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Connectivity as a universal predictor of tau
progression in atypical Alzheimer’s disease
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The link between regional tau load and clinical manifestation of Alzheimer’s disease (AD) highlights the importance
of characterizing spatial tau distribution across disease variants. In typical (memory-predominant) AD, the spatial
progression of tau pathology mirrors the functional connections from temporal lobe epicentres. However, given
the limited spatial heterogeneity of tau in typical AD, atypical (non-amnestic-predominant) AD variants with distinct
tau patterns provide a key opportunity to investigate the universality of connectivity as a scaffold for tau progression.
In this large-scale, multicentre study across 14 international sites, we included cross-sectional tau-PET data from 320
individuals with atypical AD (n= 139 posterior cortical atrophy/PCA-AD; n =103 logopenic variant primary progres-
sive aphasia/lvPPA-AD; n =35 behavioural variant AD/bvAD; n=43 corticobasal syndrome/CBS-AD), with a subset
of individuals (n = 78) having longitudinal tau-PET data. Additionally, as an independent sample, we included region-
al post-mortem tau stainings from 93 atypical AD patients from two sites (n=19 PCA-AD, n=32 lvPPA-AD, n=23
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bvAD, n=19 CBS-AD). Gaussian mixture modelling was used to harmonize different tau-PET tracers by transforming
tau-PET standardized uptake value ratios to tau positivity probabilities (a uniform scale ranging from 0% to 100%).
Using linear regression, we assessed whether brain regions with stronger resting-state functional MRI-based func-
tional connectivity, derived from healthy elderly controls in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), showed greater covariance in cross-sectional and longitudinal tau-PET and post-mortem tau pathology.
Furthermore, we examined whether functional connectivity of tau-PET epicentres (i.e. the top 5% of regions with
the highest baseline tau load) and tau-PET accumulation epicentres (i.e. the top 5% of regions with the highest tau
accumulation rates) was associated with cross-sectional and longitudinal tau patterns.

Our findings show that tau-PET epicentres aligned with clinical variants, e.g. a visual network predominant patternin
PCA-AD (‘visual AD’) and left-hemispheric temporal predominance, particularly within the language network, in
IvPPA-AD (‘language AD’). Moreover, more strongly functionally connected regions showed correlated concurrent
tau-PET levels (confirmed with post-mortem data) and tau-PET accumulation rates. The functional connectivity pro-
file of tau-PET epicentres and accumulation epicentres corresponded to tau-PET progression patterns, with higher
tau-PET levels and accumulation rates in functionally close regions, and lower tau-PET levels and accumulation rates
in functionally distant regions.

Our data are consistent with the hypothesis that tau propagation occurs along functional connections originating from
local epicentres, across all AD clinical variants. Since tau proteinopathy is a major driver of neurodegeneration and cog-
nitive decline, this finding may advance personalized medicine and participant-specific end points in clinical trials.
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Introduction

The main pathological hallmarks of Alzheimer’s disease (AD) are
extracellular amyloid-p (AB) plaques and intracellular tau neurofib-
rillary tangles (NFTs)." Previous studies have consistently shown
that compared with Ap proteinopathy, tau proteinopathy is both
spatially and temporally more strongly associated with neurode-
generation and cognitive impairment.”* This highlights the critical
role of tau pathology in AD progression and the importance of bet-
ter understanding how tau spreads throughout the brain.
Preclinical and human neuroimaging studies have indicated
that the brain’s connectome acts as a scaffold for the progression
of tau across the brain.* % Specifically, tau may originate in specific
local epicentres (i.e. the regions with the earliest and greatest tau
burden), from where it spreads along the connections of these epi-
centres.>” 3162127 Oq the other hand, functionally connected re-
gions may also share vulnerability through commonalities in

metabolic- and activity-dependent stresses, gene expression and
proteostasis.”® These studies collectively provide robust evidence
that connectivity plays a crucial role in the progression of tau path-
ology throughout the brain. However, previous clinical studies have
primarily focused on individuals with typical AD, who present with
an amnestic-predominant clinical syndrome. Although there are
inter-individual differences in typical AD, the spatial heterogeneity
of tau is generally limited,”®'*?° and largely adheres to the Braak
staging scheme of tau pathology with a strong emphasis on medial
and lateral aspects of the temporal lobe.*°-3* Therefore, a crucial
test of the connectivity-progression hypothesis is to determine
whether connectivity-based tau progression models can be gener-
alized to clinical phenotypes with other tau deposition patterns ex-
tending beyond the temporal lobe. Notable phenotypes of interest
for this purpose are so-called atypical variants of AD, including pos-
terior cortical atrophy (PCA: the ‘visual variant of AD’),*® logopenic
variant primary progressive aphasia (IvPPA: the ‘language variant
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of AD’),*® behavioural variant AD (bvAD)*” and corticobasal syn-
drome (CBS: the ‘motor variant of AD’).*® Each of these variants
shows distinct spatial tau patterns that largely correspond to the re-
gions governing the cognitive functions that define each variant. In
particular, the primary visual cortex and visual association areas
show prominent tau burden in PCA, the left superior temporal gyrus
in IvPPA; temporoparietal and to a lesser extent frontal regions in
bvAD; and predominantly the hemisphere contralateral to the clinic-
ally affected body side, including the sensorimotor cortex, in
CBS.>16:2039-44 1t {5 therefore, of both scientific and clinical interest
to better understand the mechanisms that drive heterogeneous
tau progression patterns and subsequent clinical variability in AD.

To test whether functional connectivity is a universal predictor
of tau progression, independent of clinical phenotype, we aimed to
assess tau-PET progression patterns as well as post-mortem tau
distributions in AB-positive individuals with PCA, IvPPA, bvAD,
CBS and typical AD. Because atypical AD variants are relatively
rare,*>*® we conducted a large-scale multicentre study on atypical
AD, using patient-specific tau-PET across 14 sites worldwide (n=
320, with n=68 typical AD cases serving as the benchmark group)
and resting-state functional MRI (fMRI) data from healthy elderly
controls in the Alzheimer’s Disease Neuroimaging Initiative
[ADNI, n=42 cognitively normal (CN) Ap-negative individuals], as
well as post-mortem datasets from two sites [University of
Pennsylvania (UPENN) n=63, University of California, San
Francisco (UCSF) n = 30]. Our objectives were to: (i) assess the spatial
heterogeneity of tau-PET distribution and identify subject-level
tau-PET epicentres across AD variants; (ii) test whether brain re-
gions with stronger functional connectivity to each other show
greater covariance in cross-sectional tau-PET and gold standard
post-mortem tau pathology; (iii) assess whether functional con-
nectivity of subject-level tau-PET epicentres (i.e. regions with the
highest tau at baseline) predicts cross-sectional tau patterns; (iv)
test whether brain regions with stronger functional connectivity
to each other show greater covariance in tau-PET accumulation
rates; and (v) establish whether functional connectivity of
subject-level tau-PET accumulation epicentres (i.e. regions with
the highest accumulation of tau over time) predicts longitudinal
tau progression sequences. We hypothesize that, in all clinical var-
iants of AD, tau propagates along functional connections of the
subject-level tau-PET epicentre (i.e. the regions with the highest
tau-PET level or fastest tau-PET accumulation), indicating a univer-
sal scaffold for the progression of tau pathology. In addition, we hy-
pothesize that brain regions with stronger functional connectivity
to each other show stronger covariance in tau pathology on post-
mortem examination. By investigating the association between
tau and functional connectivity this study aims to deepen the un-
derstanding of mechanisms of tau progression and AD heterogen-
eity, potentially informing more targeted therapeutic strategies
and tailored clinical trial end points.

Materials and methods

We included individuals with AD recruited at 14 international sites
[Amsterdam, Cambridge, Cologne, Leipzig, Lund, Mayo,
Massachusetts General Hospital (MGH), McGill, Munich, University
College London (UCL), UCSF, UPENN, Washington and Yale].
Inclusion criteria were a clinical diagnosis of atypical AD according
to the contemporaneously available criteria,>>® confirmed positive
AR status (either via PET or CSF), and the availability of at least one
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tau-PET scan and basic demographic and clinical information. We
also received data from several sites on individuals with typical AD,
whom we decided to include as a reference group. Longitudinal
tau-PET data was available for a subset of individuals within each
AD variant. However, due to the relatively small sample sizes in the
other variants, we only included this data for PCA-AD and lvPPA-AD.
In addition to data from AD patients, we also obtained data from con-
trol subjects (primarily consisting of CN Af-negative individuals)
scanned using the same tau-PET tracers. This ensured the inclusion
of varying tau-PET levels at both the lower and higher ends of the spec-
trum, enabling Gaussian mixture modelling-based transformation of
tau-PET standardized uptake value ratio (SUVR) values to tau positivity
probabilities’ (see Supplementary material, ‘Methods’ section).
Besides control data from the aforementioned 14 cohorts, we also in-
cluded control data from ADNI for this. All study procedures were con-
ducted in accordance with the Declaration of Helsinki, ethical approval
was obtained by investigators at each site. All study participants pro-
vided written informed consent.

Every individual underwent at least one tau-PET scan following
site-specific acquisition protocols.***'¢47>7 Both scanning proto-
cols and specific tracers varied by site, with tracers including *8F-
flortaucipir, *¥F-MK6240, *8F-P12620 and '®F-R0948. Before data pre-
processing, all imaging data were reviewed for artefacts and image
quality.

Preprocessing steps and region-of-interest (ROI) extraction were
performed either centrally (in Amsterdam/Munich) or locally.
Collaborators from Cambridge, Cologne, Lund, Mayo, MGH,
McGill, UCL, UCSF, UPENN, and Washington conducted both pre-
processing and ROI extraction at their respective sites,*1%16:48:30-
25456 PET scans from Leipzig, Yale, Amsterdam and Munich
were centrally analysed.*”"*° To ensure consistency across all sites,
ROI extraction followed a standardized protocol: each site was pro-
vided with an R script, the Schaefer parcellation and a grey matter
mask, which were used to generate the Schaefer 200 values: https:/
github.com/OssenKoppeLab/HdeBruin_Atypical AD.

For preprocessing, individual PET scan frames were realigned and
averaged to create average images, which were subsequently
co-registered to the corresponding T1-weighted MRI. For ROI extrac-
tion, the cortical Schaefer atlas®® with 200 ROIs applied to the struc-
tural MRI image was used to extract regional tau-PET SUVR data,
which was adjusted to an inferior cerebellar grey reference region.

We assessed tau-PET change over time by computing the annual
SUVR change for every individual across 200 ROIs. For each individ-
ual and each ROI, we fitted a separate linear model defined as:
tau-PET SUVR = + B4 X time + ¢, where tau-PET SUVR reflects the
tau load at a given time point, o is the intercept, p; is the slope,
time is the follow-up time in years and ¢ is the residual error
term. To express the change as a relative percentage, we normal-
ized each ROI's slope (B;) by the individual’s baseline SUVR for
that ROI (i.e. at follow-up time = 0): relative tau-PET change (% per
year) = (B1/tau-PET SUVR,) x 100. This yielded the annual percent-
age change in tau-PET signal per ROL

To determine the tau-PET epicentre for each individual, we em-
ployed a previously established method’-***° that is based on the
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premise that brain regions showing early abnormal tau depos-
ition would display higher tau levels than regions with later ab-
normal tau deposition. At the subject level, we arranged all
Schaefer ROIs according to their tau-PET SUVR values at base-
line, thereby delineating the estimated cross-sectional sequence
of tau propagation. Subject-specific tau epicentres were then de-
fined as the top 5% of ROIs (i.e. 10 ROIs in total) with the highest
tau-PET SUVR values. We determined tau-PET accumulation epi-
centres in a similar way, see Supplementary material, ‘Methods’
section.

As an independent sample (i.e. not the same individuals as in the
tau-PET sample), we recruited data from AD cases who had under-
gone post-mortem examination at two sites (UPENN and UCSF).5%¢*
Inclusion criteria were an ante-mortem clinical diagnosis of atyp-
ical AD, AD being the primary neuropathological diagnosis, the
availability of post-mortem ordinal or quantitative tau assess-
ments in preferably ~10 probe extraction sites per individual in-
cluding their anatomical labelling, and the presence of basic
demographic and ante-mortem clinical information.

Post-mortem data collection and preparation followed standard
pre-established procedures.®®¢? All assessments were unilateral
(see Supplementary methods). UPENN tau assessments included
ordinal ratings (0=none, 1=mild, 2=moderate, 3=severe) of
paired helical filament-1 (PHF-1) staining® across 19 ROIs (i.e. the
amygdala, dentate gyrus, CAl/subiculum, entorhinal cortex, mid-
dle frontal cortex, angular gyrus, superior/middle temporal cortex,
anterior cingulate, occipital cortex, caudate/putamen, globus palli-
dus, thalamus/subthalamic nucleus, midbrain, substantia nigra,
pons, locus coeruleus, medulla, cerebellum and sensory cortex).
From these ROIs, we selected those with sufficient data and rele-
vance for assessing functional connectivity for our fMRI-based ana-
lyses. Additionally, due to the small size of individual hippocampal
regions, we combined these into a single hippocampal ROL This se-
lection narrowed the 19 ROIs down to 9: the amygdala, hippocam-
pus, entorhinal cortex, middle frontal cortex, angular gyrus,
superior/middle temporal cortex, anterior cingulate, occipital cor-
tex, thalamus/subthalamic nucleus. UCSF tau assessments con-
sisted of quantitative thioflavin-S fluorescent microscopy
staining®® across six ROIs (i.e. the CA1, subiculum, middle frontal
gyrus, angular gyrus, superior temporal gyrus and primary motor
cortex), resulting in a density score (i.e. the number of NFTs per
mm?) per ROL All six ROIs had sufficient data and were fMRI com-
patible. We again combined the individual hippocampal regions
into a single hippocampal ROI, resulting in five total ROIs. For
both samples, we used known cortical and subcortical brain atlases
[i.e. the automated anatomical labelling (AAL) atlas, computational
brain anatomy laboratory (CoBrA) atlas, Julich atlas and
Neuromorphometrics atlas]®>®® to create an MRI brain atlas based
on the selected ROIs.®” Although pathology assessments were uni-
lateral, ROIs were mapped bilaterally in the atlas to align with the
functional connectivity analyses.

Cross-sectional and longitudinal tau-PET covariance were defined
as AD variant-average Fisher z-transformed partial Pearson
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correlations between, respectively, tau positivity probabilities or
tau-PET SUVR percentage change rates of all 200 Schaefer ROI
pairs, while adjusting for age, sex, site (and Euclidean distance).
We assessed tau-PET covariance both across the whole brain
and in seven individual canonical resting-state fMRI networks.®®
Post-mortem tau covariance was determined by calculating
Fisher z-transformed partial Spearman (UPENN) and Pearson
(UCSF) correlations between post-mortem tau semi-quantitative
and quantitative ratings of all ROI pairs (based on the created bilat-
eral MRI brain atlas), respectively, while adjusting for age and sex.

We utilized resting-state fMRI data from an independent sample of
42 CN AB-negative individuals from ADNI to construct the connec-
tome template, along which tau progression was modelled.
Pre-processing of the fMRI data involved several steps, starting
with slice-timing correction and motion correction, with all vo-
lumes realigned to the first volume. Echo planar imaging (EPI)
images were subsequently co-registered to their respective
T1-weighted structural scans. Grey matter, eroded white matter
and eroded CSF segments derived from the T1 images were trans-
formed into EPI space based on rigid transformation parameters.

To denoise the fMRI data, we regressed out nuisance signals, in-
cluding time series from eroded white matter and CSF, as well as six
motion parameters. Additional steps included detrending and
band-pass filtering within the 0.01-0.08 Hz frequency range, with
all processing conducted in native EPI space. To minimize the im-
pact of motion artefacts on connectivity estimates, motion scrub-
bing was performed. Volumes with frame-wise displacement
above 0.5 mm, along with one preceding and two following vo-
lumes, were excluded. Each participant retained at least 5 min of
usable resting-state fMRI data after scrubbing. Spatial smoothing
was avoided to prevent artificial enhancement of connectivity sig-
nals due to spatial overlap (and thus, spilling) between neighbour-
ing brain regions. Finally, the pre-processed resting-state fMRI data
were warped to Montreal Neurological Institute (MNI) space using
spatial normalization parameters from CAT12.

Subsequently, for the tau-PET part of this study, we applied the
200 ROI Schaefer atlas to the fMRI data to generate a functional con-
nectivity matrix representing Fisher z-transformed Pearson corre-
lations between fMRI time series [i.e. fluctuations in the blood
oxygen level-dependent (BOLD) signal] of all possible ROI pairs.
Based on a previously established method, this matrix was density
thresholded at 30% (i.e. 30% of the strongest positive connections
were retained) and transformed to functional connectivity-based
distance.” The distance metric reflects the shortest functional
path length between each ROI pair, where regions with stronger
direct or indirect connections are considered closer together, and
regions with weaker or no connections are considered more dis-
tant. Besides assessing functional connectivity across the whole
brain, we also determined functional connectivity in the same se-
ven canonical resting-state fMRI networks (i.e. the default mode
network, dorsal and ventral attention network, frontoparietal con-
trol network, limbic network, motor network and visual network)
that were used for assessing tau-PET covariance.®® For the post-
mortem part of this study, we applied our MRI brain atlas to the
fMRI data to generate a functional connectivity matrix representing
Fisher z-transformed Pearson correlations between the fMRI time
series of all possible ROI pairs. We did not transform functional
connectivity to functional connectivity-based distance for our post-
mortem analyses due to sparsity and limited adjacency of regions.
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Group differences in baseline demographics were assessed using
ANOVA or Kruskal-Wallis tests for continuous variables and
chi-squared tests of independence for categorical variables. In the
case of cell counts <5, Monte Carlo simulations with 20 000 replica-
tions (B=20000) were employed to estimate the P-values for the
chi-squared tests. If a statistically significant main effect was ob-
served, Tukey’s Honestly Significant Difference (HSD) test was used
as a post hoc test following ANOVA, Dunn’s test following the
Kruskal-Wallis test, and Fisher’s exact tests following chi-square
tests. Dunn’s test and Fisher’s exact tests were adjusted for multiple
comparisons using the Bonferroni correction. When data was miss-
ing for a category [education n =89, Apolipoprotein E (APOEe4) status
n=150, Mini-Mental State Examination (MMSE) n=79], individuals
were excluded from that specific analysis. For our cross-sectional
in vivo covariance analyses, the association between inter-regional
functional connectivity-based distance and age-, sex- and
site-adjusted inter-regional tau-PET covariance was assessed using
linear regression for each AD variant, both in the whole brain and
in the seven individual resting-state fMRI networks. As a sensitivity
analysis, we repeated these analyses with additional adjustment of
tau-PET covariance for inter-regional Euclidean distance (i.e. the geo-
metric distance between the centre of mass of each ROI).
Furthermore, to test the robustness of our findings, we performed
a previously described bootstrapping procedure.? In this procedure,
1000 different connectivity null models were generated by shuffling
the 200 x 200 connectivity matrix while preserving the weight and
degree distribution. Subsequently, we re-ran the whole-brain linear
model 1000 times, each time using a different connectivity matrix
from the set of 1000 null models. This procedure resulted in a distri-
bution of 1000 g-values based on the null models, which were com-
pared against the actual p-value using exact tests. For our
post-mortem covariance analyses, the association between inter-
regional functional connectivity and age- and sex-adjusted inter-
regional tau pathology covariance was also assessed using linear re-
gression. Here, we pooled the data from all atypical AD variants to in-
crease statistical power. To study cross-sectional in vivo tau
progression, at the subject level, linear regression was used to assess
the association between functional connectivity-based distance to
the tau epicentre and tau-PET SUVR, after which g-values were visua-
lized per AD variant. Additionally, we grouped all non-epicentre re-
gions into quartiles based on their functional proximity to the
epicentre (quartile 1 =close, quartile 4 =distant) and compared tau
positivity probabilities across quartiles using paired Wilcoxon
signed-rank tests. For our longitudinal in vivo covariance analyses,
we assessed the association between inter-regional functional
connectivity-based distance and inter-regional tau-PET annual per-
centage change covariance through linear regression for each AD
variant, both across the whole brain and in the seven individual
resting-state fMRI networks. We applied the same bootstrapping
procedure used in our cross-sectional covariance analyses to evalu-
ate the robustness of our findings. To study longitudinal in vivo tau
progression, at the subject level, linear regression was utilized to as-
sess the association between functional connectivity-based distance
to the tau accumulation epicentre and tau-PET annual percentage
change, after which p-values were visualized per AD variant.
Moreover, we grouped all non-accumulation-epicentre regions into
quartiles based on their functional proximity to the accumulation
epicentre (quartile 1=close, quartile 4=distant) and compared
tau-PET percentage change rates across quartiles using paired
Wilcoxon signed-rank tests. Significance for all effects was
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determined at a two-tailed a =0.05. All statistical analyses were per-
formed using R statistical software (R Foundation for Statistical
Computing, Vienna, Austria). Brain surface renderings were gener-
ated using the Connectome Workbench.

Results

For the tau-PET section of this study, we included 388 Ap-positive (ei-
ther on PET or CSF) individuals with a clinical diagnosis of AD. For
two individuals, Ap status was not known, but they were included
based on a positive tau-PET scan. In total, 139 individuals were clas-
sified as PCA-AD, 103 as lvPPA-AD, 35 as bvAD, 43 as CBS-AD and 68
as typical (or amnestic) AD. Baseline tau-PET data was available for
all 388 individuals. Longitudinal tau-PET data was available for 78 in-
dividuals with PCA-AD or lvPPA-AD (PCA-AD n =45, mean follow-up
time: 1.40 + 0.63 years, range: 0.77-3.16 years; IvPPA-AD n = 33, mean
follow-up time: 1.41+0.78 years, range: 0.79-4.07 years). For the
post-mortem section of this study, we included 93 individuals
with an ante-mortem clinical diagnosis of atypical AD as well as
post-mortem neuropathologically confirmed AD from two sites.
One of these sites (UPENN) provided a larger semi-quantitative data-
set (n=63; 12 PCA-AD, 23 lvPPA-AD, 13 bvAD and 15 CBS-AD), while
the other site (UCSF) contributed a smaller quantitative dataset (n=
30; 7 PCA-AD, 9 IvPPA-AD, 10 bvAD and 4 CBS-AD), which was used
as areplication sample. Baseline demographic, clinical and imaging/
neuropathological information across AD variants is presented in
Table 1 (tau-PET cohort) and Table 2 (post-mortem cohort), while
baseline demographic and clinical information across all sites can
be found in Supplementary Table 1.

Our first objective was to assess the heterogeneity of tau-PET distribu-
tion and identify tau-PET epicentres across AD variants. Accordingly,
similar to previous approaches,”*® and pending the development of
widely accepted tau-PET harmonization methods,*® we harmonized
the different tau-PET tracers from the different sites by transforming
tau-PET SUVRs to tau positivity probabilities (0% to 100%) using
Gaussian mixture modelling. For each AD variant, we computed
tau-PET positivity probabilities in 200 Schaefer atlas®® ROIs (Fig. 1B).
The tau positivity probability maps generally resembled the previous-
ly described topography of each clinical variant, including a posterior
pattern in PCA-AD,*®*>*%7071 pronounced left-hemispheric temporal
involvement in IvPPA-AD,'® 26497273 3 diffuse pattern primarily in-
volving the temporoparietal regions, with additional frontal involve-
ment, in bvAD,'®¥**’ and bilateral temporoparietal predominance in
typical AD.>**° The exception was the CBS-AD group, which showed
a prominent posterior pattern (Supplementary Fig. 1B shows the tau
positivity probabilities for individuals with CBS-AD grouped by the
predominant clinically affected side). Although there was some un-
ique involvement of the sensorimotor cortex (that was not observed
in any of the other variants), this was less pronounced than in several
previous studies.?***’%”> Regional tau-PET positivity probabilities
were generally lower in CBS-AD and typical AD compared with the
other variants. Furthermore, in line with the spatial distribution of
tau positivity probabilities, tau epicentres (i.e. the top 5% of regions ex-
hibiting the highest baseline tau-PET SUVR, determined at the subject
level) were highly heterogeneous across variants (Fig. 1A and
Supplementary Fig. 1A). Correlations between the entire multisite
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Table 1 Tau-PET cohort: demographic, clinical and imaging information across atypical AD variants
PCA-AD IvPPA-AD bvAD CBS-AD Typical AD Total P
N 139 103 35 43 68 388
Age (years)? 64.05 + 7.66>4 67.75 + 8.31%¢ 65.95 + 8.05%¢ 71.76 + 8.56°F 71.77 + 9.25>f 67.41 + 8.79 <0.001
Female® 85 (61.2) 52 (50.5) 18 (51.4) 23 (53.5) 32 (47.1) 210 (54.1) 0.310
Education (years)® 15.43 +2.99 15.58 + 3.38¢ 14.68 + 3.76 14.58 + 3.49 13.91 + 3.58° 15.10 + 3.36 0.045
APOE¢4 carrier® 44 (50.0) 30 (44.8) 21 (65.6) 6 (60.0) 26 (63.4) 127 (53.4) 0.194
MMSEP 21.45 + 5.64%4 21.49 +5.61 20.85 + 5.80° 24.04 + 5.78>f 23.88 + 4.50° 22.01 + 5.56 0.003
Tau-PET tracer® <0.001!
*8F-flortaucipir 96 (69.1) 73 (70.9) 15 (42.9) 18 (41.9) 18 (26.5) 220 (56.7)
18F-MK6240 25 (18.0) 18 (17.5) 18 (51.4) 0(0.0) 29 (42.6) 90 (23.2)
18F-P12620 12 (8.6) 7 (6.8) 0(0.0) 24 (55.8) 21 (30.9) 64 (16.5)
18F.R0948 6 (4.3) 5 (4.9) 2(5.7) 1(2.3) 0(0.0) 14 (3.6)

Values are mean =+ standard deviation for continuous variables and n (%) for categorical variables. Differences between groups were assessed using ANOVA, chi-squared tests of
independence or the Kruskal-Wallis test. In the case of cell counts <5, Monte Carlo simulations with 20 000 replications (B = 20 000) were employed to estimate the P-values for
the chi-squared tests. If a statistically significant main effect was observed, Tukey’s Honestly Significant Difference (HSD) test was used as a post hoc test following ANOVA,
Fisher’s exact tests following chi-square tests, and Dunn’s test following the Kruskal-Wallis test. Fisher’s exact tests and Dunn’s test were adjusted for multiple comparisons
using the Bonferroni correction. When data was missing for a category (education n =89, APOEe4 status n =150, MMSE n =79), individuals were excluded from that specific
analysis. AD = Alzheimer’s disease; APOE = apolipoprotein E; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal syndrome; lvPPA = logopenic variant primary
progressive aphasia; MMSE = mini-mental state examination; PCA = posterior cortical atrophy.

“Differences between groups were assessed using ANOVA.

bSignificantly different from lvPPA-AD.

Significantly different from CBS-AD.

dsignificantly different from typical AD.

¢Significantly different from PCA-AD.

fSignificantly different from bvAD.

2Differences between groups were assessed using chi-squared tests of independence.

hpifferences between groups were assessed using the Kruskal-Wallis test.

IAll group comparisons were significant, except for PCA-AD versus lvPPA-AD.

Table 2 Post-mortem cohort: demographic, clinical and neuropathological information across atypical AD variants per site

UPENN UCSF
PCA-AD IvPPA-AD bvAD CBS-AD PCA-AD IvPPA-AD bvAD CBS-AD

N 12 23 13 15 7 9 10 4
Age at death, years 68.08 + 8.97 69.26 + 7.92 74.00 + 10.88 65.87 +7.46 63.29 + 3.64 66.56 + 5.81 63.50 + 6.98 74.75 + 9.25
Female 3 (25.0) 10 (43.5) 5 (38.5) 11 (73.3) 6 (85.7) 6 (66.7) 2 (20.0) 2 (50.0)
Education, years 15.83 +3.10 16.82 +2.79 15.00 + 3.11 15.14 + 241 1543 +£2.15 14.89 + 1.96 16.12 + 2.75 18.00 + 6.32
MMSE 13.42 + 8.58 9.81+7.53 13.73 + 8.30 9.14 + 4.79 12.17 + 12.42 7.22 +5.49 13.11+6.79 19.75 + 9.50
A (AB plaques)

2 0(0.0) 0(0.0) 0(0.0) 1(6.7) 0(0.0) 0(0.0) 0(0.0) 1(25.0)

3 12 (100.0) 23 (100.0) 13 (100.0) 14 (93.3) 4 (100.0) 7 (100.0) 9 (100.0) 3 (75.0)
B (NFTs)

2 0(0.0) 0(0.0) 0(0.0) 1(6.7) 0(0.0) 0(0.0) 0(0.0) 1 (25.0)

3 12 (100.0) 23 (100.0) 13 (100.0) 14 (93.3) 7 (100.0) 9 (100.0) 10 (100.0) 3 (75.0)
C (NPs)

2 2(16.7) 0(0.0) 2 (15.4) 2(13.3) 0(0.0) 0(0.0) 0(0.0) 0(0.0)

3 10 (83.3) 23 (100.0) 11 (84.6) 13 (86.7) 7 (100.0) 9 (100.0) 10 (100.0) 4 (100.0)

Values are mean + standard deviation for continuous variables and n (%) for categorical variables. Ap plaques, NFTs and NPs are presented according to ABC-score criteria (A = Ap
plaques using the Thal phase system; B = NFTs using the Braak staging system; C = NPs based on the CERAD criteria).’*® N = 4 missing for education (n = 2 UPENN, n = 2 UCSF),n =7 for
MMSE (n=5 UPENN, n=2 UCSF), n=6 for A (Ap plaques; all UCSF). Ap =amyloid-p; AD = Alzheimer’s disease; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal

syndrome; IvPPA = logopenic variant primary progressive aphasia; MMSE = mini-mental state examination; NFTs = neurofibrillary tangles; NPs = neuritic plaques; PCA = posterior

cortical atrophy; UCSF = university of California, San Francisco; UPENN = university of Pennsylvania.

cohort and the average of subsets of the data derived by systematical-
ly excluding one site at a time (i.e. a leave-one-site-out approach) were
near perfect across all AD variants (Supplementary Fig. 2). In addition,
Levene’s test showed that there were no variance differences across
all leave-one-site-out scenarios (all P>0.05; see Supplementary
Table 2). These findings support the robustness of our results and
demonstrate the validity of the tau positivity probability approach,
prompting us to continue using it in our main (group-level) analyses.

Our second objective was to test whether higher inter-regional
functional connectivity is associated with higher covariance in
cross-sectional tau-PET uptake and post-mortem tau pathology.
To investigate this, we first explored the association between
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PCA-AD IVPPA-AD bvAD CBS-AD Typical AD

40% Probabilii

Figure 1 Tau-PET epicentres and positivity across AD variants. Tau epicentres (i.e. the regions with the assumed earliest and greatest tau burden) were
defined at the subject level as the 5% regions with the highest tau-PET SUVRs at baseline. Group-average epicentre probabilities (A) indicate the like-
lihood of a region being part of the epicentre, with only epicentre probabilities >20% shown. Group-average baseline tau-PET positivity probabilities (a
uniform tau-PET scale ranging from 0% to 100%) across AD variants are shown in (B). AD = Alzheimer’s disease; bvAD = behavioural variant Alzheimer’s
disease; CBS = corticobasal syndrome; L = left; IvPPA = logopenic variant primary progressive aphasia; PCA = posterior cortical atrophy; R = right; SUVR

=standardized uptake value ratio.

inter-regional functional connectivity-based distance and inter-
regional covariance in tau-PET through linear regression. In all
AD variants, analysed separately, greater AD variant-average
tau-PET covariance was associated with shorter functional

connectivity-based distance. We observed this relationship when
assessing connectivity and tau covariance across the whole
brain (Fig. 2C-H, PCA-AD: f=-0.53, P<0.001, IvPPA-AD: f=-0.51,
P<0.001, bvAD: g=-0.37, P<0.001, CBS-AD: g=-0.52, P<0.001,
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Figure 2 Association between functional connectivity and covariance in tau-PET across variants of AD. Surface rendering of the 200 ROI brain atlas
used for tau-PET and resting-state functional MRI (fMRI) data in ROI-based analyses (A). Functional connectivity was defined as Fisher z-transformed
Pearson correlations between fluctuations in the BOLD signal of all possible 200 Schaefer ROI pairs in 42 CN AB-negative individuals from ADNI The
200 x 200 ROI functional connectivity matrix was density thresholded at 30% (i.e. 30% of the strongest positive connections were retained) and trans-
formed to functional connectivity-based distance (strongly connected regions are ‘close’, while weakly or indirectly connected regions are ‘distant’).
Tau-PET covariance was defined as AD variant-average Fisher z-transformed partial Pearson correlations between tau positivity probabilities of all pos-
sible ROI pairs, while adjusting for age, sex and site. The association between inter-regional functional connectivity-based distance and inter-regional
tau-PET covariance was assessed using linear regression for all AD variants, both across the whole brain (C-H) and in seven individual resting-state
fMRI networks separately (A and B). To test the robustness of these findings, we re-ran the whole-brain analysis 1000 times, each time using a different
connectivity null model from the set of 1000 null models that were generated by shuffling the connectivity matrix while preserving the weight and
degree distribution. This procedure resulted in a distribution of -values based on the null models, as depicted in the beeswarm panels in C-H, where
the actual p-value (furthest data-point) always exceeded the null model g-values. Ap = amyloid-p; AD = Alzheimer’s disease; ADNI = Alzheimer’s dis-
ease neuroimaging initiative; BOLD =blood oxygen level-dependent; bvAD = behavioural variant Alzheimer’s disease; CBS = corticobasal syndrome;
CN = cognitively normal; DAN = dorsal attention network; DMN = default mode network; FPCN = frontoparietal control network; IvPPA =logopenic
variant primary progressive aphasia; PCA = posterior cortical atrophy; ROI = region of interest; VAN = ventral attention network.
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Figure 3 Association between functional connectivity and covariance in post-mortem tau pathology in atypical AD. Using established cortical and sub-
cortical brain atlases (i.e. AAL, CoBrA, Julich, Neuromorphometrics), we created a bilateral MRI brain atlas for the regions with post-mortem tau assess-
ment (n=9, see A). Functional connectivity was defined as Fisher z-transformed Pearson correlations between functional MRI (fMRI) time series
(reflective of fluctuations in the BOLD signal) of all ROI pairs in 42 CN AB-negative individuals from ADNI. Tau covariance was defined as Fisher z-trans-
formed partial Spearman correlations between semi-quantitative tau pathology ratings of all ROI pairs, while adjusting for age and sex. We pooled the
data from all AD variants to increase statistical power. The association between inter-regional functional connectivity and inter-regional tau pathology
covariance was assessed using linear regression (B). AAL=automated anatomical labelling; AB=amyloid-B; AD = Alzheimer’s disease; ADNI=
Alzheimer’s disease neuroimaging initiative; BOLD =blood oxygen level-dependent; CN = cognitively normal; CoBrA = computational brain anatomy

laboratory; ROI =region of interest.

typical AD: f=-0.43, P<0.001, atypical AD altogether: p=-0.62,
P <0.001), as well as within seven individual functional brain net-
works (Fig. 2 A and B and Supplementary Fig. 3), suggesting that
the association between connectivity and covariance in tau is
not confined to specific high-tau regions. The results remained
consistent when adjusting for inter-regional Euclidean distance
(Supplementary Fig. 4), suggesting that functional connectivity
(and not spatial proximity) is the main driver of these associa-
tions. To test the robustness of these findings, we performed a
previously described bootstrapping procedure in which 1000
connectivity null models were generated by shuffling the 200 x
200 connectivity matrix while preserving the weight and degree
distribution.® Subsequently, we re-ran the whole-brain linear
model 1000 times, each time using a different connectivity ma-
trix, which resulted in a distribution of null-model g-values
(Fig. 2C-H). We then compared the actual g-value from the ob-
served true connectivity matrix to the g-values generated by the
null models using exact tests. This enabled us to determine the
frequency with which the p-values from the null models ex-
ceeded the actual g-value. For all AD variants, the null model
pB-values never exceeded the actual g-value, further strengthen-
ing our findings.

In addition to the tau-PET analyses, we also examined the
relationship between functional connectivity and tau covari-
ance using post-mortem data. Given that the tau-PET signal
can be confounded by factors other than tau pathology, such
as binding to off-target sources like astrogliosis or iron accu-
mulation,”®”” the reliability of the tau-PET findings would be
strengthened by post-mortem replication. We assessed the as-
sociation between inter-regional functional connectivity [i.e. a
matrix with Fisher z-transformed Pearson correlations
between the fMRI time series of all ROI pairs (using ADNI elder-
ly control data)] and inter-regional post-mortem tau covari-
ance [i.e. Fisher z-transformed age- and sex-adjusted partial
Spearman (in the semi-quantitative UPENN dataset) or
Pearson (in the quantitative UCSF dataset) correlations be-
tween tau pathology ratings of all ROI pairs] using linear

regression. For this analysis, we pooled data from all atypical
AD variants to increase statistical power. Consistent with our
hypothesis and previous tau-PET results, UPENN data (n=63)
showed that stronger functional connectivity was associated
with higher covariance in post-mortem tau pathology across
nine ROIs, f=0.44, P <0.001 (Fig. 3). Although the analysis did
not reach statistical significance, the direction of this effect
was confirmed in the smaller UCSF replication sample (n=
30), $=0.36, P=0.116 (Supplementary Fig. 5).

Regions more functionally connected to the tau-PET
epicentre show higher tau-PET levels

Our third objective was to test the hypothesis that functional con-
nectivity of specific tau-PET epicentres is associated with tau pro-
gression sequences inferred from cross-sectional data. For each
AD variant separately, we used linear regression to test the associ-
ation between epicentre connectivity and tau-PET levels. Our find-
ings showed that, across all AD variants, a shorter functional
connectivity-based distance to the tau epicentre was associated
with higher tau-PET SUVRs, both when tested at the subject level
(Fig. 4A-E) and per tracer at the group level (Supplementary Fig. 6).
To further investigate this, we divided all brain regions (excluding
the epicentre) into quartiles based on their functional proximity to
the tau epicentre. We then examined whether regions in the lower
quartiles (i.e. regions functionally most strongly connected to the
tau epicentre) had higher tau positivity probabilities than those
in the higher quartiles (i.e. regions functionally distant from the
tau epicentre). As expected, a gradient of increasing tau positivity
probabilities was observed from quartile 4 to quartile 1 across all
AD variants (Fig. 4A-E; paired Wilcoxon signed-rank tests indicat-
ing P <0.05 for all quartile comparisons). When repeating these
analyses in a subset of individuals with subject-level fMRI avail-
able (PCA-AD n=6, IvPPA-AD n=5, CBS-AD n=5), the results
were generally comparable to the main analyses (Supplementary
Fig. 7). Paired Wilcoxon signed-rank tests for the entire atypical
AD group were significant (P <0.05) for all quartile comparisons,
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dividual, linear regression was used to assess the association between functional connectivity-based distance to the tau epicentre and tau-PET SUVR.
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Figure5 Association between functional connectivity and covariance in tau-PET percentage change in PCA-AD and IvPPA-AD. Surface rendering of the
200 ROI brain atlas used for tau-PET and resting-state functional MRI (fMRI) data in ROI-based analyses (A). We computed annual tau-PET SUVR change
for each individual by fitting 200 linear models (one for each ROI), using follow-up time as the independent variable and tau-PET SUVR as the dependent
variable. We then normalized each ROI's rate of change by the individual’s initial SUVR (at follow-up time =0) to express it as a relative percentage
change per year. Covariance in tau-PET percentage change was determined by calculating AD variant-average Fisher z-transformed partial Pearson
correlations between the percentage change rates of all ROI pairs while adjusting for age, sex and site. Using the functional connectivity-based distance
matrix described in Fig. 2, we assessed the association between inter-regional functional connectivity-based distance and inter-regional tau-PET per-
centage change covariance through linear regression, both across the whole brain (C and D) and in seven individual resting-state fMRI networks sep-
arately (A and B). We re-ran the analysis 1000 times (same procedure as described in Fig. 2) to test the robustness of our findings, as illustrated in the
beeswarm panels in C and D, where the actual g-value (furthest data-point) always exceeded the null model g-values. AD = Alzheimer’s disease; DAN =
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sia; PCA = posterior cortical atrophy; ROI =region of interest; SUVR = standardized uptake value ratio; VAN = ventral attention network.

except for quartile 2 versus quartile 3, which was borderline sig-
nificant (P =0.07). These analyses support our hypothesis that
tau progression across the brain follows the pattern of function-
al connections from the tau epicentre, across atypical AD
variants.

Regions with stronger functional connectivity
exhibit greater covariance in tau-PET change

Our fourth objective was to test whether higher inter-regional func-
tional connectivity is associated with higher covariance in tau-PET
accumulation rates over time. Due to the relatively small sample
sizes in the other groups, we only included the PCA-AD and
IvPPA-AD groups for our longitudinal analyses. We investigated
the association between functional connectivity-based distance
across 200 ROIs (as described before) and inter-regional covariance
in longitudinal tau-PET change through linear regression. In both
PCA-AD and IvPPA-AD, we observed that greater covariance in
tau-PET percentage change was associated with shorter functional
connectivity-based distance, both across the whole brain (Fig. 5C
and D; PCA-AD: f=-0.43, P <0.001, IvPPA-AD: f=-0.28, P <0.001)
and in seven individual resting-state fMRI networks (Fig. 5A and B
and Supplementary Fig. 8). When we re-ran the whole-brain ana-
lyses 1000 times to test the robustness of our findings, we found
that none of the null model-derived g-values exceeded the actual
p-value (Fig. 5C and D). These results indicate that regions with

stronger functional connectivity to each other show greater con-
gruence in tau-PET change over time.

Regions more functionally connected to the tau-PET
accumulation epicentre show faster tau-PET change

Our fifth objective was to establish whether functional connectivity
of tau-PET accumulation epicentres predicts faster longitudinal in-
creases in tau. We thus aimed to evaluate whether brain regions in
closer functional proximity to the tau-PET accumulation epicentre
exhibited more tau-PET change than functionally more remote re-
gions. Therefore, we first determined the tau-PET accumulation
epicentre for each individual, i.e. the top 5% of regions exhibiting
the highest annual tau-PET SUVR percentage change. Then, for
PCA-AD and lvPPA-AD separately, we used linear regression to as-
sess the association between subject-level tau accumulation epi-
centre connectivity and tau-PET percentage change over time.
Our results revealed that tau accumulation predominantly oc-
curred anteriorly in PCA-AD (Fig. 6A). Moreover, in IvPPA-AD it
was primarily observed in right temporoparietal and occipital re-
gions (Fig. 6B), which likely reflects the close functional connectiv-
ity of these regions to the baseline tau-PET epicentres of both
variants.'*°%”® Moreover, for both PCA-AD and IvPPA-AD, a shorter
functional connectivity-based distance to the tau accumulation
epicentre was associated with faster tau-PET change, both when
tested at the subject level (Fig. 6A and B) and per tracer at the group
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level (Supplementary Fig. 9). We again divided all brain regions (ex-
cluding the tau accumulation epicentre) into quartiles based on
their functional proximity to the accumulation epicentre. We
then examined whether regions in the lower quartiles (i.e. regions
functionally close) showed more tau-PET change than those in
the higher quartiles (i.e. regions functionally distant). A gradient
of increasing tau-PET change was observed from quartile 4 to quar-
tile 1 for both variants (Fig. 6A and B). Paired Wilcoxon signed-rank
tests showed significance (P < 0.05) for all quartile comparisons, ex-
cept for quartile 3 versus quartile 4 in lvPPA-AD. These analyses
support our hypothesis that tau propagates across the brain along
functional connections, not only in typical AD but also consistently
across atypical AD variants with highly heterogeneous tau depos-
ition patterns.

Discussion

The primary aim of this study was to determine whether connect-
ivity serves as a universal scaffold for predicting tau progression in
AD, independent of clinical phenotype or regional predilection of
tau deposition. To this end, we conducted a multicentre study com-
bining tau-PET (n=320 cross-sectional, n=78 longitudinal) and
post-mortem (n=93) data across 14 sites from various atypical AD
variants (i.e. PCA-AD, IvPPA-AD, bvAD and CBS-AD). In line with

our primary hypothesis, we found that in all AD variants, brain re-
gions with stronger functional connectivity to each other exhibited
greater covariance in concurrent tau-PET deposition and tau-PET
change over time. Importantly, this finding was replicated using re-
gionally sampled post-mortem data, wherein we observed that
stronger functional connectivity was associated with higher covari-
ance in tau. Furthermore, across all AD variants, brain regions with
stronger functional connectivity to the tau-PET epicentre (i.e. the
top 5% of regions with the highest tau-PET retention) showed high-
er tau-PET levels at baseline. Similarly, regions with stronger func-
tional connectivity to the tau-PET accumulation epicentre (i.e. the
top 5% of regions with the highest tau accumulation over time) de-
monstrated faster rates of longitudinal tau-PET accumulation.
Taken together, these findings support the hypothesis that tau
progresses throughout the brain along functional connections, al-
though spatial progression may also reflect shared vulnerability
of connected regions to activity-dependent stressors and proteos-
tasis.?® Importantly, connectivity-related progression seems to be
consistent across AD phenotypes, establishing functional connect-
ivity as a universal framework for tau progression and highlighting
the heightened vulnerability of highly connected brain networks to
tau pathology in AD.”®

Our finding that strongly functionally connected brain regions
show correlated tau levels and tau accumulation, and that the
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functional connectivity of tau epicentres predicts tau progression,
aligns with previous studies suggesting that tau pathology propa-
gates through the brain in a prion-like manner, spreading along
synaptic connections from cell to cell.'>*2#%81 While functional
connectivity reflects coordinated activity between brain regions,
it is also related to structural connectivity, which can be assessed
by methods like diffusion tensor imaging (DTI).®? DTI, despite the
limitation to accurately capture U-fibres and crossing fibres, re-
flects anatomical links between areas.®®? Structurally connected
regions often show strong functional connectivity, as direct physic-
al pathways facilitate efficient communication.?? These structural
connections likely serve as routes for the trans-synaptic spread of
tau pathology, with both functional and structural networks jointly
explaining the observed spatiotemporal patterns of tau accumula-
tion.” Examples of trans-neuronal tau spread have been demon-
strated in cellular models of tauopathy, where tau aggregates, or
‘seeds,” can be released from donor cells, subsequently taken up
by recipient cells and then trigger the aggregation of normally sol-
uble tau.®?>?38388 This transcellular transfer mechanism is also
observed in transgenic or supraphysiological animal models, where
tau injections into specific brain regions lead to the emergence of
tau pathology in connected areas, reinforcing the concept of
network-based propagation.’?*2689%” Recent human neuroima-
ging studies align with these preclinical findings, showing that
tau pathology progresses from localized epicentres—proposed to
harbour the earliest and highest levels of tau—to connected brain
regions.>”1316-21.27.98 However, these studies have primarily shown
that brain connectivity predicts tau progression in typical amnestic
AD, where tau follows the stereotypical Braak staging scheme." To
address this limitation, we included atypical AD variants, each of
which display unique tau deposition patterns.*® By doing so, our
findings provide novel insights into the mechanisms of tau path-
ology, showing that tau progresses along functional brain connec-
tions—also in atypical AD. This supports the universality of
network-based tau progression across diverse AD phenotypes and
offers a broader framework for understanding tau propagation in
complex and less predictable cases of AD.

An unexpected finding was the predominance of tau pathology
in the posterior and temporal cortices in the CBS-AD group, con-
trasting with previous studies that showed significant involvement
of the sensorimotor cortex.*>*? However, compared with the other
AD variants, CBS-AD exhibited greater tau burden in the sensori-
motor cortex, suggesting that it was relatively more affected in
CBS-AD despite prominent tau accumulation in classical AD re-
gions. This became even more evident when stratifying by lateral-
ization of the clinical symptoms, as subgroup analyses revealed
subtle asymmetric tau deposition, with greater tau accumulation
in the sensorimotor cortex contralateral to the clinically affected
body side. Moreover, since CBS-AD is not limited to motor symp-
toms, the posterior tau pathology may underlie other clinical fea-
tures commonly seen in CBS-AD, such as apraxia or visuospatial
deficits.®®

Given that tau is a key driver of neurodegeneration and cogni-
tive decline in AD,?* our findings have significant implications for
personalized medicine and clinical trial design. Understanding
the mechanisms and patterns of tau propagation can refine both
the timing and application of anti-tau therapies. Predicting which
brain regions are most vulnerable to tau spread could enable earlier
interventions to halt the cascade of neurodegeneration before crit-
ical brain areas are affected. In clinical settings, advanced imaging
and computational modelling could be used to identify these at-risk
regions, allowing clinicians to anticipate the trajectory of tau
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spread and strategically time interventions. Administering anti-tau
therapies before the pathology compromises key brain areas could
help preserve cognitive function and slow disease progression.
These insights are particularly relevant for clinical trials, where ad-
dressing the heterogeneity across AD variants is a major challenge.
Since different AD phenotypes show distinct patterns of tau path-
ology,>1620:39-43 our findings support the use of individualized
ROIs rather than one-size-fits-all approaches when tau-PET is
used as an outcome measure.” Patient-specific ROIs tailored to
functional connectivity and tau pathology patterns could improve
trial sensitivity, enhance the detection of treatment effects and ul-
timately increase the likelihood of successful therapeutic out-
comes. While tau-PET is not yet widely available in clinical
practice, these findings suggest that it may, in the future, play a
role in identifying vulnerable brain regions and monitoring disease
progression in the clinic.’®>'°* Combined with functional connect-
ivity measures, tau-PET could provide a valuable tool for guiding
clinical decision-making and improving patient care.

A major strength of this study is its large sample size with rela-
tively rare AD phenotypes, recruited from 14 sites worldwide, with
baseline and longitudinal tau-PET data as well as post-mortem tau
assessments available. Notably, the additional inclusion of post-
mortem tau assessments—a feature not present in a previous study
on functional connectivity and tau spread in atypical AD**—repre-
sents a novel aspect of our work. There are also several limitations.
First, the use of different tau-PET tracers, scanning protocols and
approaches for determining A status across sites posed harmon-
ization challenges. Also, Ap status thresholds were cohort-specific.
However, given the high general concordance between
amyloid-PET and CSF (~90%),"°? we expect limited impact from
the use of different methods for determining AB status. Second,
as expected based on the young age and atypical clinical presenta-
tion,®® most individuals in the cohort showed signs of saturation in
tau-PET retention at baseline, which prevented the ability to direct-
ly model longitudinal tau progression from cross-sectional epicen-
tres. Instead, we adopted a tau-PET accumulation epicentre
approach, identifying regions with the highest accumulation of
tau over time and examining whether tau progresses along the
functional connections of these epicentres.® Third, it is challenging
to determine the true origin of tau pathology in the brain (i.e. the
epicentre) in symptomatic stages of AD. Although our epicentre ap-
proach suggests that regions with the highest tau-PET values are
variant-specific in atypical AD, it remains possible that tau initially
arises in the medial temporal lobe, as seen in typical AD,*"*%* but
spreads to the neocortex much earlier in atypical variants, leading
to the observed differences in tau distribution compared with typ-
ical AD. Inter-individual differences in brain architecture may pro-
mote this; for example, there is evidence that individuals with
developmental disorders, where brain connectivity patterns may
need to adapt, are at higher risk of atypical AD manifestations.
108 This could be because their brain networks predispose them to
faster spread from the medial temporal lobe to other regions.
Fourth, in the post-mortem part of the study, tau pathology was as-
sessed in only one hemisphere per individual, which may not fully
capture lateralized pathology, especially in syndromes like
IvPPA-AD and CBS-AD where asymmetric neuropathologic distri-
butions are well documented.>®*® Fifth, the two sites that provided
post-mortem tau data employed different methodologies.
Specifically, UPENN used a semi-quantitative approach with
PHF-1 staining,®” while UCSF utilized a quantitative method with
thioflavin-S fluorescent microscopy staining.®* These methods
measure distinct aspects of tau pathology: PHF-1 does not
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differentiate between tau species and could therefore be hypothe-
sized to be more aligned with tau-PET, while thioflavin-S particu-
larly measures NFTs.’*>*'! Sixth, the spatial resolution of PET
imaging is limited,"*? which precludes directly investigating trans-
synaptic tau spreading. This limitation implies that, even though
our findings lend support to preclinical observations from animal
and cellular studies, we are unable to make strong mechanistic in-
ferences about tau propagation due to scale differences (macro ver-
sus micro) between our experimental design and these preclinical
models. In addition, our study offers only indirect evidence for
the trans-synaptic tau spreading hypothesis, and alternative me-
chanisms (e.g. shared regional vulnerability between connected
brain regions) may give rise to similar connectivity-dependent pat-
terns of tau progression.'*>!* Seventh, to ensure consistency with
our fMRI analyses and effectively capture functional brain net-
works, we used the cortical Schaefer atlas®® for our tau-PET ana-
lyses. However, this choice prevented us from examining tau-PET
in subcortical regions, which may be particularly relevant for
CBS-AD, where there could be some subcortical involve-
ment.”>*>116 Additionally, the high granularity of the 200 ROI atlas
may increase the risk of partial volume effects, potentially making
regional tau estimates less precise.

In conclusion, the current study provides strong evidence
that, in AD, tau progression is predictable according to the brain’s
functional connections, independent of the clinical phenotype
and the topography of tau load. Future research is warranted in
several key areas, including: (i) advancing and validating func-
tional connectivity-based models to more accurately predict indi-
vidual levels of tau progression, ideally utilizing subject-level
fMRI, because such mechanistic understanding will be crucial
for identifying potential novel drug targets aimed at slowing
or preventing tau accumulation; (ii) elucidating the role of
AB burden in shaping tau progression patterns across AD
variants. Although direct examination was not possible due to
differences in modalities for defining AB status and the use of dif-
ferent amyloid-PET tracers, prior work in e.g. PCA and IvPPA sug-
gests that regional AR deposition may influence local tau
accumulation.?”'*® Therefore, future studies with harmonized
approaches will be critical to clarify this relationship; (iii) investi-
gating interactions between tau and other proteinopathies, such
as a-synuclein and TAR DNA-binding protein 43 (TDP-43), as these
co-pathologies may influence tau propagation and regional vul-
nerability?»1912% and (iv) improving the clinical characteriza-
tion of atypical AD phenotypes,*® which could facilitate the
recruitment of larger and more well-characterized cohorts and
enable more uniform scanning protocols and tau-PET tracers.
Collectively, these advancements will refine our understanding
of tau dynamics, enhance the translational potential of this re-
search for therapeutic development, inform clinical trial design
and eventually aid in improving patient care.

Data availability

Due to the multicentre design of the study, access to individual par-
ticipant data from each cohort will have to be made available
through the principal investigators of the respective cohorts.
Generally, anonymized data can be shared by request from quali-
fied academic investigators for the purpose of replicating proce-
dures and results presented in the article, if data transfer is in
agreement with the data protection regulation at the institution
and is approved by the local Ethics Review Board.
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