.
Briefly, each Bayesian method generates SNP-wise posterior inclusion
probabilities of causality (PIP), and a 95% credible set (95% CS), defined
as the minimum subset of SNPs that cumulatively have at least 95%
probability of containing the causal SNP(s). PIP refers to the marginal
probability that a SNP is included in any causal model, conditional
on the observed data, hence providing weight of evidence that a SNP
should be considered potentially causal.

First, single-variant fine-mapping, which makes the simple
assumption of one causal variant per locus (K =1) and does not
require LD information'®?°?, was performed within each GWS locus
fine-mapping window. FINEMAP and SuSiE can assume multiple
causal variants per locus, modeling the LD structure between them.
Fine-mapping was additionally performed assuming the default
maximum of five causal variants per locus (K'=5) and separately
using the HRC, UKB and ‘in-sample’ LD structures. Finally, PolyFun
was used to incorporate 187 published functional annotations from
the baseline-LF2.2.UKB model** to compute prior causal probabili-
ties (priors) via an L2-regularized extension of stratified LD-score
regression®, and subsequently perform fine-mapping using FINEMAP
and SuSiE'. Briefly, functional annotations included epigenomic and
genomic annotations, minor allele frequency (MAF) bins, binary or
continuous functional annotations, LD-related annotations such as
LD level, predicted allele age, recombination rate, and CpG content®,
Functionally-informed fine-mapping was also performed using the
three LD reference panels.

In total, 16 fine-mapping analyses were conducted (12 multivari-
ant analyses using four fine-mapping methods and three LD refer-
ence panels and four LD-independent single-variant fine-mapping
analyses), varying parameters to examine their impact and the con-
vergence of results. We used the Jaccard index (or Jaccard similarity
coefficient) to summarize the concordance in the results between
pairs of fine-mapping analyses. The Jaccard index was calculated as
the number of fine-mapped SNPs (PIP > 0.5 and in a 95% CS) in both
fine-mapping methods (intersection), divided by the total number of
fine-mapped SNPs across either method (union) and ranges from O
(no concordance between the methods) to 1 (complete concordance
between the methods). ‘Consensus SNPs’ were defined as those in the
95% CS from at least two methods (either statistical and/or functional
fine-mapping) that used the same LD option and with a PIP > 0.95 or
>0.50 (24 opportunities for a SNP to be a consensus SNP). The ‘union
consensus’ set of SNPs was defined as all consensus SNPs across LD
options PIP > 0.50, excluding SNPs identified only with the UKB LD
reference panel. The number of SNPs fine-mapped at PIP > 0.95 and
PIP > 0.50 between different methods and different LD options was
compared using two-sided paired ¢ tests.

All steps of the statistical and functional fine-mapping analyses
have been compiledinto a high-throughput pipeline named Statistical
and Functional Fine-mapping Applied to GWAS Risk Loci (SAFFARI).
SAFFARIlisimplemented through Snakemake in a Linux environment®,
with options to provide sets of GWAS summary statistics, lists of
fine-mapping windows, and to specify LD reference panels, in the
form of LD matrices or individual-level genetic data (GitHub, https://
github.com/mkoromina/SAFFARI).

Effect of LD options and locus windows on fine-mapping

We aimed to investigate the impact of using an LD reference panel
for fine-mapping or performing single-variant fine-mapping with no
LD compared with using LD information calculated from the origi-
nal GWAS data. The latter is typically considered the gold-standard
approach; however, it is difficult in practice due to data availability
and sharing restrictions. We performed several comparative analyses,
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including calculatingJaccard indices and correlation of PIP values for
fine-mapped SNPs, and found that the HRC reference panel, a panel
that closely resembles the genetic ancestry of the GWAS, achieves
comparable fine-mapping resolution with in-sample LD estimates
(Supplementary Note). We also compared results from fine-mapping
the GWS locus windows versus fixed 3 Mb windows, which indicated
substantial differences between them, and that the GWS locus windows
best represent the GWS association signals from the original GWAS
(Supplementary Note).

Annotation of union consensus SNPs

Union consensus SNPs were characterized using the Variant Effect
Predictor (GRCh37) Ensembl release 109 (ref. 26). When SNPs were
mapped to multiple transcripts, the most severe variant consequence
wasretained for annotation, and when SNPs fell within intergenic or
regulatory regions, no genes were annotated”. If annotated genes
overlapped and the SNP had the same severity consequence, then
both genes were annotated. Additional annotations included the
CADD scores (https://cadd.gs.washington.edu/), which denote
the likelihood of the variant being deleterious or disease-causing
(CADD =20) and ClinVar annotations (https://www.ncbi.nlm.nih.
gov/clinvar/) describing the association of variants with diseases
(thatis, benign, pathogenic, etc). Union consensus SNPs were further
annotated with RegulomeDB (version 2.2) to determine whether they
have functional consequences and lie in noncoding regions and to
annotate them to the relevant regulatory elements’’. RegulomeDB
probability and ranking scores are positively correlated and predict
functional variantsinregulatory elements. Probability scores closer
tolandrankingscoresbelow 2 provide increased evidence of a vari-
anttobeinafunctional region®. Probability of being LoF intolerant
(pLI) and LoF observed/expected upper bound fraction (LOEUF)
scoreswereretrieved from the Genome Aggregation Database (gno-
mAD) v4.0.0. Genes were classified as intolerant to LoF variants if
LOEUF < 0.6 or pLI > 0.9. We also used the Open Targets platform®*
to detect druggable genes among our set of high-confidence genes
for BD risk.

QTL integrative analyses

Union consensus SNPs were investigated for putative causal relation-
ships with BD viabrain gene expression, splicing or methylation, using
SMR (version 1.03)?”?%, Data on eQTLs and sQTLs were obtained from
the BrainMeta study (version 2), which comprised RNA-sequencing
data of 2,865 brain cortex samples from 2,443 unrelated individuals
of EUR ancestry with genome-wide SNP data”. Data on mQTLs were
obtained from the Brain-mMeta study’’, ameta-analysis of adult cortex
or fetal brain samples, comprising 1,160 individuals with methylation
levels measured using the lllumina HumanMethylation450K array. We
analyzed cis-QTLs, which were defined as those within 2 Mb of each
gene”. Of the union consensus SNPs, ten were present in the BrainMeta
QTL data and ten were present in the Brain-mMeta data. Using the
BD GWAS'® and QTL summary statistics®’, each union consensus SNP
was analyzed as the target SNP for probes within a2 Mb window on
either side using the --extract-target-snp-probe option in SMR. Only
probes for which the union consensus SNPwasa GWS QTL (P <5 x1078)
were analyzed, to ensure robustly associated instruments for the SMR
analysis”?%, ABonferroni correctionwas applied for13 testsin the eQTL
(Psur <3.84 x107%),57 tests in the SQTL (Psyr < 8.77 x 10*) and 40 tests in
themQTLanalyses (P < 1.25 x 107%). The significance threshold for the
HEIDI test (heterogeneity in dependent instruments) was Py p; > 0.01
(ref. 28). The HEIDI test is used to identify potential violations of the
Mendelian randomization assumptions, specifically the assumption
of no horizontal pleiotropy. An SNP passing the Bonferroni-corrected
Ps\r and the Py, thresholds indicates either a direct causal role or a
pleiotropiceffect of the BD-associated SNPs on gene expression, splic-
ing or methylation level.

Overlap with epigenomic peaks and rare variant association
signal

Union consensus SNPs were examined for physical overlap with pro-
moters or enhancers of gene expressionin human brain cell types. Data
on epigenomic peaks were obtained from purified bulk, H3K27ac and
H3K4me3 ChIP-seq of neurons and astrocytes previously published
and used to detect active promoters and enhancers®. Physical overlap
was visually examined via locus plots using R (version 4.1.2). For SNPs
located in promoters, we assigned the corresponding gene name. For
active enhancers, the target gene was assigned based on PLAC-seq data™
onenhancer-promoter interactions. Genes linked to union consensus
SNPsvia overlap with epigenomic peaks, SMR, or missense annotations,
were further assessed for convergence with findings from an exome
sequencing study of BD published by the BipEx collaboration®?. Using
the BipEx browser?, genes annotated to union consensus SNPs were
compared for an overlap against BipEx genes characterized by a sig-
nificant (P < 0.05) burden of either damaging missense or LoF variants.

Fine-mapping the MHC locus

The MHC locus was fine-mapped separately due to its complex genetic
variation and long-range LD structure®. The HLA alleles and amino acid
variants were imputed in the PGC BD data, using the 1000 Genomes
phase 3 reference panel comprising 503 EUR individuals® with HLA
alleles determined via sequencing. This reference was obtained from
the CookHLA GitHub repository*’ (CookHLA version1.0.1) and included
151 HLA alleles (65 two-digit and 86 four-digit) with a MAF > 0.01 and
<0.99,1,213 amino acid variants, and 1,268 SNPs within the MHC region
(chromosome 6,29-34 Mb).

Variation in the MHC was imputed for 48 BD cohorts where
individual-level genotyped SNP data were available within the PGC
(33,827 BD and 53,953 controls), using IMPUTE2, implemented via the
Rapid Imputation and Computational Pipeline for GWAS (RICOPILI)*:,
RICOPILIwas used to perform association analysis, under an additive
logistic regression model in PLINK v1.90 (ref. 51), covarying for the
first five principal components of genetic ancestry and any others
associated with case-control status within each cohort, as per the BD
GWAS'. To control test statistic inflation at variants with low MAF in
small cohorts, variants were retained only if cohort MAF was greater
than1%and minor allele count was greater than tenin either cases or
controls (whichever had smaller n). Meta-analysis of the filtered asso-
ciation statistics was conducted using an inverse-variance-weighted
fixed-effects model in METAL (version 25 March 2011) via RICOPILI®.

Conditional analysis of the MHC-association results was per-
formed to identify whether there are any additional independent
associations, by conditioning on the top lead variant within the locus.
In brief, the dosage data for the top lead variant in the meta-analysis
were extracted for each cohort, convertedinto asingle value represent-
ing the dosage of the Al allele (range = 0-2) and added as a covariate
inthe analysis. Association testing, filtering of results per cohort, and
the meta-analysis were carried out as described above.

Polygenicrisk scoring
Fine-mapping results were further evaluated by testing whether
fine-mapping effect sizes could improve the performance of PRS in
independent cohorts using PolyPred*®, amethod that combines effect
sizes from fine-mapping withthose fromastandard PRS approach, such
as PRS-CS®. PRS were calculated for individuals in 12 testing cohorts
of BD cases and controls that were independent of the PGC3 BD GWAS:
three new PGC cohorts of EUR ancestries, two cohorts of East Asian
ancestries, four cohorts of admixed African American ancestries, and
three cohorts of Latino ancestries, some of which have been described
previously’ (Supplementary Note).

Ananalytical workflow outlining the steps of the PolyPred pipeline
that we followed is shown in Supplementary Fig. 1. First, the stand-
ard approach used was PRS-CS, which uses a Bayesian regression
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framework to place continuous shrinkage priors on effect sizes of
SNPs in the PRS, adaptive to the strength of their association signal
in the BD GWAS', and the LD structure from an external reference
panel®®. The UKB EUR ancestry reference panel was used to estimate
LD between SNPs, matching the ancestry of the discovery GWAS'.
PRS-CSyielded weights for approximately 1million SNPs to beincluded
inthe PRS. Second, genome-wide fine-mapping was performed onthe
BD GWAS summary statistics'®, using both SuSiE and PolyFun-SuSiE
as previously described, with LD information obtained from the HRC
reference panel, to derive causal effect sizes for all SNPs across the
genome. Third, PolyPred was used to combine the SNP weights from
PRS-CS with SuSiE effect sizes (SuSiE + PRS-CS) and SNP weights from
PRS-CS with PolyFun-SuSiE effect sizes (PolyPred-P). In brief, Polypred
‘mixes’ the effect sizes from the two predictors via the non-negative
least squares method, assigning a weight to each predictor that yields
the optimally performing PRS in aspecific testing cohort. Each testing
cohort was used to tune the optimal PolyPred weights. Fourth, three
PRS were calculated for each individual in the testing cohorts, using
PLINK v1.90 (ref. 51) to weight SNPs by their effect sizes from PRS-CS,
SuSiE + PRS-CS and PolyPred-P, respectively, and sum across all SNPs
in each PRS. Finally, PRS were tested for association with case versus
control statusin each testing cohort using alogistic regression model
including principal components as necessary to control for genetic
ancestry®. In each testing cohort, the amount of phenotypic variance
explained by the PRS (R?) and the 95% confidence intervals were calcu-
lated on the liability scale®, using the r2redux R package®, assuming a
lifetime prevalence of BD in the general population of 2%. The R? of each
fine-mapping-informed PRS was statistically compared against the R?
of PRS-CS using the r2redux package (r2_diff function)®. In addition,
we computed the effective sample size-weighted combined R? values
from PRS across different ancestries. Specifically, we transformed
each R?to a correlation coefficient, applied the Fisher z transforma-
tion, computed the effective sample size (n.)-weighted mean of the
Fisher zvalues, and then back-transformed to obtain a combined R

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

GWAS data were retrieved from ref. 16 from the following figshare
link: https://figshare.com/articles/dataset/PGC3_bipolar_disorder_
GWAS_summary_statistics/14102594. The PGC'’s policy is to make
genome-wide summary results public. All results are made available
through the Figshare open access repository at the following DOl links:
https://doi.org/10.6084/m9.figshare.27871677.v2, https://doi.org/
10.6084/m9.figshare.27880524.v1, https://doi.org/10.6084/
mo.figshare.27886110.v1. Data provided include MHC fine-mapping
analyses of the PGC3 BIP study, as well as aggregated fine-mapping
results using various methods (PolyFun + SuSiE, PolyFun + FINEMAP,
SuSiE, FINEMAP) across four LD reference panels (UKB, HRC, LD, no
LD) and GWS locus windows, provided inboth.txt.gzand .merged.csv
formats. Additional files include genome-wide fine-mapping results
from SuSiE and PRS-CS protocols, and a detailed Excel file on credible
sets for 12 fine-mapping analyses, specifying the SNPs and lociinvolved
(https://doi.org/10.6084/m9.figshare.28027706.v1).
Individual-level genetic data are accessible via secondary analy-
sis proposals to the Bipolar Disorder Working Group of the PGC
(https://www.med.unc.edu/pgc/shared-methods/how-to/). This study
included some publicly available datasets accessed through dbGaP—
PGCbundle phs001254.v1.pl.

Additional annotations were retrieved from the following databases:
gnomAD database v4.0.0 (https://gnomad.broadinstitute.org), CADD
(https://cadd.gs.washington.edu/) and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvary/).

Code availability

Analysis scripts are available online at GitHub (https://github.com/
mkoromina/SAFFARI). Additional scripts to recreate the visuals/
graphsare available online at GitHub (https://github.com/Mullins-Lab/
Post-finemap_processing/). Other software used include DENTIST
(GitHub: https://github.com/Yves-CHEN/DENTIST), PolyPred (GitHub:
https://github.com/omerwe/polyfun/wiki/6.-Trans-ethnic-polygeni
c-risk-prediction-with-PolyPred), PRS-CS (GitHub: https://github.com/
getian107/PRScs), r2redux (GitHub: https://github.com/mommy003/
r2redux) and RICOPILI (GitHub: https://github.com/Ripkelab/ricopili).
All software used is publicly available at the URLs or references cited.
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GWAS data were retrieved from (Mullins et al., 2021) from the following Figshare link: https://figshare.com/articles/dataset/

PGC3_bipolar_disorder GWAS_summary_statistics/14102594. The PGC's policy is to make genome-wide summary results public. All results are made available
through the Figshare open access repository at the following DOI links: (https://doi.org/10.6084/m9.figshare.27871677.v2, https://doi.org/10.6084/
m9.figshare.27880524.v1, https://doi.org/10.6084/m9.figshare.27886110.v1 ). Data provided include MHC fine-mapping analyses of the PGC3 BIP study, as well as
aggregated fine-mapping results using various methods (PolyFun+SuSiE, PolyFun+FINEMAP, SuSiE, FINEMAP) across four LD reference panels (UKB, HRC, LD, noLD)
and GWS locus windows, provided in both .txt.gz and .merged.csv formats. Additional files include genome-wide fine-mapping results from SuSiE and PRS-CS
protocols, and a detailed Excel file on credible sets for 12 fine-mapping analyses, specifying the SNPs and loci involved (https://doi.org/10.6084/
m9.figshare.28027706.v1).

Individual-level genetic data are accessible via Secondary Analysis Proposals to the Bipolar Disorder Working Group of the PGC (https://www.med.unc.edu/pgc/
shared-methods/how-to/). This study included some publicly available datasets accessed through dbGaP - PGC bundle phs001254.v1.p1.

Additional annotations were retrieved from the following databases: gnomAD database v4.0.0 (https://gnomad.broadinstitute.org), CADD (https://
cadd.gs.washington.edu/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/).
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Population characteristics We did not have extensive access to detailed covariate-relevant population characteristics of the human research
participants. As such, information such as age, socioeconomic status, and other relevant demographics was unavailable.

Recruitment This is fully described in the Supplementary Note.

Ethics oversight All'local IRBs approved of this study. This is fully described in the Supplementary Note.
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Sample size We used summary statistics and cohort data from the latest published bipolar disorder GWAS. Sample sizes in that GWAS were larger than
previous analyses, which revealed some significant findings and showed that additional true positives remained to be discovered. Most GWAS
fine-mapping methods require a sample size of at least 20,000 samples (Weissbrod et al., 2020) and the current one had an effective sample
size of 101,962. Therefore, there is efficient sample size to perform robust fine-mapping.

Data exclusions  Predetermined phenotypic data exclusions, for both cases and controls, have been described in detail in the initial GWAS. In brief, genotype
data exclusions were also predetermined and were performed for quality control; these included high missing call rate, high or low
heterozygosity, inconsistent genotype versus clinical data sex, and ancestry outlier status based on visual inspection of genotype principal
component analysis results.

Replication All available cohorts of bipolar disorder cases and controls were included in this study. External cohorts were also used, where possible, to
replicate findings in the polygenic risk scoring analyses. We also used different statistical genetics methods and integrated different publicly
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available biological datasets to further validate our findings. We also wish to note that all fine-mapping analyses have been performed 5 times
confirming the robustness of the results.

Randomization  Randomization processes have been described in detail in the initial GWAS study. This information is not relevant to our study. In this study,
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principal components analysis were included in association tests, which were logistic regression.
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