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The link between regional tau load and clinical manifestation of Alzheimer’s disease (AD) highlights the importance 
of characterizing spatial tau distribution across disease variants. In typical (memory-predominant) AD, the spatial 
progression of tau pathology mirrors the functional connections from temporal lobe epicentres. However, given 
the limited spatial heterogeneity of tau in typical AD, atypical (non-amnestic-predominant) AD variants with distinct 
tau patterns provide a key opportunity to investigate the universality of connectivity as a scaffold for tau progression.
In this large-scale, multicentre study across 14 international sites, we included cross-sectional tau-PET data from 320 
individuals with atypical AD (n = 139 posterior cortical atrophy/PCA-AD; n = 103 logopenic variant primary progres
sive aphasia/lvPPA-AD; n = 35 behavioural variant AD/bvAD; n = 43 corticobasal syndrome/CBS-AD), with a subset 
of individuals (n = 78) having longitudinal tau-PET data. Additionally, as an independent sample, we included region
al post-mortem tau stainings from 93 atypical AD patients from two sites (n = 19 PCA-AD, n = 32 lvPPA-AD, n = 23  
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bvAD, n = 19 CBS-AD). Gaussian mixture modelling was used to harmonize different tau-PET tracers by transforming 
tau-PET standardized uptake value ratios to tau positivity probabilities (a uniform scale ranging from 0% to 100%). 
Using linear regression, we assessed whether brain regions with stronger resting-state functional MRI-based func
tional connectivity, derived from healthy elderly controls in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), showed greater covariance in cross-sectional and longitudinal tau-PET and post-mortem tau pathology. 
Furthermore, we examined whether functional connectivity of tau-PET epicentres (i.e. the top 5% of regions with 
the highest baseline tau load) and tau-PET accumulation epicentres (i.e. the top 5% of regions with the highest tau 
accumulation rates) was associated with cross-sectional and longitudinal tau patterns.
Our findings show that tau-PET epicentres aligned with clinical variants, e.g. a visual network predominant pattern in 
PCA-AD (‘visual AD’) and left-hemispheric temporal predominance, particularly within the language network, in 
lvPPA-AD (‘language AD’). Moreover, more strongly functionally connected regions showed correlated concurrent 
tau-PET levels (confirmed with post-mortem data) and tau-PET accumulation rates. The functional connectivity pro
file of tau-PET epicentres and accumulation epicentres corresponded to tau-PET progression patterns, with higher 
tau-PET levels and accumulation rates in functionally close regions, and lower tau-PET levels and accumulation rates 
in functionally distant regions.
Our data are consistent with the hypothesis that tau propagation occurs along functional connections originating from 
local epicentres, across all AD clinical variants. Since tau proteinopathy is a major driver of neurodegeneration and cog
nitive decline, this finding may advance personalized medicine and participant-specific end points in clinical trials.
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Introduction
The main pathological hallmarks of Alzheimer’s disease (AD) are 

extracellular amyloid-β (Aβ) plaques and intracellular tau neurofib

rillary tangles (NFTs).1 Previous studies have consistently shown 

that compared with Aβ proteinopathy, tau proteinopathy is both 

spatially and temporally more strongly associated with neurode

generation and cognitive impairment.2-4 This highlights the critical 

role of tau pathology in AD progression and the importance of bet

ter understanding how tau spreads throughout the brain.
Preclinical and human neuroimaging studies have indicated 

that the brain’s connectome acts as a scaffold for the progression 

of tau across the brain.4-26 Specifically, tau may originate in specific 

local epicentres (i.e. the regions with the earliest and greatest tau 

burden), from where it spreads along the connections of these epi

centres.5,7,13,16-21,27 On the other hand, functionally connected re

gions may also share vulnerability through commonalities in 

metabolic- and activity-dependent stresses, gene expression and 
proteostasis.28 These studies collectively provide robust evidence 
that connectivity plays a crucial role in the progression of tau path
ology throughout the brain. However, previous clinical studies have 
primarily focused on individuals with typical AD, who present with 
an amnestic-predominant clinical syndrome. Although there are 
inter-individual differences in typical AD, the spatial heterogeneity 
of tau is generally limited,7,8,19,29 and largely adheres to the Braak 
staging scheme of tau pathology with a strong emphasis on medial 
and lateral aspects of the temporal lobe.1,30-34 Therefore, a crucial 
test of the connectivity-progression hypothesis is to determine 
whether connectivity-based tau progression models can be gener
alized to clinical phenotypes with other tau deposition patterns ex
tending beyond the temporal lobe. Notable phenotypes of interest 
for this purpose are so-called atypical variants of AD, including pos
terior cortical atrophy (PCA: the ‘visual variant of AD’),35 logopenic 
variant primary progressive aphasia (lvPPA: the ‘language variant 
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of AD’),36 behavioural variant AD (bvAD)37 and corticobasal syn
drome (CBS: the ‘motor variant of AD’).38 Each of these variants 
shows distinct spatial tau patterns that largely correspond to the re
gions governing the cognitive functions that define each variant. In 
particular, the primary visual cortex and visual association areas 
show prominent tau burden in PCA; the left superior temporal gyrus 
in lvPPA; temporoparietal and to a lesser extent frontal regions in 
bvAD; and predominantly the hemisphere contralateral to the clinic
ally affected body side, including the sensorimotor cortex, in 
CBS.5,16,20,39-44 It is, therefore, of both scientific and clinical interest 
to better understand the mechanisms that drive heterogeneous 
tau progression patterns and subsequent clinical variability in AD.

To test whether functional connectivity is a universal predictor 
of tau progression, independent of clinical phenotype, we aimed to 
assess tau-PET progression patterns as well as post-mortem tau 
distributions in Aβ-positive individuals with PCA, lvPPA, bvAD, 
CBS and typical AD. Because atypical AD variants are relatively 
rare,45,46 we conducted a large-scale multicentre study on atypical 
AD, using patient-specific tau-PET across 14 sites worldwide (n =  
320, with n = 68 typical AD cases serving as the benchmark group) 
and resting-state functional MRI (fMRI) data from healthy elderly 
controls in the Alzheimer’s Disease Neuroimaging Initiative 
[ADNI, n = 42 cognitively normal (CN) Aβ-negative individuals], as 
well as post-mortem datasets from two sites [University of 
Pennsylvania (UPENN) n = 63, University of California, San 
Francisco (UCSF) n = 30]. Our objectives were to: (i) assess the spatial 
heterogeneity of tau-PET distribution and identify subject-level 
tau-PET epicentres across AD variants; (ii) test whether brain re
gions with stronger functional connectivity to each other show 
greater covariance in cross-sectional tau-PET and gold standard 
post-mortem tau pathology; (iii) assess whether functional con
nectivity of subject-level tau-PET epicentres (i.e. regions with the 
highest tau at baseline) predicts cross-sectional tau patterns; (iv) 
test whether brain regions with stronger functional connectivity 
to each other show greater covariance in tau-PET accumulation 
rates; and (v) establish whether functional connectivity of 
subject-level tau-PET accumulation epicentres (i.e. regions with 
the highest accumulation of tau over time) predicts longitudinal 
tau progression sequences. We hypothesize that, in all clinical var
iants of AD, tau propagates along functional connections of the 
subject-level tau-PET epicentre (i.e. the regions with the highest 
tau-PET level or fastest tau-PET accumulation), indicating a univer
sal scaffold for the progression of tau pathology. In addition, we hy
pothesize that brain regions with stronger functional connectivity 
to each other show stronger covariance in tau pathology on post- 
mortem examination. By investigating the association between 
tau and functional connectivity this study aims to deepen the un
derstanding of mechanisms of tau progression and AD heterogen
eity, potentially informing more targeted therapeutic strategies 
and tailored clinical trial end points.

Materials and methods
Tau-PET sample

We included individuals with AD recruited at 14 international sites 
[Amsterdam, Cambridge, Cologne, Leipzig, Lund, Mayo, 
Massachusetts General Hospital (MGH), McGill, Munich, University 
College London (UCL), UCSF, UPENN, Washington and Yale]. 
Inclusion criteria were a clinical diagnosis of atypical AD according 
to the contemporaneously available criteria,35-38 confirmed positive 
Aβ status (either via PET or CSF), and the availability of at least one 

tau-PET scan and basic demographic and clinical information. We 
also received data from several sites on individuals with typical AD, 
whom we decided to include as a reference group. Longitudinal 
tau-PET data was available for a subset of individuals within each 
AD variant. However, due to the relatively small sample sizes in the 
other variants, we only included this data for PCA-AD and lvPPA-AD. 
In addition to data from AD patients, we also obtained data from con
trol subjects (primarily consisting of CN Aβ-negative individuals) 
scanned using the same tau-PET tracers. This ensured the inclusion 
of varying tau-PET levels at both the lower and higher ends of the spec
trum, enabling Gaussian mixture modelling-based transformation of 
tau-PET standardized uptake value ratio (SUVR) values to tau positivity 
probabilities7 (see Supplementary material, ‘Methods’ section). 
Besides control data from the aforementioned 14 cohorts, we also in
cluded control data from ADNI for this. All study procedures were con
ducted in accordance with the Declaration of Helsinki, ethical approval 
was obtained by investigators at each site. All study participants pro
vided written informed consent.

Neuroimaging data collection

Every individual underwent at least one tau-PET scan following 
site-specific acquisition protocols.4,14,16,47-57 Both scanning proto
cols and specific tracers varied by site, with tracers including 18F- 
flortaucipir, 18F-MK6240, 18F-PI2620 and 18F-RO948. Before data pre
processing, all imaging data were reviewed for artefacts and image 
quality.

Preprocessing steps and region-of-interest (ROI) extraction were 
performed either centrally (in Amsterdam/Munich) or locally. 
Collaborators from Cambridge, Cologne, Lund, Mayo, MGH, 
McGill, UCL, UCSF, UPENN, and Washington conducted both pre
processing and ROI extraction at their respective sites.4,14,16,48,50- 

52,54-56 PET scans from Leipzig, Yale, Amsterdam and Munich 
were centrally analysed.47,49 To ensure consistency across all sites, 
ROI extraction followed a standardized protocol: each site was pro
vided with an R script, the Schaefer parcellation and a grey matter 
mask, which were used to generate the Schaefer 200 values: https:// 
github.com/OssenKoppeLab/HdeBruin_Atypical_AD.

For preprocessing, individual PET scan frames were realigned and 
averaged to create average images, which were subsequently 
co-registered to the corresponding T1-weighted MRI. For ROI extrac
tion, the cortical Schaefer atlas58 with 200 ROIs applied to the struc
tural MRI image was used to extract regional tau-PET SUVR data, 
which was adjusted to an inferior cerebellar grey reference region.

Assessment of tau-PET change

We assessed tau-PET change over time by computing the annual 
SUVR change for every individual across 200 ROIs. For each individ
ual and each ROI, we fitted a separate linear model defined as: 
tau-PET SUVR = β0 + β1 × time + ϵ, where tau-PET SUVR reflects the 
tau load at a given time point, β0 is the intercept, β1 is the slope, 
time is the follow-up time in years and ϵ is the residual error 
term. To express the change as a relative percentage, we normal
ized each ROI’s slope (β1) by the individual’s baseline SUVR for 
that ROI (i.e. at follow-up time = 0): relative tau-PET change (% per 
year) = (β1/tau-PET SUVR0) × 100. This yielded the annual percent
age change in tau-PET signal per ROI.

Identification of tau-PET epicentres

To determine the tau-PET epicentre for each individual, we em
ployed a previously established method7,19,59 that is based on the 
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premise that brain regions showing early abnormal tau depos
ition would display higher tau levels than regions with later ab
normal tau deposition. At the subject level, we arranged all 
Schaefer ROIs according to their tau-PET SUVR values at base
line, thereby delineating the estimated cross-sectional sequence 
of tau propagation. Subject-specific tau epicentres were then de
fined as the top 5% of ROIs (i.e. 10 ROIs in total) with the highest 
tau-PET SUVR values. We determined tau-PET accumulation epi
centres in a similar way, see Supplementary material, ‘Methods’ 
section.

Post-mortem sample

As an independent sample (i.e. not the same individuals as in the 
tau-PET sample), we recruited data from AD cases who had under
gone post-mortem examination at two sites (UPENN and UCSF).60,61

Inclusion criteria were an ante-mortem clinical diagnosis of atyp
ical AD, AD being the primary neuropathological diagnosis, the 
availability of post-mortem ordinal or quantitative tau assess
ments in preferably ∼10 probe extraction sites per individual in
cluding their anatomical labelling, and the presence of basic 
demographic and ante-mortem clinical information.

Post-mortem assessment

Post-mortem data collection and preparation followed standard 
pre-established procedures.60,61 All assessments were unilateral 
(see Supplementary methods). UPENN tau assessments included 
ordinal ratings (0 = none, 1 = mild, 2 = moderate, 3 = severe) of 
paired helical filament-1 (PHF-1) staining62 across 19 ROIs (i.e. the 
amygdala, dentate gyrus, CA1/subiculum, entorhinal cortex, mid
dle frontal cortex, angular gyrus, superior/middle temporal cortex, 
anterior cingulate, occipital cortex, caudate/putamen, globus palli
dus, thalamus/subthalamic nucleus, midbrain, substantia nigra, 
pons, locus coeruleus, medulla, cerebellum and sensory cortex). 
From these ROIs, we selected those with sufficient data and rele
vance for assessing functional connectivity for our fMRI-based ana
lyses. Additionally, due to the small size of individual hippocampal 
regions, we combined these into a single hippocampal ROI. This se
lection narrowed the 19 ROIs down to 9: the amygdala, hippocam
pus, entorhinal cortex, middle frontal cortex, angular gyrus, 
superior/middle temporal cortex, anterior cingulate, occipital cor
tex, thalamus/subthalamic nucleus. UCSF tau assessments con
sisted of quantitative thioflavin-S fluorescent microscopy 
staining61 across six ROIs (i.e. the CA1, subiculum, middle frontal 
gyrus, angular gyrus, superior temporal gyrus and primary motor 
cortex), resulting in a density score (i.e. the number of NFTs per 
mm2) per ROI. All six ROIs had sufficient data and were fMRI com
patible. We again combined the individual hippocampal regions 
into a single hippocampal ROI, resulting in five total ROIs. For 
both samples, we used known cortical and subcortical brain atlases 
[i.e. the automated anatomical labelling (AAL) atlas, computational 
brain anatomy laboratory (CoBrA) atlas, Julich atlas and 
Neuromorphometrics atlas]63-66 to create an MRI brain atlas based 
on the selected ROIs.67 Although pathology assessments were uni
lateral, ROIs were mapped bilaterally in the atlas to align with the 
functional connectivity analyses.

Assessment of covariance in tau-PET and covariance 
in post-mortem tau

Cross-sectional and longitudinal tau-PET covariance were defined 
as AD variant-average Fisher z-transformed partial Pearson 

correlations between, respectively, tau positivity probabilities or 
tau-PET SUVR percentage change rates of all 200 Schaefer ROI 
pairs, while adjusting for age, sex, site (and Euclidean distance). 
We assessed tau-PET covariance both across the whole brain 
and in seven individual canonical resting-state fMRI networks.68

Post-mortem tau covariance was determined by calculating 
Fisher z-transformed partial Spearman (UPENN) and Pearson 
(UCSF) correlations between post-mortem tau semi-quantitative 
and quantitative ratings of all ROI pairs (based on the created bilat
eral MRI brain atlas), respectively, while adjusting for age and sex.

Functional connectivity assessment

We utilized resting-state fMRI data from an independent sample of 
42 CN Aβ-negative individuals from ADNI to construct the connec
tome template, along which tau progression was modelled. 
Pre-processing of the fMRI data involved several steps, starting 
with slice-timing correction and motion correction, with all vo
lumes realigned to the first volume. Echo planar imaging (EPI) 
images were subsequently co-registered to their respective 
T1-weighted structural scans. Grey matter, eroded white matter 
and eroded CSF segments derived from the T1 images were trans
formed into EPI space based on rigid transformation parameters.

To denoise the fMRI data, we regressed out nuisance signals, in
cluding time series from eroded white matter and CSF, as well as six 
motion parameters. Additional steps included detrending and 
band-pass filtering within the 0.01–0.08 Hz frequency range, with 
all processing conducted in native EPI space. To minimize the im
pact of motion artefacts on connectivity estimates, motion scrub
bing was performed. Volumes with frame-wise displacement 
above 0.5 mm, along with one preceding and two following vo
lumes, were excluded. Each participant retained at least 5 min of 
usable resting-state fMRI data after scrubbing. Spatial smoothing 
was avoided to prevent artificial enhancement of connectivity sig
nals due to spatial overlap (and thus, spilling) between neighbour
ing brain regions. Finally, the pre-processed resting-state fMRI data 
were warped to Montreal Neurological Institute (MNI) space using 
spatial normalization parameters from CAT12.

Subsequently, for the tau-PET part of this study, we applied the 
200 ROI Schaefer atlas to the fMRI data to generate a functional con
nectivity matrix representing Fisher z-transformed Pearson corre
lations between fMRI time series [i.e. fluctuations in the blood 
oxygen level-dependent (BOLD) signal] of all possible ROI pairs. 
Based on a previously established method, this matrix was density 
thresholded at 30% (i.e. 30% of the strongest positive connections 
were retained) and transformed to functional connectivity-based 
distance.7 The distance metric reflects the shortest functional 
path length between each ROI pair, where regions with stronger 
direct or indirect connections are considered closer together, and 
regions with weaker or no connections are considered more dis
tant. Besides assessing functional connectivity across the whole 
brain, we also determined functional connectivity in the same se
ven canonical resting-state fMRI networks (i.e. the default mode 
network, dorsal and ventral attention network, frontoparietal con
trol network, limbic network, motor network and visual network) 
that were used for assessing tau-PET covariance.68 For the post- 
mortem part of this study, we applied our MRI brain atlas to the 
fMRI data to generate a functional connectivity matrix representing 
Fisher z-transformed Pearson correlations between the fMRI time 
series of all possible ROI pairs. We did not transform functional 
connectivity to functional connectivity-based distance for our post- 
mortem analyses due to sparsity and limited adjacency of regions.
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Statistical analyses

Group differences in baseline demographics were assessed using 
ANOVA or Kruskal–Wallis tests for continuous variables and 
chi-squared tests of independence for categorical variables. In the 
case of cell counts <5, Monte Carlo simulations with 20 000 replica
tions (B = 20 000) were employed to estimate the P-values for the 
chi-squared tests. If a statistically significant main effect was ob
served, Tukey’s Honestly Significant Difference (HSD) test was used 
as a post hoc test following ANOVA, Dunn’s test following the 
Kruskal–Wallis test, and Fisher’s exact tests following chi-square 
tests. Dunn’s test and Fisher’s exact tests were adjusted for multiple 
comparisons using the Bonferroni correction. When data was miss
ing for a category [education n = 89, Apolipoprotein E (APOEϵ4) status 
n = 150, Mini-Mental State Examination (MMSE) n = 79], individuals 
were excluded from that specific analysis. For our cross-sectional 
in vivo covariance analyses, the association between inter-regional 
functional connectivity-based distance and age-, sex- and 
site-adjusted inter-regional tau-PET covariance was assessed using 
linear regression for each AD variant, both in the whole brain and 
in the seven individual resting-state fMRI networks. As a sensitivity 
analysis, we repeated these analyses with additional adjustment of 
tau-PET covariance for inter-regional Euclidean distance (i.e. the geo
metric distance between the centre of mass of each ROI). 
Furthermore, to test the robustness of our findings, we performed 
a previously described bootstrapping procedure.8 In this procedure, 
1000 different connectivity null models were generated by shuffling 
the 200 × 200 connectivity matrix while preserving the weight and 
degree distribution. Subsequently, we re-ran the whole-brain linear 
model 1000 times, each time using a different connectivity matrix 
from the set of 1000 null models. This procedure resulted in a distri
bution of 1000 β-values based on the null models, which were com
pared against the actual β-value using exact tests. For our 
post-mortem covariance analyses, the association between inter- 
regional functional connectivity and age- and sex-adjusted inter- 
regional tau pathology covariance was also assessed using linear re
gression. Here, we pooled the data from all atypical AD variants to in
crease statistical power. To study cross-sectional in vivo tau 
progression, at the subject level, linear regression was used to assess 
the association between functional connectivity-based distance to 
the tau epicentre and tau-PET SUVR, after which β-values were visua
lized per AD variant. Additionally, we grouped all non-epicentre re
gions into quartiles based on their functional proximity to the 
epicentre (quartile 1 = close, quartile 4 = distant) and compared tau 
positivity probabilities across quartiles using paired Wilcoxon 
signed-rank tests. For our longitudinal in vivo covariance analyses, 
we assessed the association between inter-regional functional 
connectivity-based distance and inter-regional tau-PET annual per
centage change covariance through linear regression for each AD 
variant, both across the whole brain and in the seven individual 
resting-state fMRI networks. We applied the same bootstrapping 
procedure used in our cross-sectional covariance analyses to evalu
ate the robustness of our findings. To study longitudinal in vivo tau 
progression, at the subject level, linear regression was utilized to as
sess the association between functional connectivity-based distance 
to the tau accumulation epicentre and tau-PET annual percentage 
change, after which β-values were visualized per AD variant. 
Moreover, we grouped all non-accumulation-epicentre regions into 
quartiles based on their functional proximity to the accumulation 
epicentre (quartile 1 = close, quartile 4 = distant) and compared 
tau-PET percentage change rates across quartiles using paired 
Wilcoxon signed-rank tests. Significance for all effects was 

determined at a two-tailed α = 0.05. All statistical analyses were per
formed using R statistical software (R Foundation for Statistical 
Computing, Vienna, Austria). Brain surface renderings were gener
ated using the Connectome Workbench.

Results
Sample characteristics

For the tau-PET section of this study, we included 388 Aβ-positive (ei
ther on PET or CSF) individuals with a clinical diagnosis of AD. For 
two individuals, Aβ status was not known, but they were included 
based on a positive tau-PET scan. In total, 139 individuals were clas
sified as PCA-AD, 103 as lvPPA-AD, 35 as bvAD, 43 as CBS-AD and 68 
as typical (or amnestic) AD. Baseline tau-PET data was available for 
all 388 individuals. Longitudinal tau-PET data was available for 78 in
dividuals with PCA-AD or lvPPA-AD (PCA-AD n = 45, mean follow-up 
time: 1.40 ± 0.63 years, range: 0.77–3.16 years; lvPPA-AD n = 33, mean 
follow-up time: 1.41 ± 0.78 years, range: 0.79–4.07 years). For the 
post-mortem section of this study, we included 93 individuals 
with an ante-mortem clinical diagnosis of atypical AD as well as 
post-mortem neuropathologically confirmed AD from two sites. 
One of these sites (UPENN) provided a larger semi-quantitative data
set (n = 63; 12 PCA-AD, 23 lvPPA-AD, 13 bvAD and 15 CBS-AD), while 
the other site (UCSF) contributed a smaller quantitative dataset (n =  
30; 7 PCA-AD, 9 lvPPA-AD, 10 bvAD and 4 CBS-AD), which was used 
as a replication sample. Baseline demographic, clinical and imaging/ 
neuropathological information across AD variants is presented in 
Table 1 (tau-PET cohort) and Table 2 (post-mortem cohort), while 
baseline demographic and clinical information across all sites can 
be found in Supplementary Table 1.

Tau-PET spatial distribution and epicentres align 
with clinical phenotypes

Our first objective was to assess the heterogeneity of tau-PET distribu
tion and identify tau-PET epicentres across AD variants. Accordingly, 
similar to previous approaches,7,19 and pending the development of 
widely accepted tau-PET harmonization methods,69 we harmonized 
the different tau-PET tracers from the different sites by transforming 
tau-PET SUVRs to tau positivity probabilities (0% to 100%) using 
Gaussian mixture modelling. For each AD variant, we computed 
tau-PET positivity probabilities in 200 Schaefer atlas58 ROIs (Fig. 1B). 
The tau positivity probability maps generally resembled the previous
ly described topography of each clinical variant, including a posterior 
pattern in PCA-AD,16,35,40,70,71 pronounced left-hemispheric temporal 
involvement in lvPPA-AD,16 ,36,40,72,73 a diffuse pattern primarily in
volving the temporoparietal regions, with additional frontal involve
ment, in bvAD,16,37,47 and bilateral temporoparietal predominance in 
typical AD.1,16,40 The exception was the CBS-AD group, which showed 
a prominent posterior pattern (Supplementary Fig. 1B shows the tau 
positivity probabilities for individuals with CBS-AD grouped by the 
predominant clinically affected side). Although there was some un
ique involvement of the sensorimotor cortex (that was not observed 
in any of the other variants), this was less pronounced than in several 
previous studies.40,42,74,75 Regional tau-PET positivity probabilities 
were generally lower in CBS-AD and typical AD compared with the 
other variants. Furthermore, in line with the spatial distribution of 
tau positivity probabilities, tau epicentres (i.e. the top 5% of regions ex
hibiting the highest baseline tau-PET SUVR, determined at the subject 
level) were highly heterogeneous across variants (Fig. 1A and 
Supplementary Fig. 1A). Correlations between the entire multisite 
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cohort and the average of subsets of the data derived by systematical
ly excluding one site at a time (i.e. a leave-one-site-out approach) were 
near perfect across all AD variants (Supplementary Fig. 2). In addition, 
Levene’s test showed that there were no variance differences across 
all leave-one-site-out scenarios (all P > 0.05; see Supplementary 
Table 2). These findings support the robustness of our results and 
demonstrate the validity of the tau positivity probability approach, 
prompting us to continue using it in our main (group-level) analyses.

Regions with stronger functional connectivity 
exhibit greater in vivo and post-mortem tau 
covariance

Our second objective was to test whether higher inter-regional 
functional connectivity is associated with higher covariance in 

cross-sectional tau-PET uptake and post-mortem tau pathology. 

To investigate this, we first explored the association between 

Table 1 Tau-PET cohort: demographic, clinical and imaging information across atypical AD variants

PCA-AD lvPPA-AD bvAD CBS-AD Typical AD Total P

N 139 103 35 43 68 388
Age (years)a 64.05 ± 7.66b,c,d 67.75 ± 8.31d,e 65.95 ± 8.05c,d 71.76 ± 8.56e,f 71.77 ± 9.25b,e,f 67.41 ± 8.79 <0.001
Femaleg 85 (61.2) 52 (50.5) 18 (51.4) 23 (53.5) 32 (47.1) 210 (54.1) 0.310
Education (years)a 15.43 ± 2.99 15.58 ± 3.38d 14.68 ± 3.76 14.58 ± 3.49 13.91 ± 3.58b 15.10 ± 3.36 0.045
APOEϵ4 carrierg 44 (50.0) 30 (44.8) 21 (65.6) 6 (60.0) 26 (63.4) 127 (53.4) 0.194
MMSEh 21.45 ± 5.64c,d 21.49 ± 5.61 20.85 ± 5.80c 24.04 ± 5.78e,f 23.88 ± 4.50e 22.01 ± 5.56 0.003
Tau-PET tracerg <0.001i

18F-flortaucipir 96 (69.1) 73 (70.9) 15 (42.9) 18 (41.9) 18 (26.5) 220 (56.7)
18F-MK6240 25 (18.0) 18 (17.5) 18 (51.4) 0 (0.0) 29 (42.6) 90 (23.2)
18F-PI2620 12 (8.6) 7 (6.8) 0 (0.0) 24 (55.8) 21 (30.9) 64 (16.5)
18F-RO948 6 (4.3) 5 (4.9) 2 (5.7) 1 (2.3) 0 (0.0) 14 (3.6)

Values are mean ± standard deviation for continuous variables and n (%) for categorical variables. Differences between groups were assessed using ANOVA, chi-squared tests of 

independence or the Kruskal-Wallis test. In the case of cell counts <5, Monte Carlo simulations with 20 000 replications (B = 20 000) were employed to estimate the P-values for 

the chi-squared tests. If a statistically significant main effect was observed, Tukey’s Honestly Significant Difference (HSD) test was used as a post hoc test following ANOVA, 
Fisher’s exact tests following chi-square tests, and Dunn’s test following the Kruskal-Wallis test. Fisher’s exact tests and Dunn’s test were adjusted for multiple comparisons 

using the Bonferroni correction. When data was missing for a category (education n = 89, APOEϵ4 status n = 150, MMSE n = 79), individuals were excluded from that specific 

analysis. AD = Alzheimer’s disease; APOE = apolipoprotein E; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal syndrome; lvPPA = logopenic variant primary 

progressive aphasia; MMSE = mini-mental state examination; PCA = posterior cortical atrophy.
aDifferences between groups were assessed using ANOVA.
bSignificantly different from lvPPA-AD.
cSignificantly different from CBS-AD.
dSignificantly different from typical AD.
eSignificantly different from PCA-AD.
fSignificantly different from bvAD.
gDifferences between groups were assessed using chi-squared tests of independence.
hDifferences between groups were assessed using the Kruskal-Wallis test.
iAll group comparisons were significant, except for PCA-AD versus lvPPA-AD.

Table 2 Post-mortem cohort: demographic, clinical and neuropathological information across atypical AD variants per site

UPENN UCSF

PCA-AD lvPPA-AD bvAD CBS-AD PCA-AD lvPPA-AD bvAD CBS-AD

N 12 23 13 15 7 9 10 4
Age at death, years 68.08 ± 8.97 69.26 ± 7.92 74.00 ± 10.88 65.87 ± 7.46 63.29 ± 3.64 66.56 ± 5.81 63.50 ± 6.98 74.75 ± 9.25
Female 3 (25.0) 10 (43.5) 5 (38.5) 11 (73.3) 6 (85.7) 6 (66.7) 2 (20.0) 2 (50.0)
Education, years 15.83 ± 3.10 16.82 ± 2.79 15.00 ± 3.11 15.14 ± 2.41 15.43 ± 2.15 14.89 ± 1.96 16.12 ± 2.75 18.00 ± 6.32
MMSE 13.42 ± 8.58 9.81 ± 7.53 13.73 ± 8.30 9.14 ± 4.79 12.17 ± 12.42 7.22 ± 5.49 13.11 ± 6.79 19.75 ± 9.50
A (Aβ plaques)

2 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.7) 0 (0.0) 0 (0.0) 0 (0.0) 1 (25.0)
3 12 (100.0) 23 (100.0) 13 (100.0) 14 (93.3) 4 (100.0) 7 (100.0) 9 (100.0) 3 (75.0)

B (NFTs)
2 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.7) 0 (0.0) 0 (0.0) 0 (0.0) 1 (25.0)
3 12 (100.0) 23 (100.0) 13 (100.0) 14 (93.3) 7 (100.0) 9 (100.0) 10 (100.0) 3 (75.0)

C (NPs)
2 2 (16.7) 0 (0.0) 2 (15.4) 2 (13.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
3 10 (83.3) 23 (100.0) 11 (84.6) 13 (86.7) 7 (100.0) 9 (100.0) 10 (100.0) 4 (100.0)

Values are mean ± standard deviation for continuous variables and n (%) for categorical variables. Aβ plaques, NFTs and NPs are presented according to ABC-score criteria (A = Aβ 
plaques using the Thal phase system; B = NFTs using the Braak staging system; C = NPs based on the CERAD criteria).118 N = 4 missing for education (n = 2 UPENN, n = 2 UCSF), n = 7 for 

MMSE (n = 5 UPENN, n = 2 UCSF), n = 6 for A (Aβ plaques; all UCSF). Aβ = amyloid-β; AD = Alzheimer’s disease; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal 

syndrome; lvPPA = logopenic variant primary progressive aphasia; MMSE = mini-mental state examination; NFTs = neurofibrillary tangles; NPs = neuritic plaques; PCA = posterior 

cortical atrophy; UCSF = university of California, San Francisco; UPENN = university of Pennsylvania.
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inter-regional functional connectivity-based distance and inter- 
regional covariance in tau-PET through linear regression. In all 
AD variants, analysed separately, greater AD variant-average 
tau-PET covariance was associated with shorter functional 

connectivity-based distance. We observed this relationship when 
assessing connectivity and tau covariance across the whole 
brain (Fig. 2C–H, PCA-AD: β = −0.53, P < 0.001, lvPPA-AD: β = −0.51, 
P < 0.001, bvAD: β = −0.37, P < 0.001, CBS-AD: β = −0.52, P < 0.001, 

Figure 1 Tau-PET epicentres and positivity across AD variants. Tau epicentres (i.e. the regions with the assumed earliest and greatest tau burden) were 
defined at the subject level as the 5% regions with the highest tau-PET SUVRs at baseline. Group-average epicentre probabilities (A) indicate the like
lihood of a region being part of the epicentre, with only epicentre probabilities ≥20% shown. Group-average baseline tau-PET positivity probabilities (a 
uniform tau-PET scale ranging from 0% to 100%) across AD variants are shown in (B). AD = Alzheimer’s disease; bvAD = behavioural variant Alzheimer’s 
disease; CBS = corticobasal syndrome; L = left; lvPPA = logopenic variant primary progressive aphasia; PCA = posterior cortical atrophy; R = right; SUVR  
= standardized uptake value ratio.
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Figure 2 Association between functional connectivity and covariance in tau-PET across variants of AD. Surface rendering of the 200 ROI brain atlas 
used for tau-PET and resting-state functional MRI (fMRI) data in ROI-based analyses (A). Functional connectivity was defined as Fisher z-transformed 
Pearson correlations between fluctuations in the BOLD signal of all possible 200 Schaefer ROI pairs in 42 CN Aβ-negative individuals from ADNI. The 
200 × 200 ROI functional connectivity matrix was density thresholded at 30% (i.e. 30% of the strongest positive connections were retained) and trans
formed to functional connectivity-based distance (strongly connected regions are ‘close’, while weakly or indirectly connected regions are ‘distant’). 
Tau-PET covariance was defined as AD variant-average Fisher z-transformed partial Pearson correlations between tau positivity probabilities of all pos
sible ROI pairs, while adjusting for age, sex and site. The association between inter-regional functional connectivity-based distance and inter-regional 
tau-PET covariance was assessed using linear regression for all AD variants, both across the whole brain (C–H) and in seven individual resting-state 
fMRI networks separately (A and B). To test the robustness of these findings, we re-ran the whole-brain analysis 1000 times, each time using a different 
connectivity null model from the set of 1000 null models that were generated by shuffling the connectivity matrix while preserving the weight and 
degree distribution. This procedure resulted in a distribution of β-values based on the null models, as depicted in the beeswarm panels in C–H, where 
the actual β-value (furthest data-point) always exceeded the null model β-values. Aβ = amyloid-β; AD = Alzheimer’s disease; ADNI = Alzheimer’s dis
ease neuroimaging initiative; BOLD = blood oxygen level-dependent; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal syndrome; 
CN = cognitively normal; DAN = dorsal attention network; DMN = default mode network; FPCN = frontoparietal control network; lvPPA = logopenic 
variant primary progressive aphasia; PCA = posterior cortical atrophy; ROI = region of interest; VAN = ventral attention network.
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typical AD: β = −0.43, P < 0.001, atypical AD altogether: β = −0.62, 
P < 0.001), as well as within seven individual functional brain net
works (Fig. 2 A and B and Supplementary Fig. 3), suggesting that 
the association between connectivity and covariance in tau is 
not confined to specific high-tau regions. The results remained 
consistent when adjusting for inter-regional Euclidean distance 
(Supplementary Fig. 4), suggesting that functional connectivity 
(and not spatial proximity) is the main driver of these associa
tions. To test the robustness of these findings, we performed a 
previously described bootstrapping procedure in which 1000 
connectivity null models were generated by shuffling the 200 ×  
200 connectivity matrix while preserving the weight and degree 
distribution.8 Subsequently, we re-ran the whole-brain linear 
model 1000 times, each time using a different connectivity ma
trix, which resulted in a distribution of null-model β-values 
(Fig. 2C–H). We then compared the actual β-value from the ob
served true connectivity matrix to the β-values generated by the 
null models using exact tests. This enabled us to determine the 
frequency with which the β-values from the null models ex
ceeded the actual β-value. For all AD variants, the null model 
β-values never exceeded the actual β-value, further strengthen
ing our findings.

In addition to the tau-PET analyses, we also examined the 
relationship between functional connectivity and tau covari
ance using post-mortem data. Given that the tau-PET signal 
can be confounded by factors other than tau pathology, such 
as binding to off-target sources like astrogliosis or iron accu
mulation,76,77 the reliability of the tau-PET findings would be 
strengthened by post-mortem replication. We assessed the as
sociation between inter-regional functional connectivity [i.e. a 
matrix with Fisher z-transformed Pearson correlations 
between the fMRI time series of all ROI pairs (using ADNI elder
ly control data)] and inter-regional post-mortem tau covari
ance [i.e. Fisher z-transformed age- and sex-adjusted partial 
Spearman (in the semi-quantitative UPENN dataset) or 
Pearson (in the quantitative UCSF dataset) correlations be
tween tau pathology ratings of all ROI pairs] using linear 

regression. For this analysis, we pooled data from all atypical 
AD variants to increase statistical power. Consistent with our 
hypothesis and previous tau-PET results, UPENN data (n = 63) 
showed that stronger functional connectivity was associated 
with higher covariance in post-mortem tau pathology across 
nine ROIs, β = 0.44, P < 0.001 (Fig. 3). Although the analysis did 
not reach statistical significance, the direction of this effect 
was confirmed in the smaller UCSF replication sample (n =  
30), β = 0.36, P = 0.116 (Supplementary Fig. 5).

Regions more functionally connected to the tau-PET 
epicentre show higher tau-PET levels

Our third objective was to test the hypothesis that functional con
nectivity of specific tau-PET epicentres is associated with tau pro
gression sequences inferred from cross-sectional data. For each 
AD variant separately, we used linear regression to test the associ
ation between epicentre connectivity and tau-PET levels. Our find
ings showed that, across all AD variants, a shorter functional 
connectivity-based distance to the tau epicentre was associated 
with higher tau-PET SUVRs, both when tested at the subject level 
(Fig. 4A–E) and per tracer at the group level (Supplementary Fig. 6). 
To further investigate this, we divided all brain regions (excluding 
the epicentre) into quartiles based on their functional proximity to 
the tau epicentre. We then examined whether regions in the lower 
quartiles (i.e. regions functionally most strongly connected to the 
tau epicentre) had higher tau positivity probabilities than those 
in the higher quartiles (i.e. regions functionally distant from the 
tau epicentre). As expected, a gradient of increasing tau positivity 
probabilities was observed from quartile 4 to quartile 1 across all 
AD variants (Fig. 4A–E; paired Wilcoxon signed-rank tests indicat
ing P < 0.05 for all quartile comparisons). When repeating these 
analyses in a subset of individuals with subject-level fMRI avail
able (PCA-AD n = 6, lvPPA-AD n = 5, CBS-AD n = 5), the results 
were generally comparable to the main analyses (Supplementary 
Fig. 7). Paired Wilcoxon signed-rank tests for the entire atypical 
AD group were significant (P < 0.05) for all quartile comparisons, 

Figure 3 Association between functional connectivity and covariance in post-mortem tau pathology in atypical AD. Using established cortical and sub
cortical brain atlases (i.e. AAL, CoBrA, Julich, Neuromorphometrics), we created a bilateral MRI brain atlas for the regions with post-mortem tau assess
ment (n = 9, see A). Functional connectivity was defined as Fisher z-transformed Pearson correlations between functional MRI (fMRI) time series 
(reflective of fluctuations in the BOLD signal) of all ROI pairs in 42 CN Aβ-negative individuals from ADNI. Tau covariance was defined as Fisher z-trans
formed partial Spearman correlations between semi-quantitative tau pathology ratings of all ROI pairs, while adjusting for age and sex. We pooled the 
data from all AD variants to increase statistical power. The association between inter-regional functional connectivity and inter-regional tau pathology 
covariance was assessed using linear regression (B). AAL = automated anatomical labelling; Aβ = amyloid-β; AD = Alzheimer’s disease; ADNI =  
Alzheimer’s disease neuroimaging initiative; BOLD = blood oxygen level-dependent; CN = cognitively normal; CoBrA = computational brain anatomy 
laboratory; ROI = region of interest.
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Figure 4 Association between tau epicentre connectivity and tau-PET across AD variants. Tau epicentre connectivity was determined by taking the 
functional connectivity-based distance (see Fig. 2 for method specifications) of each non-epicentre ROI (n = 190) to the epicentre (n = 10). For each in
dividual, linear regression was used to assess the association between functional connectivity-based distance to the tau epicentre and tau-PET SUVR. 
Subject-level β-values are visualized per AD variant in the notched boxplots in A–E. Additionally, all non-epicentre regions were grouped into quartiles 
based on their functional proximity to the epicentre (quartile 1 = shortest functional connectivity-based distance, quartile 4 = longest functional 
connectivity-based distance), and tau positivity probabilities across quartiles were compared using paired Wilcoxon signed-rank tests. 
AD = Alzheimer’s disease; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal syndrome; lvPPA = logopenic variant primary progres
sive aphasia; PCA = posterior cortical atrophy; Q = quartile; ROI = region of interest; SUVR = standardized uptake value ratio.
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except for quartile 2 versus quartile 3, which was borderline sig
nificant (P = 0.07). These analyses support our hypothesis that 
tau progression across the brain follows the pattern of function
al connections from the tau epicentre, across atypical AD 
variants.

Regions with stronger functional connectivity 
exhibit greater covariance in tau-PET change

Our fourth objective was to test whether higher inter-regional func
tional connectivity is associated with higher covariance in tau-PET 
accumulation rates over time. Due to the relatively small sample 
sizes in the other groups, we only included the PCA-AD and 
lvPPA-AD groups for our longitudinal analyses. We investigated 
the association between functional connectivity-based distance 
across 200 ROIs (as described before) and inter-regional covariance 
in longitudinal tau-PET change through linear regression. In both 
PCA-AD and lvPPA-AD, we observed that greater covariance in 
tau-PET percentage change was associated with shorter functional 
connectivity-based distance, both across the whole brain (Fig. 5C 
and D; PCA-AD: β = −0.43, P < 0.001, lvPPA-AD: β = −0.28, P < 0.001) 
and in seven individual resting-state fMRI networks (Fig. 5A and B
and Supplementary Fig. 8). When we re-ran the whole-brain ana
lyses 1000 times to test the robustness of our findings, we found 
that none of the null model-derived β-values exceeded the actual 
β-value (Fig. 5C and D). These results indicate that regions with 

stronger functional connectivity to each other show greater con
gruence in tau-PET change over time.

Regions more functionally connected to the tau-PET 
accumulation epicentre show faster tau-PET change

Our fifth objective was to establish whether functional connectivity 
of tau-PET accumulation epicentres predicts faster longitudinal in
creases in tau. We thus aimed to evaluate whether brain regions in 
closer functional proximity to the tau-PET accumulation epicentre 
exhibited more tau-PET change than functionally more remote re
gions. Therefore, we first determined the tau-PET accumulation 
epicentre for each individual, i.e. the top 5% of regions exhibiting 
the highest annual tau-PET SUVR percentage change. Then, for 
PCA-AD and lvPPA-AD separately, we used linear regression to as
sess the association between subject-level tau accumulation epi
centre connectivity and tau-PET percentage change over time. 
Our results revealed that tau accumulation predominantly oc
curred anteriorly in PCA-AD (Fig. 6A). Moreover, in lvPPA-AD it 
was primarily observed in right temporoparietal and occipital re
gions (Fig. 6B), which likely reflects the close functional connectiv
ity of these regions to the baseline tau-PET epicentres of both 
variants.14,51,78 Moreover, for both PCA-AD and lvPPA-AD, a shorter 
functional connectivity-based distance to the tau accumulation 
epicentre was associated with faster tau-PET change, both when 
tested at the subject level (Fig. 6A and B) and per tracer at the group 

Figure 5 Association between functional connectivity and covariance in tau-PET percentage change in PCA-AD and lvPPA-AD. Surface rendering of the 
200 ROI brain atlas used for tau-PET and resting-state functional MRI (fMRI) data in ROI-based analyses (A). We computed annual tau-PET SUVR change 
for each individual by fitting 200 linear models (one for each ROI), using follow-up time as the independent variable and tau-PET SUVR as the dependent 
variable. We then normalized each ROI’s rate of change by the individual’s initial SUVR (at follow-up time = 0) to express it as a relative percentage 
change per year. Covariance in tau-PET percentage change was determined by calculating AD variant-average Fisher z-transformed partial Pearson 
correlations between the percentage change rates of all ROI pairs while adjusting for age, sex and site. Using the functional connectivity-based distance 
matrix described in Fig. 2, we assessed the association between inter-regional functional connectivity-based distance and inter-regional tau-PET per
centage change covariance through linear regression, both across the whole brain (C and D) and in seven individual resting-state fMRI networks sep
arately (A and B). We re-ran the analysis 1000 times (same procedure as described in Fig. 2) to test the robustness of our findings, as illustrated in the 
beeswarm panels in C and D, where the actual β-value (furthest data-point) always exceeded the null model β-values. AD = Alzheimer’s disease; DAN =  
dorsal attention network; DMN = default mode network; FPCN = frontoparietal control network; lvPPA = logopenic variant primary progressive apha
sia; PCA = posterior cortical atrophy; ROI = region of interest; SUVR = standardized uptake value ratio; VAN = ventral attention network.
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level (Supplementary Fig. 9). We again divided all brain regions (ex
cluding the tau accumulation epicentre) into quartiles based on 
their functional proximity to the accumulation epicentre. We 
then examined whether regions in the lower quartiles (i.e. regions 
functionally close) showed more tau-PET change than those in 
the higher quartiles (i.e. regions functionally distant). A gradient 
of increasing tau-PET change was observed from quartile 4 to quar
tile 1 for both variants (Fig. 6A and B). Paired Wilcoxon signed-rank 
tests showed significance (P < 0.05) for all quartile comparisons, ex
cept for quartile 3 versus quartile 4 in lvPPA-AD. These analyses 
support our hypothesis that tau propagates across the brain along 
functional connections, not only in typical AD but also consistently 
across atypical AD variants with highly heterogeneous tau depos
ition patterns.

Discussion
The primary aim of this study was to determine whether connect
ivity serves as a universal scaffold for predicting tau progression in 
AD, independent of clinical phenotype or regional predilection of 
tau deposition. To this end, we conducted a multicentre study com
bining tau-PET (n = 320 cross-sectional, n = 78 longitudinal) and 
post-mortem (n = 93) data across 14 sites from various atypical AD 
variants (i.e. PCA-AD, lvPPA-AD, bvAD and CBS-AD). In line with 

our primary hypothesis, we found that in all AD variants, brain re
gions with stronger functional connectivity to each other exhibited 
greater covariance in concurrent tau-PET deposition and tau-PET 
change over time. Importantly, this finding was replicated using re
gionally sampled post-mortem data, wherein we observed that 
stronger functional connectivity was associated with higher covari
ance in tau. Furthermore, across all AD variants, brain regions with 
stronger functional connectivity to the tau-PET epicentre (i.e. the 
top 5% of regions with the highest tau-PET retention) showed high
er tau-PET levels at baseline. Similarly, regions with stronger func
tional connectivity to the tau-PET accumulation epicentre (i.e. the 
top 5% of regions with the highest tau accumulation over time) de
monstrated faster rates of longitudinal tau-PET accumulation. 
Taken together, these findings support the hypothesis that tau 
progresses throughout the brain along functional connections, al
though spatial progression may also reflect shared vulnerability 
of connected regions to activity-dependent stressors and proteos
tasis.28 Importantly, connectivity-related progression seems to be 
consistent across AD phenotypes, establishing functional connect
ivity as a universal framework for tau progression and highlighting 
the heightened vulnerability of highly connected brain networks to 
tau pathology in AD.79

Our finding that strongly functionally connected brain regions 
show correlated tau levels and tau accumulation, and that the 

Figure 6 Association between tau accumulation epicentre connectivity and tau-PET change in PCA-AD and lvPPA-AD. Tau accumulation epicentres 
were defined as the top 5% of ROIs (i.e. 10 ROIs in total) with the highest annual percentage change in tau-PET SUVR. Group-average epicentre prob
abilities indicate the likelihood of a region being part of the epicentre, with only epicentre probabilities ≥10% shown. Tau accumulation epicentre con
nectivity was determined by taking the functional connectivity-based distance (see Fig. 2 for method specifications) of each 
non-accumulation-epicentre ROI (n = 190) to the accumulation epicentre (n = 10). For each individual, linear regression was used to assess the associ
ation between functional connectivity-based distance to the tau accumulation epicentre and tau-PET annual percentage change. Subject-level β-values 
are visualized per AD variant in the notched boxplots in A and B. Additionally, all non-accumulation-epicentre regions were grouped into quartiles 
based on their functional proximity to the accumulation epicentre (quartile 1 = shortest functional connectivity-based distance, quartile 4 = longest 
functional connectivity-based distance), and tau-PET percentage change rates across quartiles were compared using paired Wilcoxon signed-rank 
tests. AD = Alzheimer’s disease; lvPPA = logopenic variant primary progressive aphasia; PCA = posterior cortical atrophy; Q = quartile; ROI = region 
of interest; SUVR = standardized uptake value ratio.
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functional connectivity of tau epicentres predicts tau progression, 
aligns with previous studies suggesting that tau pathology propa
gates through the brain in a prion-like manner, spreading along 
synaptic connections from cell to cell.10,12,80,81 While functional 
connectivity reflects coordinated activity between brain regions, 
it is also related to structural connectivity, which can be assessed 
by methods like diffusion tensor imaging (DTI).82 DTI, despite the 
limitation to accurately capture U-fibres and crossing fibres, re
flects anatomical links between areas.8,82 Structurally connected 
regions often show strong functional connectivity, as direct physic
al pathways facilitate efficient communication.82 These structural 
connections likely serve as routes for the trans-synaptic spread of 
tau pathology, with both functional and structural networks jointly 
explaining the observed spatiotemporal patterns of tau accumula
tion.15 Examples of trans-neuronal tau spread have been demon
strated in cellular models of tauopathy, where tau aggregates, or 
‘seeds,’ can be released from donor cells, subsequently taken up 
by recipient cells and then trigger the aggregation of normally sol
uble tau.9,22,23,83-88 This transcellular transfer mechanism is also 
observed in transgenic or supraphysiological animal models, where 
tau injections into specific brain regions lead to the emergence of 
tau pathology in connected areas, reinforcing the concept of 
network-based propagation.11,24-26,89-97 Recent human neuroima
ging studies align with these preclinical findings, showing that 
tau pathology progresses from localized epicentres—proposed to 
harbour the earliest and highest levels of tau—to connected brain 
regions.5,7,13,16-21,27,98 However, these studies have primarily shown 
that brain connectivity predicts tau progression in typical amnestic 
AD, where tau follows the stereotypical Braak staging scheme.1 To 
address this limitation, we included atypical AD variants, each of 
which display unique tau deposition patterns.40 By doing so, our 
findings provide novel insights into the mechanisms of tau path
ology, showing that tau progresses along functional brain connec
tions—also in atypical AD. This supports the universality of 
network-based tau progression across diverse AD phenotypes and 
offers a broader framework for understanding tau propagation in 
complex and less predictable cases of AD.

An unexpected finding was the predominance of tau pathology 
in the posterior and temporal cortices in the CBS-AD group, con
trasting with previous studies that showed significant involvement 
of the sensorimotor cortex.40,42 However, compared with the other 
AD variants, CBS-AD exhibited greater tau burden in the sensori
motor cortex, suggesting that it was relatively more affected in 
CBS-AD despite prominent tau accumulation in classical AD re
gions. This became even more evident when stratifying by lateral
ization of the clinical symptoms, as subgroup analyses revealed 
subtle asymmetric tau deposition, with greater tau accumulation 
in the sensorimotor cortex contralateral to the clinically affected 
body side. Moreover, since CBS-AD is not limited to motor symp
toms, the posterior tau pathology may underlie other clinical fea
tures commonly seen in CBS-AD, such as apraxia or visuospatial 
deficits.38

Given that tau is a key driver of neurodegeneration and cogni
tive decline in AD,2-4 our findings have significant implications for 
personalized medicine and clinical trial design. Understanding 
the mechanisms and patterns of tau propagation can refine both 
the timing and application of anti-tau therapies. Predicting which 
brain regions are most vulnerable to tau spread could enable earlier 
interventions to halt the cascade of neurodegeneration before crit
ical brain areas are affected. In clinical settings, advanced imaging 
and computational modelling could be used to identify these at-risk 
regions, allowing clinicians to anticipate the trajectory of tau 

spread and strategically time interventions. Administering anti-tau 
therapies before the pathology compromises key brain areas could 
help preserve cognitive function and slow disease progression. 
These insights are particularly relevant for clinical trials, where ad
dressing the heterogeneity across AD variants is a major challenge. 
Since different AD phenotypes show distinct patterns of tau path
ology,5,16,20,39-43 our findings support the use of individualized 
ROIs rather than one-size-fits-all approaches when tau-PET is 
used as an outcome measure.99 Patient-specific ROIs tailored to 
functional connectivity and tau pathology patterns could improve 
trial sensitivity, enhance the detection of treatment effects and ul
timately increase the likelihood of successful therapeutic out
comes. While tau-PET is not yet widely available in clinical 
practice, these findings suggest that it may, in the future, play a 
role in identifying vulnerable brain regions and monitoring disease 
progression in the clinic.100,101 Combined with functional connect
ivity measures, tau-PET could provide a valuable tool for guiding 
clinical decision-making and improving patient care.

A major strength of this study is its large sample size with rela
tively rare AD phenotypes, recruited from 14 sites worldwide, with 
baseline and longitudinal tau-PET data as well as post-mortem tau 
assessments available. Notably, the additional inclusion of post- 
mortem tau assessments—a feature not present in a previous study 
on functional connectivity and tau spread in atypical AD16—repre
sents a novel aspect of our work. There are also several limitations. 
First, the use of different tau-PET tracers, scanning protocols and 
approaches for determining Aβ status across sites posed harmon
ization challenges. Also, Aβ status thresholds were cohort-specific. 
However, given the high general concordance between 
amyloid-PET and CSF (∼90%),102 we expect limited impact from 
the use of different methods for determining Aβ status. Second, 
as expected based on the young age and atypical clinical presenta
tion,103 most individuals in the cohort showed signs of saturation in 
tau-PET retention at baseline, which prevented the ability to direct
ly model longitudinal tau progression from cross-sectional epicen
tres. Instead, we adopted a tau-PET accumulation epicentre 
approach, identifying regions with the highest accumulation of 
tau over time and examining whether tau progresses along the 
functional connections of these epicentres.8 Third, it is challenging 
to determine the true origin of tau pathology in the brain (i.e. the 
epicentre) in symptomatic stages of AD. Although our epicentre ap
proach suggests that regions with the highest tau-PET values are 
variant-specific in atypical AD, it remains possible that tau initially 
arises in the medial temporal lobe, as seen in typical AD,17,104 but 
spreads to the neocortex much earlier in atypical variants, leading 
to the observed differences in tau distribution compared with typ
ical AD. Inter-individual differences in brain architecture may pro
mote this; for example, there is evidence that individuals with 
developmental disorders, where brain connectivity patterns may 
need to adapt, are at higher risk of atypical AD manifestations.105- 

108 This could be because their brain networks predispose them to 
faster spread from the medial temporal lobe to other regions. 
Fourth, in the post-mortem part of the study, tau pathology was as
sessed in only one hemisphere per individual, which may not fully 
capture lateralized pathology, especially in syndromes like 
lvPPA-AD and CBS-AD where asymmetric neuropathologic distri
butions are well documented.36,38 Fifth, the two sites that provided 
post-mortem tau data employed different methodologies. 
Specifically, UPENN used a semi-quantitative approach with 
PHF-1 staining,62 while UCSF utilized a quantitative method with 
thioflavin-S fluorescent microscopy staining.61 These methods 
measure distinct aspects of tau pathology: PHF-1 does not 
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differentiate between tau species and could therefore be hypothe
sized to be more aligned with tau-PET, while thioflavin-S particu
larly measures NFTs.109-111 Sixth, the spatial resolution of PET 
imaging is limited,112 which precludes directly investigating trans- 
synaptic tau spreading. This limitation implies that, even though 
our findings lend support to preclinical observations from animal 
and cellular studies, we are unable to make strong mechanistic in
ferences about tau propagation due to scale differences (macro ver
sus micro) between our experimental design and these preclinical 
models. In addition, our study offers only indirect evidence for 
the trans-synaptic tau spreading hypothesis, and alternative me
chanisms (e.g. shared regional vulnerability between connected 
brain regions) may give rise to similar connectivity-dependent pat
terns of tau progression.113,114 Seventh, to ensure consistency with 
our fMRI analyses and effectively capture functional brain net
works, we used the cortical Schaefer atlas58 for our tau-PET ana
lyses. However, this choice prevented us from examining tau-PET 
in subcortical regions, which may be particularly relevant for 
CBS-AD, where there could be some subcortical involve
ment.75,115,116 Additionally, the high granularity of the 200 ROI atlas 
may increase the risk of partial volume effects, potentially making 
regional tau estimates less precise.

In conclusion, the current study provides strong evidence 
that, in AD, tau progression is predictable according to the brain’s 
functional connections, independent of the clinical phenotype 
and the topography of tau load. Future research is warranted in 
several key areas, including: (i) advancing and validating func
tional connectivity-based models to more accurately predict indi
vidual levels of tau progression, ideally utilizing subject-level 
fMRI, because such mechanistic understanding will be crucial 
for identifying potential novel drug targets aimed at slowing 
or preventing tau accumulation; (ii) elucidating the role of 
Aβ burden in shaping tau progression patterns across AD 
variants. Although direct examination was not possible due to 
differences in modalities for defining Aβ status and the use of dif
ferent amyloid-PET tracers, prior work in e.g. PCA and lvPPA sug
gests that regional Aβ deposition may influence local tau 
accumulation.117,118 Therefore, future studies with harmonized 
approaches will be critical to clarify this relationship; (iii) investi
gating interactions between tau and other proteinopathies, such 
as α-synuclein and TAR DNA-binding protein 43 (TDP-43), as these 
co-pathologies may influence tau propagation and regional vul
nerability21,119,120; and (iv) improving the clinical characteriza
tion of atypical AD phenotypes,46 which could facilitate the 
recruitment of larger and more well-characterized cohorts and 
enable more uniform scanning protocols and tau-PET tracers. 
Collectively, these advancements will refine our understanding 
of tau dynamics, enhance the translational potential of this re
search for therapeutic development, inform clinical trial design 
and eventually aid in improving patient care.
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