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Abstract

Despite their promise, current neuroimaging biomarkers often fail to capture the
full spectrum of inter-individual variability in brain structure and aging effects.
This limits their ability to detect subtle norm deviations and impacts their util-
ity for personalized care. We introduce Nearest Neighbor Normativity (N2), a
novel framework designed to resolve the confound between natural diversity and
subtle pathological patterns. It evaluates individual brain structures from several
meaningful viewpoints, accommodates a variety of co-existing normative proto-
types and accounts for individually varying progression rates of brain structural
decline. Using MRI data of 36,896 individuals, we provide empirical evidence
that the N® biomarker effectively disentangles natural inter-individual variability
from pathological alterations, significantly outperforming brain age models and
traditional normative modeling approaches in the detection of neurodegenerative
diseases. The N2 framework is easily adaptable to various medical domains, fos-
tering individualized and context-rich biomarkers and paving the way for more
targeted and personalized therapeutic strategies.

Keywords: Normative Modeling, Precision Medicine, Diversity, Brain Age,
Density-Estimation

1 Introduction

1 Neuroimaging biomarkers hold the promise to transform psychiatric research by pro-
2 viding objective measures that can move the field beyond symptom descriptions [1-6].
s Neuroimaging biomarkers are closely tied to the concept of brain structural normativ-
. ity, i.e. the degree of alignment with expected norms seen in the general population.
s Despite established consensus about the individuality in brain structure, current
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6 biomarker assessments heavily rely on population averages and inherently exclude
7 the possibility of multiple, equally viable normative patterns. The pursue of precision
s medicine requires to shift away from group averages and tailor medical interventions
o to individual physiology [7, 8]. In fact, finding (subtle) individual anomalies moder-
10 ates our ability to diagnose and treat diseases effectively and is a practical necessity
n for the personalization of patient care. Redefining neuroimaging biomarkers to better
12 account for the population-inherent diversity is thus not merely an academic exercise,
13 but holds profound implications for medical practice.

14 Two prominent approaches have emerged in the search for reliable neuroimaging
15 biomarkers in brain structure thus far. The first approach, called Brain Age [9, 10],
1 trains machine learning models to predict chronological age from brain structure using
17 examples of a healthy reference sample. The goal is to detect unusual brain structural
18 decline in unseen samples. The resulting biomarker, the Brain Age Gap (BAG), is
10 defined as the difference between chronological and predicted age and has been sta-
2 tistically associated with numerous neurological and psychiatric conditions, such as
2 Alzheimer’s Disease (+5-10 years), Mild Cognitive Impairment, (41-10 years), Major
2 Depressive Disorder (BAG 1-4 years), Schizophrenia (+3-12 years). [11-15].

2 However, the BAG’s ability to capture individual norm deviations is naturally
2 limited due to the multifaceted nature of individual aging processes. How quickly
s aging effects progress in individuals is highly variable and a complex interplay of
% genetic predisposition, behavioral choices and cumulative impact of various adverse
o or protective exposures [16-20]. This unique combination of factors inevitably results
s in different aging effects seen among same-aged individuals. Using chronological age
20 to assess normative neurodegeneration thus inherently lacks precision. Consequently,
s the resolution of the BAG as a personalized brain structural assessment tool is limited
a1 and its utility mainly constrained to group comparisons.

2 The second prominent approach towards a brain structural biomarker emerges from
13 so-called normative modeling [21]. Normative modeling uses statistical distributions
u  to quantify brain structural measures in relation to the population average and the
55 variance around it [22]. Tt has been successfully applied to detect brain structural
s norm deviations in various psychiatric disorders [23]. By design, normative models
s interpolate natural variability into a single reference distribution, centered around
s the population average. This mean-centric framework neglects the heterogeneity of
s physiological manifestations and does not account for biologically valid alternative
w0 norms. Thus, these population-wide, and often univariate, models risk masking subtle
s details that are critical for obtaining nuanced individual clinical insights [24].

» To address the methodological shortcomings of the approaches described above,
13 we propose a novel normativity estimation framework called Nearest Neighbor Nor-
w  mativity (N®). It uses four core strategies to better understand an individual brain
s structure within the natural diversity of the population.

% Demographic contextualization.

«  First, it evaluates brain structures in relation to demographically matched subgroups
s to reduce confounding variability. We hypothesize that this narrower comparison
» enables the detection of nuanced deviations often overlooked in broader models.
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o Multinorm accommodation.

st Second, the N2 framework avoids comparisons to the population average and instead
52 accommodates a variety of normative brain structural prototypes per age-group.
53 Methodologically, this can be expressed with straightforward and distribution-free
s« local density estimation techniques such as the Nearest Neighbor Algorithm [25].

s INormativity profiles.

ss Third, each individual receives a so-called normativity profile, which joins multiple
s evaluations from different meaningful viewpoints into an comprehensive overview. In
ss  particular, it quantifies how an individual’s brain structure aligns with expected pat-
s terns across the aging continuum, positioning it within the spectrum of aging effects
o (see Figure 2).

e Clinically adaptable metric.

62 Fourth, an analysis of the normativity profile distills its context into a single metric
&3 which we call the N3 biomarker. The N® biomarker expresses how common a norma-
e tivity profile appears in relation to a particular clinical subgroup. In this work, we use
e the N3 biomarker to express the typicality of aging effects seen in an individual brain
e structure for a particular age group. Nevertheless, clinicians can adapt this metric to
o7 specific goals, for example, to identify typical profiles associated with high treatment
6 Tesponse.
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Fig. 1 Our proposed N2 framework entails methodological innovations that refine normativity assess-
ments in large and diverse medical datasets. Here, we apply it to brain structure to foster the detection
of pathological norm deviations amidst neuroanatomical variablility and individual progression rates
in aging-related decline. The N2 entails four key strategies. First, we propose to use several carefully
tailored control groups to promote the detection of subtle and nuanced anomalies that may escape
broader comparative models. Second, we refrain from comparisons to a single normative tendency
such as the population average. Instead, we propose to quantify normativity assessment with local
density estimation algorithms, which effectively embraces diversity and acknowledges the possibility
of multiple, equally viable health states in the population. Third, we introduce global context to the
normativity assessments and join multiple comparative normativity estimations per individual into a
so-called normativity profile. This normativity profile acts as a holistic representation of a patient’s
health status and provides a multifaceted contextualization to the complex and heterogeneous nature
of medical observations. Fourth, we convert the normativity profile into a singular, actionable met-
ric, which we call N3. It synthesizes the accumulated information of prior steps and can be adapted
to a variety of clinical inquiries. For example, the final N® normativity assessment can be fine-tuned
to express normativity in relation to specific clinical outcomes. In the example of brain structure,
normativity profiles can for example be compared to those of patients who exhibit high treatment
response. The N2 approach is universally applicable, and we see great potential that its application
will advance normativity assessments and contribute to personalized patient care.
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Fig. 2 Individual brain structural normativity profiles of three exemplary individuals of the training
sample (see Methods 1 and 2). The normativity profile shows a brain structure’s level of coherence
with different reference samples along the age continuum (blue). Chronological age is depicted in
green. The N2 framework compares aging effects of a particular brain structure to expected aging pat-
terns of different age groups along the age continuum. Moreover, the use of local density estimation
technique enables several normative prototypical brain structures per age bin and is able to capture
varying, yet normative rates of aging-related decline. a) An individual’s brain structure aligns with
younger brain structures, indicating fewer aging effects as commonly seen in same-aged individuals
b) An individual brain structure aligns with older brain structures, indicating premature neurodegen-
eration processes. ¢) A brain structure exhibits high alignment within its own age group and shows
deprecating alignment within other age groups.

69 In summary, the N3 approach addresses a key concern in neurological research,
7o namely the challenge of distinguishing inter-individual variability in healthy brain
7 structural decline from pathological norm deviations. By providing a more comprehen-
» sive and context-rich assessment of individual brain structures, the N2 is inherently
7 designed to improve the understanding of neuroanatomical diversity and the detection
7 of unusual patterns. We benchmark the efficacy of the N3 framework relative to con-
75 ventional neuroimaging biomarkers. To this end, we use neurodegenerative diseases as
7 model diseases to represent brain structural alterations and pathological norm devia-
7 tions. We show that, indeed, the N® biomarker enables enhanced understanding of the
7 heterogeneous and complex neuroanatomical variability and individual pathological
7 norm deviations.

» 2 Results

a1 All normative models are trained with neuroimaging data from T1-weighted MRI
e scans of 29,883 individuals of a large population-based study and evaluated in 7,013
g3 individuals with varying levels of neurodegeneration from different study populations
s (see Methods 2). Our analysis focuses on gray matter (GM), white matter (WM),
s hyperintense white matter (WMH), total intracranial volume (TIV) and cerebrospinal
s fluid (CSF) volumes. These global measures provide a comprehensive overview of
e brain structure[26]. We use these broad aggregates of complex physiological features
s to represent typical clinical measurements, and verify the algorithm’s efficacy to derive
s meaningful disease indicators from these global parameters.

9 We evaluate the N2 marker efficacy against conventional normative modeling
o approaches. Using classical normative modeling [21, 23], we derive two normativity
e scores, the first being the sum of the absolute z-scores (NM-S), the second counting
3 the number of z-scores whose magnitude deviates beyond a threshold of +1.96 (NM-
s (). We also benchmark our approach against the Brain Age paradigm, which utilizes a
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s machine learning model to predict chronological age from brain structural data[9, 11].
s Deviations between predicted and actual age, referred to as the Brain Age Gap (BAG)
o indicate neurodegenerative alterations (for details please refer to Methods Section 1,
s 3 and 4)

99 Applying the normative models to evaluate brain structure of both cognitively
w0 healthy and diseased individuals, we validate the ability of each biomarker to differ-
1 entiate between healthy inter-individual variability and (early) states of pathological
102 decline. To this end, instances of Mild Cognitive Impairment (MCI), Alzheimer’s Dis-
03 ease (AD) and Frontotemporal Dementia (FTD) serve as model diseases to represent
s brain structural alterations and pathological norm deviations.

ws 2.1 Increased statistical explanatory power in distinguishing
106 neurodegenerative diseases

wr  First, we assessed the statistical power of each biomarker, specifically examining the
s extent to which the marker detects unusual pattern deviations in group-level analyses.
o We calculated the effect size (partial eta squared, n?) for the classification of healthy
uo individuals from those affected by disease (MCI, AD or FTD, respectively; see Meth-
w ods 5.5). Post-hoc comparisons then enabled us to evaluate which biomarker was able
12 to provide the most statistical power. The N3 marker consistently showed higher dis-
u3  criminative ability across all neurodegenerative conditions compared to other markers
us used in the study (see Figure 3 and Table 1).

115 For AD, the N biomarker showed the largest effect size (n?= 0.29), signifying that
ue approximately 29% of the variability can be explained by differences in the N® marker
w7 levels between the AD group and controls. In the context of FTD, all markers demon-
us  strated large effect sizes, while the N2 stood out with an effect size of n? = 0.38. The
uo  results for Mild Cognitive Impairment (MCI) differed, as all markers showed generally
10 lower explanatory power. Nonetheless, the N2 marker displayed a relative advantage,
1 with an effect size of n? = 0.07, compared to n? = 0.05 for the Brain Age Gap (BAG)
2 and 7?2 = 0.02 for the normative modeling scores. Overall, the results suggest N%’s
123 enhanced capability of discerning the subtle and complex neurostructural alterations
124 associated with different stages of pathological decline in group level analysis.

s 2.2 Improved personalized predictions

s Second, we conduct machine learning analyses to evaluate each biomarker’s util-
127 ity in predicting the occurrence of a neurodegenerative disease on a single-subject
128 level. Machine learning models transcend conventional statistical models by handling
129 multivariate and non-linear relationships and shifting the focus from group average
130 comparisons to predictions on an individual level[27]. We employ cross-validation
1 strategies, which systematically tests each marker against new, unseen data to verify
122 the accuracy, robustness, and generalizability of the models. Such validation is imper-
133 ative to ensure reliability when these markers are applied in clinical environments [28].
13« The performance of the machine learning models is quantitatively evaluated using met-
135 rics such as sensitivity, precision, balanced accuracy, and the F1-score —each providing
136 a different lens through which to assess clinical utility. Balanced accuracy provides a
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Fig. 3 Top: The top panel shows the results of the statistical analyses. Statistical effect sizes (partial
eta squared - n?) are given for the different biomarkers (N2 - our approach, NM-S - the sum of the
absolute z-scores, NM-C - the number of z-scores whose magnitude deviates beyond a threshold of
+1.96, and the BAG - Brain Age Gap). We evaluate each normative modeling approach’s ability
to parse inter-individual variability and detect pathological alterations. For each marker, we test
the ability to differentiate between controls and diseased individuals in group-level analyses, using
neurodegenerative diseases as representative models of adverse norm deviations and pathological
patterns. Results are given for Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD), and
Frontotemporal Dementia (FTD), respectively. Post-hoc comparisons of the effect sizes revealed larger
explained variance of our N® marker in all neurodegenerative conditions. The level of significance in
the differences between the n? of N3 and 1? of the other normativity estimation approaches is indicated
above. Significance was confirmed through permutation testing using 1000 random permutations.
The distribution plots below show each marker’s value distributions for healthy controls (black) and
diseased individuals (gray). Bottom: We use machine learning to evaluate the expressiveness of each
biomarker on a single-subject level. The N2 marker demonstrated increased accuracy in predicting the
occurrence of pathological norm deviations, in this case the presence of neurodegenerative diseases for
individual patients. We show the different marker’s performance metrics [balanced accuracy (B.Acc),
F1-Score, Recall and Precision] and the performance advantage of the best marker in relation to the
second best marker in percentage (above).

137 holistic view, ensuring that both the presence and absence of disease are accurately
138 identified. Sensitivity is particularly critical in a clinical setting as it measures the
139 model’s capability to capture as many diseased patients as possible, thus effectively
1w measuring a biomarker’s utility as a screening tool. Complementary precision ensures
1w that the majority of patients identified by the model as having a disease truly have
12 the disease. The Fl-score is crucial for its balance of precision and sensitivity—a vital
3 feature to avoid unnecessary interventions or over-treatment or unnecessary expensive
144 Screening programs.
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15 The findings, as presented in Figure 3 and Table 1, elucidate the efficacy of the
us N2 marker across various disorders. In the specific cases of AD and FTD, the N3
1wz marker demonstrated notable improvements in balanced accuracy scores—surpassing
us  the second-best markers by 5.8% for AD and 7.5% for FTD. However, in alignment
19 with the small effect sizes observed in statistical analysis, the efficacy of all markers
150 notably declined in predicting the presence of MCI from the given variables. Here, the
11 N3 reached an 1.1% improvement to the next best marker, the BAG. With regard to
12 the Fl-scores, the N® marker achieved the highest performance in all neurodegener-
13 ative diseases, demonstrating its adeptness at balancing sensitivity and precision in
15 detecting disease cases. While N’s precision for MCI was 0.5% behind the normative
155 modeling marker (NM-S) and by 5.0% in AD (NM-C), it was superior by 5.2% for
15 FTD compared to the second best result (NM-C). Moreover, the N® marker displayed
157 superior sensitivity rates in all conditions (+1.6%, +11.0% and +2.9%), highlighting
158 its sensitivity in identifying (subtle) neurodegenerative patterns. Given the overlap to
159 normative aging patterns and the individuality in disease manifestations, particularly
1o in MCI, this is a notable performance increase and indicates the N approach’s utility
11 in decoding sparse associations. Overall, N®’s relative superiority over other markers
12 emphasizes its efficacy in differentiating inter-individual variability from pathological
163 variations in unseen individuals. The results provide evidence for the expressiveness
16s  of the proposed N2 normative modeling approach, indicating its ability to parse inter-
165 individual heterogeneity effectively to evaluate individual measurements intricately
166 within the broader landscape of diverse medical data.

w 2.3 Stability and Robustness of the N® marker

s The calculation of the N® marker relies on local density estimation. As such it is highly
169 dependent on the composition of the reference sample. Therefore, we investigate how
1 changes to the sample composition and sample size affect the stability of the N2 model.
i We retrained N3 models with downsampled subsets of varying size, thereby mimicking
2 smaller studies and different study participants. We then apply the different normativ-
173 ity models and predict normativity on an external dataset. Particularly, we evaluate if
s predictions remain consistent across different sample sizes and sample compositions.
s We quantify the stability of the normativity estimates by calculating the Intraclass
ws  Correlation Coefficient (ICC) 18 (see Methods Section 5). Results are visualized in
w7 Figure 4. We see that random samples of 200 individuals and above show consistently
ws  high stability (ICC of 0.75 and above). Moreover, the ICC converges to excellent levels
w (0.9 and above) in larger sample sizes, starting at 300 participants. While the results
180 are calculated for the use case of brain structural normativity estimation, they are a
11 first indication density-estimation based normative models can be realized by dividing
182 larger samples into subgroups of a few hundred samples and above.

183 Furthermore, it is essential for normativity estimations to remain consistent and
18« interpretable along the aging continuum, i.e., across different age groups, to avoid age
185 biases that could complicate both research and clinical interpretations. An analysis of
s the age correlation of the N® marker (presented in Figure 4a) indicates its stability
17 over the age range, showing no significant association to age. In comparison, tradi-
188 tional normative models show a significant but smaller correlation to age (p=0.11-0.16,


https://doi.org/10.1101/2024.12.24.24319598
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.12.24.24319598; this version posted June 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Table 1 Overview of the results achieved in statistical and machine learning analyses. To quantify the expressiveness of
the different methodologial approaches, we evaluate the different biomarkers’ ability in distinguishing between normative
inter-individual variability and pathological alterations. We report the effect size 72, representing the amount of variance
explained by each of the different normativity markers in statistical group comparisons. We compare N® - our approach,
NM-S - the sum of the absolute z-scores, NM-C - the number of z-scores whose magnitude deviates beyond a threshold of
+1.96, and the BAG - Brain Age Gap for Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD), and
Frontotemporal Dementia (FTD), respectively. Moreover, we report the F-statistic, reflecting the relation of the marker
variance between cognitive unimpaired and diseased individuals in relation to the respective intra-group variance, further
indicating its ability to identify pathology in group-level analyses. All F-statistics and effect sizes n! are significant
(p<0.001). The performance results of the machine learning analyses are given, where the normativity markers are used to
predict the occurrence of the neurodegenerative diseases in individual cases. The metrics provide insights into each
marker’s clinical utility, and overall efficacy in handling inter-individual variability and pathological variations across
different neurodegenerative conditions on a single subject level. Highest performance is indicated in bold. We see that the
N2 brain structural normativity marker shows relative superiority in relation to the other biomarkers, indicating the
approach’s efficacy in processing inter-individual variability and delineating potential anomalies.

Marker F-statistic Effect size n° B. Accuracy F1l-score Sensitivity Precision
Mild Cognitive Impairment (MCI)
NM-C F(1,4565) = 74 0.016 0.539 £ 0.010 0.385 £ 0.057 0.367 £ 0.090 0.427 £ 0.028
NM-S F(1,4565) = 85 0.018 0.553 £ 0.013 0.352 £ 0.044 0.284 £ 0.070  0.490 £ 0.044
BAG F(1,4565) = 220 0.046 0.603 £ 0.011 0.516 £ 0.014 0.566 £ 0.030 0.475 £ 0.016
N3 F(1,4565) = 326 0.067 0.614 £+ 0.011 0.529 £ 0.013 0.582 £+ 0.023  0.485 £ 0.014
Alzheimer’s Disease (AD)
NM-C F(1,3709) = 1,073 0.225 0.733 £ 0.020 0.583 £ 0.027 0.578 £ 0.047  0.591 £ 0.010
NM-S F(1,3709) = 994 0.212 0.727 £ 0.023 0.570 £ 0.031 0.578 £ 0.057 0.567 £ 0.022
BAG F(1,3709) = 328 0.081 0.676 £ 0.023 0.477 £ 0.025 0.651 £ 0.054 0.376 £ 0.014
N2 F(1,3709) = 1,529 0.292 0.791 £+ 0.020 0.632 £+ 0.020 0.761 + 0.049 0.541 + 0.010
Frontotemporal Dementia (FTD)
NM-C F(1,580) = 121 0.173 0.671 £ 0.028 0.613 £ 0.043 0.499 £ 0.063 0.812 £ 0.073
NM-S F(1,580) = 125 0.178 0.653 £ 0.042 0.592 £ 0.034 0.479 £ 0.047 0.790 £ 0.097
BAG F(1,580) = 184 0.242 0.715 £ 0.076 0.731 £ 0.073 0.700 £ 0.073 0.765 £ 0.077
N3 F(1,580) = 348 0.377 0.790 £ 0.063 0.789 £ 0.059 0.729 £+ 0.063 0.864 + 0.080

180 p<<0.001). This is a contrast to the Brain Age Gap (BAG), which exhibits a moder-
100 ate age bias (p=0.21, p<0.001), even after bias correcting adjustments are made, (see
11 Methods Section 3).

192 In terms of inter-marker relationships (detailed in Figure 4), the correlation anal-
3 ysis shows generally weak associations (0.19 < |p| < 0.25) among the various markers.
e Two exceptions were noted: a strong correlation (p=0.79) between the two norma-
105 tive modeling markers — expected due to their derivation from the same normative
s models — and a moderate to strong correlation (p=0.65) between the BAG and the
17 N® marker. The correlations indicate underlying differences in what these markers are
s measuring about brain structural normativity, suggesting a potential for a combined
199 utility in clinical settings.

» 3 Discussion

21 We have introduced the N3 framework, which extends existing normative modeling
22 approaches by accommodating a variety of normative population prototypes and eval-
203 uating individuals from multiple comparative angles. We applied it to brain structure,
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a) Correlations to Age
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Fig. 4 Our evaluations revealed high robustness and consistency of the N2 framework. a) We explored
the age bias across different brain structural biomarkers in a healthy reference sample. In contrast
to the other normativity estimation approaches, the N® marker showed no significant association
to age, which allows a consistent interpretability across different age groups. b) Additionally, we
calculated the correlation matrix among the different biomarkers, which emphasize the distinctiveness
and complementarity of the N® marker. c) We tested the impact of sample size and sample composition
on the reliability of the N® biomarker through intraclass correlation coefficients. To do so we repeatedly
downsampled the training data to a random subset, mimicking smaller samples and different sample
compositions. We see that the N® marker exhibits high stability (ICC of 0.75 and above) starting
from small sample sizes of around 100 individuals and converges to excellent stability (ICC of 0.9
and above) in sample sizes of three hundred individuals and above.

sos  which resulted in an informative biomarker assessing aging effects from multiple per-
25 spectives along the aging continuum. Notably, the N2 framework entails several layers
26 of context while at the same time refining individual assessments. We provided evi-
27 dence that the strategic alterations of the N® framework yield increased expressiveness
s and enabled superior differentiation between natural inter-individual variability and
200 pathological alterations. In comparison to commonly used normativity scores and the
20 widely referenced Brain Age approach, the N2 marker showed increased efficacy in
an  identifying pathological brain structural changes.

212 Notably, our evaluations are based on only five variables reflecting global brain
a3 structure volumes. As such, they are broad aggregates of complex physiological fea-
aa tures and represent the character of many clinical measurements. In our application,
a5 the N3 approach has demonstrated its ability to effectively decode the relevant infor-
26 mation contained in these limited neurobiological variables and was able to extract
a7 meaningful insights.

218 Limitations of our proposed N2 framework include its reliance on larger sample
a9 sizes, a factor not always feasible in clinical studies where resource efficiency dictates
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220 smaller study populations. To maximize statistical power and mitigate the confound-
21 ing effects of clinical covariates, the heterogeneity in these smaller studies is often
2 restricted, which inadvertently limits their generalizability and applicability of out-
»3 comes across the heterogeneous population [29, 30]. In our evaluations, the N® marker
24 exhibited high stability in samples of a few hundred individuals, indicating substantial
25 robustness in moderately-sized research study populations. Moreover, the N® marker
26 showed consistency across age groups, i.e., no correlation to age, which means that
227 its interpretation is consistent across individuals from different age groups and facili-
28 tates its interpretability in statistical analyses. Moreover, the framework’s effectiveness
229 relies on the choice of a density estimation algorithm. In our application, the Nearest
20 Neighbor Algorithm depends on the k parameter, which defines the number of neigh-
21 bors considered in the estimation of the local sample density. In our approach, limiting
22 the number of neighbors to 10% with an upper bound to 15 prevented overly broad
233 comparisons while maintaining sufficient robustness across all control groups. In gen-
24 eral, the underlying algorithm can be customized for different scenarios, or adapted to
235 accommodate different medical data modalities, e.g., by using custom distance metrics
2 or dimensionality reduction techniques [31, 32].

237 We developed the N2 approach in alignment to the goals of precision medicine.
238 A refined definition of reference values and population norms enhances our under-
239 standing of normative variability in diverse populations and fosters the detection of
20 individual pathological alterations [33-37]. As diversity and scale of datasets increase,
an - we need to reevaluate how population norms are derived, applied, and interpreted in
o clinical practice [38-41]. The N® framework embraces the complexity in patient data,
u3  contextualizes it against heterogeneous population standards and parses the diversity
a4 into an interpretable and actionable metric.

25 The interpretation and contextualization of individual brain structures holds sig-
26 nificant potential for various domains. As stated above, a reliable biomarker for brain
a7 structural normativity is eagerly sought in neuropsychiatric research. Here, biomarkers
s may enable comprehensive assessments of neurostructural alterations associated with
a9 specific symptoms, to better understand the etiology and pathogenesis of different dis-
0 ease phenotypes [24, 27, 42]. In general, a valid and robust neurostructural biomarker
1 would allow us to measure the impact of environmental factors, treatment options and
2 neuroinflammatory processes to understand disease mechanics and optimize individual
3 disease management strategies [12, 19, 43, 44].

254 In the realm of neurodegenerative diseases, the ability to detect brain struc-
s tural alterations early is of critical clinical relevance, as it has been shown that
6 structural changes in the brain can manifest well before clinical symptoms become
7 apparent [45, 46]. Furthermore, evidence supports the presence of multiple underly-
s ing neuropathological processes [17, 47], underscoring the methodological importance
9 for models accommodating multiple disease prototypes. Here, a reliable brain struc-
x0 tural screening tool could be attached to routine MRI scans to promote early disease
1 interception and facilitate timely interventions that may prevent or delay disease pro-
22 gression [48-51]. To this end, we intend to extend our approach to process scans of
s3  different MRI tissue contrasts and evaluate different deep-learning based embeddings
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%4 to optimize information gain. Moreover, we intend to investigate the resulting marker’s
s relation to genetic risk factors [52-55].

266 Our approach accommodates the multivariate nature of brain structures [56] and
%7 aligns with other modern understandings of heterogeneity, such as the concept of
»s  neurotypicality [57-59]. Traditionally seen as a uniform standard, brain architectures
%0 are now understood to encompass a spectrum of neurological function and structures,
a0 reflecting the rich diversity of the human nature. Moreover, our findings resonate with
on recent work by Yang et al., where the authors found a range of multiple, co-occuring
o patterns of brain aging [52]. Their research underscores the significant inter-individual
oz and also intra-individual variability, underscoring the complexity and uniqueness of
o individual neurodegenerative processes beyond population averages.

275 As the critical role of individual norm deviations resonates through every facet
a  of personalized medicine, we aim to refine and expand our normativity estimation
a7 approach to medical domains beyond brain structure. In general, the N® framework
as  aligns well with the goals of precision medicine, offering a more personalized and
ae nuanced understanding of individual variability in aging or disease trajectories.

«» 4 Conclusion

s This approach that we call Nearest Neighbor Normativity (N2) interprets individual
22 patient data in reference to a particularly matched sample, accommodates diverse
23 population norms, and analyzes several different perspectives of normativity. Thereby,
2 it holds significant promise for personalized healthcare. It can be applied across various
s medical domains to contextualize individual patient data in large and heterogeneous
26 datasets. As we continue to refine and validate our N2 framework, it is our belief
27 that the insights gained will be invaluable for shaping normativity assessments and
258 contribute to more personalized patient care and improved clinical outcomes.

2 D Methods
» 5.1 N? algorithm

21 The N® approach is based on local density estimation in tailored control groups. To
22 establish a normative reference for the local density seen in a representative sample,
203 we here use the simple and intuitive Nearest-Neighbor algorithm [25, 32].

2 5.1.1 Local density estimation in tailored control groups

w5 Let X, € X be a control group of dataset X and C' = {c1,c2,...,¢4} be the
26 set of g control groups, where control groups are allowed to overlap. Each control
27 group X, contains n samples {q1,¢o, ..., ¢}, which are characterized by m features
298 {a17a27...,am}.
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209 As a first step, we normalize the features in each control group ¢, so that their
w0 value lies in [0,1].

, a; ; —min({ala € A;})

= (1)

%i.g maz({ala € A;}) —min({ala € A;})’

su  where a; ; represents feature j of the sample ¢ in the control group X., and A; are all
sz values of feature j in the control group X.. Each sample ¢; is thus represented as a
w3 feature vector of normalized features ¢; = (aj ;,4a;,,...,4a; ,). To estimate the local
s« sample density around a particular point ¢; in X., we define a subset N, C X, such
a5 that it contains the k points 2’ € X, which are the closest to g;. Distance D is measured
w5 using the Euclidean distance. We define Dist(g;, X.) = {D(¢,z) | 2’ € X.} as the set
sr of all distances from ¢; to points in X.. After sorting the points in Dist(g;, X.) into
s a tuple (di,ds,...,d,), where (d; < ds < --- < d,), the k nearest neighbors are the
a0 first k elements.

310 Next, we quantify the local sample density A of g; as the inverse of the sum of the
su  distance to its k£ nearest neighbors in control group c.

1
A €) =~ ©)
Z D(qum)
€Ny,
312 For each individual ¢; in each of the control groups containing n samples,

a3 respectively, we calculate the local sample densities A as described above .
A.={\gi,o) |i=1,2,...,n}, (3)

s To ensure comparability between the different control groups, we divide the local
a5 densities by the control-group specific median.

’ A(QZ? C)

Algire) = median (A,) )
a5 As a result we have a set of normalized local sample density estimations for all of the
s g control groups A" = {A], A5, ..., AL}

318 We introduce context to the local sample density estimations and analyze their
a0 distribution across all control groups. Due to its flexibility in accommodating various
a0 distributive shapes, we use the exponentiated Weibull distribution [60]. The distribu-
;21 tion is fitted on all normalized local sample density estimation in A’. Using the fitted
3 distribution, we derive the likelihood of a normalized local sample density estimation.

f(a,b,d) = bd[1 — exp(—2?)]"~" exp(—aT)z?t, (5)
23 where z = M(g;,¢) is the normalized local density value of sample ¢; in control

24 group ¢, b is the exponentiation parameter, and d is the shape parameter of the
s non-exponentiated Weibull law.
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326 We use the fitted distribution f to convert all local sample density estimations
w21 A'(g;,¢) into measures of likelihood. To keep as much information as possible, we add a
s sign to f, which indicates in which direction a sample is deviating from the median. In
30 this context, samples whose local sample density is smaller than the medium, receive
s a negative value, while samples whose local sample density is larger than the medium,
s have a positive value.

f*(x):{ flabd) it <, ©)

f(x,b,d)  otherwise

33 Finally, to foster intuitive interpretation, we scale the signed likelihood f* to an
s interval of [-1, 1], where -1 indicates lowest sample density found and 1 indicates
su - maximal sample density found.

() = 2 % f*(x) —min({f*(qlqg € X} B
) = 2 e (W € X)) — min(([ (g € X]) " @)

a5 The final value f** is a normativity estimation on how common the sample g; appears
16 within a particular control group ¢, measured by its local sample density \'.

s 5.1.2 Normativity Profile

s To create a normativity profile for an individual sample g;, several normativity estima-
30 tions in different, not mutually exclusive, control groups can be combined, evaluating
s the commonness of an individual measurement from multiple meaningful angles or
s viewpoints.

¢; = {f**()\/(% 01)), f**(/\/(lh, 02)), cees f**(/\/(% Cg))} (8)

w2 5.1.3 Meta Normativity

us  To synthesize the comprehensive information entailed in an individual normativity
us  profile ¢; into a single, actionable metric, we conduct a second layer of normativity
us  estimation (meta-normativity).

346 Basis to this is the first layer of normativity estimation, in which the local density
awr  estimation algorithm described in section 5.1.1 is applied to medical data of a popula-
us  tion or study sample. In this step, the local sample density estimation is based on the
aus m medical data features. Using the algorithm outputs, a normativity profile ¢; can
0 be generated for each individual. The normativity profile expresses how common the
1 medical observations are in relation to the samples contained in each control group.
35 In the second layer of normativity estimation, we use the normativity profile ¢; as
33 input data and repeat the local sample density estimation approach. Now, the local
s density estimation algorithm is using the g normativity measures of ¢ as features.
s Thereby, we measure the commonness of a normativity profile in relation to other
6 normativity profiles seen a particular reference population. This can either be done
7 globally (on all normativity profiles of the sample), or again in in tailored control
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s groups (evaluating the commmonnness of a normativity profile with respect to a par-
30 ticular sample subpopulation). The output of this meta-normativity estimation is the
w0 return value of the N® algorithm, what we call the N3 marker.

N® = (X (¢i ) (9)
s 5.1.4 Training vs. Inference Phase

52 The N2 algorithm is trained using a normative reference sample X. There are two sub-
w3 sequent layers of local density estimation. The first layer operates on the algorithm’s
w4 input data. During the process, scaling parameters for the input features, as well as
s the median local sample density are derived and persisted per control group, respec-
w6 tively. Also, the parameters of the fitted probability density function and the final
37 scaling function are persisted. Afterwards, all samples in X undergo the normativity

s evaluations and are expressed in individual normativity profiles ® = {¢1, ¢2,...,dn}
30 (see Equation 8).
370 Using the resulting normativity profiles of the normative reference sample ¢ as

s input, a second layer of normativity estimation is applied. This time, the inidivudal
s normativity profiles ¢; are subject to local sample density estimation (X' (¢;, c)). Again,
sz the scaling parameters as well as the median local sample density are persisted per
sra - control group, respectively. Control groups may now be different than those in the
ss  first stage. Finally, another probability density function is fitted, this time on the local
s  sample densities of ®. Again, the fitting parameters of as well as those of the scaling
sz function are persisted.

378 During inference time, a novel sample p is evaluated in relation to the controls
ss - groups C' of training sample X. For each control group, the feature values of p are scaled
s according to the parameters persisted during training, and the k£ nearest neighbors
s of p are determined, respectively. We calculate f**(\'(p,c)) in relation to samples
s seen in X.. After applying the first layer of local sample density estimation, several
;3 normativity evaluations in different control groups are summarized in a normativity
s« profile ¢,. In the second step, the normativity profile ¢, is evaluated in relation to the
s normativity profiles seen in the reference sample (®), using the parameters persisted
s6  during the second stage of training. The final output is derived by N;’ = f**(N(¢p, )

w 5.1.5 Application to Brain Structure

w8 In our application to brain structure, we stratify the training sample by sex and age,
0 resulting into 100 control groups containing same-aged females or males (22 to 72
w0 years), respectively. Each sample is characterized by 5 different features, namely the
sn brain structural volumes (GM, WM, WMH, CSF, TIV) of each individual. To miti-
s gate different sample sizes of different age groups, we join either the lower, the upper,
33 or both neighboring age groups of underrepresented age groups, so that the sample
s size per age group approximates the median sample size available per sex. We set the
sk parameter to 10% of the control group sample size, but limit its upper bound to
ws 15 to prevent too broad comparisons k = min(round(0.1 x n),15). Applying the N3
a7 algorithm, we then first evaluate the commonness of an individual brain structure in
s comparison to all available age groups of the same sex. The result are normativity
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30 profiles, indicating the alignment of the brain structure in relation to the reference
w0 samples seen across the aging continuum. In the next step, we use all normativity pro-
w1 files (across genders) and evaluate their normativity in relation to other representative
w2 samples of the same chronological age. The final N® marker indicates how common a
w3 brain structural normativity profile is in the chronological age group of the individual.

w 5.2 Materials

w5 Neuroimaging data from six different studies were provided by the respective con-
ws sortia. Our study includes data from the German National Cohort (NAKO)[61-63],
a7 the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [64], the Miinster-Marburg
aws  Affective Disorder Cohort (MACS) [65], the Australian Imaging, Biomarker Lifestyle
w0 Study of Aging (AIBL) [66], the Frontotemporal Lobar Degeneration Neuroimaging
a0 Initiative (NIFD), and the Open Access Series of Imaging Studies 3 (OASIS3) [67, 68].
am We give a short overview of our approach to integrate these resources in our analyses,
a2 before we introduce each study population in detail below.

a3 5.2.1 Training and Test Data

as  In general, if more than one measurement was available per participant, we restrict
a5 each study’s dataset to the first (baseline) measurement of the participant. Exclusion
a6 criteria were applied based on age; participants younger than 22 years or older than
a7 72 were omitted from the study, due to insufficient sample sizes in the normative
as  reference sample. All neuroimaging data utilized in this study were T1-weighted MRI
a0 scans from these baseline measurements. These images underwent preprocessing using
w0 the standard software CAT12 (version: ¢jp-v0008, spm12 build v7771; cat12 build
a  11720) default parameters. In short, images were bias-corrected, tissue classified, and
w22 normalized to MNI-space using linear and non-linear transformations. Subsequently,
w23 the derived GM, WM, WMH, CSF, and TIV volumes were extracted.

2 Training Data

w5 The training data for fitting models of the different normative modeling approaches
w6 comprised 30,047 samples from the population-based NAKO cohort (for details see
w2 below). We exclude age groups below 22 years and above 72 years due to small sample
w8 sizes (n < 100), which restricts the final sample to 29,883. We then fit the models of
w9 the different normative model approaches using this large and diverse sample.

w0 Test Data

s To investigate each normativity marker’s effectiveness in identifying brain structural
s anomalies and (early) signs of neurodegeneration, additional data involving 5,857
a3 participants were utilized, sourced from ADNI, AIBL, OASIS and NIFD datasets
se  (for details see section 5.2.2). The collective samples include cognitively unimpaired
»s  individuals as well as those diagnosed with Mild Cognitive Impairment, Alzheimer’s
a6 Disease and Frontotemporal Dementia.
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a1 Data for Stability Analysis

s Finally, to evaluate the robustness of the N2 brain structural normativity assessments,
19 we use artificially downsampled subgroups of the NAKO study for training. Validation
w0 subsets included n=835 healthy control participants from the MACS study which
a  predominantly comprises younger and middle-aged adults, and an additional n=1073
w2 healthy older adults from the ADNI study to span a wider age demographic (see
w3 Methods section 5.5).

w 5.2.2 Study Populations
us  German National Cohort (NAKO)

us  The German National Cohort is a population-based longitudinal study initiated in
a7 2014 aiming to investigate the risk factors for major chronic diseases in 200,000 per-
ws  sons living in Germany. It contains high-quality neuroimaging data from participants
wo  spanning a broad age range. In this study, we utilize the participants’ 3.0-Tesla T1w-
10 MPRAGE MRI scans (voxel size 1x1x1 mm3, repetition time/ echo time=2300/2.98,
s flip angle=9°) [61-63].

w2 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

3 ADNI is a major multicenter study started in 2003, designed to develop clinical,
s imaging, genetic, and biochemical biomarkers for the early detection and tracking of
w5 Alzheimer’s disease. The ADNI was launched as a public-private partnership, led by
ss  Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
7 to test whether serial MRI, positron emission tomography (PET), other biological
w8 markers, and clinical and neuropsychological assessment can be combined to measure
w9 the progression of neurodegeneration. We included 1.5 and 3.0-Tesla T1w-MPRAGE
wo  MRI scans adhering to the ADNI sequence protocol, for scanner specific details
w1 please see https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-
w2 scanner-protocols/)

w3 Australian Imaging, Biomarker € Lifestyle Study of Aging (AIBL)

ws  AIBL is an Australian study launched in 2006 focusing on understanding the pathways
w5 to Alzheimer’s disease. The cohort includes participants diagnosed with Alzheimer’s
w6 disease, mild cognitive impairment, and cognitively unimpaired elderly participants,
w7 providing insights into the aging process and the development of neurodegenerative
ws diseases. AIBL study methodology has been reported previously [69]. MRI scans were
w0 performed using a 3D MPRAGE image (voxel size 1.2x1x1 mm3, repetition time/echo
w0 time=2300/ 2.98, flip angle=8°)[66].

1 INIFD Dataset

a2 The Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) was
a3 funded through the National Institute of Aging, and started in 2010. The primary
s goals of FTLDNI were to identify neuroimaging modalities and methods of analy-
a5 sis for tracking frontotemporal lobar degeneration (FTLD) and to assess the value
as  of imaging versus other biomarkers in diagnostic roles. The Principal Investigator of
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sz NIFD was Dr. Howard Rosen, MD at the University of California, San Francisco. We
ws  use the provided 3D MPRAGE T1-weighted images (voxel size 1x1x1 mm3, repeti-
w9 tion time/echo time=2300/2.9, matrix = 240 x 256 x 160) The data are the result
w0 of collaborative efforts at three sites in North America. For up-to-date information on
w1 participation and protocol, please visit http://memory.ucsf.edu/research/studies/nifd

w2 Open Access Series of Imaging Studies 8 (OASIS3)

i3 OASIS3 serves as a comprehensive digital repository for MRI brain data that supports
s longitudinal studies of normal aging and cognitive decline [67, 68]. The project is
ws  distinguished by its wide age range of participants, providing diverse datasets that
s enhance the understanding of late-life brain diseases alongside physiological aging
s processes. We include 3D MPRAGE T1-weighted images (voxel size 1.0 or 1.2x1x1
s mm3, repetition time/echo time=2300/2.95 or 2400/3.16 (depending on the scanner),
0 flip angle=9°, FoV=240 or 256mm)

w Marburg-Miinster Affective Disorder Cohort Study (MACS)

s The MACS cohort is part of the DFG-funded research group FOR2107 cohort,
w0 researching the etiology and progression of affective disorders [65]. The goal is to
w3 integrate and understand the clinical and neurobiological effects of genetisc and envi-
wa  ronmental factors, and their complex interactions. Participants received financial
ws compensation and gave written informed consent. We use the T1-weighted neuroimag-
w6 ing scans of n=835 healthy control participants to evaluate stability of the N models.
w7 Images were in Marburg (MR) or Miinster (MS) (voxel size 1x1x1 mm3, repetition
w8 time/echo time=MR: 1900, MS: 2130/MR: 2.26, MS: 2.28, flip angle=8°, FoV = 256
w9 mm, matrix = 256 x 256, slice thickness = 1 mm)

Table 2 Study Data Summary

Study Group | N Included Mean Age Sex
ADNI HC 1073 68.36 + 3.3 634 females (59.09%)
MCI 1529 66.71 +4.25 | 729 females (47.67%)
AD 588 67.2 £ 4.65 291 females (49.48%)
AIBL HC 368 68.00 & 2.77 | 217 females (58.97%)
MCI 78 68.05 + 3.54 | 33 females (42.31%)
AD 28 66.89 +4.44 | 16 females (57.14%)
OASIS3 | HC 1643 63.36 £ 6.85 1028 females (62.57%)
MCI 63 66.67 = 4.85 | 37 females (58.73%)
AD 228 66.54 +4.94 | 97 females (42.54%)
NIFD HC 263 62.71 + 6.41 148 females (56.27%)
FTD 317 63.26 £ 5.66 120 females (37.85%)
MACS HC 835 35.71 + 12.6 528 females (63.23%)
NAKO HC 29883 48.45 +12.09 | 13201 females (44.18%)

s 5.3 Brain Age Model

so  In the Brain Age paradigm, the brain structure is evaluated with respect to aging
se  effects seen in a healthy reference sample. This is realized by means of a machine
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53 learning model trained to predict chronological age from brain structure. The devi-
sos ation between chronological and predicted age is referred to as the Brain Age Gap
ss  (BAG). While a small BAG is considered normative and age-appropriate, a larger pos-
so6 itive or negative BAG symbolizes premature or delayed neurostructural degeneration,
sov  respectively. The resulting normativity estimation, i.e. the BAG values, have been
sos  associated with numerous neurological and psychiatric conditions [11, 12]. For com-
s0 parison with N3 we train a Brain Age Model using the Python library photonai [70].
s0 - We use 90% of the available normative dataset for model training. We use a Support
su  Vector Machine (SVM), for which we optimize the C and gamma parameters in the
sz nested-cross-validation procedure (k=10 outer folds and two randomly shuffled inner
si3 folds with a test size of 0.1). The best model achieves an average MAE of 5.43. Finally,
s we use the remaining 10% of the normative training data to train a linear age bias cor-
sis  rection as described in Peng et al. [71]. For the evaluation of unseen samples, we use
sis the Brain Age SVM model to predict age and apply the age correction model, before
sz we calculate the difference between the chronological and predicted age, the BAG.

ss 5.4 Normative Modeling

s We calculate normative models on the training data using the Predictive Clinical
s0  Neuroscience toolkit as described in Rutherford et al. [22]. To train the models, we
s2 normalize GM, WM, WMH, CSF by Total Intracranial Volume (TIV) and fit Bayesian
s2 Linear Regression models with default parameters. Subsequently, z-scores for each of
s23  the variables are derived, which we aggregate into two normative modeling markers:
s« one being the sum of the absolute z-scores, the second counting the number of absolute
sss  Z-scores > 1.96.

= 5.5 Statistical Analysis

s2 A Type III Sum of Squares ANOVA was performed using an ordinary least squares
s (OLS) model to assess the discriminative and explanatory power of each normativity
s marker in distinguishing patients from controls. The model was adjusted for potential
s confounders, including age, age squared (to mitigate non-linear effects), sex and scan-
su mner. Partial eta squared (n?) was used to quantify effect size, providing an estimate
s of how much variance in disease progression could be explained by each normativity
533 marker, alongside a 95% confidence interval.

534 We evaluate and rank the different normativity markers by post-hoc comparisons of
s35  their effect size. To test the observed marker differences for statistical significance, we
s36  calculate the ANOVA for each marker with 1000 random permutations. To determine
7 the p value of the marker differences, we evaluate the actual difference between the n?
s of our marker N® and the 7% another marker, with those found in the 1000 random
s  permutations.

540 To assess each normativity marker’s consistency across age groups, an analysis of
sa age bias was conducted using Spearman’s rank correlation to evaluate the correlation
si2 between the normativity estimation values and age in healthy controls.

543 To assess stability of the N® models, the Intraclass Correlation Coefficient (ICC)
s« model (2,1) was applied. For this purpose, we used the NAKO sample to train the
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ss  normativity models, which were downsampled to mimic smaller study populations.
s Particularly, we divide the training set in k=[10, 5, 3, 2] non-overlapping parts of equal
se7  size, train normativity models within each of these subsets, and use external test data
ss to ensure the stability of the normativity estimates. The stability of the normativity
s0  estimates was tested using data from the ADNI and MACS cohort, (see Methods
s0  section 5.2.1). To ensure validity of the test, we use only age groups with more than
ssi 500 samples available from the training sample and more than 20 samples in the test
s samples.

553 All statistical analyses were implemented in Python using the scipy, statsmodels
sse  and pingouin libraries.

s 5.6 Machine Learning Analysis

ss6 Lhe effectiveness of aging markers in classifying neurodegenerative diseases was fur-
sz ther explored through machine learning techniques. We assessed various performance
sss - metrics including balanced accuracy, recall, precision, and Fl-score. Our analytical
s0  pipeline employed the open-source Python framework photonai [70]. The analysis
s0  involved nested cross-validation to robustly estimate model performance and avoid
sse  overfitting, using k=5 outer folds and k=10 inner folds, each fold stratified to entail a
sz balanced proportion of samples from the diseased class. Hyperparameter optimization
ss  was performed via Grid Search to fine-tune the support vector machine (SVM) param-
s eters C and gamma. The machine learning pipeline included steps for z-normalization
ss  and balanced sampling (random under-sampling techniques) to address class imbal-
s6s ance within the training data. We measure balanced accuracy, recall, precision and
sz f1 score of each of the normativity markers in the classification of neurodegenerative
ss  diseases.
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