Learning and Individual Differences 124 (2025) 102812

Contents lists available at ScienceDirect

LEARNING ..

Learning and Individual Differences

ELSEVIER journal homepage: www.elsevier.com/locate/lindif

Check for

Beyond linear regression: Statistically modeling aptitude-treatment | e
interactions and the differential effectiveness of educational interventions™

Peter A. Edelsbrunner >, Leonard Tetzlaff ““, Katharina M. Bach ?, Denis Dumas ©,
Sarah 1. Hofer“, Carmen Kohler °, Zoya Kozlova®, Julia Moeller b2 Frank Reinhold ",
Garrett J. Roberts’, Marie-Ann Sengewald’”', Sarah Bichler *-

@ LMU Munich, Germany

b ETH Zurich, Switzerland

¢ DIPF, Germany

d Centre for International Student Assessment (ZIB), Germany
€ University of Georgia, United States of America

fLeipzig University, Germany

& University of Erfurt, Germany

" University of Education Freiburg, Germany

! University of Denver, United States of America

J Leibniz Institute for Educational Trajectories (LIfBi), Germany
X Universitit Passau, Germany

! Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany

ARTICLE INFO ABSTRACT
Keywords: Research on aptitude-treatment interactions and the differential effectiveness of educational interventions faces
Aptitude-treatment interaction statistical challenges that may contribute to sparse findings and unclear replicability. These challenges include

differential effectiveness
latent profile analysis
additive model

Bayesian multilevel modeling

the presence of nonlinear-, floor-, or ceiling effects, underpowered samples, and the multivariate nature of
learner aptitudes. Linear regression, which prevails as the typical statistical approach in this research area, lacks
the flexibility to meet these challenges. As alternatives, we present three statistical approaches: (1) Additive
regression models to capture and control nonlinear or floor/ceiling effects, (2) Bayesian multilevel modeling,
which can improve statistical power and allows for more complex models, and (3) clustering multivariate
constellations of learner aptitudes via latent profile analysis. We demonstrate these three approaches on a
motivating dataset from a scientific reasoning training, discussing their relative (dis-)advantages and how these
and further models may aid research into differential effectiveness across different research topics and designs.
Educational relevance statement: In educational interventions, researchers and practitioners are often interested in
knowing for whom an intervention works best or worst. We present three statistical models that can help
examine this question and overcome issues that have long bugged this field. We discuss how these approaches
can help research across multiple areas, for example to examine the effects of educational technologies
(augmented & virtual reality).

1. Introduction instruction) in all its complexities. As a result, the focus has shifted to-
wards asking: What works for whom, under which conditions, and for

Educational researchers increasingly recognize that while the ques- which outcomes (e.g., Faddar & Kjeldsen, 2022; Scherer & Nilsen,
tion of “what works”. 2019)? This approach aims to uncover the contextual boundaries of
(i.e., which interventions are effective) is foundational, it does not educational (or instructional) interventions and ultimately tailor them
provide the nuanced insights needed to understand learning (or to meet the diverse needs of learners, their learning contexts, and
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educational goals.

Two research lines work on similar questions in this regard. Research
on aptitude-treatment interactions (ATIs; Cronbach, 1957; Cronbach &
Snow, 1981) investigates whether the effectiveness of an intervention
targeting a specific educational outcome differs depending on learner
characteristics such as variation in cognitive abilities or affective-
motivational variables. The second research line, differential effective-
ness research, has broadened the scope of this question. Here, not only
experimental variations (i.e., random assignment to multiple condi-
tions) but also observed variation (e.g., observed teaching quality) in
instruction is considered. In addition, ATI research focuses on identi-
fying disordinal interactions, meaning that one intervention condition
works better for one group of learners but another condition works
better for another group. Differential effectiveness research also con-
siders ordinal interactions, in which the magnitude of an effect varies,
but not its direction (Hunt, 1975). This more comprehensive concep-
tualization also allows for examining whether the effects of in-
terventions vary across different kinds of educational outcomes (e.g.,
standardized achievement tests vs. school grades, cognitive vs. affective-
motivational outcomes; Scherer & Nilsen, 2019), or across teachers,
schools, and countries (Faddar & Kjeldsen, 2022; Kokkinou & Kyr-
iakides, 2022; Yeager et al., 2019). The key distinction between the two
approaches is ATI research’s narrow focus on interactions of treatment
conditions with learner characteristics (aptitudes), whereas differential
effectiveness research also considers interactions between treatment and
outcome type, or treatment and (school) context.

Both approaches have in common that they acknowledge potential
heterogeneity in treatment effects (i.e., effect heterogeneity). In
contrast, study designs that do not consider effect heterogeneity yield
estimates of average effects that neglect the possibility of systematic
effect variation. Besides neglecting the relevant information that is
needed to tailor individualized interventions, unmodelled effect het-
erogeneity may seemingly decrease the replicability of findings. Spe-
cifically, studies that are conducted on different samples, contexts, or
outcomes may find variation in results that is unexpected if it this
variation is not part of the theoretical and statistical model (Bryan et al.,
2021).

Here, we use the broader term differential effectiveness, which sub-
sumes the ATI perspective. Our examples mostly focus on interactions
between learner characteristics and the effects of experimental inter-
vention conditions, but we will discuss the applicability of our ideas to
broader questions of differential effectiveness.

We focus on a specific issue in this research area that likely con-
tributes to prevailing difficulties in robustly finding theoretically ex-
pected effects: The difficulty of statistically modeling differential
effectiveness. Since the 1970s, a general pattern has emerged: Some key
findings are replicable, but further theoretically expected instances of
differential effectiveness are frequently difficult to identify (Cronbach &
Snow, 1981; Tetzlaff et al., 2023). For example, in a special issue on ATIs
in special education research, a large part of the published analyses
yielded non-significant effects (Fuchs & Fuchs, 2019). The finding that
treatment effects depend on learners’ level of domain expertise is
perhaps the only instance of differential effectiveness that tends to
generalize across different subjects, age groups, and learning outcomes
(Tetzlaff et al., 2025). In its most pronounced form, this expertise-reversal
effect (Kalyuga, 2007) manifests as a disordinal interaction between
treatment and aptitude: Learners with less domain expertise benefit
from more guidance and structure, whereas those with greater expertise
are hindered by these same treatments and benefit instead from self-
guidance and open learning settings.

Despite this unsatisfying empirical picture, all approaches that tailor
instruction to individuals or groups of learners presume in principle that
the effectiveness of instructional parameters depends on learner char-
acteristics. This includes approaches under the labels of adaptive
teaching, personalized or individualized instruction, and precision ed-
ucation (Bach, Hofer, & Bichler, 2025; Bernacki et al., 2021; Bernard
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et al., 2019; Plass & Pawar, 2020; Tetzlaff et al., 2021; Reinhold et al.,
2020).

Specific applications of this principle include cognitive or intelligent
tutors (e.g., Aleven et al.,, 2016) and technology- and data-based
personalized learning programs (e.g., Boninger et al., 2020; Norenberg
et al., 2022). These approaches use computer-based automatization and
artificial intelligence to dynamically adapt instruction to learners’
progress and data. To adapt the instruction across multiple parameters
and thus optimize learning processes and outcomes, educators need
solid theory and empirical evidence.

Here, we argue that statistical modeling is a bottleneck contributing
to the unclear picture regarding differential effectiveness (Tetzlaff et al.,
2023). Differential effectiveness research addresses questions of statis-
tical interaction, that is, how characteristics of learners, the learning
setting, or the outcome moderate the effects of instruction. To identify
such interactions, researchers require statistical models that can
accommodate specific issues typically arising for these questions. As we
will outline, researchers typically remain with linear regression models
when modeling questions of differential effectiveness. These models
make strict assumptions that, as we argue, do not hold for typical
research on this topic and may fail to identify effect heterogeneity that is
really present. To aid researchers in identifying effect heterogeneity, we
outline three statistical approaches that are better equipped to meet
statistical challenges that typically arise in this research area. We first
outline the challenges to then explain how the three approaches - ad-
ditive regression, Bayesian multilevel modeling, and latent profile
analysis - can help to meet these challenges. Our aim is to provide a
conceptual explanation of how these approaches work in research on
differential effectiveness, exemplified on a data set to demonstrate their
specific advantages and disadvantages. This paper is not meant to pro-
vide a manual or outline detailed steps for applying each of the methods.

2. Key statistical challenges in research on differential
effectiveness

2.1. Issue 1: Ceiling effects

Ceiling effects arise when learners are close to the minimum or
maximum of a scale. For example, if they have either little or a lot of
knowledge (Ziegler et al., 2021), if they are a high- ability sample
approaching the limit of a cognitive scale, if they show very little interest
in a topic, or if measurement scales were designed inappropriately so
that they do not cover the whole range of student variation (Grimm
et al., 2023). In an analysis interested in interactions, floor- or ceiling
effects can drastically affect conclusions (van Doorn et al., 2023). For
example, if learners in one experimental condition get closer to the
ceiling of a scale at posttest than those in a comparison condition, then
their regression line must become flatter to accommodate the ceiling.
This implies a bias in the modeled interaction between treatment con-
dition and the moderator variable. A statistical interaction may then be
an artifact, or the scale restriction can mask an interaction (Rohrer &
Arslan, 2021). Consequently, we either need measures that capture the
entire distribution of a construct such that students do not bottom- or
top-out the scale, which is not always feasible or useful (e.g., when items
already cover all aspects of a construct or when mastery is the goal), or
we require statistical modeling techniques that aid against bias caused
by floor or ceiling effects.

2.2. Issue 2: Nonlinearity

Floor and ceiling effects are a special case of the larger problem of
nonlinearity as a method artifact, that is, being caused by sample or test
design. In other cases, the studied phenomenon itself can be inherently
nonlinear, in which case the nonlinear effects become actually of sub-
stantive interest to the researcher, such as the nonlinear growth in a
knowledge outcome over time (e.g., Dumas et al., 2020). While, in such
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studies, student background variables typically predict growth param-
eters linearly, this is not the case when a learner or treatment charac-
teristic is shown to be associated with an altogether different functional
form of growth over time. For example, in a nonlinear dosage-response
study of reading interventions in early elementary school, Roberts et al.
(2022) found that one-on-one interventions and small group in-
terventions resulted in a completely different shape to the growth
function over the course of the intervention. Other studies have reported
nonlinear interactions of instructional conditions with intelligence
(Ziegler et al., 2021), and working memory capacity (Grimm et al.,
2023). Even without the presence of nonlinear interaction effects,
nonlinear main effects can wrongly indicate interactions if they are not
adequately modeled (Belzak & Bauer, 2019). In a typical implementa-
tion of linear regression, interaction effects are only implemented in a
linear fashion. For example, for the commonly reported expertise
reversal effect, it may be assumed that the effect of an intervention
condition in comparison to a control condition becomes linearly weaker,
decreasing from a positive to a zero value and eventually to a negative
estimate, with increasing prior knowledge (Kalyuga, 2007). But if such
interactions were nonlinear, this would remain unmodelled and thus
unseen in a linear regression. Consequently, either substantive theory is
required for ruling out nonlinear relationships, or statistical models need
to be able to capture nonlinear effects.

2.3. Issue 3: Limited statistical power

A third challenge in differential effectiveness research is obtaining
sufficient statistical power. In this case, this means that we have suffi-
ciently large sample sizes to identify interaction effects with high sta-
tistical power (i.e., a high probability to correctly distinguish such
effects from sampling error). Early ATI researchers already cautioned
that obtaining high power for analyses of aptitude-treatment in-
teractions generally requires more than 100 learners within each
experimental condition (Cronbach & Snow, 1981). Typically, the sample
size requirements for detecting interaction effects are much larger than
for the detection of main effects. In multilevel modeling, which has
become the norm in many educational research settings (Brauer &
Curtin, 2018; Kohler et al., 2021), these requirements might be even
higher. Consequently, results need to be carefully interpreted with re-
gard to sample size requirements, and efficient modeling approaches are
required to detect interaction effects.

2.4. Issue 4: Multivariate learner aptitudes

The fourth and final challenge in this research area is the multivar-
iate nature of learner aptitudes. How much a learner benefits from
specific instructional parameters may depend on a multitude of learner
characteristics and their interplay, including cognitive, personality,
behavioral, affective-motivational and other characteristics (Ackerman,
2003; Cronbach & Webb, 1975; Snow & Farr, 2021; Tetzlaff et al., 2023;
Bichler et al., 2020; Schwaighofer et al., 2017; Hofer & Reinhold, 2025).
Current research on differential effectiveness typically focuses on one
isolated aptitude, leaving the relative importance of multiple aptitudes,
as well as their interactions among each other and with the treatment,
unexplored (Bichler et al., 2020; Schwaighofer et al., 2017). In partic-
ular, the combination of cognitive and non-cognitive variables is
understudied (Bach et al., 2025; Hofer & Reinhold, 2025; Cronbach &
Snow, 1981; Sternberg & Grigorenko, 1997). This means that the cur-
rent approach to modeling ATIs or differential educational effects is
unable to capture the full complexity of learning, especially learning in
authentic settings where a) multiple learner characteristics operate at
the same time, b) engagement with the intervention also determines its
impact, and c) situational demands exert their additional effects (Bichler
et al., 2022; Bichler et al., 2025). Consequently, we require statistical
models that can capture interactions between multiple characteristics of
learners, treatments, and potentially even context characteristics and
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learning outcomes.
3. Three suggested statistical methods to address key challenges

Research on differential effectiveness rarely applies statistical
methods that are capable of addressing the above-mentioned challenges.
The most commonly applied and recommended model is a (multilevel)
linear regression with interaction terms that capture the interactions
between learner characteristics and intervention variables (Hayes &
Rockwood, 2020; Preacher & Sterba, 2019; Tetzlaff et al., 2023). For
example, in a journal special issue on ATI research, all contributions but
one implemented this approach (Fuchs & Fuchs, 2019). We argue that
given the outlined statistical challenges, understanding what works for
whom under which circumstances requires a more diverse statistical
toolbox.

Here, we present three statistical methods that are not new but have
seldom or never been used in this research area, despite their potential
for tackling the outlined challenges. The approaches are additive models
(Wood, 2017), which are great for modeling non-linearity and thereby
capturing floor- or ceiling effects, Bayesian multilevel modeling
(Biirkner, 2017), which can improve statistical power and offer many
extensions to fully capture differential effectiveness, and mixture
modeling (Hickendorff et al., 2018), which can accommodate multi-
variate learner characteristics and their interactions as moderator vari-
ables. We select these approaches because they are conceptually close to
linear regression, such that researchers can build on their knowledge of
this method. The methods we propose are better suited than linear
regression to tackle these challenges by relaxing or overcoming some of
its stringent assumptions.. While all three are better suited than
regression, each method has their specific strengths and weaknesses
compared to each other. In the following, we apply these approaches to
an example data set to demonstrate their utility and compare their
strengths and weaknesses.

We illustrate the three approaches based on empirical data from
Peteranderl et al. (2023).

The authors conducted a training of the control-of-variables strategy
(CVS), that is, understanding that in an informative experiment, only
one thing is varied at a time. The study encompassed fifth- and sixth-
graders, of which we use a subset of N = 593 from 38 school classes.
The full dataset would consist of 618 students, but measures of moder-
ation variables are missing for some students because they were absent
on the school day when the data was collected. One half of the students
received an explicit training on CVS (intervention condition). The
training took place over three lessons in which students progressed from
observing teacher demonstration of experiments including explicit ex-
planations of the strategy, to guided practice, and finally to autonomous
practice (setting up and discussing experiments in small groups). The
other half of the students received an active control training (control
condition) in which students engaged in self-guided inquiry without
explicit training of the strategy. The students were randomized within
classrooms, such that within each school class, half of the learners
received the intervention and the other half the control training. We use
this dataset because the study focused on establishing aptitude-
treatment interactions and it used a sample size apt for demonstration
of our approaches. Our conclusions regarding the different approaches
arise from the different statistical assumptions they make, which do not
depend on this dataset. We use this data set to exemplify the general
strengths and weaknesses arising from the different assumptions that the
approaches make.

As variables to inspect differential effectiveness, the authors gath-
ered data on learners’ skills at pretest (prior knowledge), reasoning
ability, and reading comprehension, which we all used as z-standardized
scores (a solution with alternative scale normalization is provided in the
online supplementary materials). As the dependent measure, we use a z-
standardized score of learners’ achievement across four skills amounting
to the control-of-variables strategy. For details on the measures,
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descriptive statistics, and theoretical rationales for inclusion of the three
moderator variables, see Peteranderl et al. (2023). As z-standardization
can affect the interpretation of latent profile analysis (Moeller, 2025),
we provide a robustness check against alternative scaling approaches,
together with the analytic data and scripts, in the supplementary ma-
terials under https://osf.io/cd5v9/?view_only=0ef4056d33aa4
d6bb8e667a89c17al6ba. In the following, we use these data to first
implement the traditional approach of multiple regression including
interaction terms and then compare its results to those obtained with our
three proposed approaches.

3.1. Traditional approach: Multiple regression with interaction term

To mimic the traditional approach described by Tetzlaff et al. (2023),
we set up a multilevel linear regression model with a random intercept
across school classes. Peteranderl et al. (2023) conducted an a priori
power analysis, indicating that they would obtain power > 0.80 to find
moderation effects using this approach. We included fixed effects of the
treatment condition (0 = control condition as the baseline, 1 = inter-
vention condition) and fixed effects as well as the interaction terms of
the treatment condition and the three moderators (prior knowledge,
reasoning ability, reading comprehension), fitting the model in the R
package Ime4 (Bates et al., 2014).

The results from this approach are presented in Table 1. As visible
from this table, the traditional approach indicated a significant inter-
action effect of treatment condition with reasoning ability. The positive
estimate indicated a stronger positive effect of the intervention condi-
tion in comparison to the control condition for learners with better
reasoning ability. The other two interaction terms indicated a negative
yet non-significant interaction of the treatment condition with prior
knowledge, and a positive yet non-significant interaction with reading
comprehension. The estimated interactions are depicted in Fig. 1,
demonstrating how the effect of the intervention condition in compar-
ison to the control condition depended on the moderator variables ac-
cording to the traditional approach.

From these results, we would infer that learners with higher
reasoning ability benefit more from the intervention, compared to those
with lower reasoning ability. In addition, we would remain unsure
whether the effect of the intervention is weaker for learners with more
prior knowledge and stronger for those with better reading compre-
hension. As these effects are statistically non-significant, these hypoth-
eses would have to be further examined in future research (Edelsbrunner
& Thurn, 2024).

3.2. Additive regression model

Next, we estimated the same model, but within the modeling
framework of the general additive mixed model (Wood, 2017). This

Table 1
Results from traditional multilevel regression approach.
Parameter Estimate SE 95 % 95 % t p
CI CI
Lowe r Upper
Intercept —0.21 0.03 -0.27 —0.14 —6.19 < 0.001
Condition 0.41 0.04 0.33 0.50 9.22 < 0.001
Prior knowledge 0.68 0.04 0.60 0.77 15.78 < 0.001
Reasoning ability 0.14 0.04 0.06 0.22 3.56 < 0.001
Reading 0.06 0.04 —0.01 0.14 1.60 0.111
comprehension
Prior knowledge: —0.09 0.06 —0.20 0.03 —-1.51 0.132
Condition
Reasoning ability: 0.11 0.05 0.00 0.21 2.02 0.044
Condition
Reading 0.07 0.05 —0.04 0.17 1.20 0.229
Comprehension:
Condition
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means that in addition to random effects, which we again covered
through a random intercept across school classes, this model uses ad-
ditive effects instead of linear effects for regression terms. Additive ef-
fects, also called smooths, adapt to the data allowing nonlinearity in the
effects of the moderators on the dependent variable. This can also cap-
ture floor- or ceiling effects, while avoiding overfitting (i.e., adapting
overly to apparent nonlinearities) through a cross-validation procedure
(Wood, 2017).

The results of the model are presented in Table 2 and Fig. 2. For each
moderator, we have an empirical distribution function, indicating how
much wiggliness (i.e., non-linearity) there is in each regression param-
eter within each treatment condition. In addition, we conducted model
comparisons via the AIC (Dziak et al., 2020; Edelsbrunner et al., 2023) to
examine whether including interaction terms between the treatment
condition and the moderators improved the model fit. The model com-
parisons indicated that the effect of all three moderators should be
allowed to differ between treatment conditions, amounting to differ-
ential effectiveness for all three moderators—in contrast to the tradi-
tional approach. Table 2 shows the model estimates, with values above 1
for the empirical degrees of freedom for smooth terms indicating
nonlinearity in the relation of the respective moderator with the
dependent variable within the respective treatment condition.

These results differ from those of the linear regression model. For
Prior knowledge and reading comprehension, the estimated relations
are nonlinear within the intervention condition, and for reasoning
ability within the control condition. In contrast to the linear regression
model, the additive model indicates a positive effect only within the
higher range of reasoning in the control condition. In addition, in the
intervention condition, reading comprehension only has a positive effect
on the learning outcome in the lower range, indicating that some
reading comprehension is required to benefit from the intervention, but
the effect ceases in the higher range. Regarding prior knowledge, the
model indicates a sigmoid curve in the intervention condition, with a
strong effect in the middle range but weaker effects closer to the ceiling
and floor of the scale.

3.3. Bayesian multilevel model

Next, we set up the same model as for the traditional approach but
used Bayesian estimation. Crucially, we specified parameter priors, that
is, our prior expectations regarding each model parameter formalized as
distributions. This is a requirement in Bayesian estimation of statistical
models and can be advantageous for parameter estimation (van de
Schoot et al., 2014). For example, following Peteranderl et al. (2023),
we expected reading comprehension to have a more positive effect on
the learning outcome in the intervention condition than in the control
condition, because the verbal instructions in the intervention condition
may require better verbal comprehension, which usually correlates
substantially with reading comprehension. We expected the stronger
guidance in the intervention condition to decrease the effect or
reasoning ability compared to the control condition in accordance with
Ziegler et al. (2021), and also a smaller effect of prior knowledge in the
intervention condition. For full explanations and justifications of all
prior settings, please see the online supplementary materials. Impor-
tantly, these prior specifications may affect the parameter estimates,
which in turn may increase statistical power and decrease bias (although
if priors are misinformed, they may have the opposite effects; van de
Schoot et al., 2014). The results with Bayesian estimation are provided
in Table 3 and Fig. 3.

The estimated interaction effects of prior knowledge and reading
comprehension are stronger than in the traditional approach and their
credible intervals exclude 0. The estimated interaction for reasoning
ability on the other hand is smaller than in the traditional approach.
Overall, whereas the interaction effects go in the same directions as in
the traditional regression model, their estimated magnitudes and un-
certainties around these (i.e., credible intervals) are different and
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1.04
0.84
0.64
0.4
0.24
0.0
-0.2

Effect of condition

T T T

-2 A 0 1 2
Reasoning ability (z-std.)

Fig. 1. Interaction effects of treatment condition with the three learner characteristics in the traditional multilevel regression model.

effectiveness of the intervention dependent on the learner characteris-

Table 2 . . . . . s
able X . . tics reading comprehension, prior knowledge, and reasoning ability. We
Results from multilevel additive regression model. . . .
used the three z-standardized moderator variables to build learner
Predictor Estimate/edf  t/F p profiles and subsequently estimate effects of the invention condition in
Intercept 0.02 0.72 0.474 comparison to the control condition, as well as differences therein be-
s(Prior knowledge):Control 1 206.44 < 0.001 tween the profiles (i.e., the moderation effects), on the learning
s(Prior knowledge):Intervention 3.55 47.18 < 0.001
s(Reasoning ability):Control 3.70 3.67 0.005
s(Reasoning ability):Intervention 1 30.40 < 0.001 Table 3
s(Reading comprehension):Control 1 3.10 0.079 Estimates f b . ltilevel del
s(Reading comprehension):Intervention 2.92 8.32 < 0.001 stimates from bayesian multiievel mode..
. .. . Predictor Estimate  SE 95 % CI 95 % CI
Note. s indicate smooth (nonlinear) regression terms; edf = empirical distribu- LOW; UppZ,r
tion function estimate for smooth parameters. Intercept receives t-value, smooth
terms F-values. Estimate/edf indicates estimated complexity of smooth term, InterfePt -0.21 0.03  -0.28 -0.15
with 1 indicating linear effect and higher estimates increasing nonlinearity. andltlon 0.42 0.04 0.33 051
Prior knowledge 0.67 0.04 0.59 0.75
Reasoning ability 0.16 0.04 0.08 0.24
indicate some diverging conclusions. Reading comprehension 0.06 0.04 —0.01 0.13
Prior knowledge:Condition —0.09 0.05 —0.19 0.02
X § X Reasoning ability:Condition 0.08 0.05  —0.02 0.19
3.4. Bias-corrected latent profile analysis Reading comprehension: 0.08 0.05  —0.02 0.18
Condition
Finally, we used latent profile analysis to investigate the differential
Control Intervention
14
variable
E Pretest
Reading

o
n

CVS score at posttest (z-standardized)

wes Reasoning

T T

-2 -1 0 1 2 -2

-1 0 1 2

Pretest variable (z-standardized)

Fig. 2. Interaction effects of treatment condition with the three learner characteristics used as moderators in multilevel additive regression model.



P.A. Edelsbrunner et al.

Learning and Individual Differences 124 (2025) 102812

Prior knowledge Reasoning ability Reading comprehension
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Fig. 3. Interaction effects of treatment condition with the three learner characteristics used as moderators in the bayesian multilevel model.

outcome. We followed the typical step-wise approach in which the
number of profiles is first increased from one profile to two profiles and
so on until the fit indices indicate that the correct number of profiles has
been superseded or model estimation fails. We estimated models with
one to eight profiles, with the resulting fit indices depicted in Fig. 4. As
commonly observed (Edelsbrunner et al., 2023), the more stringent fit
indices BIC and CAIC pointed towards the solutions with four or five
profiles (indicated by the lowest fit estimates), whereas the less stringent
AIC, sample-size adjusted BIC and AIC3 pointed to solutions with up to
seven or eight profiles. We visually and numerically inspected all solu-
tions within the range indicated by the different indices, considering in
particular the sample-size adjusted BIC and the AIC3 which usually
function well at our sample size (Edelsbrunner et al., 2023).

The solutions with six and seven profiles resulted in extremely small
profiles (about 2 % of learners) that would be difficult to interpret
substantively. We selected the solution with five profiles, which are
depicted and labeled according to profile configurations in Fig. 5. We
labeled the profiles in accordance with their levels on all moderators.
One further profile was labeled as high achievers because these learners
had high levels on the other moderators despite low reasoning ability. In
the next step, we conducted a BCH-approach as suggested by Tetzlaff
et al. (2023). This approach enables estimating structural equation
models for learners within each profile, correcting for uncertainty in
profile memberships.

As visible from Fig. 6, the model estimated that there were no visible
effects of the intervention condition in comparison to the control con-
dition for learners with low or high levels on all moderators. For those
with moderate or good levels on all variables, as well as those who
perform well in terms of prior knowledge and reading comprehension
despite having weak reasoning ability, the effect of the treatment con-
dition was clearly positive.

In comparison to the typical regression approach, two results stand
out: First, only for learners with preconditions in the middle range,
positive effects of the intervention condition were observed. This is in
contrast to the typical approach, which by definition indicates linear
relations, yet it appears consistent with the sigmoid effect estimate of
prior knowledge (i.e., a positive effect on the outcome only in the middle
range) in the additive model. Second, the high achievers profile (high
prior knowledge and reading but low reasoning ability) showed a pos-
itive effect of the intervention condition despite being low on reasoning
ability. This is in contrast with the typical regression approach, which
indicated that the effect of the intervention becomes stronger with
increasing reasoning ability and lower with increasing prior knowledge.
Thus, since the traditional approach does not consider interactions with
the other learner characteristics, it misses that the intervention has a
positive impact for some learners with lower reasoning ability.
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Fig. 4. Fit Indices from latent profile analyses with different numbers of profiles.

Note. AIC = Akaike Information Criterion; AIC3 = Akaike Information Criterion with penalty term of three; BIC = Bayesian Information Criterion; CAIC = Consistent
Akaike Information Criterion; ssBIC = sample-size Adjusted Bayesian Information Criterion. See Edelsbrunner et al. (2023) for explanations of these criteria.
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3.5. Comparison of results across the four approaches

The traditional approach (multiple regression with interactions)
descriptively indicated interactions with all three learner characteris-
tics, but only the positive interaction effect with reasoning ability yiel-
ded a statistically significant effect estimate, despite Peteranderl et al.
(2023) reporting a power simulation that predicted adequate statistical
power to find interactions. From this approach, we might infer that
better reasoning ability concurs with better effectiveness of the inter-
vention condition in comparison to the control condition but remain
unsure about the other effects.

The additive model in contrast indicated interactions of the condi-
tion with all three learner characteristics. Additionally, for each learner
characteristic, the model indicated a nonlinear effect within one
experimental condition. Effects of prior knowledge, reasoning ability,
and reading comprehension all appear more nuanced than indicated in
the traditional regression. In particular, the additive model indicated a
sigmoidal (S-shaped) effect of prior knowledge in the intervention
condition.

The Bayesian multilevel model with informative priors indicated
stronger effects for prior knowledge and reading comprehension, but a
weaker effect of reasoning ability.

The latent profile analysis similarly to the additive model yielded
more nuanced effects than in the traditional regression model, particu-
larly with regards to reasoning ability, showing that the intervention

condition can be effective for learners with lower reasoning ability if
they have higher levels on the other moderators.

4. Comparison of advantages and disadvantages of the modeling
approaches: When should they be used?

The application of the four presented different methods to model
differential effectiveness of treatments on an exemplary dataset show-
cases each method’s advantages and disadvantages, which are summa-
rized in Table 4. Based on this summary, we can now suggest in which
situations each of the approaches may be most useful.

Before comparing the approaches, we note that researchers are not
bound to select only one approach as the correct one given specific data
and aims. Rather, prior research has shown that combining more than
one statistical approach is in general a good idea to gain multiple per-
spectives on data, examine the robustness of results and conclusions, and
combine different approaches” advantages (see Grimm et al., 2023;
Hoogeveen et al., 2023; Marsh et al., 2009). For example, Grimm et al.
(2023) combined latent profiles to model learners™ prior knowledge and
how it interacted with their working memory with visualizations from
an additive regression model to be better able to interpret the results.

4.1. Traditional approach

The traditional approach (multiple regression with interactions)
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Table 4
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Contrasting and comparison of the different modeling approaches; issues in columns, proposed models in rows.

Floor—/ceiling effects

Non-linearity

Statistical power

Multivariate
characteristics

Further notable options of approach

Linear regression

Additive
regression

Bayesian
multilevel
modeling

Latent profile
analysis

Further notable
approaches to
handle issue

Captured via smooth
terms

Optionally via Tobit/
beta/hurdle/z ero—/
one-inflation

Captured via profiles

Tobit regression Beta
regression Hurdle
models Zero—/one-
inflated models

Captured via smooth
terms

Optionally via
smooth terms (
Biirkner, 2017)

Captured via profiles

Non-linear regression
(e.g., sigmoidal
effects; Preacher &
Sterba, 2019)

Potential increase

Optimized via informative priors

Optimized via BCH- approach

Structural equation modeling (Kline,

2023) Alpha error level increase (e.
8., 10 %; Peteranderl et al., 2023)
Covariate inclusion (Sengewald &

Captured via
profiles

Machine learning
(e.g., double ML;
Knaus, 2021)

Possibility of polynomial /e.g., quadratic)
terms

Bayesian estimation (e.g., brms; Biirkner,
2017)

Additive (smooth) terms, multivariate
models, response distributions (tobit, beta,
hurdle, zero—/one-inflation, ...), Model
testing (loo/Bayes factor; see Biirkner,
2017), complex random effects structures
incl. Effects of teachers, schools, items/
outcomes, distributional models (Haslbeck
et al., 2024)

Extension to moderated/mediated SEM (
Costache et al., 2022)

Machine learning (e.
g., double ML; Knaus,
2021)

Mayer, 2024)

faces considerable methodological problems discussed at the beginning
of this article and should only be chosen when the following conditions
are met: Linearity, absence of floor- or ceiling effects, sufficient sample
size to obtain high power regarding interactions, and the absence of
dependence among moderator effects (i.e., no higher-order in-
teractions). These preconditions may be difficult to evaluate, and we
propose combining theoretical knowledge with exploratory data-driven
approaches to decide whether these conditions are met. Of course, the
traditional approach has the advantage of being well-known to many
researchers. It also uses rather few model parameters, making it more
parsimonious. Parsimony may be a desirable characteristic of scientific
models (Vandekerckhove et al., 2015), but only so far as it still allows
modeling the phenomena and questions of interest. This does not appear
to be the case for typical differential effectiveness-questions for a simple
model as linear regression. The stringent model assumptions, such as
linearity of relations, hamper this approach to reliably answer questions
of differential effectiveness and it will often be inadequate.

4.2. Additive regression

The additive regression model should be used if researchers suspect
(e.g., based on theory or data inspection) that there may be non-
linearities in the effects within all or specific conditions. The model
should also be used if floor- or ceiling effects may be in play. When
interpreting additive regression models, it is important to keep in mind
that the graphs showing the nonlinear effects visualize the unique effect
of one predictor but if this predictor is correlated with the other pre-
dictors, it is difficult to interpret each variable’s independent contribu-
tion to the outcome (Baayen & Linke, 2020; Wieling, 2018). As in linear
regression, nonlinear interaction terms are not automatically taken into
account and need to be manually added, and complex regression paths
or mediation paths cannot be modeled (Wieling, 2018). Researchers also
need to be aware of concurvity, which is similar to co-linearity and may
complicate the estimation of the model and the interpretation of the
results (Baayen & Linke, 2020).

Another important consideration for researchers when choosing
additive regression models is the extent to which the results provide
actionable information for practitioners. It is probably not feasible to
take the aptitude composition of each learner into account and adapt the
instruction or intervention to their specific levels. If a relationship is not
linear, a useful approach might be limiting the number of basis functions
(determining the maximum complexity of the curve) to three or four.

This would suffice to describe relations with the outcome in the low,
medium, and high range of the predictor.

4.3. Bayesian multilevel model

The Bayesian multilevel approach may be particularly suited if some
prior knowledge based on empirical data or theoretical models is
available to guide the setup of informative prior distributions for key
model parameters (see Browne & Draper, 2006; Sarma & Kay, 2020) to
improve statistical power. This information does not need to be avail-
able for all model parameters; for those with little or no prior informa-
tion, broad priors can be reflecting such lack of knowledge. For these
parameters, the Bayesian approach then typically will not result in a
visible difference compared to traditional non-Bayesian estimation (van
de Schoot et al., 2014).

The concrete sample size planning can be quite challenging and re-
quires knowledge about the size of the conditional (subgroup-specific)
effects that can be specified from an interaction by investigating the
treatment effects for specific values of a moderator (see e.g., Baranger
et al., 2023). Consequently, estimating the required sample size is often
not straightforward (Green & MacLeod, 2016). Further options to in-
crease the power in an analysis are the correction for measurement error
and the inclusion of additional variables that explain residual variance
in the outcome (Table 4; see e.g., Cohen et al., 2003).

In addition, as indicated in Table 4, Bayesian multilevel modeling
offers multiple opportunities that go beyond our simple demonstration
and may benefit researchers within this area. For example, the Bayesian
concept of effect size distributions, as opposed to the traditional axiom
of the one and only true effect in terms of the classical test theory, has
been proposed as a useful framework to understand and model treat-
ment effect heterogeneity (Gelman, 2015).

Moreover, Bayesian multilevel models allow incorporating complex
random effects structures that enable examining variation of effects of
intervention conditions and their interactions across teachers, classes, or
schools, as well as across outcomes of different types or across multiple
items of tests or questionnaires (Donnellan et al., 2023; Haslbeck et al.,
2025). In addition, Bayesian modeling in the brms package, which we
used for our demonstration, can incorporate smooth terms like additive
models and other options to handle floor- or ceiling effects such as Tobit
regression and Beta-, zero- or one-inflated distributions (Biirkner, 2017;
Haslbeck et al., 2024). Modeling such characteristics of data is called
distributional modeling. This approach models effects of predictor
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variables not only in predicting the expected mean of the outcome, but
also its variation and further characteristics of the distribution such as
the proportion of learners who achieve minimum or maximum scores
(Haslbeck et al., 2025; Umlauf et al., 2018). Note, however, that spec-
ifying prior distributions for predictors in models that use nonlinear
effect structure is challenging.

Another advantage of Bayesian modeling are recent advances that
allow comparing the strength of evidence for different models via Bayes
factors (Edinburgh et al., 2023; Gronau et al., 2020). A limitation that
applies to both additive and Bayesian (multilevel) models is the diffi-
culty of incorporating multivariate learner, school, or outcome variables
in the manner of the latent profile analysis. Although this is in principle
possible in Bayesian models, we are not yet aware of software packages
and accompanying tutorials making this easily feasible.

4.4. Latent profile analysis

Latent profile analysis possesses the unique strength of being able to
integrate multiple characteristics of learners or the learning context and
their potential higher-order or nonlinear interactions (Tetzlaff et al.,
2023). In defense of the other models, one could in principle add higher-
order interactions between all moderator variables, but this approach
usually results in an uninterpretable number of effects that moderate
one another and risks (drastically) decreasing statistical power (Tetzlaff
et al., 2023). In addition to profiling or clustering multiple learner
characteristics, we suggest also considering modeling multivariate
learning outcomes (Grimm et al., 2023) or interactions across multiple
observed instructional variables by means of latent profile analysis.
Latent profile analysis allows researchers to break down a complex
variable space into a limited number of latent profiles, substantially
improving interpretability and statistical power (Tetzlaff et al., 2023)
while still capturing learners’ complexity rather than reducing them to a
single characteristic. In addition, multivariate profiles may capture
nonlinear and higher-order interactions across multiple variables (Bauer
& Shanahan, 2007). Through the data-driven identification of profiles,
the resulting patterns avoid interpreting parameter areas that would
represent variable levels in which learners do not realistically reside. If
there is a multivariate mixture distribution (i.e., unobserved heteroge-
neity), then other models including the traditional linear regression
models risk overlooking that fact. All other models described in this
article examine and describe between-person variance. Only latent
profile analyses reveal within-person patterns (so-called person-
centered modeling; Hickendorff et al., 2018) and additionally quantify
the frequency of each profile in the sample. The other models rely on the
assumption that a single (one-size-fits-all) coefficient sufficiently de-
scribes the association between two, three, or more aptitudes or learner
characteristics in the sample. Latent profile analysis is able to reveal that
these associations differ between groups of learners, are positive for
some and negative for others, or that one profile cluster shows high
scores in the learner characteristics A and B, whereas another profile
group shows high scores in learner characteristic A but low scores in
learner characteristic B. In this way, latent profile analysis may uncover
differential effects that would otherwise muddy average effects and
yield results that appear non-replicable (Bryan et al., 2021).

Importantly, mixture analysis such as latent profile analysis serves as
a test for the assumptions underlying all other models. The linear
regression would assume multivariate unimodal distributions of all
variables without testing that assumption, failing to provide trustworthy
results if the assumptions are violated. A latent profile analysis reveals
whether a mixture distribution is present in the data, whereas a linear
regression just assumes that it is not. Thus, a latent profile analysis re-
veals crucial information even if it does not reveal a mixture distribu-
tion: In that case, it reveals that central assumptions of linear regressions
are met. Unique information is even provided by latent profile analysis
solutions in which all resulting profiles suggest linear associations
among the included variables (i.e., models with profiles in which all
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variables are either all high, all moderate, or all low): These models
reveal how high, and how low, the scores in the different profiles were in
reference to the response scale and can therefore reveal co-endorsement,
which is a very different information from the covariance examined in
linear regressions (see Moeller, 2021; Moeller et al., 2018). In addition,
the prevalences of such profiles are important information, as it is
possible that the profile with all-high scores on all variables is relatively
rare (e.g., 5 %), whereas the all-moderate and all-high profiles may be
more frequent (e.g., 45 % and 50 %, respectively). All of this information
is potentially crucial for research on differential intervention effects, and
among the four methods introduced in this article, only latent profile
analysis is capable of revealing it. Yet, due to its unknown replicability
of profiles across different samples and populations of learners, the
exploratory nature of latent profile analysis may not always be the
preferred option. In addition, latent profiles may not always capture all
relevant information of the indicator variables, in particular when the
indicators cover a broad variety of variables rather than a narrow
common construct (Daumiller et al., 2023).

As a result of latent profile analysis, instruction may be adapted to
learners’ profile by implementing differentiated tasks or activities for
groups on learners with certain profiles. Alternatively, technology-
supported solutions may implement tasks, activities, or instructional
support on a more individual level, catering dynamically to several as-
pects of a learner’s profile. In contexts in which individual students are
in focus (e.g., those receiving one-on-one psychological services),
comparing individual results to profiles of larger samples may help in
designing individualized interventions.

4.5. Summary: It’s all about assumptions

As described in our comparison of the four approaches, their
strengths and limitations arise from the different statistical assumptions
they make. Linear regression makes the well-known assumptions of in-
dependent, normally, and homoscedastic distributed residuals, as well
as linearity in the predictor-outcome relation (with the multilevel
extension removing the assumption of independence; Tabachnick et al.,
2013). Additive regression relaxes (i.e., does not make) the linearity
assumption by specifying smooth (i.e., non-linear) regression terms. In
principle, Bayesian multilevel regression makes the same assumptions as
linear regression. Yet, when residuals are non-normally distributed, this
will not pose a major threat to valid inference in Bayesian estimation
because this will be visible and accounted for in the posterior distribu-
tions, which are the prime source of inference in Bayes (McElreath,
2018). In addition, Bayesian estimation has outstanding capabilities to
relax all assumptions that are easily available and typically converge
without issues, in comparison to the often cumbersome traditional
implementations (see Table 4 as well as Biirkner, 2017). Latent profile
analysis makes the assumption of multivariate within each of the esti-
mated profiles, but it relaxes that any assumptions must hold across the
whole sample. This means that if an additive model or latent profile
analysis indicate non-linearity, or that effects hold only within certain
profiles, then the respective assumptions do not hold within linear
regression. For each assumption that either model relaxes, it will
become more complex, and researchers have to find the right balance
they want for their model to be sufficiently informative while remaining
well-interpretable for themselves and readers. This may be achieved by
checking model assumptions and if either of these does not hold, re-
searchers have to evaluate whether this affects their interpretations
regarding differential effectiveness. If it does, a more complex model
relaxing the respective assumption may be appropriate. Of note, the
hypotheses that are tested by the different approaches are generally the
same: Does an intervention show an interaction effect with a specific
learner characteristic? Yet, latent profile analysis is the only approach in
which multiple learner characteristics are modeled concurrently,
expanding the tested hypothesis from a univariate to a multivariate
question of interaction.
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5. Using the proposed approaches to advance educational
research across diverse topics and methods

An area where nuanced interaction effects among aspects of learners
and learning contexts would be expected is student creative thinking.
Creative ideas need to be maximally original and appropriate to the task
at hand (Stein, 1953). In generating creative ideas, learners draw on
their prior knowledge in the domain (Dumas et al., 2024), as well as
their meta- cognitive beliefs about what the evaluator of their generated
ideas (e.g., a human or machine rater; Acar et al., 2024) is likely to know
(Lebuda & Benedek, 2023). Experimental or observed interventions
would likely interact with these learner characteristics and these in turn
with raters (Dumas & Kaufman, 2024; Scherbakova et al., 2024),
opening up a vast exploration space of differential effectiveness to be
modeled.

Another area in which latent profile analysis has shown potential in
providing important information about the moderation effects of in-
terventions are reading interventions for students with reading diffi-
culties. Prior research found that many students are not adequately
responding to small group evidence-based reading interventions (Case
et al., 2014; Vaughn et al., 2019, 2020). Kulesz et al. (2024) found that
responders to a year-long intervention could be distinguished from re-
sponders to a control condition by building latent profiles based on
language, cognitive, and attention skills, while Tetzlaff et al. (2023)
found that students respond differently to specific classroom instruction
based on profiles across listening comprehension, decoding, and syntax
comprehension. These findings suggest that there is promise in consid-
ering multiple learning prerequisites simultaneously to determine the
appropriate customized intervention, particularly for those students
who do not benefit from the offered instruction.

A different example of this can be found in the field of educational
technologies, particularly Augmented Reality (AR). A recent review has
shown that although researchers are commonly interested in the specific
demands that learning with AR puts on learners with different learning
prerequisites, appropriate study designs and in particular statistical
methods to test differential effects of AR interventions are lacking
(Kozlova et al., 2025). Only a limited number of studies have directly
addressed the role of individual differences in learning with AR (as well
as in virtual reality research; see Lawson et al., 2024). This gap can
partly be explained by methodological challenges associated with AR
research, particularly the issue of small sample sizes, which arise due to
the technological complexity of AR. AR research often employs simple
methods, such as t-tests to compare group means (Kozlova et al., 2025).

In this and other fields struggling with gathering appropriate sample
sizes for analyses of differential effectiveness, Bayesian estimation, for
instance, can improve statistical power by incorporating theoretical
knowledge of effect sizes into prior distributions (McCarthy & Masters,
2005; van de Schoot et al., 2014). Another robust method already uti-
lized in ATI research with AR is fuzzy set qualitative comparative
analysis (fsQCA; (Ling et al., 2021). FsQCA bridges the gap between
qualitative and quantitative methods and is especially valuable for
studies with small sample sizes (as small as N < 50). It accommodates
nonlinear relationships and asymmetric data patterns (Geremew et al.,
2024) and handles multiple individual differences alongside a variety of
learning outcomes. This may make fsQCA for analyses of differential
effectiveness when sample sizes are too small for latent profile analysis,
but multiple learner variables should be considered concurrently.

Independent of the specific field or application context, educational
research that wants to provide deeper insights into how instruction can
be tailored to individual learners—not only in terms of content but also
in terms of potentially varying ‘treatments’—it is important to clearly
define what is meant by different treatments, as well as to identify the
key factors that may influence their effectiveness (Reinhold et al., 2024).
The treatment itself can, for example, be described as different combi-
nations of instructional strategies and scaffolds, whereas crucial factors
not only comprise diverse learner characteristics that may change over
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time but also varying complexity of the content that is to be learnt, as
illustrated in the following: Over recent decades, research has identified
several instructional strategies, e.g., learning with analogies, retrieval
practice, problem solving prior to instruction, or comparing and con-
trasting solutions, that are grounded in widely accepted learning prin-
ciples, aimed at optimizing cognitive, metacognitive, or motivational
processes. Instructional strategies vary in how they are implemented (e.
g., Schneider & Preckel, 2017), and students may not benefit equally due
to individual differences in the cognitive, metacognitive, or motiva-
tional resources needed for learning (e.g., Hofer et al., 2018; Reinhold
et al., 2020; Stern, 2017).

Other approaches that aim to accommodate individual learner needs,
such as scaffolding that provides targeted cognitive, metacognitive, or
motivational support, may as well require integrating information on
multiple learner characteristics. For example, learners may not have the
necessary prior (domain) knowledge or attentional resources to process
dynamic visualizations that support learning with analogies, cases in
which additional cognitive scaffolding, such as signaling, can help direct
attention towards key features in dynamic visualizations. This approach
of integrating multiple types of scaffolding is referred to as layered
scaffolding (Hofer & Reinhold, 2025). Designing such layered scaf-
folding requires nuanced information about learner characteristics
including information about more than one learner characteristic as well
as information about how each of these characteristics varies dynami-
cally over time or during the learning process. This underscores the
importance of employing research designs and applying statistical
methods that can capture, analyze and present such detailed insights.

The need of more appropriate statistical approaches for uncovering
differential effectiveness is not just based on practical implications
(designing treatments that maximize the potential learning gains for
diverse students) but also highly relevant for advancing theory on
interindividual differences in learning generally. By identifying specific
learner characteristics that are predictive of learning under specific
treatment parameters, we gain insight into the cognitive mechanisms
and potential prerequisites (e.g. Breitwieser & Brod, 2021) that are at
play to allow learners to make use of the offered treatment. Thus,
establishing the use of statistical methods that increase the rigor of
differential educational effects investigations and their results, will
contribute equally to maturing individual differences in learning theory
and providing practical design implications for adaptive instruction.

6. Future outlook

While education may have moved from assigning one and the same
treatment to all learners to assigning specific treatments to specific
learners, we believe that educational practice will have to move towards
assigning a more or less general treatment to all learners and continu-
ously and repeatedly adapting it to specific learners, accommodating
learners changing needs during and in interaction with the learning
process (Tetzlaff et al., 2021). This would not invalidate the use of cross-
sectional modeling. Instead, this perspective moves the focus towards
more fine-grained aptitudes (specific knowledge component vs. general
prior domain knowledge; state motivation vs. trait interest) and treat-
ments (situation specific scaffolding vs. general assistance/guidance),
further exacerbating issues 3 (power) and 4 (higher-order interactions).
Combining such a dynamic view of aptitudes with the affordances of log
data (e.g. Goldhammer et al., 2017; Goldhammer & Zehner, 2017) al-
lows specific solution processes to be part of the aptitude estimation.
Instead of assigning a specific treatment for e.g. “high WMC learners” it
is possible to adapt a given treatment for e.g. “exploration-based
solvers”. This is especially important in more complex learning envi-
ronments that allow for self-regulated learner behavior or agency in the
learning/solution process. Besides more fine-grained aptitude estima-
tion, log data also allow for a more detailed analysis of treatment effects
by looking at whether a treatment is actually utilized instead of just
offered (Helmke & Weinert, 1997; Reinhold et al., 2024), or by
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investigating which parts of an intervention actually mediate the
learning outcome (e.g. Kristensen et al., 2024). This information can in
turn be used to inform micro- adaptations for a specific learner at a
specific time point within a given treatment (Plass & Pawar, 2020;
Tetzlaff et al., 2021).

One challenge for future research on differential effectiveness is the
need to disentangle psychological attributes of learners (e.g., prior
knowledge, working memory, reasoning ability) from demographic at-
tributes of learners (e.g., gender, race, age, immigrant status). Although
both kinds of attributes might correlate if demographic attributes are
related to different opportunities to develop psychologically and
educationally, they should never be considered inherently connected.
For instance, for decades, being male was associated with higher scores
on a variety of educational outcomes (Rosser, 1989), but today, that
gender gap has largely closed, and even reversed in U.S. schools
(Reardon et al., 2019). Analogously, the current achievement gap across
Black and White students in the U.S appears to be shrinking (e.g., Henry
etal., 2020), and may (hopefully) close in the future. For this reason, the
consideration of demographic variables like gender or race as in-
themselves producing differences in aptitude for learning is neither
scientifically sound, nor ethically appropriate. To put it another way, a
mediational indirect pathway may exist where demographics can be
related to educational opportunity, which is in-turn related to psycho-
logical aptitudes, but the direct pathway between demographics and
aptitudes should ethically be assumed to be zero (Dumas & Mecneish,
2017).

In addition to the methods outlined here, we also suggest combining
theory-guided modeling with machine learning approaches (Bosch,
2021). The traditional assumption of nomothetic, one-size-fits-all true
treatment effects underlying much of the previous research does not fit
to the focus on heterogeneity that is currently bringing new momentum
to educational research (e.g., Bryan et al., 2021; Moeller, 2021). Recent
innovations in personalized intervention research, such as personalized
treatment plans (Montoya et al., 2023), dynamic treatment rules
(Montoya et al., 2023) or sequential multiple assignment randomized
trials (Almirall et al., 2014) have proposed methods of adapting in-
terventions to individual characteristics. These innovations slowly lead
to the dawning understanding that mechanisms of causal relations
among learner characteristics, treatments, and outcomes, may be idio-
syncratic, dependent on the interplay of numerous person-, time- and
context-characteristics, and may require sophisticated data-driven ma-
chine learning procedures in support of theory-derived statistical models
to be better understood (McConnell & Lindner, 2019).

In the absence of personalized interventions, differential effective-
ness research aims for causal inference by using experimental designs
controlling for all baseline differences between the treatment groups.
Within this methodological context, it is important to carefully consider
how to control for confounding. Causal inference in experimental de-
signs relies on the principle of controlling for all baseline differences of
the treatment groups. This is true for average effect estimates, as well as
for conditional effects of moderators (e.g., Rubin, 2005; Steyer et al.,
2014). In non-randomized comparisons of treatment conditions, as well
as in randomized experiments with systematic missing data that in-
validates randomization (e.g., Gomila & Clark, 2022; Rubin, 1976),
confounding due to baseline differences can be present that results in
selection bias in the effect estimates. Statistical modeling approaches are
required that can include covariates (i.e., variables that describe base-
line group differences and influence the outcome variable) in order to
adjust for confounding factors. However, only observed covariates can
be controlled and omitted variable bias can complicate the model
specification (e.g., Sengewald & Pohl, 2019; Steiner & Kim, 2016). In
general, researchers should aim at developing a model of the relations
between moderator variables and potential confounders that allows
including their main effects and, importantly, their interactions with
intervention effects (Yzerbyt et al., 2004) in the model to reduce bias in
inferences (Bailey et al., 2024). In this process, researchers should
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consider that moderator variables are usually observed (i.e., non-
experimental) learner characteristics. Consequently, to draw conclu-
sions about the role of learner variables for differential effectiveness, the
validity of causal inference for these variables must be ensured (Bansak,
2021).

7. Conclusion

This manuscript focuses on the complexity of modeling interactions
as a prime reason for knowledge gaps in educational research on dif-
ferential effectiveness. By highlighting common methodological issues
as well as how they can be tackled by specific modeling approaches, we
hope to extend researchers’ toolkit to continue pushing this field for-
ward. We believe that taking up these methods, using them in an
informed way, as well as paying attention to ethical considerations and
taking care to reduce bias in causal inferences, educational theory and
practice will continue to benefit greatly from research on differential
effectiveness.
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