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Abstract

Despite their promise, current neuroimaging biomarkers often fail to capture the
full spectrum of inter-individual variability in brain structure and aging effects.
This limits their ability to detect subtle norm deviations and impacts their util-
ity for personalized care. We introduce Nearest Neighbor Normativity (N³), a
novel framework designed to resolve the confound between natural diversity and
subtle pathological patterns. It evaluates individual brain structures from several
meaningful viewpoints, accommodates a variety of co-existing normative proto-
types and accounts for individually varying progression rates of brain structural
decline. Using MRI data of 36,896 individuals, we provide empirical evidence
that the N³ biomarker effectively disentangles natural inter-individual variability
from pathological alterations, significantly outperforming brain age models and
traditional normative modeling approaches in the detection of neurodegenerative
diseases. The N³ framework is easily adaptable to various medical domains, fos-
tering individualized and context-rich biomarkers and paving the way for more
targeted and personalized therapeutic strategies.

Keywords: Normative Modeling, Precision Medicine, Diversity, Brain Age,
Density-Estimation

1 Introduction

Neuroimaging biomarkers hold the promise to transform psychiatric research by pro-1

viding objective measures that can move the field beyond symptom descriptions [1–6].2

Neuroimaging biomarkers are closely tied to the concept of brain structural normativ-3

ity, i.e. the degree of alignment with expected norms seen in the general population.4

Despite established consensus about the individuality in brain structure, current5
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biomarker assessments heavily rely on population averages and inherently exclude6

the possibility of multiple, equally viable normative patterns. The pursue of precision7

medicine requires to shift away from group averages and tailor medical interventions8

to individual physiology [7, 8]. In fact, finding (subtle) individual anomalies moder-9

ates our ability to diagnose and treat diseases effectively and is a practical necessity10

for the personalization of patient care. Redefining neuroimaging biomarkers to better11

account for the population-inherent diversity is thus not merely an academic exercise,12

but holds profound implications for medical practice.13

Two prominent approaches have emerged in the search for reliable neuroimaging14

biomarkers in brain structure thus far. The first approach, called Brain Age [9, 10],15

trains machine learning models to predict chronological age from brain structure using16

examples of a healthy reference sample. The goal is to detect unusual brain structural17

decline in unseen samples. The resulting biomarker, the Brain Age Gap (BAG), is18

defined as the difference between chronological and predicted age and has been sta-19

tistically associated with numerous neurological and psychiatric conditions, such as20

Alzheimer’s Disease (+5-10 years), Mild Cognitive Impairment, (+1-10 years), Major21

Depressive Disorder (BAG 1-4 years), Schizophrenia (+3-12 years). [11–15].22

However, the BAG’s ability to capture individual norm deviations is naturally23

limited due to the multifaceted nature of individual aging processes. How quickly24

aging effects progress in individuals is highly variable and a complex interplay of25

genetic predisposition, behavioral choices and cumulative impact of various adverse26

or protective exposures [16–20]. This unique combination of factors inevitably results27

in different aging effects seen among same-aged individuals. Using chronological age28

to assess normative neurodegeneration thus inherently lacks precision. Consequently,29

the resolution of the BAG as a personalized brain structural assessment tool is limited30

and its utility mainly constrained to group comparisons.31

The second prominent approach towards a brain structural biomarker emerges from32

so-called normative modeling [21]. Normative modeling uses statistical distributions33

to quantify brain structural measures in relation to the population average and the34

variance around it [22]. It has been successfully applied to detect brain structural35

norm deviations in various psychiatric disorders [23]. By design, normative models36

interpolate natural variability into a single reference distribution, centered around37

the population average. This mean-centric framework neglects the heterogeneity of38

physiological manifestations and does not account for biologically valid alternative39

norms. Thus, these population-wide, and often univariate, models risk masking subtle40

details that are critical for obtaining nuanced individual clinical insights [24].41

To address the methodological shortcomings of the approaches described above,42

we propose a novel normativity estimation framework called Nearest Neighbor Nor-43

mativity (N³). It uses four core strategies to better understand an individual brain44

structure within the natural diversity of the population.45

Demographic contextualization.46

First, it evaluates brain structures in relation to demographically matched subgroups47

to reduce confounding variability. We hypothesize that this narrower comparison48

enables the detection of nuanced deviations often overlooked in broader models.49
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Multinorm accommodation.50

Second, the N³ framework avoids comparisons to the population average and instead51

accommodates a variety of normative brain structural prototypes per age-group.52

Methodologically, this can be expressed with straightforward and distribution-free53

local density estimation techniques such as the Nearest Neighbor Algorithm [25].54

Normativity profiles.55

Third, each individual receives a so-called normativity profile, which joins multiple56

evaluations from different meaningful viewpoints into an comprehensive overview. In57

particular, it quantifies how an individual’s brain structure aligns with expected pat-58

terns across the aging continuum, positioning it within the spectrum of aging effects59

(see Figure 2).60

Clinically adaptable metric.61

Fourth, an analysis of the normativity profile distills its context into a single metric62

which we call the N³ biomarker. The N³ biomarker expresses how common a norma-63

tivity profile appears in relation to a particular clinical subgroup. In this work, we use64

the N³ biomarker to express the typicality of aging effects seen in an individual brain65

structure for a particular age group. Nevertheless, clinicians can adapt this metric to66

specific goals, for example, to identify typical profiles associated with high treatment67

response.68

Fig. 1 Our proposed N³ framework entails methodological innovations that refine normativity assess-
ments in large and diverse medical datasets. Here, we apply it to brain structure to foster the detection
of pathological norm deviations amidst neuroanatomical variablility and individual progression rates
in aging-related decline. The N³ entails four key strategies. First, we propose to use several carefully
tailored control groups to promote the detection of subtle and nuanced anomalies that may escape
broader comparative models. Second, we refrain from comparisons to a single normative tendency
such as the population average. Instead, we propose to quantify normativity assessment with local
density estimation algorithms, which effectively embraces diversity and acknowledges the possibility
of multiple, equally viable health states in the population. Third, we introduce global context to the
normativity assessments and join multiple comparative normativity estimations per individual into a
so-called normativity profile. This normativity profile acts as a holistic representation of a patient’s
health status and provides a multifaceted contextualization to the complex and heterogeneous nature
of medical observations. Fourth, we convert the normativity profile into a singular, actionable met-
ric, which we call N³. It synthesizes the accumulated information of prior steps and can be adapted
to a variety of clinical inquiries. For example, the final N³ normativity assessment can be fine-tuned
to express normativity in relation to specific clinical outcomes. In the example of brain structure,
normativity profiles can for example be compared to those of patients who exhibit high treatment
response. The N³ approach is universally applicable, and we see great potential that its application
will advance normativity assessments and contribute to personalized patient care.
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Fig. 2 Individual brain structural normativity profiles of three exemplary individuals of the training
sample (see Methods 1 and 2). The normativity profile shows a brain structure’s level of coherence
with different reference samples along the age continuum (blue). Chronological age is depicted in
green. The N³ framework compares aging effects of a particular brain structure to expected aging pat-
terns of different age groups along the age continuum. Moreover, the use of local density estimation
technique enables several normative prototypical brain structures per age bin and is able to capture
varying, yet normative rates of aging-related decline. a) An individual’s brain structure aligns with
younger brain structures, indicating fewer aging effects as commonly seen in same-aged individuals
b) An individual brain structure aligns with older brain structures, indicating premature neurodegen-
eration processes. c) A brain structure exhibits high alignment within its own age group and shows
deprecating alignment within other age groups.

In summary, the N³ approach addresses a key concern in neurological research,69

namely the challenge of distinguishing inter-individual variability in healthy brain70

structural decline from pathological norm deviations. By providing a more comprehen-71

sive and context-rich assessment of individual brain structures, the N³ is inherently72

designed to improve the understanding of neuroanatomical diversity and the detection73

of unusual patterns. We benchmark the efficacy of the N³ framework relative to con-74

ventional neuroimaging biomarkers. To this end, we use neurodegenerative diseases as75

model diseases to represent brain structural alterations and pathological norm devia-76

tions. We show that, indeed, the N³ biomarker enables enhanced understanding of the77

heterogeneous and complex neuroanatomical variability and individual pathological78

norm deviations.79

2 Results80

All normative models are trained with neuroimaging data from T1-weighted MRI81

scans of 29,883 individuals of a large population-based study and evaluated in 7,01382

individuals with varying levels of neurodegeneration from different study populations83

(see Methods 2). Our analysis focuses on gray matter (GM), white matter (WM),84

hyperintense white matter (WMH), total intracranial volume (TIV) and cerebrospinal85

fluid (CSF) volumes. These global measures provide a comprehensive overview of86

brain structure[26]. We use these broad aggregates of complex physiological features87

to represent typical clinical measurements, and verify the algorithm’s efficacy to derive88

meaningful disease indicators from these global parameters.89

We evaluate the N³ marker efficacy against conventional normative modeling90

approaches. Using classical normative modeling [21, 23], we derive two normativity91

scores, the first being the sum of the absolute z-scores (NM-S), the second counting92

the number of z-scores whose magnitude deviates beyond a threshold of ±1.96 (NM-93

C). We also benchmark our approach against the Brain Age paradigm, which utilizes a94
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machine learning model to predict chronological age from brain structural data[9, 11].95

Deviations between predicted and actual age, referred to as the Brain Age Gap (BAG)96

indicate neurodegenerative alterations (for details please refer to Methods Section 1,97

3 and 4)98

Applying the normative models to evaluate brain structure of both cognitively99

healthy and diseased individuals, we validate the ability of each biomarker to differ-100

entiate between healthy inter-individual variability and (early) states of pathological101

decline. To this end, instances of Mild Cognitive Impairment (MCI), Alzheimer’s Dis-102

ease (AD) and Frontotemporal Dementia (FTD) serve as model diseases to represent103

brain structural alterations and pathological norm deviations.104

2.1 Increased statistical explanatory power in distinguishing105

neurodegenerative diseases106

First, we assessed the statistical power of each biomarker, specifically examining the107

extent to which the marker detects unusual pattern deviations in group-level analyses.108

We calculated the effect size (partial eta squared, η2) for the classification of healthy109

individuals from those affected by disease (MCI, AD or FTD, respectively; see Meth-110

ods 5.5). Post-hoc comparisons then enabled us to evaluate which biomarker was able111

to provide the most statistical power. The N³ marker consistently showed higher dis-112

criminative ability across all neurodegenerative conditions compared to other markers113

used in the study (see Figure 3 and Table 1).114

For AD, the N³ biomarker showed the largest effect size (η2= 0.29), signifying that115

approximately 29% of the variability can be explained by differences in the N³ marker116

levels between the AD group and controls. In the context of FTD, all markers demon-117

strated large effect sizes, while the N³ stood out with an effect size of η2 = 0.38. The118

results for Mild Cognitive Impairment (MCI) differed, as all markers showed generally119

lower explanatory power. Nonetheless, the N³ marker displayed a relative advantage,120

with an effect size of η2 = 0.07, compared to η2 = 0.05 for the Brain Age Gap (BAG)121

and η2 = 0.02 for the normative modeling scores. Overall, the results suggest N³’s122

enhanced capability of discerning the subtle and complex neurostructural alterations123

associated with different stages of pathological decline in group level analysis.124

2.2 Improved personalized predictions125

Second, we conduct machine learning analyses to evaluate each biomarker’s util-126

ity in predicting the occurrence of a neurodegenerative disease on a single-subject127

level. Machine learning models transcend conventional statistical models by handling128

multivariate and non-linear relationships and shifting the focus from group average129

comparisons to predictions on an individual level[27]. We employ cross-validation130

strategies, which systematically tests each marker against new, unseen data to verify131

the accuracy, robustness, and generalizability of the models. Such validation is imper-132

ative to ensure reliability when these markers are applied in clinical environments [28].133

The performance of the machine learning models is quantitatively evaluated using met-134

rics such as sensitivity, precision, balanced accuracy, and the F1-score —each providing135

a different lens through which to assess clinical utility. Balanced accuracy provides a136
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Fig. 3 Top: The top panel shows the results of the statistical analyses. Statistical effect sizes (partial
eta squared - η2) are given for the different biomarkers (N³ - our approach, NM-S - the sum of the
absolute z-scores, NM-C - the number of z-scores whose magnitude deviates beyond a threshold of
±1.96, and the BAG - Brain Age Gap). We evaluate each normative modeling approach’s ability
to parse inter-individual variability and detect pathological alterations. For each marker, we test
the ability to differentiate between controls and diseased individuals in group-level analyses, using
neurodegenerative diseases as representative models of adverse norm deviations and pathological
patterns. Results are given for Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD), and
Frontotemporal Dementia (FTD), respectively. Post-hoc comparisons of the effect sizes revealed larger
explained variance of our N³ marker in all neurodegenerative conditions. The level of significance in
the differences between the η2 of N³ and η2 of the other normativity estimation approaches is indicated
above. Significance was confirmed through permutation testing using 1000 random permutations.
The distribution plots below show each marker’s value distributions for healthy controls (black) and
diseased individuals (gray). Bottom: We use machine learning to evaluate the expressiveness of each
biomarker on a single-subject level. The N³ marker demonstrated increased accuracy in predicting the
occurrence of pathological norm deviations, in this case the presence of neurodegenerative diseases for
individual patients. We show the different marker’s performance metrics [balanced accuracy (B.Acc),
F1-Score, Recall and Precision] and the performance advantage of the best marker in relation to the
second best marker in percentage (above).

holistic view, ensuring that both the presence and absence of disease are accurately137

identified. Sensitivity is particularly critical in a clinical setting as it measures the138

model’s capability to capture as many diseased patients as possible, thus effectively139

measuring a biomarker’s utility as a screening tool. Complementary precision ensures140

that the majority of patients identified by the model as having a disease truly have141

the disease. The F1-score is crucial for its balance of precision and sensitivity—a vital142

feature to avoid unnecessary interventions or over-treatment or unnecessary expensive143

screening programs.144
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The findings, as presented in Figure 3 and Table 1, elucidate the efficacy of the145

N³ marker across various disorders. In the specific cases of AD and FTD, the N³146

marker demonstrated notable improvements in balanced accuracy scores—surpassing147

the second-best markers by 5.8% for AD and 7.5% for FTD. However, in alignment148

with the small effect sizes observed in statistical analysis, the efficacy of all markers149

notably declined in predicting the presence of MCI from the given variables. Here, the150

N³ reached an 1.1% improvement to the next best marker, the BAG. With regard to151

the F1-scores, the N³ marker achieved the highest performance in all neurodegener-152

ative diseases, demonstrating its adeptness at balancing sensitivity and precision in153

detecting disease cases. While N³’s precision for MCI was 0.5% behind the normative154

modeling marker (NM-S) and by 5.0% in AD (NM-C), it was superior by 5.2% for155

FTD compared to the second best result (NM-C). Moreover, the N³ marker displayed156

superior sensitivity rates in all conditions (+1.6%, +11.0% and +2.9%), highlighting157

its sensitivity in identifying (subtle) neurodegenerative patterns. Given the overlap to158

normative aging patterns and the individuality in disease manifestations, particularly159

in MCI, this is a notable performance increase and indicates the N³ approach’s utility160

in decoding sparse associations. Overall, N³’s relative superiority over other markers161

emphasizes its efficacy in differentiating inter-individual variability from pathological162

variations in unseen individuals. The results provide evidence for the expressiveness163

of the proposed N³ normative modeling approach, indicating its ability to parse inter-164

individual heterogeneity effectively to evaluate individual measurements intricately165

within the broader landscape of diverse medical data.166

2.3 Stability and Robustness of the N³ marker167

The calculation of the N³ marker relies on local density estimation. As such it is highly168

dependent on the composition of the reference sample. Therefore, we investigate how169

changes to the sample composition and sample size affect the stability of the N³ model.170

We retrained N³ models with downsampled subsets of varying size, thereby mimicking171

smaller studies and different study participants. We then apply the different normativ-172

ity models and predict normativity on an external dataset. Particularly, we evaluate if173

predictions remain consistent across different sample sizes and sample compositions.174

We quantify the stability of the normativity estimates by calculating the Intraclass175

Correlation Coefficient (ICC) 18 (see Methods Section 5). Results are visualized in176

Figure 4. We see that random samples of 200 individuals and above show consistently177

high stability (ICC of 0.75 and above). Moreover, the ICC converges to excellent levels178

(0.9 and above) in larger sample sizes, starting at 300 participants. While the results179

are calculated for the use case of brain structural normativity estimation, they are a180

first indication density-estimation based normative models can be realized by dividing181

larger samples into subgroups of a few hundred samples and above.182

Furthermore, it is essential for normativity estimations to remain consistent and183

interpretable along the aging continuum, i.e., across different age groups, to avoid age184

biases that could complicate both research and clinical interpretations. An analysis of185

the age correlation of the N³ marker (presented in Figure 4a) indicates its stability186

over the age range, showing no significant association to age. In comparison, tradi-187

tional normative models show a significant but smaller correlation to age (ρ=0.11-0.16,188
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Table 1 Overview of the results achieved in statistical and machine learning analyses. To quantify the expressiveness of
the different methodologial approaches, we evaluate the different biomarkers’ ability in distinguishing between normative
inter-individual variability and pathological alterations. We report the effect size η2, representing the amount of variance
explained by each of the different normativity markers in statistical group comparisons. We compare N³ - our approach,
NM-S - the sum of the absolute z-scores, NM-C - the number of z-scores whose magnitude deviates beyond a threshold of
±1.96, and the BAG - Brain Age Gap for Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD), and
Frontotemporal Dementia (FTD), respectively. Moreover, we report the F-statistic, reflecting the relation of the marker
variance between cognitive unimpaired and diseased individuals in relation to the respective intra-group variance, further
indicating its ability to identify pathology in group-level analyses. All F-statistics and effect sizes η1 are significant
(p<0.001). The performance results of the machine learning analyses are given, where the normativity markers are used to
predict the occurrence of the neurodegenerative diseases in individual cases. The metrics provide insights into each
marker’s clinical utility, and overall efficacy in handling inter-individual variability and pathological variations across
different neurodegenerative conditions on a single subject level. Highest performance is indicated in bold. We see that the
N³ brain structural normativity marker shows relative superiority in relation to the other biomarkers, indicating the
approach’s efficacy in processing inter-individual variability and delineating potential anomalies.

Marker F-statistic Effect size η2 B. Accuracy F1-score Sensitivity Precision
Mild Cognitive Impairment (MCI)

NM-C F(1,4565) = 74 0.016 0.539 ± 0.010 0.385 ± 0.057 0.367 ± 0.090 0.427 ± 0.028
NM-S F(1,4565) = 85 0.018 0.553 ± 0.013 0.352 ± 0.044 0.284 ± 0.070 0.490 ± 0.044
BAG F(1,4565) = 220 0.046 0.603 ± 0.011 0.516 ± 0.014 0.566 ± 0.030 0.475 ± 0.016
N³ F(1,4565) = 326 0.067 0.614 ± 0.011 0.529 ± 0.013 0.582 ± 0.023 0.485 ± 0.014

Alzheimer’s Disease (AD)
NM-C F(1,3709) = 1,073 0.225 0.733 ± 0.020 0.583 ± 0.027 0.578 ± 0.047 0.591 ± 0.010
NM-S F(1,3709) = 994 0.212 0.727 ± 0.023 0.570 ± 0.031 0.578 ± 0.057 0.567 ± 0.022
BAG F(1,3709) = 328 0.081 0.676 ± 0.023 0.477 ± 0.025 0.651 ± 0.054 0.376 ± 0.014
N³ F(1,3709) = 1,529 0.292 0.791 ± 0.020 0.632 ± 0.020 0.761 ± 0.049 0.541 ± 0.010

Frontotemporal Dementia (FTD)
NM-C F(1,580) = 121 0.173 0.671 ± 0.028 0.613 ± 0.043 0.499 ± 0.063 0.812 ± 0.073
NM-S F(1,580) = 125 0.178 0.653 ± 0.042 0.592 ± 0.034 0.479 ± 0.047 0.790 ± 0.097
BAG F(1,580) = 184 0.242 0.715 ± 0.076 0.731 ± 0.073 0.700 ± 0.073 0.765 ± 0.077
N³ F(1,580) = 348 0.377 0.790 ± 0.063 0.789 ± 0.059 0.729 ± 0.063 0.864 ± 0.080

p<0.001). This is a contrast to the Brain Age Gap (BAG), which exhibits a moder-189

ate age bias (ρ=0.21, p<0.001), even after bias correcting adjustments are made, (see190

Methods Section 3).191

In terms of inter-marker relationships (detailed in Figure 4), the correlation anal-192

ysis shows generally weak associations (0.19 < |ρ| < 0.25) among the various markers.193

Two exceptions were noted: a strong correlation (ρ=0.79) between the two norma-194

tive modeling markers — expected due to their derivation from the same normative195

models — and a moderate to strong correlation (ρ=0.65) between the BAG and the196

N³ marker. The correlations indicate underlying differences in what these markers are197

measuring about brain structural normativity, suggesting a potential for a combined198

utility in clinical settings.199

3 Discussion200

We have introduced the N³ framework, which extends existing normative modeling201

approaches by accommodating a variety of normative population prototypes and eval-202

uating individuals from multiple comparative angles. We applied it to brain structure,203
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Fig. 4 Our evaluations revealed high robustness and consistency of the N³ framework. a) We explored
the age bias across different brain structural biomarkers in a healthy reference sample. In contrast
to the other normativity estimation approaches, the N³ marker showed no significant association
to age, which allows a consistent interpretability across different age groups. b) Additionally, we
calculated the correlation matrix among the different biomarkers, which emphasize the distinctiveness
and complementarity of the N³ marker. c) We tested the impact of sample size and sample composition
on the reliability of the N³ biomarker through intraclass correlation coefficients. To do so we repeatedly
downsampled the training data to a random subset, mimicking smaller samples and different sample
compositions. We see that the N³ marker exhibits high stability (ICC of 0.75 and above) starting
from small sample sizes of around 100 individuals and converges to excellent stability (ICC of 0.9
and above) in sample sizes of three hundred individuals and above.

which resulted in an informative biomarker assessing aging effects from multiple per-204

spectives along the aging continuum. Notably, the N³ framework entails several layers205

of context while at the same time refining individual assessments. We provided evi-206

dence that the strategic alterations of the N³ framework yield increased expressiveness207

and enabled superior differentiation between natural inter-individual variability and208

pathological alterations. In comparison to commonly used normativity scores and the209

widely referenced Brain Age approach, the N³ marker showed increased efficacy in210

identifying pathological brain structural changes.211

Notably, our evaluations are based on only five variables reflecting global brain212

structure volumes. As such, they are broad aggregates of complex physiological fea-213

tures and represent the character of many clinical measurements. In our application,214

the N³ approach has demonstrated its ability to effectively decode the relevant infor-215

mation contained in these limited neurobiological variables and was able to extract216

meaningful insights.217

Limitations of our proposed N³ framework include its reliance on larger sample218

sizes, a factor not always feasible in clinical studies where resource efficiency dictates219
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smaller study populations. To maximize statistical power and mitigate the confound-220

ing effects of clinical covariates, the heterogeneity in these smaller studies is often221

restricted, which inadvertently limits their generalizability and applicability of out-222

comes across the heterogeneous population [29, 30]. In our evaluations, the N³ marker223

exhibited high stability in samples of a few hundred individuals, indicating substantial224

robustness in moderately-sized research study populations. Moreover, the N³ marker225

showed consistency across age groups, i.e., no correlation to age, which means that226

its interpretation is consistent across individuals from different age groups and facili-227

tates its interpretability in statistical analyses. Moreover, the framework’s effectiveness228

relies on the choice of a density estimation algorithm. In our application, the Nearest229

Neighbor Algorithm depends on the k parameter, which defines the number of neigh-230

bors considered in the estimation of the local sample density. In our approach, limiting231

the number of neighbors to 10% with an upper bound to 15 prevented overly broad232

comparisons while maintaining sufficient robustness across all control groups. In gen-233

eral, the underlying algorithm can be customized for different scenarios, or adapted to234

accommodate different medical data modalities, e.g., by using custom distance metrics235

or dimensionality reduction techniques [31, 32].236

We developed the N³ approach in alignment to the goals of precision medicine.237

A refined definition of reference values and population norms enhances our under-238

standing of normative variability in diverse populations and fosters the detection of239

individual pathological alterations [33–37]. As diversity and scale of datasets increase,240

we need to reevaluate how population norms are derived, applied, and interpreted in241

clinical practice [38–41]. The N³ framework embraces the complexity in patient data,242

contextualizes it against heterogeneous population standards and parses the diversity243

into an interpretable and actionable metric.244

The interpretation and contextualization of individual brain structures holds sig-245

nificant potential for various domains. As stated above, a reliable biomarker for brain246

structural normativity is eagerly sought in neuropsychiatric research. Here, biomarkers247

may enable comprehensive assessments of neurostructural alterations associated with248

specific symptoms, to better understand the etiology and pathogenesis of different dis-249

ease phenotypes [24, 27, 42]. In general, a valid and robust neurostructural biomarker250

would allow us to measure the impact of environmental factors, treatment options and251

neuroinflammatory processes to understand disease mechanics and optimize individual252

disease management strategies [12, 19, 43, 44].253

In the realm of neurodegenerative diseases, the ability to detect brain struc-254

tural alterations early is of critical clinical relevance, as it has been shown that255

structural changes in the brain can manifest well before clinical symptoms become256

apparent [45, 46]. Furthermore, evidence supports the presence of multiple underly-257

ing neuropathological processes [17, 47], underscoring the methodological importance258

for models accommodating multiple disease prototypes. Here, a reliable brain struc-259

tural screening tool could be attached to routine MRI scans to promote early disease260

interception and facilitate timely interventions that may prevent or delay disease pro-261

gression [48–51]. To this end, we intend to extend our approach to process scans of262

different MRI tissue contrasts and evaluate different deep-learning based embeddings263
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to optimize information gain. Moreover, we intend to investigate the resulting marker’s264

relation to genetic risk factors [52–55].265

Our approach accommodates the multivariate nature of brain structures [56] and266

aligns with other modern understandings of heterogeneity, such as the concept of267

neurotypicality [57–59]. Traditionally seen as a uniform standard, brain architectures268

are now understood to encompass a spectrum of neurological function and structures,269

reflecting the rich diversity of the human nature. Moreover, our findings resonate with270

recent work by Yang et al., where the authors found a range of multiple, co-occuring271

patterns of brain aging [52]. Their research underscores the significant inter-individual272

and also intra-individual variability, underscoring the complexity and uniqueness of273

individual neurodegenerative processes beyond population averages.274

As the critical role of individual norm deviations resonates through every facet275

of personalized medicine, we aim to refine and expand our normativity estimation276

approach to medical domains beyond brain structure. In general, the N³ framework277

aligns well with the goals of precision medicine, offering a more personalized and278

nuanced understanding of individual variability in aging or disease trajectories.279

4 Conclusion280

This approach that we call Nearest Neighbor Normativity (N³) interprets individual281

patient data in reference to a particularly matched sample, accommodates diverse282

population norms, and analyzes several different perspectives of normativity. Thereby,283

it holds significant promise for personalized healthcare. It can be applied across various284

medical domains to contextualize individual patient data in large and heterogeneous285

datasets. As we continue to refine and validate our N³ framework, it is our belief286

that the insights gained will be invaluable for shaping normativity assessments and287

contribute to more personalized patient care and improved clinical outcomes.288

5 Methods289

5.1 N³ algorithm290

The N³ approach is based on local density estimation in tailored control groups. To291

establish a normative reference for the local density seen in a representative sample,292

we here use the simple and intuitive Nearest-Neighbor algorithm [25, 32].293

5.1.1 Local density estimation in tailored control groups294

Let Xc ∈ X be a control group of dataset X and C = {c1, c2, . . . , cg} be the295

set of g control groups, where control groups are allowed to overlap. Each control296

group Xc contains n samples {q1, q2, . . . , qn}, which are characterized by m features297

{a1, a2, . . . , am}.298

13

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 18, 2025. ; https://doi.org/10.1101/2024.12.24.24319598doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.24.24319598
http://creativecommons.org/licenses/by-nc/4.0/


As a first step, we normalize the features in each control group c, so that their299

value lies in [0,1].300

a′i,j =
ai,j −min({a|a ∈ Aj})

max({a|a ∈ Aj})−min({a|a ∈ Aj})
, (1)

where ai,j represents feature j of the sample i in the control group Xc, and Aj are all301

values of feature j in the control group Xc. Each sample qi is thus represented as a302

feature vector of normalized features qi = (a′i,1, a
′
i,2, . . . , a

′
i,m). To estimate the local303

sample density around a particular point qi in Xc, we define a subset Nqi ⊆ Xc such304

that it contains the k points x′ ∈ Xc which are the closest to qi. DistanceD is measured305

using the Euclidean distance. We define Dist(qi, Xc) = {D(q, x′) | x′ ∈ Xc} as the set306

of all distances from qi to points in Xc. After sorting the points in Dist(qi, Xc) into307

a tuple (d1, d2, . . . , dn), where (d1 ≤ d2 ≤ · · · ≤ dn), the k nearest neighbors are the308

first k elements.309

Next, we quantify the local sample density λ of qi as the inverse of the sum of the310

distance to its k nearest neighbors in control group c.311

λ(qi, c) =
1∑

x′∈Nqi

D(qi, x
′)

(2)

For each individual qi in each of the control groups containing n samples,312

respectively, we calculate the local sample densities λ as described above .313

Λc = {λ(qi, c) | i = 1, 2, . . . , n}, (3)

To ensure comparability between the different control groups, we divide the local314

densities by the control-group specific median.315

λ′(qi, c) =
λ(qi, c)

median (Λc)
(4)

As a result we have a set of normalized local sample density estimations for all of the316

g control groups Λ′ = {Λ′
1,Λ

′
2, . . . ,Λ

′
g}.317

We introduce context to the local sample density estimations and analyze their318

distribution across all control groups. Due to its flexibility in accommodating various319

distributive shapes, we use the exponentiated Weibull distribution [60]. The distribu-320

tion is fitted on all normalized local sample density estimation in Λ′. Using the fitted321

distribution, we derive the likelihood of a normalized local sample density estimation.322

f(x, b, d) = bd[1− exp(−xd)]b−1 exp(−xd)xd−1, (5)

where x = λ′(qi, c) is the normalized local density value of sample qi in control323

group c, b is the exponentiation parameter, and d is the shape parameter of the324

non-exponentiated Weibull law.325
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We use the fitted distribution f to convert all local sample density estimations326

λ′(qi, c) into measures of likelihood. To keep as much information as possible, we add a327

sign to f , which indicates in which direction a sample is deviating from the median. In328

this context, samples whose local sample density is smaller than the medium, receive329

a negative value, while samples whose local sample density is larger than the medium,330

have a positive value.331

f∗(x) =

{
−f(x, b, d) if x < 1,

f(x, b, d) otherwise
(6)

Finally, to foster intuitive interpretation, we scale the signed likelihood f∗ to an332

interval of [-1, 1], where -1 indicates lowest sample density found and 1 indicates333

maximal sample density found.334

f∗∗(x) = 2 ∗ f∗(x)−min({f∗(q|q ∈ X}
max({f∗(q|q ∈ X})−min({f∗(q|q ∈ X})

− 1 (7)

The final value f∗∗ is a normativity estimation on how common the sample qi appears335

within a particular control group c, measured by its local sample density λ′.336

5.1.2 Normativity Profile337

To create a normativity profile for an individual sample qi, several normativity estima-338

tions in different, not mutually exclusive, control groups can be combined, evaluating339

the commonness of an individual measurement from multiple meaningful angles or340

viewpoints.341

ϕi = {f∗∗(λ′(qi, c1)), f
∗∗(λ′(qi, c2)), . . . , f

∗∗(λ′(qi, cg))} (8)

5.1.3 Meta Normativity342

To synthesize the comprehensive information entailed in an individual normativity343

profile ϕi into a single, actionable metric, we conduct a second layer of normativity344

estimation (meta-normativity).345

Basis to this is the first layer of normativity estimation, in which the local density346

estimation algorithm described in section 5.1.1 is applied to medical data of a popula-347

tion or study sample. In this step, the local sample density estimation is based on the348

m medical data features. Using the algorithm outputs, a normativity profile ϕi can349

be generated for each individual. The normativity profile expresses how common the350

medical observations are in relation to the samples contained in each control group.351

In the second layer of normativity estimation, we use the normativity profile ϕi as352

input data and repeat the local sample density estimation approach. Now, the local353

density estimation algorithm is using the g normativity measures of ϕ as features.354

Thereby, we measure the commonness of a normativity profile in relation to other355

normativity profiles seen a particular reference population. This can either be done356

globally (on all normativity profiles of the sample), or again in in tailored control357
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groups (evaluating the commmonnness of a normativity profile with respect to a par-358

ticular sample subpopulation). The output of this meta-normativity estimation is the359

return value of the N³ algorithm, what we call the N³ marker.360

N3 = f∗∗(λ′(ϕi, c)) (9)

5.1.4 Training vs. Inference Phase361

The N³ algorithm is trained using a normative reference sample X. There are two sub-362

sequent layers of local density estimation. The first layer operates on the algorithm’s363

input data. During the process, scaling parameters for the input features, as well as364

the median local sample density are derived and persisted per control group, respec-365

tively. Also, the parameters of the fitted probability density function and the final366

scaling function are persisted. Afterwards, all samples in X undergo the normativity367

evaluations and are expressed in individual normativity profiles Φ = {ϕ1, ϕ2, . . . , ϕn}368

(see Equation 8).369

Using the resulting normativity profiles of the normative reference sample Φ as370

input, a second layer of normativity estimation is applied. This time, the inidivudal371

normativity profiles ϕi are subject to local sample density estimation (λ′(ϕi, c)). Again,372

the scaling parameters as well as the median local sample density are persisted per373

control group, respectively. Control groups may now be different than those in the374

first stage. Finally, another probability density function is fitted, this time on the local375

sample densities of Φ. Again, the fitting parameters of as well as those of the scaling376

function are persisted.377

During inference time, a novel sample p is evaluated in relation to the controls378

groups C of training sampleX. For each control group, the feature values of p are scaled379

according to the parameters persisted during training, and the k nearest neighbors380

of p are determined, respectively. We calculate f∗∗(λ′(p, c)) in relation to samples381

seen in Xc. After applying the first layer of local sample density estimation, several382

normativity evaluations in different control groups are summarized in a normativity383

profile ϕp. In the second step, the normativity profile ϕp is evaluated in relation to the384

normativity profiles seen in the reference sample (Φ), using the parameters persisted385

during the second stage of training. The final output is derived by N3
p = f∗∗(λ′(ϕp, c))386

5.1.5 Application to Brain Structure387

In our application to brain structure, we stratify the training sample by sex and age,388

resulting into 100 control groups containing same-aged females or males (22 to 72389

years), respectively. Each sample is characterized by 5 different features, namely the390

brain structural volumes (GM, WM, WMH, CSF, TIV) of each individual. To miti-391

gate different sample sizes of different age groups, we join either the lower, the upper,392

or both neighboring age groups of underrepresented age groups, so that the sample393

size per age group approximates the median sample size available per sex. We set the394

k parameter to 10% of the control group sample size, but limit its upper bound to395

15 to prevent too broad comparisons k = min(round(0.1 × n), 15). Applying the N³396

algorithm, we then first evaluate the commonness of an individual brain structure in397

comparison to all available age groups of the same sex. The result are normativity398
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profiles, indicating the alignment of the brain structure in relation to the reference399

samples seen across the aging continuum. In the next step, we use all normativity pro-400

files (across genders) and evaluate their normativity in relation to other representative401

samples of the same chronological age. The final N³ marker indicates how common a402

brain structural normativity profile is in the chronological age group of the individual.403

5.2 Materials404

Neuroimaging data from six different studies were provided by the respective con-405

sortia. Our study includes data from the German National Cohort (NAKO)[61–63],406

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [64], the Münster-Marburg407

Affective Disorder Cohort (MACS) [65], the Australian Imaging, Biomarker Lifestyle408

Study of Aging (AIBL) [66], the Frontotemporal Lobar Degeneration Neuroimaging409

Initiative (NIFD), and the Open Access Series of Imaging Studies 3 (OASIS3) [67, 68].410

We give a short overview of our approach to integrate these resources in our analyses,411

before we introduce each study population in detail below.412

5.2.1 Training and Test Data413

In general, if more than one measurement was available per participant, we restrict414

each study’s dataset to the first (baseline) measurement of the participant. Exclusion415

criteria were applied based on age; participants younger than 22 years or older than416

72 were omitted from the study, due to insufficient sample sizes in the normative417

reference sample. All neuroimaging data utilized in this study were T1-weighted MRI418

scans from these baseline measurements. These images underwent preprocessing using419

the standard software CAT12 (version: cjp v0008, spm12 build v7771; cat12 build420

r1720) default parameters. In short, images were bias-corrected, tissue classified, and421

normalized to MNI-space using linear and non-linear transformations. Subsequently,422

the derived GM, WM, WMH, CSF, and TIV volumes were extracted.423

Training Data424

The training data for fitting models of the different normative modeling approaches425

comprised 30,047 samples from the population-based NAKO cohort (for details see426

below). We exclude age groups below 22 years and above 72 years due to small sample427

sizes (n < 100), which restricts the final sample to 29,883. We then fit the models of428

the different normative model approaches using this large and diverse sample.429

Test Data430

To investigate each normativity marker’s effectiveness in identifying brain structural431

anomalies and (early) signs of neurodegeneration, additional data involving 5,857432

participants were utilized, sourced from ADNI, AIBL, OASIS and NIFD datasets433

(for details see section 5.2.2). The collective samples include cognitively unimpaired434

individuals as well as those diagnosed with Mild Cognitive Impairment, Alzheimer’s435

Disease and Frontotemporal Dementia.436
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Data for Stability Analysis437

Finally, to evaluate the robustness of the N³ brain structural normativity assessments,438

we use artificially downsampled subgroups of the NAKO study for training. Validation439

subsets included n=835 healthy control participants from the MACS study which440

predominantly comprises younger and middle-aged adults, and an additional n=1073441

healthy older adults from the ADNI study to span a wider age demographic (see442

Methods section 5.5).443

5.2.2 Study Populations444

German National Cohort (NAKO)445

The German National Cohort is a population-based longitudinal study initiated in446

2014 aiming to investigate the risk factors for major chronic diseases in 200,000 per-447

sons living in Germany. It contains high-quality neuroimaging data from participants448

spanning a broad age range. In this study, we utilize the participants’ 3.0-Tesla T1w-449

MPRAGE MRI scans (voxel size 1×1×1 mm3, repetition time/ echo time=2300/2.98,450

flip angle=9°) [61–63].451

Alzheimer’s Disease Neuroimaging Initiative (ADNI)452

ADNI is a major multicenter study started in 2003, designed to develop clinical,453

imaging, genetic, and biochemical biomarkers for the early detection and tracking of454

Alzheimer’s disease. The ADNI was launched as a public-private partnership, led by455

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been456

to test whether serial MRI, positron emission tomography (PET), other biological457

markers, and clinical and neuropsychological assessment can be combined to measure458

the progression of neurodegeneration. We included 1.5 and 3.0-Tesla T1w-MPRAGE459

MRI scans adhering to the ADNI sequence protocol, for scanner specific details460

please see https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-461

scanner-protocols/)462

Australian Imaging, Biomarker & Lifestyle Study of Aging (AIBL)463

AIBL is an Australian study launched in 2006 focusing on understanding the pathways464

to Alzheimer’s disease. The cohort includes participants diagnosed with Alzheimer’s465

disease, mild cognitive impairment, and cognitively unimpaired elderly participants,466

providing insights into the aging process and the development of neurodegenerative467

diseases. AIBL study methodology has been reported previously [69]. MRI scans were468

performed using a 3D MPRAGE image (voxel size 1.2×1×1 mm3, repetition time/echo469

time=2300/ 2.98, flip angle=8°)[66].470

NIFD Dataset471

The Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) was472

funded through the National Institute of Aging, and started in 2010. The primary473

goals of FTLDNI were to identify neuroimaging modalities and methods of analy-474

sis for tracking frontotemporal lobar degeneration (FTLD) and to assess the value475

of imaging versus other biomarkers in diagnostic roles. The Principal Investigator of476
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NIFD was Dr. Howard Rosen, MD at the University of California, San Francisco. We477

use the provided 3D MPRAGE T1-weighted images (voxel size 1×1×1 mm3, repeti-478

tion time/echo time=2300/2.9, matrix = 240 × 256 × 160) The data are the result479

of collaborative efforts at three sites in North America. For up-to-date information on480

participation and protocol, please visit http://memory.ucsf.edu/research/studies/nifd481

Open Access Series of Imaging Studies 3 (OASIS3)482

OASIS3 serves as a comprehensive digital repository for MRI brain data that supports483

longitudinal studies of normal aging and cognitive decline [67, 68]. The project is484

distinguished by its wide age range of participants, providing diverse datasets that485

enhance the understanding of late-life brain diseases alongside physiological aging486

processes. We include 3D MPRAGE T1-weighted images (voxel size 1.0 or 1.2×1×1487

mm3, repetition time/echo time=2300/2.95 or 2400/3.16 (depending on the scanner),488

flip angle=9°, FoV=240 or 256mm)489

Marburg-Münster Affective Disorder Cohort Study (MACS)490

The MACS cohort is part of the DFG-funded research group FOR2107 cohort,491

researching the etiology and progression of affective disorders [65]. The goal is to492

integrate and understand the clinical and neurobiological effects of genetisc and envi-493

ronmental factors, and their complex interactions. Participants received financial494

compensation and gave written informed consent. We use the T1-weighted neuroimag-495

ing scans of n=835 healthy control participants to evaluate stability of the N³ models.496

Images were in Marburg (MR) or Münster (MS) (voxel size 1×1×1 mm3, repetition497

time/echo time=MR: 1900, MS: 2130/MR: 2.26, MS: 2.28, flip angle=8°, FoV = 256498

mm, matrix = 256 × 256, slice thickness = 1 mm)499

Table 2 Study Data Summary

Study Group N Included Mean Age Sex
ADNI HC 1073 68.36± 3.3 634 females (59.09%)

MCI 1529 66.71± 4.25 729 females (47.67%)
AD 588 67.2± 4.65 291 females (49.48%)

AIBL HC 368 68.00± 2.77 217 females (58.97%)
MCI 78 68.05± 3.54 33 females (42.31%)
AD 28 66.89± 4.44 16 females (57.14%)

OASIS3 HC 1643 63.36± 6.85 1028 females (62.57%)
MCI 63 66.67± 4.85 37 females (58.73%)
AD 228 66.54± 4.94 97 females (42.54%)

NIFD HC 263 62.71± 6.41 148 females (56.27%)
FTD 317 63.26± 5.66 120 females (37.85%)

MACS HC 835 35.71± 12.6 528 females (63.23%)
NAKO HC 29883 48.45± 12.09 13201 females (44.18%)

5.3 Brain Age Model500

In the Brain Age paradigm, the brain structure is evaluated with respect to aging501

effects seen in a healthy reference sample. This is realized by means of a machine502
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learning model trained to predict chronological age from brain structure. The devi-503

ation between chronological and predicted age is referred to as the Brain Age Gap504

(BAG). While a small BAG is considered normative and age-appropriate, a larger pos-505

itive or negative BAG symbolizes premature or delayed neurostructural degeneration,506

respectively. The resulting normativity estimation, i.e. the BAG values, have been507

associated with numerous neurological and psychiatric conditions [11, 12]. For com-508

parison with N³, we train a Brain Age Model using the Python library photonai [70].509

We use 90% of the available normative dataset for model training. We use a Support510

Vector Machine (SVM), for which we optimize the C and gamma parameters in the511

nested-cross-validation procedure (k=10 outer folds and two randomly shuffled inner512

folds with a test size of 0.1). The best model achieves an average MAE of 5.43. Finally,513

we use the remaining 10% of the normative training data to train a linear age bias cor-514

rection as described in Peng et al. [71]. For the evaluation of unseen samples, we use515

the Brain Age SVM model to predict age and apply the age correction model, before516

we calculate the difference between the chronological and predicted age, the BAG.517

5.4 Normative Modeling518

We calculate normative models on the training data using the Predictive Clinical519

Neuroscience toolkit as described in Rutherford et al. [22]. To train the models, we520

normalize GM, WM, WMH, CSF by Total Intracranial Volume (TIV) and fit Bayesian521

Linear Regression models with default parameters. Subsequently, z-scores for each of522

the variables are derived, which we aggregate into two normative modeling markers:523

one being the sum of the absolute z-scores, the second counting the number of absolute524

z-scores > 1.96.525

5.5 Statistical Analysis526

A Type III Sum of Squares ANOVA was performed using an ordinary least squares527

(OLS) model to assess the discriminative and explanatory power of each normativity528

marker in distinguishing patients from controls. The model was adjusted for potential529

confounders, including age, age squared (to mitigate non-linear effects), sex and scan-530

ner. Partial eta squared (η2) was used to quantify effect size, providing an estimate531

of how much variance in disease progression could be explained by each normativity532

marker, alongside a 95% confidence interval.533

We evaluate and rank the different normativity markers by post-hoc comparisons of534

their effect size. To test the observed marker differences for statistical significance, we535

calculate the ANOVA for each marker with 1000 random permutations. To determine536

the p value of the marker differences, we evaluate the actual difference between the η2537

of our marker N³ and the η2 another marker, with those found in the 1000 random538

permutations.539

To assess each normativity marker’s consistency across age groups, an analysis of540

age bias was conducted using Spearman’s rank correlation to evaluate the correlation541

between the normativity estimation values and age in healthy controls.542

To assess stability of the N³ models, the Intraclass Correlation Coefficient (ICC)543

model (2,1) was applied. For this purpose, we used the NAKO sample to train the544
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normativity models, which were downsampled to mimic smaller study populations.545

Particularly, we divide the training set in k=[10, 5, 3, 2] non-overlapping parts of equal546

size, train normativity models within each of these subsets, and use external test data547

to ensure the stability of the normativity estimates. The stability of the normativity548

estimates was tested using data from the ADNI and MACS cohort, (see Methods549

section 5.2.1). To ensure validity of the test, we use only age groups with more than550

500 samples available from the training sample and more than 20 samples in the test551

samples.552

All statistical analyses were implemented in Python using the scipy, statsmodels553

and pingouin libraries.554

5.6 Machine Learning Analysis555

The effectiveness of aging markers in classifying neurodegenerative diseases was fur-556

ther explored through machine learning techniques. We assessed various performance557

metrics including balanced accuracy, recall, precision, and F1-score. Our analytical558

pipeline employed the open-source Python framework photonai [70]. The analysis559

involved nested cross-validation to robustly estimate model performance and avoid560

overfitting, using k=5 outer folds and k=10 inner folds, each fold stratified to entail a561

balanced proportion of samples from the diseased class. Hyperparameter optimization562

was performed via Grid Search to fine-tune the support vector machine (SVM) param-563

eters C and gamma. The machine learning pipeline included steps for z-normalization564

and balanced sampling (random under-sampling techniques) to address class imbal-565

ance within the training data. We measure balanced accuracy, recall, precision and566

f1 score of each of the normativity markers in the classification of neurodegenerative567

diseases.568
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