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Decision-making inherently involves cause-effect relationships, which introduce
causal challenges. We argue that reliable algorithms for decision-making need to
build upon causal reasoning. Addressing these causal challenges requires explicit
assumptions about the underlying causal structure to ensure identifiability and
estimatability, which means that the computational methods must successfully align

with decision-making objectives in real-world tasks.

1 Introduction

Algorithmic decision-making (ADM) has become common in a wide range of domains, including
precision medicine, manufacturing, education, hiring, public sector, and smart cities. At the
core of ADM systems are data-driven models that learn from data to recommend decisions,
often with the goal of maximizing a defined utility function [1]. For example, in smart city

contexts, ADM is frequently used to optimize traffic flow through predictive models that analyze
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real-time data, thereby reducing congestion and improving urban mobility. Another prominent
application area for ADM are normative decision support systems (often subsumed under
“prescriptive analytics”) or, more recently, artificial intelligence (AI) agents that either inform or
automatically execute managerial and operational decisions in industry. Yet, the applications of
ADM to high-stakes decisions face safety and reliability issues [1, 2, 3]. Often, the objectives of
ADM systems fail to align with the nuanced goals of real-world decision-making, thus creating
a tension between the potential of ADM and the risk of harm and failure. Especially when
deployed in dynamic, real-world environments, ADM can amplify systemic disadvantages for
vulnerable communities and lead to flawed decisions.

In this Comment, we argue that reliable algorithmic decision-making—systems that perform

safely and robustly under deployment conditions—must be grounded in causal reasoning.

2 Why ADM is rooted in causal reasoning

2.1 Decisions involve cause-effect relationships

Making the right decision—whether selecting the best treatment for a patient, choosing the most
effective marketing strategy, or optimizing traffic signals in a smart city—requires understanding
how a decision will influence the outcome of interest. Unlike a passive observation, the outcome
is often directly shaped by the decision itself. For example, choosing a treatment to reduce a
patient’s mortality risk or adjusting traffic signals to minimize congestion directly affects the
outcome being optimized. This distinguishes decision problems from pure associations, since
decisions present interventions that eventually produce effects.

A fundamental challenge in modeling decision-making is that we can only observe the outcome
for the decision that was actually taken—mnot what would have happened under alternative
interventions (the fundamental problem of causal inference [4]). The latter is unobservable and
thus referred to as the counterfactual outcome. Estimating and comparing the effects of different
decisions requires reasoning about these counterfactuals. For example, if a patient receives a
treatment and recovers, we cannot observe what their outcome would have been without the

treatment. As a remedy, causal assumptions are needed that connect the observed data and



the cause-effect relationships to express and eventually estimate counterfactual outcomes [5].

2.2 Causal assumptions are needed for modeling decision-making

Starting with clear assumptions about the data-generating process and causal relationships
is crucial for establishing valid causal estimates. Such assumptions allow one to link a causal
estimand (the quantity we aim to estimate to guide decision-making) to a statistical estimand
(a quantity that can, in principle, be estimated from observed data). This distinction is critical:
the causal estimand reflects our real objective, while the statistical estimand serves as the
counterpart that we aim to estimate with our model. Without clearly defining the causal
estimand first, it becomes impossible to ensure that our ADM model will align with the objective
in our real-world tasks. Moreover, if the statistical estimand does not match the causal estimand,
we risk producing unreliable estimates, leading to suboptimal or even incorrect decisions.

The above distinction between causal and statistical estimands highlights two key challenges:
identifiability and estimatability. Identifiability refers to whether the causal estimand—the
true effect of a decision—can be expressed as a function of observable data under the given
assumptions [6]. Without identifiability, the effects of decisions, and therefore the corresponding
outcomes, remain ambiguous, no matter how much data is available. In public policy, for
example, large-scale administrative data might be available for ADM model training but
these data rarely allow to recover the nuanced decision-rules based on which caseworkers have
administered interventions in the past. This ambiguity is particularly problematic since it
undermines the reliability of ADM models in practice. Without identifiability, any ADM
model aiming to learn the correct effect of the decision remains biased. As a result, ADM
models may produce incorrect or suboptimal decisions. In medicine, for example, both health
outcomes and decisions for (costly) treatments may depend on unobserved factors such as
patients’ socio-economic status, preventing the ability to learn the true effect of treatment from
the observed relationships. Estimatability, on the other hand, deals with whether the statistical
estimand—once identified—can be reliably computed from finite data. Even when a causal
estimand is identifiable, estimating it is usually a statistically challenging task. Practical issues

such as limited sample size, measurement noise, and model misspecification can hinder the



ability to produce precise and unbiased estimates. Importantly, identifiability is a prerequisite
for estimatability: without identifiability, the task of estimation becomes meaningless, as there
is no assurance that the statistical estimand corresponds to the actual effect of a decision,
meaning that an ADM model may not optimize against the utility of interest.

Generally, different frameworks are used to formalize causal assumptions [7], with two
prominent approaches being structural causal models (SCMs) and the potential outcomes
framework. While their methods and notation for specifying and identifying causal effects differ,
they are often regarded as essentially equivalent in their core principles. SCMs use tools like
causal graphs together with functional causal mechanisms to explicitly represent the cause-effect
relationships, while, in contrast, the potential outcomes framework focuses on defining the
outcomes that would occur under alternative decisions—capturing what would happen under
each choice. To enable valid causal reasoning, several key assumptions about cause-effect
relationships are often made [4]. For example, unconfoundedness assumes there are no hidden
confounders that simultaneously influence both the decision and the outcome. Confounders in
medical treatment decisions, for example, can include disease severity, patient characteristics,
and access to healthcare. Positivity ensures that every decision has a nonzero probability of
being observed for all individuals, providing sufficient data for comparison. Additionally, the
stable unit treatment value assumption (SUTVA) essentially posits that an individual’s outcome

is influenced only by their own decision and not by the decisions of others.

3 Towards causal decision-making

3.1 Utilizing causal reasoning for reliable decision-making

To ensure reliable decisions with ADM, developers must first evaluate whether identifiability
holds—that is, whether the causal estimand can be expressed using observable data and that
the statistical estimand corresponds to the causal estimand. This requires clearly stating and
justifying the assumptions about the data-generating process and causal relationships. By
taking this step, developers can help align the objectives of ADM systems with the real-world

goals they are meant to support. While this alone can not guarantee safe decision-making, it



is a critical prerequisite for ensuring that decision-making is both effective and reliable (see
Fig. 1).

An important step is to carefully evaluate whether the necessary causal assumptions hold in
practice. For instance, when developers of ADM systems have access to randomized data from
experiments, unconfoundedness is often ensured by design, making causal effects identifiable.
For example, in a smart city context, randomized control trials might be performed to test
the impact of adaptive traffic light systems on reducing congestion. In some cases, data from
natural experiments may be available, for example, due to temporal malfunctions in operational
processes or regional variation in the roll-out of policy programs. However, access to randomized
data is rare, particularly in high-stakes settings where randomization is impractical or unethical.
Instead, many ADM systems from practice rely on observational data generated by complex
processes where interventions were assigned based on historical policies (for instance, expert
judgment, organizational guidelines, and institutional policies). In these cases, guaranteeing
causal assumptions can be challenging and often requires input from domain experts and
additional contextual knowledge.

It is important to emphasize that ignoring causal assumptions simply because they are
difficult to guarantee is not a solution. Failing to make causal assumptions explicit does not
mean they do not exist—on the contrary, neglecting them can lead to flawed and unreliable
decision-making. For example, naively training models on observational data generated by
historical decision-making processes can result in systematically underestimating true risks
[8]. Even ADM models that do not explicitly target counterfactual outcomes—or that do not
state the causal assumptions—often rely on such causal assumptions implicitly. A prominent
example is prediction-based decision rules, where a predictive model is trained and decisions
are made based on a specified threshold [9]. Here, the causal assumptions are rarely stated but
such ADM models typically assume independence between the outcome and decision or rely on
a known model of treatment effects given the predicted baseline outcome. A common example
is hospital discharge decisions, where the decision to discharge or retain a patient typically does
not influence the underlying disease progression. In such contexts, predictive associations alone

may suffice for making effective decisions. Nonetheless, explicitly clarifying these assumptions



is crucial, as it ensures that the decision-makers are aware of potential limitations or scenarios
where associations alone might fail due to unnoticed feedback loops.

We now offer a few illustrative examples. In prediction-based decision rules, the goal is
often to intervene in cases with a high predicted risk of adverse outcomes if no help were
provided. For instance, in healthcare, a risk prediction model may trigger an alarm for
patients where their health status is likely to deteriorate without treatment, thus allowing
for targeted interventions. Here, the prediction—and thus the decision rule—is learned from
historical data under interventions, and, hence, identification typically relies on the assumption of
unconfoundedness or that there is sufficient variation in the historical decision-making. In offline
policy learning, the objective is to maximize expected outcomes under a given decision policy,
which maps observed covariates to actions. For example, the task might involve determining
optimal traffic signal timings at intersections to minimize average travel time across the city.
Achieving this goal requires assuming, for instance, unconfoundedness across all decisions so
that intervention effects can be reliably estimated and the policy can optimize the expected
utility. In reinforcement learning, the focus extends to optimizing the expected return over a
time horizon, usually in an online setting. For example, adaptive traffic control systems might
iteratively adjust signal timings based on real-time data to minimize congestion throughout
the day. Here, identification is often naturally satisfied because decisions (for instance, signal
changes) are assigned sequentially by a known policy. However, challenges arise in partially
observed settings, such as unpredictable events, which require further effort to come up with
an identification strategy. In sum, in each of these examples, causal assumptions provide the
foundation for linking causal estimands to statistical estimands and thus for building an ADM

model that allows for optimal decisions.

3.2 Why a causal lens is beneficial for reliability

We believe that adopting a causal perspective provides a systematic way to connect decision-
making objectives, computational methods, and real-world deployment environments. This
approach places causal identification at the center of ADM development. Hence, causal

identification requires developers to clearly differentiate between causal estimands and statistical
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Figure 1: Automated decision-making requires causal assumptions to ensure reliable
decisions. This figure shows the key components needed to set up an automated
decision-making (ADM) system. Arrows indicate how one component informs or
depends on the next. Green nodes describe the decision problem: what the goal
is, what decisions can be made, and what outcomes are affected. Yellow nodes
represent the quantities used to connect this problem to data: the causal estimand
(the effect we want to know), the statistical estimand (what we can estimate from
data), and the model estimate (what we actually compute). Red nodes represent
external information needed to make this link: data and causal assumptions (such
as no unmeasured confounders of decision A and outcome Y given covariates X)
made about the data (dashed line). In practice, this framework can be extended
to incorporate considerations such as operational constraints (for instance, resource
constraints) or fairness constraints.



estimands, as well as to formalize when both are aligned. This shift in focus—from merely
optimizing predictive accuracy to ensuring valid causal estimates—ensures that ADM systems
can perform reliably in real-world settings.

A clear causal lens strengthens ADM systems by clarifying the assumptions required to ensure
when and where decisions are reliable. Rather than seeing causal assumptions as a burden, we
encourage to view them as a strength—a formal way to define the boundary conditions under
which a system is designed to operate. Articulating these assumptions can also help in thinking
about data requirements, such as identifying potential confounders that need to be measured.
As such, transparency about causal assumptions not only strengthens trust when they hold but
also clarifies when not to trust or deploy a model. Without causal reasoning, even seemingly
well-performing models can fail in unpredictable ways, particularly in dynamic or complex
environments. Nevertheless, we acknowledge that ADM models trained without a causal lens,
or in contexts where assumptions are difficult to verify, may still perform well in certain cases.
However, such models should be viewed as heuristics rather than robust solutions—which may
be defendable for low-stakes tasks where causal reasoning is beneficial but not strictly needed.

So, what are the boundary conditions when a causal approach is mandatory, beneficial,
or even harmful? A causal approach is generally mandatory in high-stakes scenarios where
decisions directly affect safety, health, or legal outcomes. Examples include medical treatment
recommendations or autonomous vehicle navigation, where understanding the causal effects of
actions ensures reliability and mitigates risk. In such settings, unverifiable causal assumptions
should serve as a ‘red flag’ for deploying ADM systems, as flawed causal reasoning can result in
harmful consequences. Conversely, a causal lens is beneficial—but often not strictly necessary—
in low-stakes or routine decisions, such as music recommendations or personalized marketing
offers, where the cost of errors is minimal. Yet, a causal approach often leads to a better
performance, and, hence, companies such as Spotify make broad use of causal approaches in
their ADM tasks for business reasons [10]. However, in settings where causal relationships and
the underlying assumptions are entirely speculative, causal claims may even be harmful by
introducing unwarranted complexity, uncertainties, and even incorrect beliefs about a system’s

reliability. For instance, if an ADM system for marketing decisions mistakenly assumes that all



relevant confounders (such as costumer motivation or seasonal trends) have been accounted for,
it may falsely attribute increased sales entirely to a specific promotion, giving decision-makers
undue confidence.

Another benefit of adopting a causal perspective in ADM is the ability to address transportability—
that is, the transfer of causal results learned in one environment (for instance, a training setting)
to another (for instance, a deployment setting). Concepts such as causal transportability
[11] provide formal tools to specify the assumptions under which ADM systems can reliably
generalize across settings. For example, a model trained to optimize traffic flow in one city may
encounter differences in road infrastructure, weather patterns, or driver behavior when deployed
in another. A causal approach can formalize which relationships remain invariant across these
environments and help adjust the ADM system accordingly. Hence, transportability hinges on
causality because causal relationships are robust to shifts between environments. Likewise, such
a causal approach may help avoid shortcut learning—a common issue where models exploit
spurious correlations or superficial patterns in the training data that may fail under deployment
conditions. By making the causal assumptions explicit, developers can systematically assess
whether the model is learning meaningful, transportable relationships or merely relying on

shortcuts.

4 Challenges and directions for future research

Several practical challenges remain that must be addressed to ensure ADM systems operate

effectively in dynamic, real-world environments.

Data quality. The reliability of any ADM system depends on the quality of the training data.
Distribution shifts—meaning the data distribution during deployment differs from that during
training—pose complex challenges, especially in dynamic settings where conditions change over
time. While causal reasoning improves generalizability by identifying relationships that are
invariant across environments, more research is needed to develop ADM models that can safely
adapt to distribution shifts and are robust to external shocks and adversarial attacks. Ultimately

this requires models that can accurately quantify their prediction confidence across different



deployment conditions as well as novel monitoring techniques to assess ADM performance in
dynamic data streams.

Data quality issues are multifaceted and can include measurement errors, representation
biases, and incomplete data. These issues are well-studied in the area of governmental survey
statistics, which has developed a rich toolkit for conceptualizing and assessing errors in data
from a population inference perspective. Yet, data quality is not an absolute concept but
rather depends on the specific application task. While survey science traditionally focuses on
requirements for valid descriptive inference, causal modeling hinges on coverage, that is, a non-
zero inclusion probability of groups in the training data that differ in their treatment response.
We thus call for research on new data audits, quality metrics, and validation frameworks that
are tailored to the goals of (different classes of) ADMs, for which survey science provides

valuable starting points.

Uncertainty quantification and robustness. Assessing the uncertainty in outcomes,
decisions, and the overall model is critical for ensuring the reliability of ADM systems in
practice. For example, in medical decision-making, uncertainty estimates can help determine
whether the probability of a benefit from treatment is sufficiently large to outweigh the risks of
adverse reactions. While substantial progress has been made in quantifying uncertainty for
predictive machine learning, extending these methods to ADM settings presents new challenges
such as additional uncertainty due to violations of identifiability assumptions or due to low
treatment overlap. A causal perspective can help to formalize the different sources of uncertainty,
that is, whether the uncertainty comes from a lack of identifiability of the causal estimand due
to violations of causal assumptions (e.g., unobserved confounding) or from estimatability issues
such as low overlap (e.g., certain individuals never receiving treatment) or lack of data.

A common challenge for ADM in practice is to assess whether causal assumptions, such
as the absence of unobserved confounding, hold in practice. Future research should focus
on developing new methods that help in assessing the plausibility of assumptions and that
account for potential violations (such as partial identification and causal sensitivity analysis).

Another interesting route is to derive methods that optimize decisions over an uncertainty

10



set of potentially confounded policies and that thus find worst-case guarantees in the form
of confounding-robust policies [12]. In addition, there is a need for tailored methods that
account for all those sources of uncertainty simultaneously. For example, there exist various
methods for partial identification and sensitivity analysis that account for uncertainty due to
lack of identifiability, but more research is needed on how to augment these methods to account
for finite sample uncertainty (for instance, via conformal prediction or Bayesian inference).
Together, this can yield more systematic frameworks for robust ADM systems under a range of
causal assumptions, which will enable practitioners to better understand and mitigate risks
associated with imperfect causal models.

To improve the robustness of ADM systems, another direction is the use of causal world
models [13], which abstract underlying causal mechanisms to improve generalization and
adaptation across domains and different decision-making objectives, such as optimizing under
varying constraints or over different outcomes. Finally, many decision-making settings involve
multiple objectives, so tailored methods for multi-criteria decision-making are needed that
balance a primary objective while minimizing the risk of harm. For instance, in medicine, drugs

must achieve high efficacy while ensuring safety with minimal side effects [5].

Performativity. Deploying an ADM system introduces performativity—the phenomenon
where predictions made by a system actively shape the target of prediction [14]. Such a feedback
loop between model and data once again points to the need for causal reasoning in ADM
to explicitly model how predictions influence future outcomes. For instance, in smart cities,
a traffic control system that optimizes signal timing to reduce congestion might influence
drivers’ route choices, leading to new traffic patterns that the system did not initially anticipate.
Similarly, an Al agent may shape the behavior of humans, causing the data-generating process
to be different from what the Al agent was originally trained on. Traditional predictive models
fail to account for this, as they assume a stable data-generating process and do not capture
how interventions—such as continued deployment of the system—reshape the future training
data. A recent area of research, often framed under the concept of “performative prediction”,

examines the causal influence of machine learning predictions on the very outcomes they aim

11



to forecast. Various solution concepts and algorithms have been proposed, such as ensuring the
stability of a system after repeated retraining. We encourage further research at the intersection
of machine learning and causality—for example, using non-experimental data in settings where
exploration is costly or restricted. Performative prediction also provides a valuable framework
for studying more complex decision-making settings and strategic interactions, such as scenarios
where multiple agents anticipate each other’s actions and adapt their behavior accordingly.

Such research will be especially important due to the growing adoption of Al agents in practice.

Evaluation and benchmarking. More research is needed to improve benchmarking in ADM
systems, especially by developing new evaluation frameworks that reflect the complexities of
real-world deployment settings. Since the estimands in ADM-such as counterfactual outcomes,
treatment effects, or optimal actions—are generally unobservable, they cannot be traditionally
benchmarked using standardized datasets. Rather, simulations and semi-synthetic datasets are
typically the common approach to assess the performance of ADM systems [12]. Future work
should prioritize the development of tailored benchmarks that incorporate realistic decision-
making environments, accounting for dynamic conditions, feedback loops, and changing user
behaviors. Promising directions for this include sequential A /B tests and bandit algorithms,
which iteratively refine decision-making by adaptively allocating interventions based on observed
outcomes, as well as adaptive clinical trials, which modify trial parameters in response to
accumulating evidence to enhance efficiency and ethical considerations. These methods ensure
benchmarks remain aligned with the evolving nature of decision environments. An alternative
approach is to leverage real-world physical systems in a controlled environment as a testbed [15].
More research is also needed to construct better performance metrics that align closely with
decision-making objectives, such as the quality of decision rules, downstream societal impacts,

and performance across diverse subpopulations.

5 Conclusion

Causal reasoning is a necessary, but not sufficient condition for reliable decision-making in

practice. ADM systems commonly involve deep interactions between algorithms and humans—
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raising critical questions such as non-compliance with algorithmic decisions and disparate
impact downstream. Yet, causal reasoning fosters transparency about the conditions under
which ADM systems can be trusted to operate reliably, providing an invaluable building block
for safe and robust decision-making. Causal reasoning offers a powerful but also necessary
foundation for improving the safety and reliability of ADM. By ensuring that ADM systems
capture the true effects of decisions, causal assumptions help align the systems with real-world

objectives.
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