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Abstract 38 

 39 

Atherosclerosis progresses silently over decades before manifesting clinically as myocardial infarction 40 

or stroke. Currently, no circulating biomarker reliably quantifies the burden of atherosclerosis beyond 41 

imaging techniques. Here, we sought to define plasma proteomic signatures that reflect the systemic 42 

burden of atherosclerosis. Using CatBoost machine learning applied to plasma proteomes (Olink 43 

Explore 3072; 2,920 proteins) from 44,788 UK Biobank participants, we derived four proteomic 44 

signatures which robustly discriminated individuals with known atherosclerotic disease from propensity 45 

score-matched controls (ROC-AUC up to 0.92, 95% CI: 0.90–0.94 in the test set). Each signature was 46 

based on distinct protein sets: the whole proteome (WholeProteome; n = 2920), proteins associated 47 

with genetic predisposition to atherosclerosis (Genetic; n = 402), those implicated in atherogenesis 48 

(Mechanistic; n = 680), and proteins enriched in arterial tissue (Arterial; n = 248). Among 41,200 49 

individuals without atherosclerosis at baseline, all four signatures were strongly associated with future 50 

major adverse cardiovascular events over a median follow-up of 13.7 years (HR per SD increase in 51 

WholeProteome signature: 1.70, 95% CI: 1.64–1.77), providing significant improvements in risk 52 

discrimination (ΔC-index: +0.036; p <0.0001) and reclassification (Net Reclassification Index: 0.085–53 
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0.135 at a 10% risk threshold) beyond SCORE2. Signature levels increased with the number of 54 

clinically affected vascular beds, correlated with carotid ultrasound–measured plaque burden, and 55 

predicted future myocardial infarction and stroke in the external KORA S4 (n=1,361) and KORA-Age1 56 

(n=796) cohorts with a median follow-up period of 15.1 and 6.8 years, respectively. Longitudinal 57 

analyses across three serial assessments showed that all signatures followed distinct trajectories, with 58 

significantly steeper annual increases among individuals with a higher burden of vascular risk factors. 59 

These findings demonstrate that proteomic signatures effectively capture atherosclerotic burden and 60 

improve cardiovascular risk prediction in asymptomatic individuals. Plasma proteomics may serve as 61 

a scalable and accessible alternative to imaging for identifying subclinical atherosclerosis, thereby 62 

supporting prevention strategies for cardiovascular disease.  63 

 64 

Keywords: proteomics, atherosclerosis, machine learning, risk prediction, cardiovascular disease. 65 
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Main 67 

 68 

Cardiovascular disease remains the leading global cause of death and disability,1,2 driven primarily by 69 

atherosclerosis,3 a progressive, lipid-driven inflammatory process that silently accumulates over 70 

decades before culminating in clinical events such as myocardial infarction and stroke.4,5 Despite 71 

advances in prevention and treatment, many individuals with a high atherosclerosis burden remain 72 

undiagnosed until the occurrence of a major cardiovascular event, underscoring a critical gap in early 73 

detection and prevention.6 The continued rise in the incidence of cardiovascular events7,8 further 74 

emphasizes the need to refine current paradigms of risk assessment.  75 

 76 

Current prevention strategies rely on population-level algorithms, such as SCORE2 and the pooled 77 

cohort equations, which estimate cardiovascular risk based on demographic and clinical variables 78 

including age, sex, blood pressure and cholesterol levels.9-11 While widely adopted, these models do 79 

not directly quantify atherosclerotic burden and offer limited resolution in individual risk assessment. 80 

Direct detection of subclinical atherosclerosis remains dependent on imaging modalities including  81 

angiography, CT, MRI, PET, or ultrasound.12-14 While informative, these techniques are constrained 82 

by procedural risks, radiation exposure, availability, and the need for specialized personnel.15 83 

Circulating biomarkers could overcome these limitations by offering scalable tools for identifying 84 

individuals with atherosclerosis, improving cardiovascular risk stratification, and facilitating longitudinal 85 

monitoring. However, existing circulating biomarkers, such as C-reactive protein (CRP)16 or cardiac 86 

troponins17, primarily reflect systemic inflammation or myocardial injury and fall short of directly 87 

assessing atherosclerotic plaque burden or progression.  88 

 89 

Circulating proteins may serve as real-time indicators of pathophysiological processes.18 Recent 90 

advances in proteomic technologies enable the simultaneous quantification of thousands of 91 

proteins,19,20 providing a window into dynamic, tissue-specific pathophysiological processes. 92 

Integrating these data through machine learning has uncovered proteomic signatures predictive 93 

of early stages of neurodegenerative disease,21-25 cancer,26-28 diabetes,29-31 autoimmune 94 

disease32,33, and mortality risk through proteomic aging clocks34. While previous studies have 95 

shown potential for plasma proteomics in improving prediction of specific cardiovascular 96 

otucomes35-41, the capacity of plasma proteomics to systematically capture the burden and 97 

trajectory of atherosclerosis has not been fully elucidated, limiting its utility for assessing disease 98 

stage and extent. 99 

 100 

Here, we leveraged plasma proteomics from the UK Biobank (UKB) and two independent cohorts to 101 

develop and validate four biologically informed proteomic signatures of atherosclerotic burden 102 

(AtheroBurden). Using machine learning, we constructed four signatures based on data from 1,666 103 

cases with established atherosclerotic disease and 1,666 age- and sex-matched controls: 104 

WholeProteome (derived from the entire proteome), Genetic (genetically anchored proteins identified 105 

via Mendelian randomization), Mechanistic (proteins implicated in atherogenesis), and Arterial (artery-106 

enriched proteins). We evaluated the ability of these signatures to predict incident cardiovascular 107 

events in 41,200 disease-free UKB participants (median follow-up 13.7 years), and further validated 108 

externally in Cooperative Health Research in the Region of Augsburg (KORA) S4 (n=1,361, median 109 

follow-up 15.1 years) and KORA-Age1 (n=796, median follow-up 6.8 years). Subsequently, we 110 

analyzed associations between the signatures and carotid plaque burden measured by imaging. 111 

Finally, we assessed the longitudinal trajectories of these four signatures across three serial time 112 

points spanning a median of 12.5 years, and investigated how signature trajectories are influenced by 113 

baseline cardiovascular risk factors and the occurrence of future cardiovascular events. 114 

115 



Results 116 

Summary of the study design 117 

 118 

The study design is summarized in Figure 1. A detailed study workflow, including data processing, ML 119 

model development, and validation steps, is provided in Extended Figure 1. Of the 502,421 120 

participants enrolled in the UKB, a total of 44,788 participants (54% female, median age 58 years 121 

[interquartile range, IQR: 39–71 years]) met our inclusion criteria, after excluding participants with >30% 122 

missing proteomic data (Extended Figure 2). To develop proteomic signatures of atherosclerosis 123 

(AtheroBurden signatures), we leveraged four sets of proteins (Extended Figure 3) and trained ML 124 

models to discriminate the 1,666 cases with established atherosclerotic disease from 1,666 age- and 125 

sex-matched controls (discovery dataset). The developed AtheroBurden signatures were 126 

subsequently tested for associations with incident major adverse cardiovascular events (MACE, 127 

defined as a composite of myocardial infarction, stroke, or cardiovascular death) over a median follow-128 

up of 13.7 years (n=41,200), followed by external validation in KORA S4 (n=1,361, median follow-up 129 

15.1 years) and KORA-Age1 cohorts (n=796, median follow-up 6.8 years). Baseline characteristics of 130 

participants in the development cohort (UKB) and both validation cohorts (KORA S4 and KORA-Age1) 131 

are presented in Table 1. We further explored associations of the derived signatures with imaging 132 

evidence of atherosclerosis on carotid ultrasound (n=1,712), as well as serial changes across three 133 

timepoints and longitudinal progression patterns stratified by both baseline SCORE2 risk categories 134 

and incident MACE status (n=1,210) in subsamples of the UKB. 135 

 136 

 137 

Figure 1. Overview of the study design and analytical approaches. 138 

The diagram illustrates the methodological approach implemented for protein-based atherosclerosis burden 139 

quantification. Machine learning models were trained in a UK Biobank discovery dataset (n=3,332; 1,666 140 

atherosclerosis cases and 1,666 age- and sex-matched controls) using four biologically-informed protein panels. The 141 

resulting AtheroBurden signatures were validated in a disease-free UK Biobank cohort (n=41,200; median follow-up 142 

13.7 years), assessed for association with carotid plaque burden (n=1,712), evaluated longitudinally (n=1,210), and 143 

externally validated in the KORA S4 (n=1,361) and Age1 (n=796) cohorts. Abbreviations: MACE, major adverse 144 

cardiovascular events; AMI, acute myocardial infarction; CV death, cardiovascular death; MI, myocardial infarction; 145 

ROC AUC, receiver operating characteristic area under curve; GTEx, genotype-tissue expression; MR, Mendelian 146 

randomization; MLP, multilayer perceptron; ElasticNET, elastic net regression; XGBoost, eXtreme Gradient Boosting; 147 
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LightGBM, light Gradient Boosting Machine; CatBoost, categorical boosting; SVM, support vector machine; KORA, 148 

Cooperative Health Research in the Region of Augsburg. 149 

 150 

Development of AtheroBurden proteomic signatures 151 

 152 

To construct proteomic signatures of atherosclerosis burden, we developed ML classifiers using a 153 

case-control discovery dataset comprising 1,666 participants with an established diagnosis of 154 

atherosclerotic cardiovascular disease and 1:1 age- and sex-matched controls (median age 63 years 155 

[IQR: 59-66 years], 30% female, Supplemental Table S1). Atherosclerotic disease was defined by 156 

diagnostic codes encompassing coronary, cerebrovascular (including carotid), aortic, and peripheral 157 

arterial manifestations (see Methods). We evaluated the diagnostic performance of eight ML models—158 

Logistic Regression, Random Forest, elastic net regression (ElasticNET), multilayer perceptron (MLP), 159 

support vector machine (SVM), light Gradient Boosting Machine (LightGBM), categorical boosting 160 

(CatBoost), and eXtreme Gradient Boosting (XGBoost)—using four sets of proteins. The four protein 161 

sets were selected to represent different levels of biological relevance to atherosclerosis (Extended 162 

Figure 3): (i) the whole proteome (2,920 proteins); (ii) 402 proteins with evidence of causal association 163 

with genetic predisposition to coronary artery disease as derived from Mendelian randomization (MR) 164 

analyses (MR-derived panel); (iii) 680 proteins coded by atherosclerosis-related genes as curated from 165 

literature-based evidence according to the EnrichR platform42 (atherosclerosis-related panel); and (iv) 166 

248 proteins overexpressed in the aorta, coronary or tibial arteries, as detected in transcriptomic 167 

analyses across 54 tissues in GTEx43 (artery-enriched panel). The list of proteins included in every set 168 

is provided in Supplemental Table S2. Across ten iterations of five-fold cross-validation, CatBoost 169 

consistently outperformed the other tested models in accuracy, precision, discrimination, and recall 170 

(Extended Figure 4, Supplemental Table S3). While MLP and ElasticNET achieved higher 171 

performance than CatBoost for the artery-enriched panel in certain iterations, their results were 172 

inconsistent and exhibited significant variability. In contrast, CatBoost demonstrated robust and stable 173 

performance across all four panels, maintaining superior accuracy and reliability compared to other 174 

models (Extended Figure 4, Supplemental Table S3). CatBoost also outperformed all other models 175 

in accuracy in the testing set (Extended Figure 5, Supplemental Table S4). We therefore selected 176 

CatBoost-derived models for subsequent analyses. 177 

 178 

As shown in Figure 2a, the selected CatBoost models achieved high true positive and true negative 179 

rates across all panels in the testing set. Compared to a baseline model using SCORE2 variables 180 

(area under the receiver operating characteristic curve [ROC-AUC]: 0.80), the proteomic panels 181 

significantly improved discrimination. The atherosclerosis-related, MR-derived, and whole proteome 182 

panels achieved comparable enhancements (ROC-AUCs: ~0.91, p < 0.001), while the artery-enriched 183 

panel resulted in a modest, non-significant improvement (ROC-AUC: 0.84, p=0.146; Figure 2b). To 184 

understand the contributions of individual proteins, we calculated Shapley values (SHAP) across each 185 

panel. Renin (REN), NT-proBNP, Natriuretic peptide B (NPPB), and proprotein convertase 186 

subtilisin/kexin type 9 (PCSK9) consistently emerged as the top contributors to the atherosclerosis-187 

related, MR-derived, and whole proteome panels (Figure 2c). We subsequently applied these 188 

CatBoost models to generate four complementary signatures (AtheroBurden-WholeProteome, -189 

Genetic, -Mechanistic, and -Arterial) for all UKB participants with available proteomic data. The density 190 

distributions of all AtheroBurden signatures showed a clear rightward shift in participants with 191 

atherosclerotic disease and a corresponding leftward shift in disease-free participants, reflecting higher 192 

and lower scores relative to the population mean, respectively (Figure 2d). Furthermore, the 193 

signatures captured the burden of atherosclerosis, as illustrated by higher scores among participants 194 

with evidence of atherosclerotic disease in two or more versus one arterial bed (Figure 2e). 195 



 196 
 197 

Figure 2. Evaluation of machine learning-derived proteomic signature for atherosclerosis detection and burden 198 

assessment across four protein panels. 199 

(a) Confusion matrices of classification performance across protein panels. The confusion matrices summarize the 200 

classification outcomes for each protein panel, illustrating proportions of true positives, true negatives, false positives, 201 

and false negatives. These results reflect the overall accuracy and error distribution of the models. (b) ROC curves for 202 

model evaluation. The ROC curves in the testing set illustrate the predictive performance of each protein panel. Each 203 

plot includes two curves: one representing the performance of the respective protein panel and the other showing the 204 

predictive capacity of cardiovascular risk factors included in the SCORE2 algorithm, used as a comparator. The AUC 205 

values and their 95% CI are reported for each curve. (c) Shapley (SHAP) values identify the top 10 contributing proteins. 206 

The bar plots display the mean absolute SHAP values for the top 10 proteins contributing to each model, ranked in 207 

descending order. (d) Density distributions of AtheroBurden signatures stratified by atherosclerotic status. The density 208 

plots depict the distributions of AtheroBurden signatures for healthy controls versus atherosclerotic cases, as well as 209 

within the UKB cohort. (e) Violin-box plots of AtheroBurden signatures stratified by the number of affected vascular 210 

beds as a measure of atherosclerotic burden (*p < 0.05, ***p < 0.001 between indicated groups). The middle line 211 
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represents the median, boxes indicate the IQR (25th to 75th percentiles), and whiskers extend to 1.5 times IQR. 212 

Abbreviation: MR, Mendelian randomization; ROC, receiver operating characteristic; AUC, area under the receiver 213 

operating characteristic curve; CI, confidence interval; SCORE2, Systematic COronary Risk Evaluation version 2; SHAP, 214 

SHapley Additive exPlanations; UKB, UK Biobank; IQR, interquartile range. 215 

 216 

Longitudinal associations of AtheroBurden signatures with incident cardiovascular events 217 

 218 

To examine the hypothesis that derived signatures capture presence and burden of atherosclerosis 219 

among individuals without a history of cardiovascular disease, we assessed associations between the 220 

AtheroBurden signatures and incident MACE (composite of acute myocardial infarction [AMI], stroke, 221 

or cardiovascular death) were assessed in an independent validation cohort of 41,200 participants 222 

(median age 58 years, 56% female, Supplemental Table S5). During a median follow-up of 13.7 years, 223 

3,122 incident MACE were documented. All four scores were consistently associated with incident 224 

MACE (Figure 3a) in Cox regression models adjusted for age and sex, SCORE2 variables (age, sex, 225 

total cholesterol, HDL-cholesterol, systolic blood pressure [SBP], and smoking status), as well as a 226 

more comprehensive list of demographic and vascular risk factors (age, sex, SBP, body mass index, 227 

smoking status, LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated 228 

haemoglobin A1c, diabetes, and hypertension status). In the fully-adjusted models, the hazard ratios 229 

for MACE per standard deviation increase in the proteomic signatures ranged between 1.49 for the 230 

Arterial (95% CI [confidence interval]: 1.43-1.56, p=1.2x10-70) and Mechanistic signature (95% CI: 231 

1.42-1.56, p=1.4x10-58) to 1.56 for the Genetic (95% CI: 1.49-1.63, p=6.0x10-81) and WholeProteome 232 

signature (95% CI: 1.48-1.63, p=1.2x10-77, Supplemental Table S6). All four signatures were 233 

significantly associated with all three MACE components, but they showed consistently stronger 234 

associations with cardiovascular death than AMI and stroke (Figure 3a and Supplemental Table S6). 235 

Stratifying the AtheroBurden scores by quartiles, we found strong dose-response relationships, with 236 

MACE risk with incidence rates of 17.6-19.2% in the highest (Q4) versus 4.8-5.3% in the lowest 237 

quartiles (Q1) at the end of the 16-year follow-up (Figure 3b). The hazard ratio (HR) for Q4 vs. Q1 238 

following adjustments for the full list of vascular risk factors ranged from 2.65 (95% CI: 2.37-2.97) for 239 

the Arterial signature to 2.99 (95% CI: 2.65–3.37) for the WholeProteome signature. 240 

 241 

Adding the AtheroBurden signatures to baseline SCORE2 led to significantly improved discrimination 242 

for future MACE risk, as indicated by increases in the C-indices (Table 2). The WholeProteome 243 

signature exhibited the largest improvement in discrimination, increasing the C-index by 0.04 (from 244 

0.70 to 0.74; p=1.45x10-68). These improvements remained robust in sex-stratified analyses, yielding 245 

an increase of up to 0.05 in the C-index among males. Testing discrimination changes in 10-year risk, 246 

against which SCORE2 is validated, further supported significant improvements (time-dependent 247 

ROC-AUC for SCORE2 0.70 vs. 0.74 when adding the AtheroBurden WholeProteome signature, 248 

p=1.56x10-50, Figure 3c). Incorporating AtheroBurden signatures also led to improvements in 249 

calibration, as indicated by improved alignment between predicted and observed risks (Extended 250 

Figure 6), as well as in net reclassification improvement (NRI) metrics (category-free net 251 

reclassification improvement [cfNRI] and integrated discrimination improvement [IDI]) for both the 10-252 

year and total follow-up periods (p < 0.001 for all comparisons; Table 2). At established clinical decision 253 

risk thresholds (7.5% and 10%), addition of AtheroBurden signatures to SCORE2 led to improved 254 

reclassification of study participants to the right risk category. For example, the WholeProteome 255 

signature improved net reclassification of 11.2% of study participants (95% CI: 8.5%-13.5%) at the 10% 256 

risk threshold, while the Genetic signature yielded a 9.6% improvement (95% CI: 7.0%-12.5%) at the 257 

7.5% threshold (Extended Figure 7). 258 



 259 

 260 

Figure 3. Associations of AtheroBurden scores with future cardiovascular risk in the UK Biobank (n=41,200). 261 

(a) Multivariable Cox regression analyses demonstrating associations between AtheroBurden scores and 262 

cardiovascular outcomes (MACE and its components—stroke, AMI, and CV death). Effect estimates are presented with 263 

95% confidence intervals under hierarchical adjustment models: demographic factors (age and sex; orange), SCORE2 264 

variables (total cholesterol, HDL-cholesterol, systolic blood pressure, and smoking status; yellow), and VRFs (age, sex, 265 

systolic blood pressure, body mass index, smoking status, LDL-cholesterol, triglycerides, estimated glomerular filtration 266 

rate, glycated hemoglobin A1c, diabetes, and hypertension status; purple). Statistical significance after FDR adjustment 267 

is denoted by asterisks: *p < 0.05, **p< 0.01, ***p < 0.001. (b) Kaplan-Meier curves for the cumulative incidence of 268 

MACE stratified by quartiles of AtheroBurden signature. Population risk gradients are illustrated through color-stratified 269 

quartiles (Q4: purple; Q1: orange), with hazard ratios adjusted for SCORE2 variables. Risk tables quantify the at-risk 270 

population across follow-up intervals. (c) Time-dependent ROC curves evaluating discriminatory performance for 271 

predicting cardiovascular risk over a 10-year follow-up period. The orange curve represents the SCORE2 model alone, 272 

while the purple curve represents SCORE2 combined with AtheroBurden signatures. The enhancement in risk 273 

discrimination is quantified through comparative area under the curve metrics with corresponding 95% confidence 274 

intervals. Abbreviations: MACE, major adverse cardiovascular events; AMI, acute myocardial infarction; CV Death, 275 

cardiovascular death; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HR, hazard ratio; CI, confidence 276 

interval; SCORE2, Systematic COronary Risk Evaluation version 2; VRFs, vascular risk factors; Q1/Q4, quartile 277 

1/quartile 4; ROC, receiver operating characteristic. 278 

 279 

Association with plaque presence and burden 280 

 281 

As a next step, we examined associations of the AtheroBurden signatures with imaging evidence of 282 

atherosclerosis. As UKB lacks assessment of plaque presence at baseline assessments (2006-2010), 283 

we used data from 1,712 individuals who had baseline proteomic measurements and underwent 284 

carotid ultrasound imaging at the first follow-up visit starting in 2014. Using a deep learning model that 285 
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we had previously developed44, we found 717 participants to have evidence of carotid atherosclerosis, 286 

of whom 222 participants had ≥2 plaques (Supplemental Table S7). In logistic regression models for 287 

plaque presence and Poisson regression models for plaque count, we found significant associations 288 

of the baseline WholeProteome, Genetic, and Mechanistic signatures with carotid plaque presence 289 

and burden at the first imaging visit after adjustments for age and sex, SCORE2 variables, and vascular 290 

risk factors (Figure 4, Supplemental Table S8). 291 

 292 

 293 

Figure 4. Associations between AtheroBurden scores at baseline and ultrasound-defined carotid plaque 294 

presence and burden over follow-up in the UK Biobank (n=1,712). Forest plots illustrating the associations between 295 

four AtheroBurden scores and two measures of atherosclerosis: plaque presence (assessed by logistic regression) and 296 

plaque count (assessed by Poisson regression). Results are presented as ORs for plaque presence and RRs for plaque 297 

burden, each with corresponding 95% CIs. The gray dashed vertical line at 1.0 represents the null hypothesis of no 298 

association. Effect estimates are presented with 95% confidence intervals under hierarchical adjustment models: 299 

demographic factors (age and sex; orange), SCORE2 variables (total cholesterol, HDL-cholesterol, systolic blood 300 

pressure, and smoking status; yellow), and VRFs (age, sex, systolic blood pressure, body mass index, smoking status, 301 

LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated hemoglobin A1c, diabetes, and hypertension 302 

status; purple). Statistical significance after FDR adjustment is denoted by asterisks: *p < 0.05, **p< 0.01, ***p < 0.001. 303 

Abbreviations: OR, odds ratio; RR, rate ratio; CI, confidence interval; SCORE2, Systematic COronary Risk Evaluation 304 

version 2; VRFs, vascular risk factors; FDR, false discovery rate. 305 

 306 

Longitudinal Assessment of AtheroBurden Signatures and Their Clinical Correlates 307 

 308 

To examine whether serial changes in the derived AtheroBurden scores capture progression of 309 

atherosclerosis, we conducted a two-step analysis. First, we assessed associations of baseline 310 

vascular risk factors with longitudinal score changes in 1,210 UK Biobank participants with at least one 311 

follow-up assessment of their circulating proteome at instance 2 (starting 2014) or 3 (starting in 2019). 312 

Next, we examined whether individuals who experienced incident MACE showed different progression 313 

patterns compared to event-free participants.  314 
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 315 

Compared to participants with proteomics profiling at a single timepoint, participants with serial 316 

assessments were significantly younger (median age at recruitment 49 vs. 58 y) and had a 317 

substantially lower burden of vascular risk factors (Supplemental Table S9). Because follow-up 318 

proteomic assessments at these time points were limited to an earlier version of Olink Explore —319 

covering approximately 50% of the proteins in the newer version— we generated restricted signatures 320 

using the overlapping subset of 1,459 proteins (Supplemental Table S10). These restricted signatures 321 

correlated highly with the full signatures derived at baseline (instance 0), demonstrating robust signal 322 

preservation (R=0.91-0.94, all p<2.2×10-19; Figure 5a).  323 

 324 

When stratified by baseline cardiovascular risk categories, we found individuals in higher baseline 325 

cardiovascular risk strata (10-year SCORE2 risk: <2.5%, 2.5–5%, 5–7.5%, and >7.5%) to exhibit 326 

steeper annual increases in all four AtheroBurden signatures (Figure 5b). For example, changes in 327 

the Genetic AtheroBurden signature ranged from a decrease of 0.020 SD per year (95% CI: -0.026 to 328 

-0.015, p = 3.61×10-13) in the lowest baseline risk category (<2.5% 10-year risk) to an increase of 0.085 329 

SD per year (95% CI: 0.076 to 0.094; p = 1.15×10-13) in the highest risk category (>7.5%). Furthermore, 330 

to determine whether AtheroBurden signature progression was specifically associated with clinical 331 

outcomes, we tested the progression patterns of individuals who went on experiencing incident MACE 332 

during follow-up using linear mixed-effects models, which revealed significantly different trajectories 333 

(Figure 5c). Specifically, we found progression of AtheroBurden signatures to be restricted to 334 

individuals who experienced MACE during follow-up. Annual progression coefficients in MACE-335 

positive participants ranged from β=0.042 (95% CI: 0.007-0.076; p=0.021) for the Arterial signature to 336 

β=0.099 (95% CI: 0.058-0.139; p=1.73×10-5) for the Genetic signature, while event-free participants 337 

exhibited no significant progression.  338 

 339 

 340 

 341 

Figure 5. Serial changes of AtheroBurden Scores by baseline cardiovascular risk and incident cardiovascular 342 

events in the UK Biobank (n=1,210).  343 

(a) Baseline correlation of restricted and full proteomic signatures. Restricted proteomic signatures were derived at 344 

baseline (instance 0) using 1,459 proteins common across both available measurement platforms (Olink Explore 1536 345 

and Explore 3072). Scatter plots with hexagonal binning illustrate correlations between restricted and corresponding 346 
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full AtheroBurden signatures (WholeProteome, Genetic, Mechanistic and Arterial). Pearson correlation coefficients (R) 347 

and associated p-values are displayed for each signature. (b) Longitudinal trajectories stratified by baseline SCORE2 348 

risk categories. Temporal evolution of AtheroBurden scores stratified by baseline SCORE2 risk categories (<2.5%, 2.5-349 

5%, 5-7.5%, and >7.5%). Bars represent mean values at three time points (instance 0, 2, and 3), with error bars 350 

indicating standard error. Annual progression rates (β) and corresponding p-values were derived from linear mixed-351 

effects models. (c) Temporal evolution of AtheroBurden scores stratified by incident major adverse cardiovascular 352 

events (MACE). Mean AtheroBurden scores at three time points (instances 0, 2, and 3) are presented separately for 353 

participants without and with subsequent MACE events (denoted as 'No' and 'Yes', respectively). Error bars represent 354 

standard error. Annual progression rates (β) and p-values were derived from linear mixed-effects models. Abbreviations: 355 

MACE, major adverse cardiovascular events; SCORE2, Systematic COronary Risk Evaluation version 2; SE, standard 356 

error. 357 

 358 

External Validation of AtheroBurden signatures in KORA cohorts 359 

 360 

Finally, to externally validate our findings, restricted versions were applied to the population-based 361 

KORA S4 (n=1,361) and KORA-Age1 (n=796) prospective cohort studies (Supplemental Table S11). 362 

Because protein quantification in KORA cohorts was limited to cardiovascular and inflammation panels, 363 

restricted signatures were constructed using available overlapping proteins: 232 for WholeProteome, 364 

44 for Genetic, 146 for Mechanistic, and 30 for Arterial signatures in KORA S4; and 242 for 365 

WholeProteome, 45 for Genetic, 147 for Mechanistic, and 30 for Arterial signatures in KORA-Age1. 366 

There were moderate to strong correlations between the KORA-adapted signatures and the full 367 

AtheroBurden signatures in UKB (R=0.56-0.75, all p<2.2×10-16) in both cohorts (Figure 6a for S4, 368 

Extended Figure 8a for Age1). Compared to the UKB cohort, participants in the KORA S4 and Age1 369 

cohorts were older (S4: median age 63 years; Age1: median age 76 years) and had a more balanced 370 

sex distribution (S4: 50% female; Age1: 53% female, Table 1). Over a median follow-up of 15.1 years 371 

in S4 and 6.8 years in Age1, 245 and 112 participants were diagnosed with a myocardial infarction [MI] 372 

or stroke, respectively.  373 

 374 

In age- and sex-adjusted models, we found all four AtheroBurden signatures to be associated with the 375 

risk of MI or stroke in both cohorts (Figure 6b and Supplemental Table S12), with the Mechanistic 376 

and WholeProteome signatures demonstrating significant associations after adjustment for the full set 377 

of vascular risk factors. Sensitivity analyses excluding overlapping participants in S4 and Age1 showed 378 

similar results, though with limited statistical power to draw definitive conclusions (Extended Figure 379 

8a, Supplemental Table S13). Kaplan-Meier analyses demonstrated that participants in the highest 380 

signature quartile (Q4) exhibited significantly elevated cumulative incidence of cardiovascular events 381 

compared to lower quartiles in KORA S4 (log-rank p < 0.0001 for all signatures, Figure 6c). Similar 382 

patterns were observed in KORA-Age1 (Extended Figure 8b). After adjusting for SCORE2 variables, 383 

HRs for Q4 relative to Q1 ranged from 1.62 (95% CI: 1.12–2.35) for the Mechanistic signature to 2.39 384 

(95% CI: 1.57–3.63) for the Genetic signature. Similar to the UKB, adding the AtheroBurden signatures 385 

on top of baseline SCORE2 led to improvements in discrimination of MI or stroke in both S4 and Age1 386 

(Supplemental Table S14).  387 

 388 



 389 
 390 

Figure 6. Associations of AtheroBurden signatures with future cardiovascular risk in the KORA S4 (n=1,361) 391 

and KORA-Age1 (796) cohorts. 392 

(a) Correlation between restricted (KORA S4) and full proteomic signatures in the UK Biobank baseline cohort. 393 

Restricted signatures (KORA S4) were derived using only proteins quantifiable across all measurement platforms. 394 

Hexagonal binning scatter plots demonstrate correlations between restricted and corresponding full signatures with 395 

Pearson correlation coefficients (R) and associated p-values. (b) Forest plots present HRs and 95% CIs for restricted 396 

AtheroBurden scores across the KORA S4 and Age1 cohorts. HRs are shown for three adjustment models: 397 

demographic factors (age and sex; orange), SCORE2 variables (total cholesterol, HDL-cholesterol, systolic blood 398 

pressure, and smoking status; yellow), and VRFs (age, sex, systolic blood pressure, body mass index, smoking status, 399 

LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated hemoglobin A1c, diabetes, and hypertension 400 

status; purple). The grey dashed line indicates an HR of 1.0 (no association). Statistical significance is indicated by 401 

asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. (c) Kaplan-Meier curves showing cumulative incidence rates of MI/stroke 402 

stratified by quartiles of four restricted AtheroBurden signatures in KORA S4. The HRs displayed are adjusted for 403 

SCORE2 variables. Risk tables are provided below each plot, and log-rank test p-values are displayed for group 404 

comparisons. Abbreviations: MI, myocardial infarction; HR, hazard ratio; CI, confidence interval; KORA, Cooperative 405 

Health Research in the Region of Augsburg; SCORE2, Systematic COronary Risk Evaluation version 2; VRFs, vascular 406 

risk factors. 407 
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Discussion 409 

 410 

In this study, by leveraging large-scale population-based data, we constructed four plasma proteomic 411 

signatures that (i) discriminated between presence and absence of clinically diagnosed atherosclerotic 412 

disease, (ii) showed a dose-response relationship with the number of vascular beds affected by 413 

atherosclerosis, (iii) strongly predicted future risk of cardiovascular events in disease-free individuals, 414 

(iv) correlated with imaging-defined carotid plaque burden, and (v) longitudinally changed according to 415 

baseline cardiovascular risk and future MACE occurrence. Our findings demonstrate the utility of ML-416 

derived signatures of plasma proteomics for assessing atherosclerosis burden and estimating 417 

cardiovascular risk in disease-free individuals.  418 

 419 

Our data provide convergent evidence supporting the potential utility of the AtheroBurden signatures 420 

as circulating biomarkers of atherosclerosis burden. First, all four proteomic signatures demonstrated 421 

strong discriminative performance in identifying individuals with a history of atherosclerotic disease 422 

and correlated with disease burden, as reflected by the number of affected vascular beds. Second, 423 

among asymptomatic individuals without evidence of atherosclerotic disease, higher values of all four 424 

signatures were associated with substantially increased risks of adverse cardiovascular events in UK 425 

Biobank and KORA. Individuals who went on to develop cardiovascular events are expected to have 426 

a higher burden of atherosclerosis at baseline. These associations persisted after adjustment for 427 

traditional vascular risk factors, indicating that the proteomic signatures may capture additional 428 

biological information not reflected in standard risk metrics. Third, we found the signatures to be 429 

associated with plaque presence and count in carotid ultrasound – an imaging-based surrogate of 430 

subclinical atherosclerosis – further reinforcing their relevance to underlying disease biology. Fourth, 431 

longitudinal data across three serial time points over a median follow-up of 12.5 years revealed that 432 

AtheroBurden scores track with disease progression. Steeper annual increases were observed among 433 

individuals with greater baseline vascular risk and among those who subsequently experienced major 434 

cardiovascular events, consistent with the trajectory of atherogenesis. These results collectively 435 

support the role of proteomic signatures as dynamic, non-invasive indicators of atherosclerotic burden. 436 

Nonetheless, prospective validation in independent cohorts with integrated vascular imaging and 437 

proteomic profiling will be essential to confirm their utility as biomarkers of subclinical disease and 438 

progression. 439 

 440 

We developed four distinct proteomic signatures, each comprising proteins with varying relevance to 441 

atherosclerosis. Beyond the Arterial, the Mechanistic, Genetic, and WholeProteome signatures 442 

demonstrated comparable performance in detecting atherosclerotic disease and predicting future 443 

MACE events. Our approach of not relying solely on the whole-proteome panel aimed to reduce the 444 

influence of proteins whose circulating levels may reflect secondary effects of tissue ischemia rather 445 

than atherosclerosis progression. Investigating the top-ranked proteins in each panel provides insights 446 

into the distinct biological signals captured by our signatures. In the artery-enriched panel, highly-447 

ranked proteins were specific to cardiovascular tissues, such as NTRK3 implicated in cardiac 448 

remodeling45, leptin involved in energy homeostasis46 and linked to subclinical atherosclerosis47, and 449 

ANGPT2 which has shown prognostic relevance in peripheral artery disease48 and intracranial stenotic 450 

lesions.49 Additional high-ranking proteins are linked to extracellular matrix remodeling, growth factor 451 

signaling, and inflammation (ITGA11, IGFBP3, TGF3BI, LBP) and have established roles in 452 

cardiovascular pathology: ITGA11 in CAD susceptibility and cardiac fibroblast differentiation50,51, 453 

IGFBP3 in atherosclerotic plaque stability modulation52, and TGFBI and LBP in macrophage-mediated 454 

inflammatory responses53-55. In contrast, the Mechanistic, Genetic, and WholeProteome panels 455 

predominantly prioritized systemic cardiovascular markers, including NT-proBNP and REN, as well as 456 

cholesterol-associated proteins like PCSK9, and APOC1, potentially reflecting end-organ dysfunction 457 

and high cardiovascular risk. 458 

 459 



If validated, plasma proteomic signatures of atherosclerosis could have two key translational 460 

applications. First, they could enable monitoring of atherosclerosis progression and cardiovascular risk 461 

in the context of primary prevention. Unlike imaging techniques, circulating biomarkers are scalable in 462 

primary care settings and could be used to screen for advanced atherosclerosis, track cardiovascular 463 

risk over time, and monitor responses to preventive interventions. While current proteomics assays 464 

are costly, the development of targeted protein panels that capture most of the variance in the full 465 

signatures could reduce costs and promote clinical implementation. Second, proteomic signatures may 466 

have utility in drug development, both as for patient stratification tools and as surrogate endpoints of 467 

efficacy in trials of atheroprotective treatments. Our preliminary analysis in a small subset with serial 468 

measurements suggests that these signatures may reflect atherosclerosis progression over time, but 469 

whether they respond to treatment effects remains uncertain. In post hoc analyses of two phase 3 trials 470 

testing the GLP-1 receptor agonist semaglutide, randomization to treatment vs. placebo led to 471 

significant reductions in proteomic signatures associated with MACE risk.56 in the absence of scalable 472 

non-imaging-based endpoints for atherosclerosis, proteomic signatures may offer a promising 473 

surrogate endpoint for early-phase trials. Incorporating proteomic profiles into phase 3 cardiovascular 474 

outcomes trials could enable evaluation of whether such signatures correlated with treatment effects 475 

on risk reduction at an individual level.  476 

 477 

Our study has several limitations. First, the use of clinical diagnoses as proxies for atherosclerotic 478 

disease may have biased our signatures toward higher disease burden. As clinical diagnoses typically 479 

reflect stenotic atherosclerotic lesions, it remains unknown whether our signatures also capture very 480 

early atherosclerotic changes. Although supplementary analyses incorporating carotid plaque 481 

phenotyping were reassuring, the ultrasound assessments in UKB were only performed 8 years after 482 

the initial proteomic profiling. Future studies that integrate comprehensive vascular imaging with 483 

contemporary proteomic profiling could enable more precise phenotyping for model development. 484 

Second, external replication in KORA cohorts was limited by reduced protein coverage and differences 485 

in cohort characteristics compared to the UKB, potentially affecting direct comparability with our 486 

primary findings. Still, restricted signatures based on overlapping proteins showed moderate to strong 487 

correlations with the full signatures (R=0.56-0.75) and remained significantly associated with future 488 

myocardial infarction and stroke events. While the KORA S4 cohort provided sufficient power for robust 489 

Cox regression analyses, replication in the smaller and older KORA-Age1 cohort was limited by 490 

reduced sample size and event count. Third, although our study included longitudinal analyses, 491 

repeated proteomic measurements in UKB were only available for a small, relatively healthy subset of 492 

1,210 participants from the COVID-19 repeat imaging study. Only 30 MACE events occurred after the 493 

second proteomic assessment (instance 2), limiting statistical power to directly assess the relationship 494 

between signature trajectories and future cardiovascular risk. Nevertheless, we observed significantly 495 

divergent trajectories between participants with and without incident MACE, as well as across 496 

SCORE2 risk categories. For these longitudinal assessments, differences in proteomic coverage 497 

between time points (1,463 proteins in instances 2/3 vs. 2,923 in instance 0) were addressed by using 498 

restricted signatures that preserved the variance of the full signatures (R=0.91-0.94). Fourth, the 499 

predominantly European ancestry of the study populations may limit generalizability to other ethnic 500 

groups. Future studies in more diverse cohorts are needed to assess the transferability and robustness 501 

of the identified signatures across ancestries. Fifth, the selection of proteins for the artery-enriched 502 

signature was based on gene expression profiles from the GTEx database57, which includes bulk tissue 503 

samples from coronary, aortic, and tibial arteries of donors aged 20-71 years who died due to any 504 

cause. As these tissues were not selected specifically for atherosclerosis involvement, the resulting 505 

protein panel may lack specificity for proteins derived from atherosclerotic plaques. This limitation 506 

could partly explain the relatively modest performance of the artery-enriched signature in predicting 507 

future MACE and carotid plaque presence compared to the other protein scores. Future studies 508 

leveraging proteomic or transcriptomic data directly from human atherosclerotic plaque tissue may 509 

yield more atherosclerosis-specific signatures. 510 

 511 



In conclusion, plasma proteomic signatures can effectively capture atherosclerosis burden, improving 512 

cardiovascular risk prediction in asymptomatic individuals. If replicated in cohorts bridging extensive 513 

vascular phenotyping with proteomic profiling, our results suggest that the circulating proteome could 514 

serve as an accessible alternative to imaging-based assessments of atherosclerosis. This approach 515 

could enable broader implementation of screening and prevention strategies for cardiovascular 516 

disease. 517 

 518 

Methods 519 

Data Sources and Participants 520 

 521 

The UK Biobank represents a prospective cohort study encompassing 502,421 individuals from the 522 

general UK population.58 Between March 2006 and October 2010, participants aged 37–73 years 523 

attended one of 22 assessment centres across Scotland, England, and Wales.58,59 Each participant 524 

completed a touchscreen questionnaire, had physical measurements taken, and provided blood, urine, 525 

and saliva samples at baseline. Detailed information about the UKB protocol can be found at 526 

http://www.ukbiobank.ac.uk. Participants with available plasma proteomics data were included, 527 

excluding those with more than 30% missing values across all measured proteins, resulting in a final 528 

study population of 44,788. 529 

 530 

  1) Discovery dataset (Case–control study) 531 

The discovery dataset, used to develop the AtheroBurden scoring system, included cases with 532 

established atherosclerotic disease (detailed in the "Atherosclerosis Ascertainment" section) and 533 

matched controls without a diagnosis of atherosclerotic disease. To optimally balance the number of 534 

available control candidates while maintaining strict age- and sex-matching criteria, participants were 535 

initially matched in a 1:6 ratio using a propensity score,60 facilitated by the R package MatchIt (v 536 

4.5.5).61 From each set of six matched controls, we selected the control with the fewest International 537 

Classification of Diseases, 10th Revision (ICD-10) diagnosis codes to minimize comorbidity differences. 538 

This approach resulted in a final 1:1 matched pairs, thereby minimizing potential confounding from 539 

comorbidity burden while ensuring optimal case-control comparability. 540 

 541 

  2) Internal validation dataset (Prospective cohort study) 542 

To assess the performance of the AtheroBurden scores developed from the discovery dataset, we 543 

analyzed data from UKB participants with proteomics data and no history of atherosclerotic 544 

cardiovascular disease that were not included in the discovery dataset. We included individuals aged 545 

40 to 70 years, resulting in 41,200 participants. Assuming that a score capturing atherosclerosis 546 

burden in asymptomatic individuals should be associated with future risk of MACE, we assessed 547 

associations of AtheroBurden scores with the occurrence of incident MACE over a median follow-up 548 

of 13.7 years.  549 

 550 

  3) Longitudinal analysis dataset in UKB 551 

To evaluate temporal changes in AtheroBurden scores and their associations with cardiovascular risk 552 

profiles, we utilized repeated proteomic measurements available for a subset of UKB participants. A 553 

total of 1,210 individuals, derived from the COVID-19 repeat imaging study, had at least two proteomic 554 

measurements, allowing for longitudinal analysis. 555 

 556 

  4) Carotid plaque subset in UKB 557 

To assess associations of the developed AtheroBurden scores with subclinical atherosclerosis burden, 558 

we used data from a follow-up imaging visit of UK Biobank participants initiated in 2014. A subset of 559 

82,340 participants underwent carotid ultrasound as part of a comprehensive assessment. From this 560 

group, 19,499 individuals provided a total of 177,757 carotid ultrasound images, which were 561 

subsequently processed for plaque evaluation. Ultrasound imaging was performed using a 562 

standardized protocol to capture bilateral carotid arteries.62 A total of 1,712 participants had both 563 

https://www.ukbiobank.ac.uk/


carotid ultrasound and plasma proteomics data, enabling the investigation of associations between 564 

AtheroBurden scores and carotid plaque presence and burden. 565 

 566 

KORA cohorts  567 

To externally validate our findings, we utilized data from KORA studies63, specifically the KORA S4 568 

and KORA-Age1 cohorts.31,40 Ethical approval was granted by the local ethics committee, and all 569 

participants provided written informed consent. KORA S4 was conducted between 1999 and 2001, 570 

enrolling 4,261 participants, of which 1,361 participants aged 55–74 years were included in our 571 

analysis due to the availability of proteomics data and follow-up data. KORA-Age1 recruited 1,079 572 

participants aged 65–93 years, with proteomics and follow-up data available for 796 individuals. Both 573 

cohorts were used to investigate the relationship between proteomics and cardiovascular outcomes, 574 

specifically incident MI and stroke. Among the 1,361 participants in KORA S4, 207 were also part of 575 

the KORA-Age1 cohort, though these participants were assessed at different time points. In sensitivity 576 

analyses, we excluded the overlapping participants from both cohorts to ensure independence 577 

between datasets. 578 

 579 

Plasma Proteomics in UKB  580 

Blood samples were primarily collected from UKB participants during their baseline visit (instance 0), 581 

with additional samples gathered from members of the UKB Pharma Proteome Consortium and 582 

individuals in the COVID-19 repeat-imaging study. Plasma proteome characterization was executed 583 

utilizing the antibody-based Olink® Proteomics PEA technology.64  584 

 585 

At baseline (instance 0), proteomic profiling was performed using the Olink® Explore 3072 platform, 586 

which encompasses eight distinct panels: Cardiometabolic, Cardiometabolic II, Inflammation, 587 

Inflammation II, Neurology, Neurology II, Oncology, and Oncology II. This comprehensive platform 588 

enabled quantification of 2,923 unique proteins across 54,219 participants.65 Samples were 589 

representative of the broader UKB population, with 93% of European ancestry. Protein levels were 590 

provided as Normalized Protein eXpression (NPX) values, generated by log-transforming counts 591 

normalized to extension controls.66 Assessments indicated that protein expression levels were 592 

minimally affected by protein batch, study center, and genetic principal components. Detailed protocols 593 

for sample handling, processing, and quality control are available online.65 For follow-up assessments 594 

(instances 2/3), the Olink® Explore 1536 platform was employed, resulting in measurements of 1,463 595 

proteins. Despite differences in panel coverage between baseline and follow-up assessments, the 596 

fundamental profiling technology and quality control procedures remained consistent, ensuring 597 

methodological comparability across time points.67  598 

 599 

After excluding 3 proteins (GLIPR1 from the Oncology II panel, PCOLCE from the Cardiometabolic 600 

panel, NPM1 from the Neurology panel) that were missing in more than 30% of participants in the final 601 

study cohort, the remaining missing values were imputed using a normal distribution method as 602 

previously described.68 The mean of this imputation distribution was adjusted by subtracting 1.8 603 

standard deviations from the mean of the abundance distribution of all proteins in one sample. The 604 

standard deviation of the imputation distribution was set to 0.3 times the standard deviation of the 605 

abundance distribution.  606 

 607 

Plasma Proteomics in KORA 608 

Proteomics data for both KORA S4 and Age1 cohorts were also measured using Olink® Proteomics 609 

PEA technology but only covering 276 protein biomarkers (CVD-II, CVD-III, and inflammation panels). 610 

The data processing, including quality control and normalization, was performed by the KORA team 611 

as previously described.31,40 Proteins with more than 25% of values below the limit of detection (LOD) 612 

or with missingness were excluded. For proteins present in multiple panels, the version with fewer 613 

values below LOD and a lower inter-assay coefficient of variation was retained. After applying these 614 

QC criteria, 233 unique proteins passed QC in KORA S4, while 243 proteins passed QC in KORA-615 



Age1. Due to differences in the specific protein panels used between the KORA cohorts and UKB, 232 616 

proteins from KORA S4 and 242 proteins from KORA-Age1 overlapped with those measured in UKB. 617 

 618 

Outcomes definition 619 

Atherosclerosis ascertainment 620 

Clinical diagnoses and surgical records were utilized as proxies to identify individuals with presence of 621 

atherosclerotic disease. Atherosclerosis was ascertained by identifying events across multiple 622 

vascular beds, including coronary, extra- and intracranial, aortic, peripheral, and other arterial sites. 623 

Curated disease phenotypes were defined using clinical diagnosis codes from the International 624 

Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10), as well as surgical procedure 625 

codes from the Office of Population Censuses and Surveys, 4th revision (OPCS4). Diagnosis dates 626 

were obtained from linked individual participant data. Incident events due to atherosclerotic disease 627 

were ascertained from hospital inpatient data summaries (fields 41270, 41271, 41272) as outlined in 628 

Supplemental Table S15. Prevalent events were defined as those occurring before the participant's 629 

baseline visit when a blood sample was collected. Individuals with corresponding prevalent events for 630 

each outcome were considered as cases. Individuals without any experienced atherosclerotic events 631 

at baseline and during follow-up were considered as controls and subsequently underwent propensity 632 

score matching to construct the discovery dataset. For each individual, atherosclerotic events were 633 

evaluated across the five vascular beds described above. The presence of an event in any vascular 634 

bed scored 1 point, resulting in atherosclerotic burden levels ranging from 0 (no events) to 2 (events 635 

in two or more vascular beds). 636 

 637 

MACE outcome definitions 638 

The outcome in the internal validation cohort included incident traditional three-point MACE, which 639 

comprised AMI, stroke, and cardiovascular death. ICD-9 and ICD-10 codes for each endpoint are listed 640 

in Supplemental Table S16, ascertained from linked Hospital Episode Statistics (HES) and death 641 

registries. For each participant, follow-up began at their baseline visit to the UKB assessment centre, 642 

where clinical information and blood samples were collected. The first occurrence of a MACE event 643 

was recorded as the primary endpoint for the composite outcome analysis, ensuring each participant 644 

contributed only once. For participants without a MACE event, follow-up was censored at the earliest 645 

of non-CV death, or the last available hospital inpatient record (31 October 2022 for England, 31 646 

August 2022 for Scotland, and 31 May 2022 for Wales). Mortality data were available until 31 October 647 

2022, and participants without events were censored on these respective dates. When analysing 648 

individual components of MACE (AMI, stroke, and CV death) as separate outcomes, we included each 649 

participant's first occurrence of each specific event type.  650 

 651 

In the KORA cohorts, the endpoint was the first validated MI or stroke. MIs were ascertained via the 652 

Augsburg MI Registry: events before 31 December 2000 followed WHO-MONICA adjudication, and 653 

those from 1 January 2001 used ESC/ACC criteria. MIs outside the registry’s area or age limits (> 74 654 

years, > 84 years from 2009) were identified through follow-up questionnaires and confirmed with 655 

hospital or physician records; fatal MI cases were identified through death certificates or autopsy 656 

reports. Nonfatal strokes (ischaemic or haemorrhagic) were initially identified through self-reports and 657 

validated with medical records, while fatal strokes were identified through death certificates or autopsy 658 

reports. KORA S4 participants had their baseline examination in 1999-2001, first follow-up examination 659 

in 2006–2008 and second follow-up examination in 2013–2014. Furthermore, postal questionnaires 660 

were sent out in 2008–2009 and 2016; KORA-Age1 participants had their baseline visit in 2008-2009, 661 

first follow-up visit in 2012 and a postal questionnaire was sent to them in 2016. 662 

 663 

Carotid Plaque Assessment 664 

Carotid ultrasound images were analysed using the deep learning model described by Omarov et al.,44 665 

which assesses carotid plaque presence and the number of plaques in the left and right carotid arteries. 666 

Plaques were defined as focal protrusions into the arterial lumen with a thickness greater than 50% of 667 



the surrounding carotid intima-media thickness,69 with plaque presence determined by the 668 

identification of at least one plaque in either carotid artery. Plaque burden was assessed based on the 669 

total number of plaques detected in both carotid arteries and categorized as 0 for participants with no 670 

plaques, 1 for those with a single plaque, and 2 for those with two or more plaques. 671 

 672 

Covariates and SCORE2 Calculation 673 

 674 

Demographic and Covariates 675 

 676 

Baseline variables used in our analyses included age, sex, smoking status (categorized as current, 677 

former, or never smoker), SBP, diastolic blood pressure (DBP), cholesterol levels, body mass index 678 

(BMI), kidney function (estimated glomerular filtration rate, eGFR), Glycated hemoglobin (HbA1c), and 679 

history of diabetes and hypertension. Detailed definitions of these variables, including UKB field IDs, 680 

are provided in Supplemental Table S17. Smoking status was determined based on baseline 681 

questionnaire responses. Blood pressure was measured during the baseline visit, and the average of 682 

two readings was used. Cholesterol levels, including total cholesterol (TC), low-density lipoprotein 683 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides were measured 684 

from fasting blood samples. BMI was calculated as weight in kilograms divided by height in meters 685 

squared (kg/m²). Kidney function was assessed using eGFR calculated from serum creatinine and 686 

Cystatin C levels using the CKD-EPI equation (2021).70 History of diabetes and hypertension was 687 

assessed based on medication use and hospital records. Information on the use of glucose-lowering 688 

medications, antihypertensive medications, and lipid-lowering medications was obtained from 689 

participant medication data. Hospital records were reviewed to identify prior diagnoses using relevant 690 

ICD-9 and ICD-10 codes, with specific codes provided in Supplemental Table S18. For the KORA 691 

cohorts, similar demographic and clinical variables were collected and defined as previously 692 

described.71,72 693 

 694 

SCORE2 Calculation 695 

 696 

We estimated the 10-year risk of MACE for each participant using the SCORE2 algorithm,73 based on 697 

individual factors such as age, sex, SBP, TC, HDL-C, and smoking status. Participants aged 40 to 70 698 

years without MACE were included in this analysis. The linear predictor for each participant was 699 

calculated using sex-specific regression coefficients from the SCORE2 working group.73 To better align 700 

observed and predicted risk, we applied log hazard ratios from the SCORE2 sensitivity analysis that 701 

specifically excluded UK Biobank participants (as reported in Supplementary Table 8 of the SCORE2 702 

publication).73 For absolute risk calculation, following the approach described in previous studies74, 703 

these linear predictors were converted into calibrated 10-year risks using the SCORE2 recalibration 704 

formula with scaling factors for low-risk European regions (as reported in Supplementary methods 705 

Table 4 of the SCORE2 publication).73 706 

 707 

ML Model Development 708 

 709 

To explore the potential of plasma proteomics to deliver novel biomarker signatures for atherosclerosis, 710 

we developed the AtheroBurden scoring system using ML classifiers in the discovery dataset. The 711 

process involved selecting relevant protein features, constructing diagnostic models using various ML 712 

algorithms, evaluating their performance, and generating continuous AtheroBurden scores from the 713 

best model. 714 

 715 

Protein Feature Pre-selection 716 

 717 

To leverage atherosclerosis biology while minimizing confounding from late-stage organ damage 718 

signals, we designed four protein panels: 719 

1) Whole Proteome Panel 720 



Without prior feature selection, we included all 2,920 plasma proteins to construct an ML model 721 

predicting the probability of atherosclerosis presence. 722 

 723 

2) MR-Derived Protein Panel 724 

We conducted a two-sample MR analysis to identify proteins that are genetically influenced by 725 

predisposition to CAD, providing causal evidence for their potential roles in atherosclerosis pathways, 726 

with CAD serving as the exposure and plasma protein levels as the outcome. Genetic instruments 727 

were selected from the largest available CAD Genome-Wide Association Study (GWAS) summary 728 

statistics by Aragam et al.,75 filtered for genome-wide significance (p < 5e-08), and further clumped to 729 

retain independent variants (r² < 0.001, 10,000 kb window). These instruments were then matched to 730 

the Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus the Coronary Artery 731 

Disease Genetics (CARDIoGRAMplusC4D) 1000 Genomes-based GWAS summary statistics.76 This 732 

dataset does not include UKB data, ensuring that there was no overlap between exposure and 733 

outcome datasets. After filtering and matching, 217 SNPs were selected for the MR analysis, with all 734 

necessary data, including beta values, obtained from the CARDIoGRAMplusC4D.  735 

Plasma protein data were sourced from the UKB Pharma Proteomics Project, which measured 2,940 736 

plasma proteins in 54,219 participants. GWAS summary statistics for these data are publicly available 737 

via Synapse.66 (https://www.synapse.org/Synapse:syn51365303) The MR analysis was conducted 738 

using the R package TwoSampleMR (v 0.5.6), employing the random effect inverse variance weighted 739 

(IVW) method for estimating causal effects. Using these data, the MR analysis identified 402 proteins 740 

(p <0.05) whose levels were genetically influenced by predisposition to CAD, suggesting their potential 741 

role as causal mediators in the disease pathway.  742 

 743 

3) Atherosclerosis-Related Protein Panel 744 

To identify proteins specifically associated with atherosclerosis, we utilized the Enrichr platform,42 745 

querying relevant terms and pathway databases for gene sets related to atherosclerosis. This search 746 

yielded 52 gene sets, from which we compiled a comprehensive list of genes (n = 3312) associated 747 

with atherosclerosis. These annotations were then mapped to the UKB Olink proteome, resulting in 748 

680 atherosclerosis-related proteins, which constituted the atherosclerosis-related protein panel used 749 

for model development. 750 

 751 

4) Artery-enriched protein panel 752 

This panel focused on proteins with specific or elevated expression in arterial tissues, hypothesized to 753 

be closely related to atherosclerotic lesions. We obtained gene expression data from the Genotype-754 

Tissue Expression (GTEx) project (Release V8, dbGaP Accession phs000424.v8.p2),57 which 755 

provided comprehensive tissue-specific bulk RNA seq expression profiles across various human 756 

tissues, including vascular tissues. We grouped three vascular tissues—coronary, aorta, and tibial 757 

artery—together as the vascular group, while all other organs were grouped as the non-vascular group. 758 

Genes were considered artery-enriched if their expression levels in the vascular group were at least 759 

threefold higher than in the non-vascular group. We then mapped these genes to the plasma 760 

proteomics data from the UKB, resulting in an artery-enriched protein panel of 248 proteins used for 761 

model development. 762 

 763 

ML Classifiers 764 

 765 

We utilized Python packages scikit-learn (v 1.3.2), catboost (v 1.2.5), lightgbm (v 4.2.0), and xgboost 766 

(v 2.0.3), to implement a range of ML techniques, including Logistic Regression, Random Forest, 767 

ElasticNET, SVM, MLP. Additionally, gradient boosting classifiers such as LightGBM, CatBoost, and 768 

XGBoost were employed. These classifiers were designed to predict whether participants belonged to 769 

class 1 (diagnosed with atherosclerotic events at baseline) or class 0 (event-free). ML models were 770 

established using a discovery dataset created using propensity score matching based on age and sex 771 

to select healthy controls (n=1,666) for participants with prevalent atherosclerotic events (n=1,666). 772 

This matching technique helps mitigate potential nonlinear confounding effects. We then randomly split 773 

https://www.synapse.org/Synapse:syn51365303


the discovery dataset into training (80%) and testing sets (20%), with stratification ensuring balanced 774 

distribution of atherosclerotic events in both sets. 775 

 776 

All models were trained and validated using ten iterations of five-fold stratified cross-validation on the 777 

training set, with the dataset resampled for each iteration to ensure robustness. Performance was 778 

evaluated using accuracy, precision, recall, and ROC-AUC, providing comprehensive insights into 779 

classification effectiveness and error patterns. Hyperparameters for the cross-validated models were 780 

optimized using Optuna,77 an automated framework, with each configuration undergoing the same 781 

cross-validation strategy. Algorithm-specific search spaces were defined, encompassing learning rates 782 

(10-5 to 10-1), regularization parameters (C values from 10-5 to 10), tree depths (3 to 10), number of 783 

estimators (50 to 200), and other model-specific parameters. Performance was assessed using 784 

average ROC-AUC and other relevant metrics, and optimal hyperparameters were selected based on 785 

configurations achieving the highest cross-validated scores. CatBoost was selected as the best-786 

performing model based on its highest average ROC-AUC and stability (consistency of performance 787 

across testing sets). Hyperparameter specifications for all evaluated models are provided in 788 

Supplemental Table S19. To compare the performance of the selected CatBoost model with a 789 

traditional risk prediction approach, a separate logistic regression model was developed using 790 

SCORE2 variables (age, sex, total cholesterol, HDL-cholesterol, systolic blood pressure, and smoking 791 

status) in the discovery dataset, with performance assessed using ROC-AUC. Statistical significance 792 

of ROC-AUC differences was evaluated using the DeLong test. Feature importance was assessed 793 

using SHapley Additive exPlanations (SHAP) values, which quantify each feature's contribution to the 794 

model's predictions.78 795 

 796 

Generating continuous AtheroBurden signature 797 

 798 

The CatBoost classifier79 was constructed using protein expression profiles as input features, with 799 

models trained to discriminate between individuals with and without atherosclerotic disease. Following 800 

comprehensive hyperparameter optimization through five-fold cross-validation, the final classifier was 801 

applied to the entire UKB cohort to generate continuous risk predictions. The raw prediction values 802 

obtained directly from the CatBoost algorithm—representing the untransformed linear combination of 803 

weighted protein features—were subsequently standardized as Z-scores (centered at zero with a 804 

standard deviation of one) to facilitate inter-individual comparability. Four AtheroBurden signatures 805 

were derived from the respective protein panels: AtheroBurden-Arterial, based on the artery-enriched 806 

panel; AtheroBurden-Mechanistic, based on the atherosclerosis-related panel; AtheroBurden-Genetic, 807 

based on the MR-derived panel; and AtheroBurden-WholeProteome, based on the whole proteome 808 

panel. All models were trained in the discovery dataset and subsequently applied to the entire UKB 809 

cohort.  810 

For longitudinal validation using follow-up measurements and external validation in independent 811 

cohorts, restricted versions of the AtheroBurden signatures were generated to address differential 812 

protein coverage. For UKB participants assessed at follow-up timepoints (instances 2/3) where the 813 

Olink® Explore 1536 platform was employed, restricted signatures were computed by applying the 814 

original prediction algorithm with missing value assignments (NA) for proteins not measured on the 815 

restricted platform. An identical methodological approach was implemented for external validation in 816 

the KORA cohorts. To quantify potential information loss resulting from reduced protein coverage, 817 

equivalent restricted signatures were generated in the baseline UKB cohort (instance 0) using only 818 

proteins available across all platforms. Correlation analyses were subsequently conducted to evaluate 819 

the proportion of variance in the full signatures that could be explained by these restricted protein 820 

models. 821 

 822 

Statistical Analysis 823 

Population characteristics were summarized as mean ± SD for normally distributed variables, median 824 

(IQR) for skewed variables, and n (%) for categorical variables. Missing clinical data were imputed 825 

using predictive mean matching via the R package mice (v 3.16.0). Continuous variables were imputed 826 



using predictive mean matching, binary variables via logistic regression, and ordinal variables with a 827 

proportional odds model. Imputation was based on age and sex (no missing values) to enhance data 828 

quality and repeated five times for robustness. Cox proportional hazards regression models were 829 

applied to evaluate the association between AtheroBurden scores and time to MACE among 830 

participants without baseline MACE. Three models were constructed: Model 1 adjusted for age and 831 

sex. Model 2 further adjusted for TC, HDL-C, SBP, and smoking (based on SCORE2 variables); and 832 

Model3 adjusted VRFs included age, sex, SBP, BMI, smoking status, LDL-C, triglycerides, eGFR, 833 

HbA1c, diabetes, and hypertension status. Multiple comparisons were addressed using FDR 834 

correction to control for type I error. 835 

 836 

To assess the added value of AtheroBurden signatures over SCORE2, we evaluated discrimination 837 

improvement using concordance indices (C-index), calculated with the concordance.index function 838 

(survcomp package, v 1.52.0, R). C-index differences (ΔC-index) were compared using the 839 

cindex.comp function, reporting p-values and 95% CI. Time-dependent ROC curves were generated 840 

at 10-year follow-up points to track model performance over time. Kaplan-Meier survival curves were 841 

used to estimate cumulative MACE incidence across AtheroBurden signature quartiles, with log-rank 842 

tests performed for group comparisons. Calibration of the SCORE2 model, with and without 843 

AtheroBurden signatures, was evaluated using calibration plots comparing observed 10-year Kaplan-844 

Meier estimates and predicted probabilities within deciles of predicted risk. Reclassification metrics 845 

included NRI, cfNRI, and IDI. The NRI analysis employed two established clinical thresholds (7.5% 846 

and 10%) derived from SCORE2 risk stratification guidelines, selected based on their validated clinical 847 

utility in cardiovascular risk assessment. These thresholds were applied as population-level cut-points 848 

to evaluate the overall reclassification performance of proteomic models when added to traditional risk 849 

factors. NRI was calculated using the package nricens (v.1.6)80 with confidence intervals and p-values 850 

based on 1000-fold bootstrap standard errors. The cfNRI and IDI metrics were calculated using the 851 

survIDINRI (v.1.1-2)81. Sensitivity analyses examined AtheroBurden signatures' associations with 852 

individual MACE components (AMI, stroke, and CV death) with FDR correction. Logistic and Poisson 853 

regressions were employed to assess AtheroBurden signatures' relationships with carotid plaque 854 

presence and burden. 855 

 856 

The longitudinal progression of AtheroBurden signatures was assessed using linear mixed-effects 857 

models with time since baseline (in years) as a continuous variable. The scores were derived from 858 

AtheroBurden scoring systems based on available proteomic data and were repeatedly measured for 859 

the same individuals at three time points: baseline (instance 0) and two follow-ups (instances 2 and 3). 860 

The mixed-effects models included random intercepts to account for individual-level variability, with 861 

fixed effects for standardized baseline risk factors and time.  862 

 863 

In the external validation analysis, cox proportional hazards models, adjusted using the same variables 864 

as previous analysis, were applied to examine the associations between restricted AtheroBurden 865 

signatures and incident MI and stroke. Kaplan-Meier survival curves were applied to estimate 866 

cumulative MI and stroke incidence across AtheroBurden scores quartiles in KORA S4, while 867 

improvements in discrimination were evaluated by changes in C-index when incorporating restricted 868 

AtheroBurden scores into SCORE2 variables across both cohorts. Sensitivity analysis excluded 869 

overlapping participants between KORA S4 and Age1 to maintain independence. Statistical power 870 

calculations for external validation analyses were conducted using R package powerSurvEpi (v 0.1.3)82, 871 

with an alpha level of 0.05. 872 

 873 

All statistical analyses were performed using R (version 4.3.3), and ML procedures were conducted in 874 

Python (version 3.9.10). A two-sided p <0.05 was considered statistically significant.  875 

 876 

 877 

 878 

 879 
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Table1. Baseline characteristics of participants for each the three cohorts analyzed for this 1110 

study. 1111 

Characteristic 
UK Biobank KORA S4 KORA-Age1 

N = 44,788 N = 1,361 N = 796 

Age at recruitment 

(years), Median (Q1, Q3) 
58.00 (50.00, 64.00) 63.00 (59.00, 68.00) 76.00 (70.00, 81.00) 

Sex, n (%)    

    Female 24,234 (54%) 685 (50%) 423 (53%) 

    Male 20,554 (46%) 676 (50%) 373 (47%) 

BMI (kg/m^2), Median 

(Q1, Q3) 
26.78 (24.19, 29.90) 27.95 (25.65, 30.83) 27.93 (25.51, 30.70) 

Diastolic blood pressure 

(mmHg), Median (Q1, 

Q3) 

82.00 (75.00, 89.00) 80.00 (73.50, 87.50) 76.00 (69.50, 83.00) 

Systolic blood pressure 

(mmHg), Median (Q1, 

Q3) 

138.00 (126.00, 152.00) 
135.00 (121.50, 

148.00) 

138.00 (124.50, 

150.50) 

Cholesterol (mmol/L), 

Median (Q1, Q3) 
5.62 (4.89, 6.38) 6.27 (5.53, 6.97) 5.53 (4.81, 6.15) 

HDL Cholesterol 

(mmol/L), Median (Q1, 

Q3) 

1.40 (1.18, 1.67) 1.44 (1.19, 1.75) 1.45 (1.20, 1.68) 

LDL Cholesterol 

(mmol/L), Median (Q1, 

Q3) 

3.50 (2.94, 4.08) 3.94 (3.27, 4.60) 3.28 (2.76, 3.90) 

Triglycerides (mmol/L), 

Median (Q1, Q3) 
1.49 (1.06, 2.14) 1.36 (0.99, 1.93) 1.41 (1.02, 1.99) 

eGFR (ml/min/1.73m^2), 

Median (Q1, Q3) 
95.06 (84.89, 104.57) 84.50 (74.73, 92.29) 71.70 (59.43, 83.03) 

HbA1c (mmol/L), Median 

(Q1, Q3) 
35.30 (33.00, 38.00) 37.71 (35.52, 40.98) 37.71 (35.52, 40.98) 

Previous smoking, n (%) 15,806 (35%) 510 (38%) 307 (39%) 

Current smoking, n (%) 4,816 (11%) 187 (14%) 34 (4%) 

Blood Pressure 

Medication, n (%) 
10,384 (23%) 455 (34%) 535 (67%) 

Cholesterol Lowering 

Medication, n (%) 
8,152 (18%) 134 (9.9%) 199 (25%) 

Diabetes, n (%) 2,009 (4.5%) 89 (6.6%) 112 (14%) 

Hypertension, n (%) 11,068 (25%) 737 (54%) 599 (75%) 

Abbreviations: KORA, Cooperative Health Research in the Region of Augsburg; BMI, body mass 1112 

index; LDL, low density lipoprotein; HDL, high density lipoprotein; HbA1c, glycated hemoglobin A1c; 1113 

eGFR: estimated glomerular filtration rate.1114 



Table 2:  Incremental discrimination and reclassification improvement for predicting MACE with the addition of AtheroBurden signatures. 

Comparison of model discrimination (C-index, ΔC-index) and reclassification (cfNRI, IDI) when adding various AtheroBurden signatures to SCORE2 

for predicting major adverse cardiovascular events (MACE). Results include internal validation and subgroup analyses by sex. All comparisons use 

SCORE2 as reference (Ref). 

Internal validation dataset (N=41,200; 3,122 incident MACE cases) 10-year follow up (1,887 incident MACE cases) 

model C-index (95% CI) 
ΔC-index (vs. 

SCORE2) 
p value cfNRI (95% CI) IDI (95% CI) 

SCORE2 0.701 (0.683-0.718) Ref - Ref Ref 

SCORE2 + AtheroBurden WholeProteome 0.737 (0.729-0.845) 0.036 1.45E-68 0.172 (0.147-0.194) 0.018 (0.014-0.021) 

SCORE2 + AtheroBurden Genetic  0.735 (0.727-0.743) 0.034 1.32E-65 0.177 (0.153-0.201) 0.017 (0.015-0.021) 

SCORE2 + AtheroBurden Mechanistic  0.730 (0.722-0.739) 0.030 5.96E-54 0.164 (0.137-0.187) 0.014 (0.011-0.017) 

SCORE2 + AtheroBurden Arterial  0.730 (0.722-0.739) 0.030 1.18E-48 0.155 (0.132-0.183) 0.018 (0.014-0.021) 

Analysis in females (N=18,057 1,192 incident MACE cases)  10-year follow up (681 incident MACE cases) 

SCORE2 0.722 (0.709-0.736) Ref - Ref Ref 

SCORE2 + AtheroBurden WholeProteome  0.746 (0.733-0.759) 0.023 7.00E-20 0.124 (0.086-0.169) 0.008 (0.005-0.012) 

SCORE2 + AtheroBurden Genetic  0.745 (0.732-0.758) 0.023 1.00E-19 0.137 (0.100-0.172) 0.008 (0.004-0.012) 

SCORE2 + AtheroBurden Mechanistic  0.743 (0.729-0.755) 0.020 9.00E-17 0.122 (0.078-0.161) 0.006 (0.003-0.010) 

SCORE2 + AtheroBurden Arterial  0.743 (0.729-0.756) 0.020 3.00E-14 0.121 (0.088-0.162) 0.009 (0.006-0.014) 

Analysis in males (N=23,143 1,930 incident MACE cases)  10-year follow up (1,206 incident MACE cases) 

SCORE2 0.681 (0.669-0.692) Ref - Ref Ref 

SCORE2 + AtheroBurden WholeProteome  0.729 (0.718-0.740) 0.049 7.00E-48 0.224 (0.198-0.256) 0.031 (0.024-0.039) 

SCORE2 + AtheroBurden Genetic  0.730 (0.719-0.741) 0.049 7.00E-51 0.230 (0.203-0.267) 0.032 (0.024-0.040) 

SCORE2 + AtheroBurden Mechanistic  0.725 (0.714-0.736) 0.044 2.00E-42 0.227 (0.199-0.252) 0.027 (0.020-0.035) 

SCORE2 + AtheroBurden Arterial  0.722 (0.711-0.733) 0.041 1.00E-36 0.196 (0.169-0.229) 0.030 (0.023-0.039) 

Abbreviations: cfNRI, category-free net reclassification improvement; NRI, net reclassification improvement; IDI, integrated discrimination improvement; 1115 

SCORE2, Systematic COronary Risk Evaluation version 2; CI, confidence intervals; Ref, reference; MACE, major adverse cardiovascular events.1116 



 1117 
Extended Figure 1. Detailed study workflow and analytical framework. This figure expands on the main workflow, 1118 

presenting detailed steps of the study, including dataset characteristics, machine learning processes, and specific 1119 

evaluation criteria for the AtheroBurden scoring system. Abbreviations: MR, Mendelian randomization; MACE, major 1120 

adverse cardiovascular events; ML, machine learning; SCORE2, Systematic COronary Risk Evaluation 2; KORA, 1121 

Cooperative Health Research in the Region of Augsburg.  1122 

1123 

1. Developing four protein panels—Whole Proteome, MR-Derived, Atherosclerosis-
Related and Artery-Enriched—as preselected model features

2. Training AtheroBurden scoring system using machine learning

Discovery dataset: UK Biobank (N = 3332)

Case-control study with 1,666 atherosclerotic cases and 1,666 matched controls.[1:1 Propensity
score matching (based on sex and age)]

Split discovery dataset into training set (80%) and testing set (20%)

Training set Testing set

Fold5

Fold2

Fold3

Fold4

Fold1

Ten times five -fold
cross validation; 
ML model selection;
Hyperparameter
tunning.

Split training dataset into five folds

Testing setModel evaluation

CatBoost selected as the best-performing model

Calculated continuous AtheroBurden signatures using CatBoost for each protein panel

3. MACE Risk Prediction and Plaque Association Analysis

Internal validation cohort: UK Biobank (N = 41200)

Prospective cohort of 41,200 participants without baseline MACE. During a median follow-up of 13.7
years, 3122 participants progressed to MACE.

Accessed incremental improvement in MACE risk prediction over SCORE2 for AtheroBurden
scores

Improvement in C-index over SCORE2 compared for SCORE2 + each AtheroBurden scores.
Compare improvement in categorical net reclassification index (NRI) and independent discrimination
improvement (IDI).

Evaluated association between AtheroBurden scores and incident MACE

Using Cox regression adjusted for 1) age and sex 2) SCORE2 variables 3) traditional cardiovascular
risk factors.
Comparing cumulative incidence of MACE across AtheroBurden score-defined risk groups to
visualize survival probability.

External validation dataset: KORA Age1 and S4 (Olink Taget proteomic)

Kora Age1 N = 1,361 participants (245 incident MI and stroke enevts)
Kora S4 N = 796 participants (112 incident MI and stroke enevts)
Generated restricted versions of the AtheroBurden signatures

4. External Validation

Longitudinal AtheroBurden scores trajectory analysis

Evaluation of temporal AtheroBurden score changes in 1210 participants with repeated proteomic
measurements stratified by baseline cardiovascular risk.

Explored the relationship between AtheroBurden scores and carotid plaque presence.

1712 participants (n = 717 with carotid plaque) with both carotid ultrasound data and available
plasma proteomics data.



 1124 

Extended Figure 2. Flow chart of participant exclusions.  1125 

Abbreviations: MACE, major adverse cardiovascular events; KORA, Cooperative Health Research in the Region of 1126 

Augsburg; MI, myocardial infarction. 1127 

1128 

UK Biobank baseline
assessment 
N = 502,421

Individuals with proteomic data
N = 53,021 

44788 Individuals in analysis

Discovery dataset (N = 3332) 
-1666 Atherosclerotic events at
baseline
-1666 controls

Internal validation cohort 
(N = 41,200)
- 3122 MACE cases

Excluded: 
    449,400 participants without available proteomic profiles

Excluded: 
    8,233 participants with proteomic data missing more than 30%

Excluded: 
    Discovery dataset participants (n=3,332), age < 40 (n=1),       
          baseline MACE (n=255)

Participant aged 55 - 74 years in KORA S4
N = 1653

Participant with proteomics data
N = 1565

Validation in KORA S4 (N = 1,361)
- Incident MI and Stroke (n = 245)

Participant with follow up information
N = 1361

Train and validate AtheroBurden
signature system in UK Biobank

Participant aged 65 - 94 years in KORA Age1
N = 1079

Participant with proteomics data
N = 1025

Validation in KORA Age1 (N = 796)
- Incident MI and Stroke (n = 112)

Participant with follow up information
N = 796

External validation in KORA cohorts

In sensitivity analysis, 207 participants overlapping with the KORA Age1 were excluded from the KORA S4

Carotid image dataset
(N = 1,712)
- Plaque presence (n = 717)
- no Plaque presence (n = 995)

Carotid image dataset
(N = 1,712)
- Plaque presence (n = 717)
- no Plaque presence (n = 995)

44788 Individuals with
AtheroBurden scores

Excluded: 
     43,076 participants without available carotid ultrasound image
(left or right).

Test asscociation between
AtheroBurden Signatures and

carotid plaque presence

Carotid image dataset
(N = 1,712)
- Plaque presence (n = 717)
- no Plaque presence (n = 995)

Longitudinal analysis cohort
(N = 1,210)
- Baseline + two follow-ups
(instance 0, 2, 3)

44788 Individuals with
AtheroBurden scores

Excluded: 
     42,578 participants without repeated proteomic measurements

Temporal progression analysis of
AtheroBurden Signatures in

Relation to Cardiovascular Risk
Profiles



 1129 

Extended Figure 3. Systematic development and implementation of biologically informed proteomic panels for 1130 

AtheroBurden score construction: (1) the entire plasma proteome, (2) proteins causally linked to atherosclerotic 1131 

disease through Mendelian randomization approaches, (3) proteins with established roles in atherosclerosis 1132 

pathogenesis validated through pathway enrichment analysis, and (4) arterial tissue-enriched proteins identified through 1133 

tissue-specific expression analysis. Abbreviations: GWAS, genome-wide association study; CAD, coronary artery 1134 

disease; MR, Mendelian randomization; UKB-PPP, UK Biobank Pharma Proteomics Project; GTEx, Genotype-Tissue 1135 

Expression Atlas. 1136 

1137 

UKB-PPP Olink 3072
proteomic profile (n = 2923)

Excluded:
> 30% Missing
values( n = 3)

Protein set (n = 2920)

Artery-enriched panel (n= 248)

Genotype-Tissue
Expression Atlas (GTEx)

Artery-enriched genes (three
times higher); Mapping

Differential RNA seq analysis
for Arteries tissue and other

tissue

Atherosclerosis-related panel
(n= 680)

Whole proteome panel 
(n= 2920)

MR-derived panel 
(n= 402)

GWAS summary statistics

Conducted MR analysis to
identify proteins causally
linked to Coronary artery

disease (CAD).

Enrichr

Atherosclerosis-related gene
sets; Mapping

Web Server for Gene Set
Enrichment and Term Search

Exposure: CAD
Outcome: Olink Proteomics;

Mapping

Development and Integration of Biologically-Informed Protein Panels for the AtheroBurden Signatures: Whole Proteome Features, MR-Derived,
Atherosclerosis-related and Artery-Enriched Features

CatBoost Classifiers

AtheroBurden Arterial
Signature

AtheroBurden Mechanistic
Signature

AtheroBurden Genetic
Signature

AtheroBurden
Wholeproteome Signature



 1138 

Extended Figure 4. Systematic assessment of machine learning model performance through cross-validation 1139 

analysis across protein panels. Performance metrics from 10 iterations of 5-fold cross-validation comparing eight 1140 

machine learning algorithms (CatBoost, LGBM, XGBoost, SVM, Random Forest, Logistic Regression, ElasticNET, and 1141 

MLP) across four biologically informed protein panels (whole proteome, MR-derived, atherosclerosis-related, and 1142 

artery-enriched). Box plots depict the distribution of accuracy, precision, recall, and ROC-AUC metrics, where boxes 1143 

represent the interquartile range (IQR, 25th to 75th percentiles), center lines indicate medians, whiskers extend to 1144 

1.5×IQR, and points beyond whiskers denote individual outliers. Abbreviations: ML, machine learning; ROC-AUC, 1145 

receiver operating characteristic-area under the curve; IQR, interquartile range; ElasticNET, elastic net regression; MLP, 1146 

multilayer perceptron; SVM, support vector machine; LightGBM, light Gradient Boosting Machine; CatBoost, categorical 1147 

boosting; XGBoost, eXtreme gradient boosting. 1148 
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 1150 

Extended Figure 5. Comparative analysis of machine learning model performance metrics in the testing set 1151 

across biologically informed protein panels. Radar plots depicting comprehensive performance assessment of eight 1152 

machine learning algorithms (CatBoost, LGBM, XGBoost, SVM, Random Forest, Logistic Regression, ElasticNET, and 1153 

MLP) evaluated on independent testing sets across four protein panels. The multi-dimensional visualization integrates 1154 

five key performance metrics: accuracy, precision, recall, F1 score, and ROC-AUC. Abbreviations: ROC-AUC, receiver 1155 

operating characteristic-area under the curve; ElasticNET, elastic net regression; MLP, multilayer perceptron; SVM, 1156 

support vector machine; LightGBM, light Gradient Boosting Machine; CatBoost, categorical boosting; XGBoost, 1157 

eXtreme gradient boosting.  1158 
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Extended Figure 6. Calibration plots for MACE risk prediction models at 10-year follow-up. This figure presents 1160 

calibration plots for cardiovascular risk prediction models, illustrating the agreement between predicted and observed 1161 

risks across four AtheroBurden signatures and SCORE2. Each plot compares the predicted probabilities (x-axis) with 1162 

the observed probabilities (y-axis) for the SCORE2 model and the SCORE2 model combined with AtheroBurden 1163 

signatures. The diagonal line represents perfect calibration, indicating complete agreement between predicted and 1164 

observed risks. The blue lines represent the model's calibration performance. Abbreviations: MACE, major adverse 1165 

cardiovascular events; SCORE2, Systematic COronary Risk Evaluation version 2.  1166 
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 1167 
Extended Figure 7. Net reclassification improvement (NRI) for SCORE2 and AtheroBurden signatures in 1168 

predicting 10-year MACE risk. This table summarizes the NRI results for the combination of SCORE2 and each 1169 

AtheroBurden signature in predicting 10-year MACE risk. Panel (a) represents the analysis for a predicted risk threshold 1170 

of 10%, while Panel (b) corresponds to a threshold of 7.5%. The rows show the reclassification percentages for 1171 

individuals with and without MACE when SCORE2 is combined with each of the four AtheroBurden signatures: whole 1172 

proteome (AtheroBurden WholeProteome Signature), MR-derived (AtheroBurden Genetic Signature), atherosclerosis-1173 

related (AtheroBurden Mechanistic Signature) and artery-enriched (AtheroBurden Arterial Signature). Columns indicate 1174 

the percentage of individuals reclassified into higher or lower risk categories after the inclusion of AtheroBurden 1175 

Signatures, along with the total number reclassified. Improvements in classification performance are summarized in the 1176 

final column, with NRI values and their 95% CI presented below each panel. Green-shaded cells represent 1177 

reclassifications into more accurate categories, while red-shaded cells indicate potential misclassifications. 1178 

Abbreviations: NRI, net reclassification improvement; SCORE2, Systematic COronary Risk Evaluation version 2; MACE, 1179 

major adverse cardiovascular events; MR, Mendelian randomization; CI, confidence interval. 1180 

1181 
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SCORE2 < 10% >= 10% < 10% >= 10% < 10% >= 10% < 10% >= 10%

< 10% 1192 349 22.6 1202 339 22 1219 322 20.9 1226 315 20.4 +

>= 10% 102 242 29.7 108 236 31.4 103 241 29.9 88 256 25.6 -

< 10% 33211 2001 5.7 33270 1942 5.5 33321 1891 5.4 33436 1776 5 -
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< 7.5% 29019 2202 7.1 29058 2163 6.9 29057 2164 6.9 29118 2103 6.7 -
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SCORE2 + AtheroBurden 

WholeProteome Signature

SCORE2 + AtheroBurden 

Genetic Signature

SCORE2 + AtheroBurden 

Mechanistic Signature

SCORE2 + AtheroBurden 

Arterial Signature

MACE

without 

MACE

Total sample size (N = 41200) / MACE cases (N = 1887)
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MACE

without 

MACE
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Extended Figure 8. Validation of AtheroBurden Signatures in KORA-Age1 and Non-Overlapping Cohorts.  1183 

(a) Correlation between restricted (KORA-Age1) and full proteomic signatures in the UK Biobank baseline cohort. 1184 

Restricted signatures (KORA-Age1) were derived using only proteins quantifiable across all measurement platforms. 1185 

Hexagonal binning scatter plots demonstrate correlations between restricted and corresponding full signatures with 1186 

Pearson correlation coefficients (R) and associated p-values. (b) Kaplan-Meier curves showing cumulative incidence of 1187 

myocardial infarction or stroke stratified by quartiles of restricted AtheroBurden signatures in KORA-Age1. Hazard ratios 1188 

(adjusted for SCORE2 variables) and log-rank test p-values are displayed with corresponding risk tables. (c) Forest 1189 

plots show HR and 95% CIs for restricted AtheroBurden signatures in the KORA S4 and KORA-Age1 cohorts after 1190 

excluding individuals with overlap between the two cohorts. HRs are presented for three adjustment models: 1191 

demographic factors (age and sex; orange), SCORE2 variables (total cholesterol, HDL-cholesterol, systolic blood 1192 

pressure, and smoking status; yellow), and VRFs (age, sex, systolic blood pressure, body mass index, smoking status, 1193 

LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated hemoglobin A1c, diabetes, and hypertension 1194 

status; purple). The gray dashed line represents an HR of 1.0 (no association). Statistical significance is indicated with 1195 

asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: HR, hazard ratio; CI, confidence interval; KORA, 1196 

Cooperative Health Research in the Region of Augsburg; SCORE2, Systematic COronary Risk Evaluation version 2; 1197 

VRFs, vascular risk factors.  1198 
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