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Abstract

Atherosclerosis progresses silently over decades before manifesting clinically as myocardial infarction
or stroke. Currently, no circulating biomarker reliably quantifies the burden of atherosclerosis beyond
imaging techniques. Here, we sought to define plasma proteomic signatures that reflect the systemic
burden of atherosclerosis. Using CatBoost machine learning applied to plasma proteomes (Olink
Explore 3072; 2,920 proteins) from 44,788 UK Biobank participants, we derived four proteomic
signatures which robustly discriminated individuals with known atherosclerotic disease from propensity
score-matched controls (ROC-AUC up to 0.92, 95% CI: 0.90-0.94 in the test set). Each signature was
based on distinct protein sets: the whole proteome (WholeProteome; n = 2920), proteins associated
with genetic predisposition to atherosclerosis (Genetic; n = 402), those implicated in atherogenesis
(Mechanistic; n = 680), and proteins enriched in arterial tissue (Arterial; n = 248). Among 41,200
individuals without atherosclerosis at baseline, all four signatures were strongly associated with future
major adverse cardiovascular events over a median follow-up of 13.7 years (HR per SD increase in
WholeProteome signature: 1.70, 95% CI: 1.64-1.77), providing significant improvements in risk
discrimination (AC-index: +0.036; p <0.0001) and reclassification (Net Reclassification Index: 0.085—
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0.135 at a 10% risk threshold) beyond SCOREZ2. Signature levels increased with the number of
clinically affected vascular beds, correlated with carotid ultrasound—measured plaque burden, and
predicted future myocardial infarction and stroke in the external KORA S4 (n=1,361) and KORA-Age1
(n=796) cohorts with a median follow-up period of 15.1 and 6.8 years, respectively. Longitudinal
analyses across three serial assessments showed that all signatures followed distinct trajectories, with
significantly steeper annual increases among individuals with a higher burden of vascular risk factors.
These findings demonstrate that proteomic signatures effectively capture atherosclerotic burden and
improve cardiovascular risk prediction in asymptomatic individuals. Plasma proteomics may serve as
a scalable and accessible alternative to imaging for identifying subclinical atherosclerosis, thereby
supporting prevention strategies for cardiovascular disease.

Keywords: proteomics, atherosclerosis, machine learning, risk prediction, cardiovascular disease.
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Main

Cardiovascular disease remains the leading global cause of death and disability,"? driven primarily by
atherosclerosis,® a progressive, lipid-driven inflammatory process that silently accumulates over
decades before culminating in clinical events such as myocardial infarction and stroke.*® Despite
advances in prevention and treatment, many individuals with a high atherosclerosis burden remain
undiagnosed until the occurrence of a major cardiovascular event, underscoring a critical gap in early
detection and prevention.® The continued rise in the incidence of cardiovascular events’® further
emphasizes the need to refine current paradigms of risk assessment.

Current prevention strategies rely on population-level algorithms, such as SCORE2 and the pooled
cohort equations, which estimate cardiovascular risk based on demographic and clinical variables
including age, sex, blood pressure and cholesterol levels.®'" While widely adopted, these models do
not directly quantify atherosclerotic burden and offer limited resolution in individual risk assessment.
Direct detection of subclinical atherosclerosis remains dependent on imaging modalities including
angiography, CT, MRI, PET, or ultrasound.'?>'* While informative, these techniques are constrained
by procedural risks, radiation exposure, availability, and the need for specialized personnel.'®
Circulating biomarkers could overcome these limitations by offering scalable tools for identifying
individuals with atherosclerosis, improving cardiovascular risk stratification, and facilitating longitudinal
monitoring. However, existing circulating biomarkers, such as C-reactive protein (CRP)'® or cardiac
troponins'’, primarily reflect systemic inflammation or myocardial injury and fall short of directly
assessing atherosclerotic plaque burden or progression.

Circulating proteins may serve as real-time indicators of pathophysiological processes.'® Recent
advances in proteomic technologies enable the simultaneous quantification of thousands of
proteins,'®?° providing a window into dynamic, tissue-specific pathophysiological processes.
Integrating these data through machine learning has uncovered proteomic signatures predictive
of early stages of neurodegenerative disease,?’?® cancer,?*? diabetes,?*3' autoimmune
disease®**, and mortality risk through proteomic aging clocks®. While previous studies have
shown potential for plasma proteomics in improving prediction of specific cardiovascular
otucomes®*!, the capacity of plasma proteomics to systematically capture the burden and
trajectory of atherosclerosis has not been fully elucidated, limiting its utility for assessing disease
stage and extent.

Here, we leveraged plasma proteomics from the UK Biobank (UKB) and two independent cohorts to
develop and validate four biologically informed proteomic signatures of atherosclerotic burden
(AtheroBurden). Using machine learning, we constructed four signatures based on data from 1,666
cases with established atherosclerotic disease and 1,666 age- and sex-matched controls:
WholeProteome (derived from the entire proteome), Genetic (genetically anchored proteins identified
via Mendelian randomization), Mechanistic (proteins implicated in atherogenesis), and Arterial (artery-
enriched proteins). We evaluated the ability of these signatures to predict incident cardiovascular
events in 41,200 disease-free UKB participants (median follow-up 13.7 years), and further validated
externally in Cooperative Health Research in the Region of Augsburg (KORA) S4 (n=1,361, median
follow-up 15.1 years) and KORA-Age1 (n=796, median follow-up 6.8 years). Subsequently, we
analyzed associations between the signatures and carotid plaque burden measured by imaging.
Finally, we assessed the longitudinal trajectories of these four signatures across three serial time
points spanning a median of 12.5 years, and investigated how signature trajectories are influenced by
baseline cardiovascular risk factors and the occurrence of future cardiovascular events.
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Results

Summary of the study design

The study design is summarized in Figure 1. A detailed study workflow, including data processing, ML
model development, and validation steps, is provided in Extended Figure 1. Of the 502,421
participants enrolled in the UKB, a total of 44,788 participants (54% female, median age 58 years
[interquartile range, IQR: 39—71 years]) met our inclusion criteria, after excluding participants with >30%
missing proteomic data (Extended Figure 2). To develop proteomic signatures of atherosclerosis
(AtheroBurden signatures), we leveraged four sets of proteins (Extended Figure 3) and trained ML
models to discriminate the 1,666 cases with established atherosclerotic disease from 1,666 age- and
sex-matched controls (discovery dataset). The developed AtheroBurden signatures were
subsequently tested for associations with incident major adverse cardiovascular events (MACE,
defined as a composite of myocardial infarction, stroke, or cardiovascular death) over a median follow-
up of 13.7 years (n=41,200), followed by external validation in KORA S4 (n=1,361, median follow-up
15.1 years) and KORA-Age1 cohorts (n=796, median follow-up 6.8 years). Baseline characteristics of
participants in the development cohort (UKB) and both validation cohorts (KORA S4 and KORA-Age1)
are presented in Table 1. We further explored associations of the derived signatures with imaging
evidence of atherosclerosis on carotid ultrasound (n=1,712), as well as serial changes across three
timepoints and longitudinal progression patterns stratified by both baseline SCORE2 risk categories
and incident MACE status (n=1,210) in subsamples of the UKB.
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Figure 1. Overview of the study design and analytical approaches.

The diagram illustrates the methodological approach implemented for protein-based atherosclerosis burden
quantification. Machine learning models were trained in a UK Biobank discovery dataset (n=3,332; 1,666
atherosclerosis cases and 1,666 age- and sex-matched controls) using four biologically-informed protein panels. The
resulting AtheroBurden signatures were validated in a disease-free UK Biobank cohort (n=41,200; median follow-up
13.7 years), assessed for association with carotid plaque burden (n=1,712), evaluated longitudinally (n=1,210), and
externally validated in the KORA S4 (n=1,361) and Age1 (n=796) cohorts. Abbreviations: MACE, major adverse
cardiovascular events; AMI, acute myocardial infarction; CV death, cardiovascular death; MI, myocardial infarction;
ROC AUC, receiver operating characteristic area under curve; GTEX, genotype-tissue expression; MR, Mendelian
randomization; MLP, multilayer perceptron; ElasticNET, elastic net regression; XGBoost, eXtreme Gradient Boosting;
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LightGBM, light Gradient Boosting Machine; CatBoost, categorical boosting; SVM, support vector machine; KORA,
Cooperative Health Research in the Region of Augsburg.

Development of AtheroBurden proteomic signatures

To construct proteomic signatures of atherosclerosis burden, we developed ML classifiers using a
case-control discovery dataset comprising 1,666 participants with an established diagnosis of
atherosclerotic cardiovascular disease and 1:1 age- and sex-matched controls (median age 63 years
[IQR: 59-66 years], 30% female, Supplemental Table S1). Atherosclerotic disease was defined by
diagnostic codes encompassing coronary, cerebrovascular (including carotid), aortic, and peripheral
arterial manifestations (see Methods). We evaluated the diagnostic performance of eight ML models—
Logistic Regression, Random Forest, elastic net regression (ElasticNET), multilayer perceptron (MLP),
support vector machine (SVM), light Gradient Boosting Machine (LightGBM), categorical boosting
(CatBoost), and eXtreme Gradient Boosting (XGBoost)—using four sets of proteins. The four protein
sets were selected to represent different levels of biological relevance to atherosclerosis (Extended
Figure 3): (i) the whole proteome (2,920 proteins); (ii) 402 proteins with evidence of causal association
with genetic predisposition to coronary artery disease as derived from Mendelian randomization (MR)
analyses (MR-derived panel); (iii) 680 proteins coded by atherosclerosis-related genes as curated from
literature-based evidence according to the EnrichR platform*? (atherosclerosis-related panel); and (iv)
248 proteins overexpressed in the aorta, coronary or tibial arteries, as detected in transcriptomic
analyses across 54 tissues in GTEx*? (artery-enriched panel). The list of proteins included in every set
is provided in Supplemental Table S2. Across ten iterations of five-fold cross-validation, CatBoost
consistently outperformed the other tested models in accuracy, precision, discrimination, and recall
(Extended Figure 4, Supplemental Table S3). While MLP and ElasticNET achieved higher
performance than CatBoost for the artery-enriched panel in certain iterations, their results were
inconsistent and exhibited significant variability. In contrast, CatBoost demonstrated robust and stable
performance across all four panels, maintaining superior accuracy and reliability compared to other
models (Extended Figure 4, Supplemental Table S$3). CatBoost also outperformed all other models
in accuracy in the testing set (Extended Figure 5, Supplemental Table S4). We therefore selected
CatBoost-derived models for subsequent analyses.

As shown in Figure 2a, the selected CatBoost models achieved high true positive and true negative
rates across all panels in the testing set. Compared to a baseline model using SCORE2 variables
(area under the receiver operating characteristic curve [ROC-AUC]: 0.80), the proteomic panels
significantly improved discrimination. The atherosclerosis-related, MR-derived, and whole proteome
panels achieved comparable enhancements (ROC-AUCs: ~0.91, p < 0.001), while the artery-enriched
panel resulted in a modest, non-significant improvement (ROC-AUC: 0.84, p=0.146; Figure 2b). To
understand the contributions of individual proteins, we calculated Shapley values (SHAP) across each
panel. Renin (REN), NT-proBNP, Natriuretic peptide B (NPPB), and proprotein convertase
subtilisin/kexin type 9 (PCSK9) consistently emerged as the top contributors to the atherosclerosis-
related, MR-derived, and whole proteome panels (Figure 2c). We subsequently applied these
CatBoost models to generate four complementary signatures (AtheroBurden-WholeProteome, -
Genetic, -Mechanistic, and -Arterial) for all UKB participants with available proteomic data. The density
distributions of all AtheroBurden signatures showed a clear rightward shift in participants with
atherosclerotic disease and a corresponding leftward shift in disease-free participants, reflecting higher
and lower scores relative to the population mean, respectively (Figure 2d). Furthermore, the
signatures captured the burden of atherosclerosis, as illustrated by higher scores among participants
with evidence of atherosclerotic disease in two or more versus one arterial bed (Figure 2e).
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Figure 2. Evaluation of machine learning-derived proteomic signature for atherosclerosis detection and burden
assessment across four protein panels.

(a) Confusion matrices of classification performance across protein panels. The confusion matrices summarize the
classification outcomes for each protein panel, illustrating proportions of true positives, true negatives, false positives,
and false negatives. These results reflect the overall accuracy and error distribution of the models. (b) ROC curves for
model evaluation. The ROC curves in the testing set illustrate the predictive performance of each protein panel. Each
plot includes two curves: one representing the performance of the respective protein panel and the other showing the
predictive capacity of cardiovascular risk factors included in the SCORE2 algorithm, used as a comparator. The AUC
values and their 95% CI are reported for each curve. (c) Shapley (SHAP) values identify the top 10 contributing proteins.
The bar plots display the mean absolute SHAP values for the top 10 proteins contributing to each model, ranked in
descending order. (d) Density distributions of AtheroBurden signatures stratified by atherosclerotic status. The density
plots depict the distributions of AtheroBurden signatures for healthy controls versus atherosclerotic cases, as well as
within the UKB cohort. (e) Violin-box plots of AtheroBurden signatures stratified by the number of affected vascular
beds as a measure of atherosclerotic burden (*p < 0.05, ***p < 0.001 between indicated groups). The middle line
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216

217  Longitudinal associations of AtheroBurden signatures with incident cardiovascular events
218

219  To examine the hypothesis that derived signatures capture presence and burden of atherosclerosis
220  among individuals without a history of cardiovascular disease, we assessed associations between the
221 AtheroBurden signatures and incident MACE (composite of acute myocardial infarction [AMI], stroke,
222 or cardiovascular death) were assessed in an independent validation cohort of 41,200 participants
223  (median age 58 years, 56% female, Supplemental Table S5). During a median follow-up of 13.7 years,
224 3,122 incident MACE were documented. All four scores were consistently associated with incident
225  MACE (Figure 3a) in Cox regression models adjusted for age and sex, SCORE2 variables (age, sex,
226  total cholesterol, HDL-cholesterol, systolic blood pressure [SBP], and smoking status), as well as a
227  more comprehensive list of demographic and vascular risk factors (age, sex, SBP, body mass index,
228  smoking status, LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated
229  haemoglobin A1c, diabetes, and hypertension status). In the fully-adjusted models, the hazard ratios
230  for MACE per standard deviation increase in the proteomic signatures ranged between 1.49 for the
231  Arterial (95% CI [confidence interval]: 1.43-1.56, p=1.2x107°) and Mechanistic signature (95% CI:
232 1.42-1.56, p=1.4x10"%) to 1.56 for the Genetic (95% Cl: 1.49-1.63, p=6.0x10®") and WholeProteome
233 signature (95% Cl: 1.48-1.63, p=1.2x10"7", Supplemental Table S6). All four signatures were
234 significantly associated with all three MACE components, but they showed consistently stronger
235  associations with cardiovascular death than AMI and stroke (Figure 3a and Supplemental Table S6).
236  Stratifying the AtheroBurden scores by quartiles, we found strong dose-response relationships, with
237  MACE risk with incidence rates of 17.6-19.2% in the highest (Q4) versus 4.8-5.3% in the lowest
238  quartiles (Q1) at the end of the 16-year follow-up (Figure 3b). The hazard ratio (HR) for Q4 vs. Q1
239  following adjustments for the full list of vascular risk factors ranged from 2.65 (95% CI: 2.37-2.97) for
240  the Arterial signature to 2.99 (95% ClI: 2.65-3.37) for the WholeProteome signature.

241

242  Adding the AtheroBurden signatures to baseline SCORE2 led to significantly improved discrimination
243  for future MACE risk, as indicated by increases in the C-indices (Table 2). The WholeProteome
244 signature exhibited the largest improvement in discrimination, increasing the C-index by 0.04 (from
245  0.70 to 0.74; p=1.45x108). These improvements remained robust in sex-stratified analyses, yielding
246  anincrease of up to 0.05 in the C-index among males. Testing discrimination changes in 10-year risk,
247  against which SCORE2 is validated, further supported significant improvements (time-dependent
248  ROC-AUC for SCORE2 0.70 vs. 0.74 when adding the AtheroBurden WholeProteome signature,
249  p=1.56x10"°°, Figure 3c). Incorporating AtheroBurden signatures also led to improvements in
250  calibration, as indicated by improved alignment between predicted and observed risks (Extended
251 Figure 6), as well as in net reclassification improvement (NRI) metrics (category-free net
252  reclassification improvement [cfNRI] and integrated discrimination improvement [IDI]) for both the 10-
253  yearand total follow-up periods (p < 0.001 for all comparisons; Table 2). At established clinical decision
254 risk thresholds (7.5% and 10%), addition of AtheroBurden signatures to SCORE2 led to improved
255  reclassification of study participants to the right risk category. For example, the WholeProteome
256  signature improved net reclassification of 11.2% of study participants (95% CI: 8.5%-13.5%) at the 10%
257  risk threshold, while the Genetic signature yielded a 9.6% improvement (95% Cl: 7.0%-12.5%) at the
258  7.5% threshold (Extended Figure 7).



259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

Ar i Ar Genetic Sig Ar istic Sit ArtheroBurden Arterial Signature
ot ot ot o
MACE (] MACE (] MACE (] MACE [l
o o g o @
—e—i —e—t ——i —e—i
Stroke —— Stroke —— Stroke —e—i Stroke ——
—e—i —e—i —e—i —e—i -
—e—i —e—i ——i ——
AMI —— AMI —— AMI —— AMI ——
—e— —e—i —e— —e—i
—e—i —e—i —e—i —e—i
CV Death —— CV Death —— CV Death —— CV Death ——
—e—i —e— —e— —e—i

15 20 15 20
Hazard Ratio (95% CI) Hazard Ratio (95% CI)

Model @ Adjusted for Age and Sex * Adjusted for SCORE2 Variables ® Adjusted for VRFs

Arther ig Arther Genetic Sigl Arther ig ArtheroBurden Arterial Signature

~ Q1, Reference
Q2, HR = 1.25 (95% Cl, 1.1-1.43)
Q3, HR = 1.74 (95% Cl, 1.53-1.97)
15{ — Q4, HR =2.99 (95% Cl, 2.65-3.37,

“1 - Q1, Reference
Q2, HR = 1.11 (95% Cl, 0.97-1.26)
Q3, HR = 1.57 (95% Cl, 1.39-1.77)
15~ Q4, HR = 2.89 (95% Cl, 2.57-3.24;

~ Q1, Reference
Q2, HR = 1.23 (95% Cl, 1.08-1.39)
Q3, HR = 1.56 (95% Cl, 1.38-1.76)
~ Q4, HR = 2.81 (95% Cl, 2.51-3.16)

0
- Q1, Reference
Q2, HR = 1.28 (95% Cl, 1.13-1.45)

Q3, HR = 1.51 (95% Cl, 1.34-1.7)

15~ Q4, HR = 2.65 (95% Cl, 2.37-2.97)

log-rank test p <0.0001 log-rank test p <0.0001 log-rank test p <0.0001 log-rank test p <0.0001

Cumulative inciden:e rate of MACE (%)
Cumulative inciden:e rate of MACE (%)
Cumulative inciden:e rate of MACE (%)
Cumulative inciden:e rate of MACE (%)

5 / 5 P 5 / 5
e
o 0 0 0
[ 6 [ 2 15 [) 6 [ 2 15 0 3 [] 9 2 15 [ 3 [] [ 2 15
Time (years) Time (years) Time (years) Time (years)
Number at risk Number at risk Number at risk Number at risk
Q110800 10223 10081 9911 9679 964 Q110300 10228 10083 9911 9636 1027 Q110800 10207 10057 9876 9596 983 Q110800 10221 10072 9861 9623 956
10300 10202 10046 9831 9550 1004 10300 10198 10031 9801 9543 962 10300 10200 10025 9782 9517 1017 10300 10189 10026 9799 474 927
10300 10156 9925 9579 9201 976 10300 10155 9922 9608 9264 947 10300 10159 9910 9595 9241 908 10800 10171 9919 9613 9250 987
Q4 10300 9977 9493 8965 8262 738 Q4 10300 9977 9509 8966 8249 746 Q4 10300 9992 9553 9033 8338 774 Q4 10300 9977 9528 9013 8345 812
[ 3 6 [ 12 15 [) 3 [ [ 12 15 [) 3 [ [ 12 15 [) 3 [ [ 12 15
Time (years) Time (years) Time (years) Time (years)
ArtheroBurden WholeProteome Sig Ar Genetic Sig Arther istic Si ArtheroBurden Arterial Signature
1.00 © 100 1.00 " 100
_0.75 _075 _0.75 _075
T 3 T 3
o a o a
e [ [ [
2 2 7 2 Z
3 0.50 3 0.50 3 0.50 3 0.50
Q Q / @ ‘|
€ c € c
@ < @ <
» ] [ ]
0.25 0.25 0.25 0.25
/— SCOREZ: 0.700 (0.689 - 0.711) / = SCoRE2: 0700 (0689 0711) / ~ SCORE2: 0.700 (0.689 - 0.711) "~ SCORE2:0.700 (0.689 - 0.711)
/). = plis WholeProteome Signature: 0.742 (0.732 - 0.753) /" plls Genetic Signaiure: 0.740 (0.729 - 0.751) /.~ plus Mechanistic Signature: 0.734 (0.723 - 0.745) +" — plus Arterial Signature: 0.736 (0.725 - 0.746)
0.00{ . 0.00 . 0.00{_* 0.001 .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
1 - Specificity (FPR) 1 - Specificity (FPR) 1 - Specificity (FPR) 1 - Specificity (FPR)

Figure 3. Associations of AtheroBurden scores with future cardiovascular risk in the UK Biobank (n=41,200).
(a) Multivariable Cox regression analyses demonstrating associations between AtheroBurden scores and
cardiovascular outcomes (MACE and its components—stroke, AMI, and CV death). Effect estimates are presented with
95% confidence intervals under hierarchical adjustment models: demographic factors (age and sex; orange), SCORE2
variables (total cholesterol, HDL-cholesterol, systolic blood pressure, and smoking status; yellow), and VRFs (age, sex,
systolic blood pressure, body mass index, smoking status, LDL-cholesterol, triglycerides, estimated glomerular filtration
rate, glycated hemoglobin A1c, diabetes, and hypertension status; purple). Statistical significance after FDR adjustment
is denoted by asterisks: *p < 0.05, **p< 0.01, ***p < 0.001. (b) Kaplan-Meier curves for the cumulative incidence of
MACE stratified by quartiles of AtheroBurden signature. Population risk gradients are illustrated through color-stratified
quartiles (Q4: purple; Q1: orange), with hazard ratios adjusted for SCORE2 variables. Risk tables quantify the at-risk
population across follow-up intervals. (c) Time-dependent ROC curves evaluating discriminatory performance for
predicting cardiovascular risk over a 10-year follow-up period. The orange curve represents the SCORE2 model alone,
while the purple curve represents SCORE2 combined with AtheroBurden signatures. The enhancement in risk
discrimination is quantified through comparative area under the curve metrics with corresponding 95% confidence
intervals. Abbreviations: MACE, major adverse cardiovascular events; AMI, acute myocardial infarction; CV Death,
cardiovascular death; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HR, hazard ratio; Cl, confidence
interval; SCORE2, Systematic COronary Risk Evaluation version 2; VRFs, vascular risk factors; Q1/Q4, quartile
1/quartile 4; ROC, receiver operating characteristic.

Association with plaque presence and burden

As a next step, we examined associations of the AtheroBurden signatures with imaging evidence of
atherosclerosis. As UKB lacks assessment of plaque presence at baseline assessments (2006-2010),
we used data from 1,712 individuals who had baseline proteomic measurements and underwent
carotid ultrasound imaging at the first follow-up visit starting in 2014. Using a deep learning model that
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we had previously developed**, we found 717 participants to have evidence of carotid atherosclerosis,
of whom 222 participants had =2 plaques (Supplemental Table S7). In logistic regression models for
plague presence and Poisson regression models for plaque count, we found significant associations
of the baseline WholeProteome, Genetic, and Mechanistic signatures with carotid plaque presence
and burden at the firstimaging visit after adjustments for age and sex, SCOREZ2 variables, and vascular
risk factors (Figure 4, Supplemental Table S8).
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Figure 4. Associations between AtheroBurden scores at baseline and ultrasound-defined carotid plaque
presence and burden over follow-up in the UK Biobank (n=1,712). Forest plots illustrating the associations between
four AtheroBurden scores and two measures of atherosclerosis: plaque presence (assessed by logistic regression) and
plaque count (assessed by Poisson regression). Results are presented as ORs for plaque presence and RRs for plaque
burden, each with corresponding 95% Cls. The gray dashed vertical line at 1.0 represents the null hypothesis of no
association. Effect estimates are presented with 95% confidence intervals under hierarchical adjustment models:
demographic factors (age and sex; orange), SCORE2 variables (total cholesterol, HDL-cholesterol, systolic blood
pressure, and smoking status; yellow), and VRFs (age, sex, systolic blood pressure, body mass index, smoking status,
LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated hemoglobin A1c, diabetes, and hypertension
status; purple). Statistical significance after FDR adjustment is denoted by asterisks: *p < 0.05, **p< 0.01, ***p < 0.001.
Abbreviations: OR, odds ratio; RR, rate ratio; Cl, confidence interval; SCORE2, Systematic COronary Risk Evaluation
version 2; VRFs, vascular risk factors; FDR, false discovery rate.

Longitudinal Assessment of AtheroBurden Signatures and Their Clinical Correlates

To examine whether serial changes in the derived AtheroBurden scores capture progression of
atherosclerosis, we conducted a two-step analysis. First, we assessed associations of baseline
vascular risk factors with longitudinal score changes in 1,210 UK Biobank participants with at least one
follow-up assessment of their circulating proteome at instance 2 (starting 2014) or 3 (starting in 2019).
Next, we examined whether individuals who experienced incident MACE showed different progression
patterns compared to event-free participants.
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Compared to participants with proteomics profiling at a single timepoint, participants with serial
assessments were significantly younger (median age at recruitment 49 vs. 58 y) and had a
substantially lower burden of vascular risk factors (Supplemental Table S9). Because follow-up
proteomic assessments at these time points were limited to an earlier version of Olink Explore —
covering approximately 50% of the proteins in the newer version— we generated restricted signatures
using the overlapping subset of 1,459 proteins (Supplemental Table S10). These restricted signatures
correlated highly with the full signatures derived at baseline (instance 0), demonstrating robust signal
preservation (R=0.91-0.94, all p<2.2x10°'%; Figure 5a).

When stratified by baseline cardiovascular risk categories, we found individuals in higher baseline
cardiovascular risk strata (10-year SCORE2 risk: <2.5%, 2.5-5%, 5-7.5%, and >7.5%) to exhibit
steeper annual increases in all four AtheroBurden signatures (Figure 5b). For example, changes in
the Genetic AtheroBurden signature ranged from a decrease of 0.020 SD per year (95% CI: -0.026 to
-0.015, p = 3.61x107"®) in the lowest baseline risk category (<2.5% 10-year risk) to an increase of 0.085
SD per year (95% Cl: 0.076 to 0.094; p = 1.15x107'®) in the highest risk category (>7.5%). Furthermore,
to determine whether AtheroBurden signature progression was specifically associated with clinical
outcomes, we tested the progression patterns of individuals who went on experiencing incident MACE
during follow-up using linear mixed-effects models, which revealed significantly different trajectories
(Figure 5c). Specifically, we found progression of AtheroBurden signatures to be restricted to
individuals who experienced MACE during follow-up. Annual progression coefficients in MACE-
positive participants ranged from =0.042 (95% CI: 0.007-0.076; p=0.021) for the Arterial signature to
B=0.099 (95% CI: 0.058-0.139; p=1.73%x10"°) for the Genetic signature, while event-free participants
exhibited no significant progression.
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Figure 5. Serial changes of AtheroBurden Scores by baseline cardiovascular risk and incident cardiovascular
events in the UK Biobank (n=1,210).

(a) Baseline correlation of restricted and full proteomic signatures. Restricted proteomic signatures were derived at
baseline (instance 0) using 1,459 proteins common across both available measurement platforms (Olink Explore 1536
and Explore 3072). Scatter plots with hexagonal binning illustrate correlations between restricted and corresponding
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full AtheroBurden signatures (WholeProteome, Genetic, Mechanistic and Arterial). Pearson correlation coefficients (R)
and associated p-values are displayed for each signature. (b) Longitudinal trajectories stratified by baseline SCORE2
risk categories. Temporal evolution of AtheroBurden scores stratified by baseline SCOREZ2 risk categories (<2.5%, 2.5-
5%, 5-7.5%, and >7.5%). Bars represent mean values at three time points (instance 0, 2, and 3), with error bars
indicating standard error. Annual progression rates () and corresponding p-values were derived from linear mixed-
effects models. (c) Temporal evolution of AtheroBurden scores stratified by incident major adverse cardiovascular
events (MACE). Mean AtheroBurden scores at three time points (instances 0, 2, and 3) are presented separately for
participants without and with subsequent MACE events (denoted as 'No' and 'Yes', respectively). Error bars represent
standard error. Annual progression rates () and p-values were derived from linear mixed-effects models. Abbreviations:
MACE, major adverse cardiovascular events; SCORE2, Systematic COronary Risk Evaluation version 2; SE, standard
error.

External Validation of AtheroBurden signatures in KORA cohorts

Finally, to externally validate our findings, restricted versions were applied to the population-based
KORA S4 (n=1,361) and KORA-Age1 (n=796) prospective cohort studies (Supplemental Table S11).
Because protein quantification in KORA cohorts was limited to cardiovascular and inflammation panels,
restricted signatures were constructed using available overlapping proteins: 232 for WholeProteome,
44 for Genetic, 146 for Mechanistic, and 30 for Arterial signatures in KORA S4; and 242 for
WholeProteome, 45 for Genetic, 147 for Mechanistic, and 30 for Arterial signatures in KORA-Age1.
There were moderate to strong correlations between the KORA-adapted signatures and the full
AtheroBurden signatures in UKB (R=0.56-0.75, all p<2.2x107'®) in both cohorts (Figure 6a for S4,
Extended Figure 8a for Age1). Compared to the UKB cohort, participants in the KORA S4 and Age1
cohorts were older (S4: median age 63 years; Age1: median age 76 years) and had a more balanced
sex distribution (S4: 50% female; Age1: 53% female, Table 1). Over a median follow-up of 15.1 years
in S4 and 6.8 years in Age1, 245 and 112 participants were diagnosed with a myocardial infarction [MI]
or stroke, respectively.

In age- and sex-adjusted models, we found all four AtheroBurden signatures to be associated with the
risk of Ml or stroke in both cohorts (Figure 6b and Supplemental Table $12), with the Mechanistic
and WholeProteome signatures demonstrating significant associations after adjustment for the full set
of vascular risk factors. Sensitivity analyses excluding overlapping participants in S4 and Age1 showed
similar results, though with limited statistical power to draw definitive conclusions (Extended Figure
8a, Supplemental Table S13). Kaplan-Meier analyses demonstrated that participants in the highest
signature quartile (Q4) exhibited significantly elevated cumulative incidence of cardiovascular events
compared to lower quartiles in KORA S4 (log-rank p < 0.0001 for all signatures, Figure 6c). Similar
patterns were observed in KORA-Age1 (Extended Figure 8b). After adjusting for SCOREZ2 variables,
HRs for Q4 relative to Q1 ranged from 1.62 (95% ClI: 1.12—2.35) for the Mechanistic signature to 2.39
(95% ClI: 1.57-3.63) for the Genetic signature. Similar to the UKB, adding the AtheroBurden signatures
on top of baseline SCORE2 led to improvements in discrimination of Ml or stroke in both S4 and Age1
(Supplemental Table S14).
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Figure 6. Associations of AtheroBurden signatures with future cardiovascular risk in the KORA S4 (n=1,361)
and KORA-Age1 (796) cohorts.

(a) Correlation between restricted (KORA S4) and full proteomic signatures in the UK Biobank baseline cohort.
Restricted signatures (KORA S4) were derived using only proteins quantifiable across all measurement platforms.
Hexagonal binning scatter plots demonstrate correlations between restricted and corresponding full signatures with
Pearson correlation coefficients (R) and associated p-values. (b) Forest plots present HRs and 95% Cls for restricted
AtheroBurden scores across the KORA S4 and Age1 cohorts. HRs are shown for three adjustment models:
demographic factors (age and sex; orange), SCORE2 variables (total cholesterol, HDL-cholesterol, systolic blood
pressure, and smoking status; yellow), and VRFs (age, sex, systolic blood pressure, body mass index, smoking status,
LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated hemoglobin A1c, diabetes, and hypertension
status; purple). The grey dashed line indicates an HR of 1.0 (no association). Statistical significance is indicated by
asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. (c) Kaplan-Meier curves showing cumulative incidence rates of Ml/stroke
stratified by quartiles of four restricted AtheroBurden signatures in KORA S4. The HRs displayed are adjusted for
SCOREZ2 variables. Risk tables are provided below each plot, and log-rank test p-values are displayed for group
comparisons. Abbreviations: MI, myocardial infarction; HR, hazard ratio; Cl, confidence interval; KORA, Cooperative
Health Research in the Region of Augsburg; SCOREZ2, Systematic COronary Risk Evaluation version 2; VRFs, vascular
risk factors.
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Discussion

In this study, by leveraging large-scale population-based data, we constructed four plasma proteomic
signatures that (i) discriminated between presence and absence of clinically diagnosed atherosclerotic
disease, (ii) showed a dose-response relationship with the number of vascular beds affected by
atherosclerosis, (iii) strongly predicted future risk of cardiovascular events in disease-free individuals,
(iv) correlated with imaging-defined carotid plaque burden, and (v) longitudinally changed according to
baseline cardiovascular risk and future MACE occurrence. Our findings demonstrate the utility of ML-
derived signatures of plasma proteomics for assessing atherosclerosis burden and estimating
cardiovascular risk in disease-free individuals.

Our data provide convergent evidence supporting the potential utility of the AtheroBurden signatures
as circulating biomarkers of atherosclerosis burden. First, all four proteomic signatures demonstrated
strong discriminative performance in identifying individuals with a history of atherosclerotic disease
and correlated with disease burden, as reflected by the number of affected vascular beds. Second,
among asymptomatic individuals without evidence of atherosclerotic disease, higher values of all four
signatures were associated with substantially increased risks of adverse cardiovascular events in UK
Biobank and KORA. Individuals who went on to develop cardiovascular events are expected to have
a higher burden of atherosclerosis at baseline. These associations persisted after adjustment for
traditional vascular risk factors, indicating that the proteomic signatures may capture additional
biological information not reflected in standard risk metrics. Third, we found the signatures to be
associated with plaque presence and count in carotid ultrasound — an imaging-based surrogate of
subclinical atherosclerosis — further reinforcing their relevance to underlying disease biology. Fourth,
longitudinal data across three serial time points over a median follow-up of 12.5 years revealed that
AtheroBurden scores track with disease progression. Steeper annual increases were observed among
individuals with greater baseline vascular risk and among those who subsequently experienced major
cardiovascular events, consistent with the trajectory of atherogenesis. These results collectively
support the role of proteomic signatures as dynamic, non-invasive indicators of atherosclerotic burden.
Nonetheless, prospective validation in independent cohorts with integrated vascular imaging and
proteomic profiling will be essential to confirm their utility as biomarkers of subclinical disease and
progression.

We developed four distinct proteomic signatures, each comprising proteins with varying relevance to
atherosclerosis. Beyond the Arterial, the Mechanistic, Genetic, and WholeProteome signatures
demonstrated comparable performance in detecting atherosclerotic disease and predicting future
MACE events. Our approach of not relying solely on the whole-proteome panel aimed to reduce the
influence of proteins whose circulating levels may reflect secondary effects of tissue ischemia rather
than atherosclerosis progression. Investigating the top-ranked proteins in each panel provides insights
into the distinct biological signals captured by our signatures. In the artery-enriched panel, highly-
ranked proteins were specific to cardiovascular tissues, such as NTRK3 implicated in cardiac
remodeling®®, leptin involved in energy homeostasis*® and linked to subclinical atherosclerosis*’, and
ANGPT2 which has shown prognostic relevance in peripheral artery disease*® and intracranial stenotic
lesions.*® Additional high-ranking proteins are linked to extracellular matrix remodeling, growth factor
signaling, and inflammation (ITGA11, IGFBP3, TGF3BI, LBP) and have established roles in
cardiovascular pathology: ITGA11 in CAD susceptibility and cardiac fibroblast differentiation®"°",
IGFBP3 in atherosclerotic plaque stability modulation®2, and TGFBI and LBP in macrophage-mediated
inflammatory responses®°. In contrast, the Mechanistic, Genetic, and WholeProteome panels
predominantly prioritized systemic cardiovascular markers, including NT-proBNP and REN, as well as
cholesterol-associated proteins like PCSK9, and APOC1, potentially reflecting end-organ dysfunction
and high cardiovascular risk.
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If validated, plasma proteomic signatures of atherosclerosis could have two key translational
applications. First, they could enable monitoring of atherosclerosis progression and cardiovascular risk
in the context of primary prevention. Unlike imaging techniques, circulating biomarkers are scalable in
primary care settings and could be used to screen for advanced atherosclerosis, track cardiovascular
risk over time, and monitor responses to preventive interventions. While current proteomics assays
are costly, the development of targeted protein panels that capture most of the variance in the full
signatures could reduce costs and promote clinical implementation. Second, proteomic signatures may
have utility in drug development, both as for patient stratification tools and as surrogate endpoints of
efficacy in trials of atheroprotective treatments. Our preliminary analysis in a small subset with serial
measurements suggests that these signatures may reflect atherosclerosis progression over time, but
whether they respond to treatment effects remains uncertain. In post hoc analyses of two phase 3 trials
testing the GLP-1 receptor agonist semaglutide, randomization to treatment vs. placebo led to
significant reductions in proteomic signatures associated with MACE risk.%® in the absence of scalable
non-imaging-based endpoints for atherosclerosis, proteomic signatures may offer a promising
surrogate endpoint for early-phase trials. Incorporating proteomic profiles into phase 3 cardiovascular
outcomes trials could enable evaluation of whether such signatures correlated with treatment effects
on risk reduction at an individual level.

Our study has several limitations. First, the use of clinical diagnoses as proxies for atherosclerotic
disease may have biased our signatures toward higher disease burden. As clinical diagnoses typically
reflect stenotic atherosclerotic lesions, it remains unknown whether our signatures also capture very
early atherosclerotic changes. Although supplementary analyses incorporating carotid plaque
phenotyping were reassuring, the ultrasound assessments in UKB were only performed 8 years after
the initial proteomic profiling. Future studies that integrate comprehensive vascular imaging with
contemporary proteomic profiling could enable more precise phenotyping for model development.
Second, external replication in KORA cohorts was limited by reduced protein coverage and differences
in cohort characteristics compared to the UKB, potentially affecting direct comparability with our
primary findings. Still, restricted signatures based on overlapping proteins showed moderate to strong
correlations with the full signatures (R=0.56-0.75) and remained significantly associated with future
myocardial infarction and stroke events. While the KORA S4 cohort provided sufficient power for robust
Cox regression analyses, replication in the smaller and older KORA-Age1 cohort was limited by
reduced sample size and event count. Third, although our study included longitudinal analyses,
repeated proteomic measurements in UKB were only available for a small, relatively healthy subset of
1,210 participants from the COVID-19 repeat imaging study. Only 30 MACE events occurred after the
second proteomic assessment (instance 2), limiting statistical power to directly assess the relationship
between signature trajectories and future cardiovascular risk. Nevertheless, we observed significantly
divergent trajectories between participants with and without incident MACE, as well as across
SCORE?2 risk categories. For these longitudinal assessments, differences in proteomic coverage
between time points (1,463 proteins in instances 2/3 vs. 2,923 in instance 0) were addressed by using
restricted signatures that preserved the variance of the full signatures (R=0.91-0.94). Fourth, the
predominantly European ancestry of the study populations may limit generalizability to other ethnic
groups. Future studies in more diverse cohorts are needed to assess the transferability and robustness
of the identified signatures across ancestries. Fifth, the selection of proteins for the artery-enriched
signature was based on gene expression profiles from the GTEx database®’, which includes bulk tissue
samples from coronary, aortic, and tibial arteries of donors aged 20-71 years who died due to any
cause. As these tissues were not selected specifically for atherosclerosis involvement, the resulting
protein panel may lack specificity for proteins derived from atherosclerotic plaques. This limitation
could partly explain the relatively modest performance of the artery-enriched signature in predicting
future MACE and carotid plaque presence compared to the other protein scores. Future studies
leveraging proteomic or transcriptomic data directly from human atherosclerotic plaque tissue may
yield more atherosclerosis-specific signatures.
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In conclusion, plasma proteomic signatures can effectively capture atherosclerosis burden, improving
cardiovascular risk prediction in asymptomatic individuals. If replicated in cohorts bridging extensive
vascular phenotyping with proteomic profiling, our results suggest that the circulating proteome could
serve as an accessible alternative to imaging-based assessments of atherosclerosis. This approach
could enable broader implementation of screening and prevention strategies for cardiovascular
disease.

Methods

Data Sources and Participants

The UK Biobank represents a prospective cohort study encompassing 502,421 individuals from the
general UK population.5® Between March 2006 and October 2010, participants aged 37-73 years
attended one of 22 assessment centres across Scotland, England, and Wales.®®%° Each participant
completed a touchscreen questionnaire, had physical measurements taken, and provided blood, urine,
and saliva samples at baseline. Detailed information about the UKB protocol can be found at
http://www.ukbiobank.ac.uk. Participants with available plasma proteomics data were included,
excluding those with more than 30% missing values across all measured proteins, resulting in a final
study population of 44,788.

1) Discovery dataset (Case—control study)

The discovery dataset, used to develop the AtheroBurden scoring system, included cases with
established atherosclerotic disease (detailed in the "Atherosclerosis Ascertainment” section) and
matched controls without a diagnosis of atherosclerotic disease. To optimally balance the number of
available control candidates while maintaining strict age- and sex-matching criteria, participants were
initially matched in a 1:6 ratio using a propensity score,®® facilitated by the R package Matchit (v
4.5.5).5" From each set of six matched controls, we selected the control with the fewest International
Classification of Diseases, 10th Revision (ICD-10) diagnosis codes to minimize comorbidity differences.
This approach resulted in a final 1:1 matched pairs, thereby minimizing potential confounding from
comorbidity burden while ensuring optimal case-control comparability.

2) Internal validation dataset (Prospective cohort study)

To assess the performance of the AtheroBurden scores developed from the discovery dataset, we
analyzed data from UKB participants with proteomics data and no history of atherosclerotic
cardiovascular disease that were not included in the discovery dataset. We included individuals aged
40 to 70 years, resulting in 41,200 participants. Assuming that a score capturing atherosclerosis
burden in asymptomatic individuals should be associated with future risk of MACE, we assessed
associations of AtheroBurden scores with the occurrence of incident MACE over a median follow-up
of 13.7 years.

3) Longitudinal analysis dataset in UKB
To evaluate temporal changes in AtheroBurden scores and their associations with cardiovascular risk
profiles, we utilized repeated proteomic measurements available for a subset of UKB participants. A
total of 1,210 individuals, derived from the COVID-19 repeat imaging study, had at least two proteomic
measurements, allowing for longitudinal analysis.

4) Carotid plaque subset in UKB
To assess associations of the developed AtheroBurden scores with subclinical atherosclerosis burden,
we used data from a follow-up imaging visit of UK Biobank participants initiated in 2014. A subset of
82,340 participants underwent carotid ultrasound as part of a comprehensive assessment. From this
group, 19,499 individuals provided a total of 177,757 carotid ultrasound images, which were
subsequently processed for plaque evaluation. Ultrasound imaging was performed using a
standardized protocol to capture bilateral carotid arteries.®? A total of 1,712 participants had both
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carotid ultrasound and plasma proteomics data, enabling the investigation of associations between
AtheroBurden scores and carotid plaque presence and burden.

KORA cohorts

To externally validate our findings, we utilized data from KORA studies®, specifically the KORA S4
and KORA-Age1 cohorts.?'% Ethical approval was granted by the local ethics committee, and all
participants provided written informed consent. KORA S4 was conducted between 1999 and 2001,
enrolling 4,261 participants, of which 1,361 participants aged 55-74 years were included in our
analysis due to the availability of proteomics data and follow-up data. KORA-Age1 recruited 1,079
participants aged 65-93 years, with proteomics and follow-up data available for 796 individuals. Both
cohorts were used to investigate the relationship between proteomics and cardiovascular outcomes,
specifically incident Ml and stroke. Among the 1,361 participants in KORA S4, 207 were also part of
the KORA-Age1 cohort, though these participants were assessed at different time points. In sensitivity
analyses, we excluded the overlapping participants from both cohorts to ensure independence
between datasets.

Plasma Proteomics in UKB

Blood samples were primarily collected from UKB participants during their baseline visit (instance 0),
with additional samples gathered from members of the UKB Pharma Proteome Consortium and
individuals in the COVID-19 repeat-imaging study. Plasma proteome characterization was executed
utilizing the antibody-based Olink® Proteomics PEA technology.®*

At baseline (instance 0), proteomic profiling was performed using the Olink® Explore 3072 platform,
which encompasses eight distinct panels: Cardiometabolic, Cardiometabolic Il, Inflammation,
Inflammation 1, Neurology, Neurology Il, Oncology, and Oncology Il. This comprehensive platform
enabled quantification of 2,923 unique proteins across 54,219 participants.®> Samples were
representative of the broader UKB population, with 93% of European ancestry. Protein levels were
provided as Normalized Protein eXpression (NPX) values, generated by log-transforming counts
normalized to extension controls.®® Assessments indicated that protein expression levels were
minimally affected by protein batch, study center, and genetic principal components. Detailed protocols
for sample handling, processing, and quality control are available online.®® For follow-up assessments
(instances 2/3), the Olink® Explore 1536 platform was employed, resulting in measurements of 1,463
proteins. Despite differences in panel coverage between baseline and follow-up assessments, the
fundamental profiling technology and quality control procedures remained consistent, ensuring
methodological comparability across time points.®’

After excluding 3 proteins (GLIPR1 from the Oncology Il panel, PCOLCE from the Cardiometabolic
panel, NPM1 from the Neurology panel) that were missing in more than 30% of participants in the final
study cohort, the remaining missing values were imputed using a normal distribution method as
previously described.®® The mean of this imputation distribution was adjusted by subtracting 1.8
standard deviations from the mean of the abundance distribution of all proteins in one sample. The
standard deviation of the imputation distribution was set to 0.3 times the standard deviation of the
abundance distribution.

Plasma Proteomics in KORA

Proteomics data for both KORA S4 and Age1 cohorts were also measured using Olink® Proteomics
PEA technology but only covering 276 protein biomarkers (CVD-II, CVD-Ill, and inflammation panels).
The data processing, including quality control and normalization, was performed by the KORA team
as previously described.3"*? Proteins with more than 25% of values below the limit of detection (LOD)
or with missingness were excluded. For proteins present in multiple panels, the version with fewer
values below LOD and a lower inter-assay coefficient of variation was retained. After applying these
QC criteria, 233 unique proteins passed QC in KORA S4, while 243 proteins passed QC in KORA-



616
617
618
619

620

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

Age1. Due to differences in the specific protein panels used between the KORA cohorts and UKB, 232
proteins from KORA S4 and 242 proteins from KORA-Age1 overlapped with those measured in UKB.

Outcomes definition

Atherosclerosis ascertainment

Clinical diagnoses and surgical records were utilized as proxies to identify individuals with presence of
atherosclerotic disease. Atherosclerosis was ascertained by identifying events across multiple
vascular beds, including coronary, extra- and intracranial, aortic, peripheral, and other arterial sites.
Curated disease phenotypes were defined using clinical diagnosis codes from the International
Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10), as well as surgical procedure
codes from the Office of Population Censuses and Surveys, 4th revision (OPCS4). Diagnosis dates
were obtained from linked individual participant data. Incident events due to atherosclerotic disease
were ascertained from hospital inpatient data summaries (fields 41270, 41271, 41272) as outlined in
Supplemental Table $15. Prevalent events were defined as those occurring before the participant's
baseline visit when a blood sample was collected. Individuals with corresponding prevalent events for
each outcome were considered as cases. Individuals without any experienced atherosclerotic events
at baseline and during follow-up were considered as controls and subsequently underwent propensity
score matching to construct the discovery dataset. For each individual, atherosclerotic events were
evaluated across the five vascular beds described above. The presence of an event in any vascular
bed scored 1 point, resulting in atherosclerotic burden levels ranging from 0 (no events) to 2 (events
in two or more vascular beds).

MACE outcome definitions

The outcome in the internal validation cohort included incident traditional three-point MACE, which
comprised AMI, stroke, and cardiovascular death. ICD-9 and ICD-10 codes for each endpoint are listed
in Supplemental Table S$16, ascertained from linked Hospital Episode Statistics (HES) and death
registries. For each participant, follow-up began at their baseline visit to the UKB assessment centre,
where clinical information and blood samples were collected. The first occurrence of a MACE event
was recorded as the primary endpoint for the composite outcome analysis, ensuring each participant
contributed only once. For participants without a MACE event, follow-up was censored at the earliest
of non-CV death, or the last available hospital inpatient record (31 October 2022 for England, 31
August 2022 for Scotland, and 31 May 2022 for Wales). Mortality data were available until 31 October
2022, and participants without events were censored on these respective dates. When analysing
individual components of MACE (AMI, stroke, and CV death) as separate outcomes, we included each
participant's first occurrence of each specific event type.

In the KORA cohorts, the endpoint was the first validated MI or stroke. Mls were ascertained via the
Augsburg MI Registry: events before 31 December 2000 followed WHO-MONICA adjudication, and
those from 1 January 2001 used ESC/ACC criteria. Mis outside the registry’s area or age limits (> 74
years, > 84 years from 2009) were identified through follow-up questionnaires and confirmed with
hospital or physician records; fatal Ml cases were identified through death certificates or autopsy
reports. Nonfatal strokes (ischaemic or haemorrhagic) were initially identified through self-reports and
validated with medical records, while fatal strokes were identified through death certificates or autopsy
reports. KORA S4 participants had their baseline examination in 1999-2001, first follow-up examination
in 2006—2008 and second follow-up examination in 2013—2014. Furthermore, postal questionnaires
were sent out in 2008—-2009 and 2016; KORA-Age1 participants had their baseline visit in 2008-2009,
first follow-up visit in 2012 and a postal questionnaire was sent to them in 2016.

Carotid Plaque Assessment

Carotid ultrasound images were analysed using the deep learning model described by Omarov et al.,**
which assesses carotid plaque presence and the number of plaques in the left and right carotid arteries.
Plaques were defined as focal protrusions into the arterial lumen with a thickness greater than 50% of
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the surrounding carotid intima-media thickness,®® with plaque presence determined by the
identification of at least one plaque in either carotid artery. Plaque burden was assessed based on the
total number of plaques detected in both carotid arteries and categorized as 0 for participants with no
plaques, 1 for those with a single plaque, and 2 for those with two or more plaques.

Covariates and SCORE2 Calculation
Demographic and Covariates

Baseline variables used in our analyses included age, sex, smoking status (categorized as current,
former, or never smoker), SBP, diastolic blood pressure (DBP), cholesterol levels, body mass index
(BMI), kidney function (estimated glomerular filtration rate, eGFR), Glycated hemoglobin (HbA1c), and
history of diabetes and hypertension. Detailed definitions of these variables, including UKB field IDs,
are provided in Supplemental Table S17. Smoking status was determined based on baseline
questionnaire responses. Blood pressure was measured during the baseline visit, and the average of
two readings was used. Cholesterol levels, including total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides were measured
from fasting blood samples. BMI was calculated as weight in kilograms divided by height in meters
squared (kg/m?). Kidney function was assessed using eGFR calculated from serum creatinine and
Cystatin C levels using the CKD-EPI equation (2021).”° History of diabetes and hypertension was
assessed based on medication use and hospital records. Information on the use of glucose-lowering
medications, antihypertensive medications, and lipid-lowering medications was obtained from
participant medication data. Hospital records were reviewed to identify prior diagnoses using relevant
ICD-9 and ICD-10 codes, with specific codes provided in Supplemental Table $18. For the KORA
cohorts, similar demographic and clinical variables were collected and defined as previously
described.”"72

SCOREZ2 Calculation

We estimated the 10-year risk of MACE for each participant using the SCORE2 algorithm,” based on
individual factors such as age, sex, SBP, TC, HDL-C, and smoking status. Participants aged 40 to 70
years without MACE were included in this analysis. The linear predictor for each participant was
calculated using sex-specific regression coefficients from the SCORE2 working group.” To better align
observed and predicted risk, we applied log hazard ratios from the SCORE2 sensitivity analysis that
specifically excluded UK Biobank participants (as reported in Supplementary Table 8 of the SCORE2
publication).” For absolute risk calculation, following the approach described in previous studies’,
these linear predictors were converted into calibrated 10-year risks using the SCORE?2 recalibration
formula with scaling factors for low-risk European regions (as reported in Supplementary methods
Table 4 of the SCORE2 publication).”®

ML Model Development

To explore the potential of plasma proteomics to deliver novel biomarker signatures for atherosclerosis,
we developed the AtheroBurden scoring system using ML classifiers in the discovery dataset. The
process involved selecting relevant protein features, constructing diagnostic models using various ML
algorithms, evaluating their performance, and generating continuous AtheroBurden scores from the
best model.

Protein Feature Pre-selection
To leverage atherosclerosis biology while minimizing confounding from late-stage organ damage

signals, we designed four protein panels:
1) Whole Proteome Panel
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Without prior feature selection, we included all 2,920 plasma proteins to construct an ML model
predicting the probability of atherosclerosis presence.

2) MR-Derived Protein Panel

We conducted a two-sample MR analysis to identify proteins that are genetically influenced by
predisposition to CAD, providing causal evidence for their potential roles in atherosclerosis pathways,
with CAD serving as the exposure and plasma protein levels as the outcome. Genetic instruments
were selected from the largest available CAD Genome-Wide Association Study (GWAS) summary
statistics by Aragam et al.,”® filtered for genome-wide significance (p < 5e-08), and further clumped to
retain independent variants (r> < 0.001, 10,000 kb window). These instruments were then matched to
the Coronary ARtery Disease Genome-wide Replication and Meta-analysis plus the Coronary Artery
Disease Genetics (CARDIoOGRAMplusC4D) 1000 Genomes-based GWAS summary statistics.”® This
dataset does not include UKB data, ensuring that there was no overlap between exposure and
outcome datasets. After filtering and matching, 217 SNPs were selected for the MR analysis, with all
necessary data, including beta values, obtained from the CARDIoGRAMplusC4D.

Plasma protein data were sourced from the UKB Pharma Proteomics Project, which measured 2,940
plasma proteins in 54,219 participants. GWAS summary statistics for these data are publicly available
via Synapse.%® (https://www.synapse.org/Synapse:syn51365303) The MR analysis was conducted
using the R package TwoSampleMR (v 0.5.6), employing the random effect inverse variance weighted
(IVW) method for estimating causal effects. Using these data, the MR analysis identified 402 proteins
(p <0.05) whose levels were genetically influenced by predisposition to CAD, suggesting their potential
role as causal mediators in the disease pathway.

3) Atherosclerosis-Related Protein Panel

To identify proteins specifically associated with atherosclerosis, we utilized the Enrichr platform,*?
querying relevant terms and pathway databases for gene sets related to atherosclerosis. This search
yielded 52 gene sets, from which we compiled a comprehensive list of genes (n = 3312) associated
with atherosclerosis. These annotations were then mapped to the UKB Olink proteome, resulting in
680 atherosclerosis-related proteins, which constituted the atherosclerosis-related protein panel used
for model development.

4) Artery-enriched protein panel

This panel focused on proteins with specific or elevated expression in arterial tissues, hypothesized to
be closely related to atherosclerotic lesions. We obtained gene expression data from the Genotype-
Tissue Expression (GTEx) project (Release V8, dbGaP Accession phs000424.v8.p2),%” which
provided comprehensive tissue-specific bulk RNA seq expression profiles across various human
tissues, including vascular tissues. We grouped three vascular tissues—coronary, aorta, and tibial
artery—together as the vascular group, while all other organs were grouped as the non-vascular group.
Genes were considered artery-enriched if their expression levels in the vascular group were at least
threefold higher than in the non-vascular group. We then mapped these genes to the plasma
proteomics data from the UKB, resulting in an artery-enriched protein panel of 248 proteins used for
model development.

ML Classifiers

We utilized Python packages scikit-learn (v 1.3.2), catboost (v 1.2.5), lightgbm (v 4.2.0), and xgboost
(v 2.0.3), to implement a range of ML techniques, including Logistic Regression, Random Forest,
ElasticNET, SVM, MLP. Additionally, gradient boosting classifiers such as LightGBM, CatBoost, and
XGBoost were employed. These classifiers were designed to predict whether participants belonged to
class 1 (diagnosed with atherosclerotic events at baseline) or class 0 (event-free). ML models were
established using a discovery dataset created using propensity score matching based on age and sex
to select healthy controls (n=1,666) for participants with prevalent atherosclerotic events (n=1,666).
This matching technique helps mitigate potential nonlinear confounding effects. We then randomly split
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the discovery dataset into training (80%) and testing sets (20%), with stratification ensuring balanced
distribution of atherosclerotic events in both sets.

All models were trained and validated using ten iterations of five-fold stratified cross-validation on the
training set, with the dataset resampled for each iteration to ensure robustness. Performance was
evaluated using accuracy, precision, recall, and ROC-AUC, providing comprehensive insights into
classification effectiveness and error patterns. Hyperparameters for the cross-validated models were
optimized using Optuna,”” an automated framework, with each configuration undergoing the same
cross-validation strategy. Algorithm-specific search spaces were defined, encompassing learning rates
(10 to 10™), regularization parameters (C values from 10 to 10), tree depths (3 to 10), number of
estimators (50 to 200), and other model-specific parameters. Performance was assessed using
average ROC-AUC and other relevant metrics, and optimal hyperparameters were selected based on
configurations achieving the highest cross-validated scores. CatBoost was selected as the best-
performing model based on its highest average ROC-AUC and stability (consistency of performance
across testing sets). Hyperparameter specifications for all evaluated models are provided in
Supplemental Table S19. To compare the performance of the selected CatBoost model with a
traditional risk prediction approach, a separate logistic regression model was developed using
SCORE2 variables (age, sex, total cholesterol, HDL-cholesterol, systolic blood pressure, and smoking
status) in the discovery dataset, with performance assessed using ROC-AUC. Statistical significance
of ROC-AUC differences was evaluated using the Delong test. Feature importance was assessed
using SHapley Additive exPlanations (SHAP) values, which quantify each feature's contribution to the
model's predictions.”®

Generating continuous AtheroBurden signature

The CatBoost classifier’® was constructed using protein expression profiles as input features, with
models trained to discriminate between individuals with and without atherosclerotic disease. Following
comprehensive hyperparameter optimization through five-fold cross-validation, the final classifier was
applied to the entire UKB cohort to generate continuous risk predictions. The raw prediction values
obtained directly from the CatBoost algorithm—representing the untransformed linear combination of
weighted protein features—were subsequently standardized as Z-scores (centered at zero with a
standard deviation of one) to facilitate inter-individual comparability. Four AtheroBurden signatures
were derived from the respective protein panels: AtheroBurden-Arterial, based on the artery-enriched
panel; AtheroBurden-Mechanistic, based on the atherosclerosis-related panel; AtheroBurden-Genetic,
based on the MR-derived panel; and AtheroBurden-WholeProteome, based on the whole proteome
panel. All models were trained in the discovery dataset and subsequently applied to the entire UKB
cohort.

For longitudinal validation using follow-up measurements and external validation in independent
cohorts, restricted versions of the AtheroBurden signatures were generated to address differential
protein coverage. For UKB participants assessed at follow-up timepoints (instances 2/3) where the
Olink® Explore 1536 platform was employed, restricted signatures were computed by applying the
original prediction algorithm with missing value assignments (NA) for proteins not measured on the
restricted platform. An identical methodological approach was implemented for external validation in
the KORA cohorts. To quantify potential information loss resulting from reduced protein coverage,
equivalent restricted signatures were generated in the baseline UKB cohort (instance 0) using only
proteins available across all platforms. Correlation analyses were subsequently conducted to evaluate
the proportion of variance in the full signatures that could be explained by these restricted protein
models.

Statistical Analysis

Population characteristics were summarized as mean + SD for normally distributed variables, median
(IQR) for skewed variables, and n (%) for categorical variables. Missing clinical data were imputed
using predictive mean matching via the R package mice (v 3.16.0). Continuous variables were imputed
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using predictive mean matching, binary variables via logistic regression, and ordinal variables with a
proportional odds model. Imputation was based on age and sex (no missing values) to enhance data
quality and repeated five times for robustness. Cox proportional hazards regression models were
applied to evaluate the association between AtheroBurden scores and time to MACE among
participants without baseline MACE. Three models were constructed: Model 1 adjusted for age and
sex. Model 2 further adjusted for TC, HDL-C, SBP, and smoking (based on SCOREZ2 variables); and
Model3 adjusted VRFs included age, sex, SBP, BMI, smoking status, LDL-C, triglycerides, eGFR,
HbA1c, diabetes, and hypertension status. Multiple comparisons were addressed using FDR
correction to control for type | error.

To assess the added value of AtheroBurden signatures over SCOREZ2, we evaluated discrimination
improvement using concordance indices (C-index), calculated with the concordance.index function
(survcomp package, v 1.52.0, R). C-index differences (AC-index) were compared using the
cindex.comp function, reporting p-values and 95% CI. Time-dependent ROC curves were generated
at 10-year follow-up points to track model performance over time. Kaplan-Meier survival curves were
used to estimate cumulative MACE incidence across AtheroBurden signature quartiles, with log-rank
tests performed for group comparisons. Calibration of the SCORE2 model, with and without
AtheroBurden signatures, was evaluated using calibration plots comparing observed 10-year Kaplan-
Meier estimates and predicted probabilities within deciles of predicted risk. Reclassification metrics
included NRI, cfNRI, and IDI. The NRI analysis employed two established clinical thresholds (7.5%
and 10%) derived from SCORE?2 risk stratification guidelines, selected based on their validated clinical
utility in cardiovascular risk assessment. These thresholds were applied as population-level cut-points
to evaluate the overall reclassification performance of proteomic models when added to traditional risk
factors. NRI was calculated using the package nricens (v.1.6)%° with confidence intervals and p-values
based on 1000-fold bootstrap standard errors. The cfNRI and IDI metrics were calculated using the
surviDINRI (v.1.1-2)%'. Sensitivity analyses examined AtheroBurden signatures' associations with
individual MACE components (AMI, stroke, and CV death) with FDR correction. Logistic and Poisson
regressions were employed to assess AtheroBurden signatures' relationships with carotid plaque
presence and burden.

The longitudinal progression of AtheroBurden signatures was assessed using linear mixed-effects
models with time since baseline (in years) as a continuous variable. The scores were derived from
AtheroBurden scoring systems based on available proteomic data and were repeatedly measured for
the same individuals at three time points: baseline (instance 0) and two follow-ups (instances 2 and 3).
The mixed-effects models included random intercepts to account for individual-level variability, with
fixed effects for standardized baseline risk factors and time.

In the external validation analysis, cox proportional hazards models, adjusted using the same variables
as previous analysis, were applied to examine the associations between restricted AtheroBurden
signatures and incident Ml and stroke. Kaplan-Meier survival curves were applied to estimate
cumulative Ml and stroke incidence across AtheroBurden scores quartiles in KORA S4, while
improvements in discrimination were evaluated by changes in C-index when incorporating restricted
AtheroBurden scores into SCOREZ2 variables across both cohorts. Sensitivity analysis excluded
overlapping participants between KORA S4 and Age1 to maintain independence. Statistical power
calculations for external validation analyses were conducted using R package powerSurvEpi (v 0.1.3)%2
with an alpha level of 0.05.

All statistical analyses were performed using R (version 4.3.3), and ML procedures were conducted in
Python (version 3.9.10). A two-sided p <0.05 was considered statistically significant.
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Table1. Baseline characteristics of participants for each the three cohorts analyzed for this
1111  study.

Characteristic

UK Biobank

KORA S4

KORA-Age1

N = 44,788

N =1,361

N =796

Age at recruitment
(years), Median (Q1, Q3)

Sex, n (%)
Female

Male
BMI (kg/m”2), Median
(Q1, Q3)
Diastolic blood pressure
(mmHg), Median (Q1,
Q3)
Systolic blood pressure
(mmHg), Median (Q1,
Q3)
Cholesterol (mmol/L),
Median (Q1, Q3)
HDL Cholesterol
(mmol/L), Median (Qf1,
Q3)
LDL Cholesterol
(mmol/L), Median (Qf1,
Q3)
Triglycerides (mmol/L),
Median (Q1, Q3)
eGFR (ml/min/1.73m"2),
Median (Q1, Q3)
HbA1c (mmol/L), Median
(Q1, Q3)

Previous smoking, n (%)

Current smoking, n (%)

Blood Pressure
Medication, n (%)
Cholesterol Lowering
Medication, n (%)

Diabetes, n (%)

Hypertension, n (%)

58.00 (50.00, 64.00)

24,234 (54%)
20,554 (46%)

26.78 (24.19, 29.90)

82.00 (75.00, 89.00)

138.00 (126.00, 152.00)

5.62 (4.89, 6.38)

1.40 (1.18, 1.67)

3.50 (2.94, 4.08)

1.49 (1.06, 2.14)
95.06 (84.89, 104.57)

35.30 (33.00, 38.00)

15,806 (35%)
4,816 (11%)

10,384 (23%)

8,152 (18%)

2,009 (4.5%)
11,068 (25%)

63.00 (59.00, 68.00)

685 (50%)
676 (50%)

27.95 (25.65, 30.83)

80.00 (73.50, 87.50)

135.00 (121.50,
148.00)

6.27 (5.53, 6.97)

1.44 (1.19, 1.75)

3.94 (3.27, 4.60)

1.36 (0.99, 1.93)
84.50 (74.73, 92.29)

37.71 (35.52, 40.98)

510 (38%)
187 (14%)

455 (34%)

134 (9.9%)

89 (6.6%)
737 (54%)

76.00 (70.00, 81.00)

423 (53%)
373 (47%)

27.93 (25.51, 30.70)

76.00 (69.50, 83.00)

138.00 (124.50,
150.50)

5.53 (4.81,6.15)

1.45 (1.20, 1.68)

3.28 (2.76, 3.90)

1.41 (1.02, 1.99)
71.70 (59.43, 83.03)

37.71 (35.52, 40.98)

307 (39%)
34 (4%)

535 (67%)
199 (25%)

112 (14%)
599 (75%)

1112  Abbreviations: KORA, Cooperative Health Research in the Region of Augsburg; BMI, body mass
1113  index; LDL, low density lipoprotein; HDL, high density lipoprotein; HbA1c, glycated hemoglobin A1c;
1114  eGFR: estimated glomerular filtration rate.
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Table 2: Incremental discrimination and reclassification improvement for predicting MACE with the addition of AtheroBurden signatures.
Comparison of model discrimination (C-index, AC-index) and reclassification (cfNRI, IDI) when adding various AtheroBurden signatures to SCORE2
for predicting major adverse cardiovascular events (MACE). Results include internal validation and subgroup analyses by sex. All comparisons use

SCORE?2 as reference (Ref).

Internal validation dataset (N=41,200; 3,122 incident MACE cases)

10-year follow up (1,887 incident MACE cases)

AC-index (vs.

model C-index (95% CI) SCORE2) p value cfNRI (95% CI) IDI (95% CI)
SCORE2 0.701 (0.683-0.718) Ref - Ref Ref
SCORE2 + AtheroBurden WholeProteome | 0.737 (0.729-0.845) 0.036 1.45E-68 0.172 (0.147-0.194) 0.018 (0.014-0.021)
SCORE2 + AtheroBurden Genetic 0.735 (0.727-0.743) 0.034 1.32E-65 0.177 (0.153-0.201) 0.017 (0.015-0.021)
SCORE2 + AtheroBurden Mechanistic 0.730 (0.722-0.739) 0.030 5.96E-54 0.164 (0.137-0.187) 0.014 (0.011-0.017)
SCORE2 + AtheroBurden Arterial 0.730 (0.722-0.739) 0.030 1.18E-48 0.155 (0.132-0.183) 0.018 (0.014-0.021)
Analysis in females (N=18,057 1,192 incident MACE cases) 10-year follow up (681 incident MACE cases)
SCORE2 0.722 (0.709-0.736) Ref - Ref Ref
SCORE2 + AtheroBurden WholeProteome | 0.746 (0.733-0.759) 0.023 7.00E-20 0.124 (0.086-0.169) 0.008 (0.005-0.012)
SCORE2 + AtheroBurden Genetic 0.745 (0.732-0.758) 0.023 1.00E-19 0.137 (0.100-0.172) 0.008 (0.004-0.012)
SCORE2 + AtheroBurden Mechanistic 0.743 (0.729-0.755) 0.020 9.00E-17 0.122 (0.078-0.161) 0.006 (0.003-0.010)
SCORE2 + AtheroBurden Arterial 0.743 (0.729-0.756) 0.020 3.00E-14 0.121 (0.088-0.162) 0.009 (0.006-0.014)
Analysis in males (N=23,143 1,930 incident MACE cases) 10-year follow up (1,206 incident MACE cases)
SCORE2 0.681 (0.669-0.692) Ref - Ref Ref
SCORE2 + AtheroBurden WholeProteome | 0.729 (0.718-0.740) 0.049 7.00E-48 0.224 (0.198-0.256) 0.031 (0.024-0.039)
SCORE2 + AtheroBurden Genetic 0.730 (0.719-0.741) 0.049 7.00E-51 0.230 (0.203-0.267) 0.032 (0.024-0.040)
SCORE2 + AtheroBurden Mechanistic 0.725 (0.714-0.736) 0.044 2.00E-42 0.227 (0.199-0.252) 0.027 (0.020-0.035)
SCORE2 + AtheroBurden Arterial 0.722 (0.711-0.733) 0.041 1.00E-36 0.196 (0.169-0.229) 0.030 (0.023-0.039)

Abbreviations: cfNRI, category-free net reclassification improvement; NRI, net reclassification improvement; IDI, integrated discrimination improvement;
SCOREZ2, Systematic COronary Risk Evaluation version 2; Cl, confidence intervals; Ref, reference; MACE, major adverse cardiovascular events.
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1. Developing four protein panels—Whol , MR-Derived,

sk Predicti . . |
Related and Artery-Enriched—as preselected model features 3. MACE Risk and Plaque Analysis
1 Internal validation cohort: UK Biobank (N = 41200)
2. Training AtheroBurden scoring system using machine learning Prospective cohort of 41,200 participants without baseline MACE. During a median follow-up of 13.7
years, 3122 participants progressed to MACE.
Discovery dataset: UK Biobank (N = 3332) between scores and incident MACE
Using Cox regression adjusted for 1) age and sex 2) SCORE2 variables 3) traditional cardiovascular
Case-control study with 1,666 atherosclerotic cases and 1,666 matched controls.[1:1 Propensity risk factors.
score matching (based on sex and age)] Comparing cumulative incidence of MACE across AtheroBurden score-defined risk groups to
visualize survival probabilit
Split discovery dataset intoltraining set (80%) and testing set (20%) P v
i impi in MACE risk prediction over SCORE2 for AtheroBurden
Training set Testing set
scores
Split training dataset into five folds Improvement in C-index over SCORE2 compared for SCORE2 + each AtheroBurden scores.
Compare tin net index (NRI) and independent discrimination
improvement (IDI).
Fost | [ | | ]
l l [ l l ‘ Explored the relationship between AtheroBurden scores and carotid plaque presence.
Fold2
Ten times five -fold 1712 participants (n = 717 with carotid plaque) with both carotid ultrasound data and available
cross validation; plasma proteomics data.
ML model selection; I l I Fold3 l l I
tunning Lomaitudi ) R
I l I ‘ Foldd [ I scores trajectory analysis
Evaluation of temporal AtheroBurden score changes in 1210 participants with repeated proteomic
[ I [ ’ — I measurements stratified by baseline cardiovascular risk.
Model evaluation Testing set ¥
Y ’ 4. External Validation |
l CatBoost selected as the best-performing model ‘
‘ External validation dataset: KORA Age1 and $4 (Olink Taget proteomic) l
l Kora Age1 N = 1,361 participants (245 incident Ml and stroke enevts)
. Kora S84 N = 796 participants (112 incident MI and stroke enevts)
{ Calculated continuous AtheroBurden signatures using CatBoost for each protein panel F Generated restricted versions of the AtheroBurden signatures

Extended Figure 1. Detailed study workflow and analytical framework. This figure expands on the main workflow,
presenting detailed steps of the study, including dataset characteristics, machine learning processes, and specific
evaluation criteria for the AtheroBurden scoring system. Abbreviations: MR, Mendelian randomization; MACE, major
adverse cardiovascular events; ML, machine learning; SCORE2, Systematic COronary Risk Evaluation 2; KORA,
Cooperative Health Research in the Region of Augsburg.
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[ 44788 Individuals in analysis
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449,400 participants without available proteomic profiles
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8,233 participants with proteomic data missing more than 30%

Discovery dataset (N = 3332)
-1666 Atherosclerotic events at
baseline

-1666 controls

Internal validation cohort
(N = 41,200)
- 3122 MACE cases
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Discovery dataset participants (n=3,332), age < 40 (n=1),
baseline MACE (n=255)

Temporal progression analysis of
AtheroBurden Signatures in
Relation to Cardiovascular Risk
Profiles

44788 Individuals with
AtheroBurden scores
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- Baseline + two follow-ups
(instance 0, 2, 3)

l—»
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42,578 participants without repeated proteomic measurements

Test asscociation between
AtheroBurden Signatures and
carotid plaque presence

44788 Individuals with
AtheroBurden scores

Carotid image dataset
(N=1,712)

- Plaque presence (n = 717)

- no Plaque presence (n = 995)

l—»

Excluded:
43,076 participants without available carotid ultrasound image
(left or right).

External validation in KORA cohorts

N = 1653
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Participant aged 65 - 94 years in KORA Age1
N =1079
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Participant with proteomics data
N = 1565

Participant with proteomics data
N = 1025

!
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N = 1361

Participant with follow up information

Participant with follow up information
N =796

!}

!

Validation in KORA S4 (N = 1,361)
- Incident M| and Stroke (n = 245)

Validation in KORA Age1 (N = 796)
- Incident MI and Stroke (n = 112)

In sensitivity analysis, 207 participants overlapping with the KORA Age1 were excluded from the KORA S4

1124

1125  Extended Figure 2. Flow chart of participant exclusions.

1126 Abbreviations: MACE, major adverse cardiovascular events; KORA, Cooperative Health Research in the Region of
1127  Augsburg; Ml, myocardial infarction.
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Development and Integration of Biologically-Informed Protein Panels for the AtheroBurden Signatures: Whole Proteome Features, MR-Derived,
Atherosclerosis-related and Artery-Enriched Features

9
values( n = 3)

UKB-PPP Olink 3072
proteomic profile (n = 2923)

GWAS summary statistics

Enrichr

Genotype-Tissue
Expression Atlas (GTEx)

'

;

)

Conducted MR analysis to
identify proteins causally
linked to Coronary artery

disease (CAD).

Web Server for Gene Set
Enrichment and Term Search

Differential RNA seq analysis
for Arteries tissue and other
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.
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Exposure: CAD
Outcome: Olink Proteomics;

Atherosclerosis-related gene
sets; Mapping

Artery-enriched genes (three
times higher); Mapping

Mapping
¥
Protein set (n = 2920)
I
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Whole proteome panel MR-derived panel Atherosclerosis-related panel i _
(n= 2920) (n= 402) (n= 680) Artery-enriched panel (n= 248)
[ [ I ]
1]
CatBoost Classifiers ]
|
A\ Y L] L
AtheroBurden AtheroBurden Genetic AtheroBurden Mechanistic AtheroBurden Arterial
Wholeproteome Signature Signature Signature Signature

Extended Figure 3. Systematic development and implementation of biologically informed proteomic panels for
AtheroBurden score construction: (1) the entire plasma proteome, (2) proteins causally linked to atherosclerotic
disease through Mendelian randomization approaches, (3) proteins with established roles in atherosclerosis
pathogenesis validated through pathway enrichment analysis, and (4) arterial tissue-enriched proteins identified through
tissue-specific expression analysis. Abbreviations: GWAS, genome-wide association study; CAD, coronary artery
disease; MR, Mendelian randomization; UKB-PPP, UK Biobank Pharma Proteomics Project; GTEx, Genotype-Tissue
Expression Atlas.




Evaluation of Cross-Validation results for Whole proteome panel (n = 2920)
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1 138 Evaluation Metrics

1139 Extended Figure 4. Systematic assessment of machine learning model performance through cross-validation
1140  analysis across protein panels. Performance metrics from 10 iterations of 5-fold cross-validation comparing eight
1141  machine learning algorithms (CatBoost, LGBM, XGBoost, SVM, Random Forest, Logistic Regression, ElasticNET, and
1142 MLP) across four biologically informed protein panels (whole proteome, MR-derived, atherosclerosis-related, and
1143  artery-enriched). Box plots depict the distribution of accuracy, precision, recall, and ROC-AUC metrics, where boxes
1144 represent the interquartile range (IQR, 25th to 75th percentiles), center lines indicate medians, whiskers extend to
1145  1.5xIQR, and points beyond whiskers denote individual outliers. Abbreviations: ML, machine learning; ROC-AUC,
1146  receiver operating characteristic-area under the curve; IQR, interquartile range; ElasticNET, elastic net regression; MLP,
1147 multilayer perceptron; SVM, support vector machine; LightGBM, light Gradient Boosting Machine; CatBoost, categorical
1148  boosting; XGBoost, eXtreme gradient boosting.

1149
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1150

1151 Extended Figure 5. Comparative analysis of machine learning model performance metrics in the testing set
1152 across biologically informed protein panels. Radar plots depicting comprehensive performance assessment of eight
1153 machine learning algorithms (CatBoost, LGBM, XGBoost, SVM, Random Forest, Logistic Regression, ElasticNET, and
1154 MLP) evaluated on independent testing sets across four protein panels. The multi-dimensional visualization integrates
1155 five key performance metrics: accuracy, precision, recall, F1 score, and ROC-AUC. Abbreviations: ROC-AUC, receiver
1156 operating characteristic-area under the curve; ElasticNET, elastic net regression; MLP, multilayer perceptron; SVM,
1157 support vector machine; LightGBM, light Gradient Boosting Machine; CatBoost, categorical boosting; XGBoost,
1158  eXtreme gradient boosting.
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Extended Figure 6. Calibration plots for MACE risk prediction models at 10-year follow-up. This figure presents
calibration plots for cardiovascular risk prediction models, illustrating the agreement between predicted and observed
risks across four AtheroBurden signatures and SCORE2. Each plot compares the predicted probabilities (x-axis) with
the observed probabilities (y-axis) for the SCORE2 model and the SCORE2 model combined with AtheroBurden
signatures. The diagonal line represents perfect calibration, indicating complete agreement between predicted and
observed risks. The blue lines represent the model's calibration performance. Abbreviations: MACE, major adverse
cardiovascular events; SCORE2, Systematic COronary Risk Evaluation version 2.
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Total sample size (N = 41200) / MACE cases (N = 1887)

a SCORE2 + AtheroBurden Reclassified | SCORE2 + i SCORE2 + if SCORE2 +
WholeProteome Signature |(%) Genetic Signature (%) Mechanistic Signature (%) Arterial Signature (%) Classification
SCORE2 <10% >=10% <10% >=10% < 10% >=10% <10% >=10%
<10% 1192 349 22.6 1202 339 22 1219 322 20.9 1226 315 20.4 +
MACE >=10% 102 242 29.7 108 236 31.4 103 241 29.9 88 256 25.6
<10% 33211 2001 5.7 33270 1942 5.5 33321 1891 5.4 33436 1776 5
without
MACE >=10% 1171 1414 45.3 1166 1419 45.1 1101 1484 42.6 1084 1501 41.9 +
NRI (95% Cl) : 0.112 (0.085 - 0.135) NRI (95% ClI) : 0.105 (0.082 - 0.130) NRI (95% Cl) : 0.098 (0.073 - 0.124) NRI (95% ClI) : 0.105 (0.084 - 0.132)
b SCORE2 + AtheroBurden Reclassified | SCORE2 + AtheroBurden |Reclassified | SCORE2 + AtheroBurden |Reclassified | SCORE2 +
WholeProteome Signature |(%) Genetic Signature (%) Mechanistic Signature (%) Arterial Signature (%) Classification
SCORE2 <7.5% >=7.5% <7.5% >=7.5% <7.5% >=7.5% <7.5% >=7.5%
<7.5% 874 307 26 859 322 27.3 885 296 25.1 906 275 23.3 +
MACE >=7.5% 168 536 23.9 166 538 23.6 162 542 23 154 550 21.9
<7.5% 29019 2202 7.1 29058 2163 6.9 29057 2164 6.9 29118 2103 6.7
without
MACE >=7.5% 2648 3930 40.2 2595 3981 39.5 2428 4148 36.9 2466 4110 37.5 +
NRI (95% Cl) : 0.087 (0.088 -0.110) NRI (95% Cl) : 0.096 (0.070 - 0.125) NRI (95% Cl) : 0.080 (0.060 - 0.109) NRI (95% Cl) : 0.075 (0.050 - 0.100)

Extended Figure 7. Net reclassification improvement (NRI) for SCORE2 and AtheroBurden signatures in
predicting 10-year MACE risk. This table summarizes the NRI results for the combination of SCORE2 and each
AtheroBurden signature in predicting 10-year MACE risk. Panel (a) represents the analysis for a predicted risk threshold
of 10%, while Panel (b) corresponds to a threshold of 7.5%. The rows show the reclassification percentages for
individuals with and without MACE when SCORE?2 is combined with each of the four AtheroBurden signatures: whole
proteome (AtheroBurden WholeProteome Signature), MR-derived (AtheroBurden Genetic Signature), atherosclerosis-
related (AtheroBurden Mechanistic Signature) and artery-enriched (AtheroBurden Arterial Signature). Columns indicate
the percentage of individuals reclassified into higher or lower risk categories after the inclusion of AtheroBurden
Signatures, along with the total number reclassified. Improvements in classification performance are summarized in the
final column, with NRI values and their 95% CI presented below each panel. Green-shaded cells represent
reclassifications into more accurate categories, while red-shaded cells indicate potential misclassifications.
Abbreviations: NRI, net reclassification improvement; SCORE2, Systematic COronary Risk Evaluation version 2; MACE,
major adverse cardiovascular events; MR, Mendelian randomization; Cl, confidence interval.
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Extended Figure 8. Validation of AtheroBurden Signatures in KORA-Age1 and Non-Overlapping Cohorts.

(a) Correlation between restricted (KORA-Age1) and full proteomic signatures in the UK Biobank baseline cohort.
Restricted signatures (KORA-Age1) were derived using only proteins quantifiable across all measurement platforms.
Hexagonal binning scatter plots demonstrate correlations between restricted and corresponding full signatures with
Pearson correlation coefficients (R) and associated p-values. (b) Kaplan-Meier curves showing cumulative incidence of
myocardial infarction or stroke stratified by quartiles of restricted AtheroBurden signatures in KORA-Age1. Hazard ratios
(adjusted for SCORE2 variables) and log-rank test p-values are displayed with corresponding risk tables. (c) Forest
plots show HR and 95% Cls for restricted AtheroBurden signatures in the KORA S4 and KORA-Age1 cohorts after
excluding individuals with overlap between the two cohorts. HRs are presented for three adjustment models:
demographic factors (age and sex; orange), SCORE2 variables (total cholesterol, HDL-cholesterol, systolic blood
pressure, and smoking status; yellow), and VRFs (age, sex, systolic blood pressure, body mass index, smoking status,
LDL-cholesterol, triglycerides, estimated glomerular filtration rate, glycated hemoglobin A1c, diabetes, and hypertension
status; purple). The gray dashed line represents an HR of 1.0 (no association). Statistical significance is indicated with
asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: HR, hazard ratio; Cl, confidence interval; KORA,
Cooperative Health Research in the Region of Augsburg; SCOREZ2, Systematic COronary Risk Evaluation version 2;
VRFs, vascular risk factors.
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