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Abstract. A scoring list is a sequence of simple decision models, where 
features are incrementally evaluated and scores of satisfied features are 
summed to be used for threshold-based decisions or for calculating class 
probabilities. In this paper, we introduce a new multi-class variant and 
compare it against previously introduced binary classification variants for 
incremental decisions, as well as multi-class variants for classical decision-
making using all features. Furthermore, we introduce a new multi-class 
dataset to assess collaborative human-machine decision-making, which is
suitable for user studies with non-expert participants. We demonstrate
the usefulness of our approach by evaluating predictive performance and
compared to the performance of participants without AI help.

Keywords: machine learning · decision support · scoring systems ·
user study

1 Introduction 

Machine Learning (ML) methods have achieved remarkable accomplishments 
in various application domains. While complex and powerful methods like deep 
neural networks offer state-of-the-art predictive accuracy, they lack t ransparency
and inherent explainability, which are key requirements for high-stakes decision-
making [3]. In general, there are two competing approaches navigating the 
accuracy-explainability trade-off in ML [2, 4]: On the one hand, complex models 
may be accompanied by simplistic post-hoc explanation methods like LIME [39] 
and SHAP [28]. These can be applied to any predictive and complex model and 
help mitigate some lack of transparency by explaining individual predictions.
Yet, they fail to provide full transparency.
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An alternative approach is the use of less complex models that are genuinely 
interpretable, also known as ante-hoc explanation. Corresponding models have 
a restricted, simple structure that humans can inspect, offering a global under-
standing of how different features influence the model predictions without the
need for additional explanation. This inherent property of explainability makes
them an appropriate choice for decision support in high-stakes domains [42]  when  
human understanding and a ccountability are required.

One of the most prominent model classes of this kind are scoring s ystems
with a long-standing tradition in clinical decision-making [38]. Simply put, they 
assign an integer-valued score to each (binary) feature, and a decision is made by 
comparing the sum of all scores for present features to a threshold. Recently, the
need for situation-adapted decision models of such kind has been addressed with
Probabilistic Scoring Lists (PSL) [15], for which a prediction can be made with 
any prefix of features in an ordered list. This allows for adjusting the decision 
process by stopping the feature acquisition once a prediction can be made with 
sufficient confidence for the decision context at hand. A PSL is a simple model
that can be handled by lay persons [19]. 

While these methods have shown promising performance for the binary case, 
they have not yet been adapted to polychotomous decision situations in which 
three or more options are considered. However, many real-world applications 
are multi-class problems, at least if there is more than one option available (in 
addition to “do nothing”). For instance, in many medical situations, there is
more than one treatment available in addition to “do nothing”, which makes this
scenario already a multi-class problem.

In this paper, we introduce Multi-class Scoring Lists (MSL), an extension of 
PSL to accommodate multi-class predictions. We evaluate the MSL’s predictive 
performance against various baselines on benchmark datasets, and we observe 
a favorable compromise between accuracy and interpretability. Additionally, we 
introduce a new dataset rooted in the sports domain that is particularly well-
suited for studies on human-AI interaction. To this end, we have conducted a
first study to compare participants’ predictive performance on the dataset with
the introduced model class.

2 Related Work 

Scoring systems are widely utilized in medical applications, including the assess-
ment of atrial fibrillation [27], pancreatitis [32], pneumonia [21], strokes [12], and 
infants [52]. While their simplistic architecture may result in reduced accuracy, 
their transparency and ease of use allow for application without computational 
support. Additionally, such transparency and interpretability can lead to higher 
acceptance. However, the potential increase in cognitive load compared to so-
called “black-box” decision support systems should be considered to avoid causing
the opposite effect [29, 36]. 

Traditionally, scoring systems have been manually designed based on domain 
expertise. However, recent advancements have introduced data-driven methods,
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such as Supersparse Linear Integer Models (SLIM) and RiskSLIM, whic h employ
mixed-integer programming (MIP) [46, 47], as well as Interval Co ded Scoring
(ICS) [5, 7, 8]. 

Although these models have demonstrated effectiveness in binary decision-
making, there remains a need for scoring systems capable of handling multi-class 
classification. Established scoring systems are either considering the pure binary
setting, like the PERC rule [22], or scenarios in which multiple classes exhibit 
an ordinal structure, most notably risk classes in the clinical setting, e.g., the
SAPS or APACHE scores [23, 30]. In the first case, the total score is compared 
to a threshold to make the decision, while in the latter case, the risk classes 
correspond to predefined intervals, and membership is determined by checking 
in which interval the total score falls. However, little attention has been paid 
to the m ulti-class setting with nominal categories, and only a few proposed
methods exist. Rouzot et al. propose a one-versus-rest decomposition on top of
SLIM for solving multi-class classification problems [41]. While this is a natural 
approach to transforming a binary into a multi-class classifier, the resulting 
decomposition has one classifier p er class. The more recent approach, MISS,
uses a multinomial approach instead [13]. Many existing multi-class approaches 
leverage mixed-integer nonlinear programming for model learning [13, 41]. 

Despite their potential, both binary and multi-class scoring models face a crit-
ical limitation: they become inapplicable when essential feature data is unavail-
able. This challenge arises in scenarios where data acquisition i s costly or when
decision-makers operate under time constraints, limiting the available informa-
tion [6, 45]. 

To address these constraints, adaptive decision support frameworks are 
required. One approach involves decision lists, which apply predefined rules for 
prediction. If no applicable rule is found, the decision-making process is deferred
to the next rule in the sequence [40]. Heid et al. [18] propose a framework of 
complexity-ordered catalogues of models, where each successive model incorpo-
rates an additional rule compared to its predecessor, along with a methodol-
ogy for learning these models. Expanding on this concept, probabilistic scoring
lists have been introduced [15]. These systems, structured as sequentially depen-
dent scoring models, function similarly to decision lists but pro vide probabilistic
rather than deterministic predictions, akin to RiskSLIM.

3 Multi-class Scoring List 

We consider a decision-making scenario in which decisions have to be made for 
varying contexts that are specified in terms of binary features F = {f1,  .  .  .  fK}. 
Moreover, decisions are incremental in the sense that the concrete values xi ∈ 
{0, 1} of these features are acquired in a stagewise fashion, one after another, in 
a prespecified order. At each of these stages 1, . . . , K, the decision-maker (DM)
has the option to make a decision immediately or gather additional evidence in
terms of further feature values, until all features are exhausted. When learning
an arbitrary set of classifiers, e.g., logistic regression models, those models do
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not share any parameters, which makes it impossible to carry over partial results 
from previous stages. Decision lists on the other hand are a joint model and can
also be interpreted as a sequence of models with coherence constraints.

The multi-class scoring list (MSL) is a decision support model tailored to 
this scenario and is formally defined as follows:

Definition 1. A multi-class scoring list (MSL) over candidate features F 
and score set S  ⊂  Z is a triple h = 〈F, S, b〉,  where  F =  (f1,  .  .  .  ,  fK) is a list 
of (distinct) features from F , S ∈  SC×K is a score matrix and b ∈  SC is a 
bias term, wher e Y is the set of classes and C = |Y| is the number of elements
therein.

At prediction time, stagewise decisions are formed in the following manner.

– Let s(k) =  (s (k) 1 ,  .  .  .  ,  s  (k) C ) denote the cumulative score vector at stage k,  with  
s (k) c the score of class c. At stage k =  0, where no features have been evaluated 
yet, the s cores are formed by the bias term

s(0) = b

that can be interpreted as a general tendency towards a certain decision when
no information is available.

– For subsequent stages k  >  0, the cumulative scores are given by 

s(k) c = s(k−1) 
c + Sc,k · xk, ∀ c ∈  Y  

where Sc,k is the s core associated with class c at stage k (feature fk) in the
score matrix S.

– After computing the cumulative class scores, the prediction for stage k can 
be conducted by computing the argmax set of these scores

ŷ = argmax
c∈Y

s(k)c (1) 

Note that the argmax of the cumulative scores may indeed be ambiguous due 
to the discrete nature of the scores. Hence, the prediction ŷ can be set-valued, 
if several classes are scored maximally lik ely. This is a natural way for the
predictor to express its uncertainty about a predictive outcome [31]. 

– Another practical interpretation of the cumulative class scores s (k) c is to use 
them as logits for the softmax function. This way, we can obtain probabilistic 
predictions

p̂c = 
exp 

(

s
(k)
c

)

∑

c′∈Y exp
(

s
(k)
c′

) , ∀ c ∈ Y (2) 

where p̂c denotes the estimated probability for class c. Therefore, multiple 
maximal scores in the discrete decision scenario will be converted into equal
predictive probabilities in the probabilistic setting.
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– At every stage k, the decision maker can either exit with decision (1)  or  
continue the process and acquire the next feature fk+1. This question will 
mainly be answered on the basis of the probability estimates (2), which pro-
vides information about the confidence in the decision (1). 

Table 1. Example of a multi-class scoring list for football player classification. The 
numerical features have been binarized through thresholding (The binarization thresh-
olds are as follows: Many shots > 0.55; Long Playing Time > 78.8; High Pass Success 
Rate > 74.5; Many Aerial Duels Won/Match > 0.65; Tall Player > 183.5.). The m odel
was trained using a score set {0, ±1, ±2, ±3} and L2 regularization of 10−6.

Feature Forward Midfielder Defender Goalkeeper

〈Bias〉 0 1 1 0 
Many Shots 2 2 0 –3 
Long Playing Time –3 –1 2 3 
High Pass Success Rate –1 1 1 –1 
Many Aerial Duels Won/Match 2 0 1 -3 
Tall Player –1 –1 –1 2 

Table 1 shows an exemplary MSL for classifying positions of football players. 
The first row corresponds to the bias term: Here, the class forward and the class 
goalkeeper have a score of 0, while midfielder and defender have a score of 1. 
These bias scores, which are available before acquiring any feature values, hint 
at the marginal distribution of classes. Overall, there are more midfielders and 
defenders in a team than there are goalkeepers and forwards. The first feature 
acquired is the average number of shots per match (second row). This feature 
carries positive evidence for the classes forwar d and midfielder, no evidence for
defender, and strong negative evidence for goalkeeper. Again, this is intuitively
reasonable, as most shots are performed by players in offensive positions and
definitely not by goalkeepers. This can be continued until all features have been
consumed, and the final prediction is formed.

The MSLs score set S is specified in advance according to the DMs pref-
erences and typically comprises a set of small integers reflecting different lev-
els of “evidence” in favor or against a decision. For example, the score set 
S = {0, ±1, ±2, ±3} distinguishes three levels of evidence: weak, medium, and 
strong. Assigning a score of +1 to a feature then means that the presence of 
that feature provides weak evidence in favor of a decision, whereas a score of −3 
means strong evidence against that decision. Restricting the magnitude and num-
ber of admissible scores ensures that the resulting model is cognitively tractable
for a human expert. The influence of an individual feature can be immediately
understood and communicated, and in principle, predictions could even be made
without the help of computing devices.
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3.1 Connections to Other Interpretable Probabilistic Classifiers 

Given the simple and inherently interpretable structure of MSL, one may won-
der how it distinguishes itself from other simple probabilistic classifiers. Most 
notably, MSL resembles a multinomial logistic regression (MLR) with two major 
differences: First, MLR has unbounded real-valued coefficients which are harder 
to understand t han integer-valued scores that stem from a small, predefined
score-set. Secondly, MLR does not provide stagewise predictions but uses the
full feature set for all predictions.

Another natural connection can be drawn to the Naïve Bayes (NB) classifier, 
which models the posterior probability of class c given a feature vector x as 

P(c | x)  =  
P(c)

∏K 
k=1 P(xk | c) 
P(x) 

. 

Taking the logarithm on both sides yields

logP(c | x) = logP(c) +
K

∑

k=1

logP(xk | c) − logP(x) (3) 

which shows the relation to MSL. The log P(c) correspond to the bias term 
b and the log-likelihoods log P(xk | c) in the sum correspond to the stagewise 
class scores s (k) c .  As  P (x) is constant across all classes, it only serves to normalize
the values to form a valid probability distribution over class labels and can be
neglected.

Unlike MSL and MLR, NB can make predictions with any subset of fea-
tures, even without adhering to a predefined order, making it an interesting 
choice for situated decision support. However, there are again two major disad-
vantages compared to MSL: The log-likelihoods in NB are not restricted to a 
predefined score set, yielding the same disadvantages regarding score complexity 
as MLR. Additionally, the probability estimates in NB are built upon the naïve
assumption of conditional independence and are formed by normalization. MSL
can implicitly model feature dependencies by selecting scores that reflect the
combined influence of multiple correlated features on the predicted probability.

3.2 Learning Multi-Class Scoring Lists 

Consider a standard supervised learning setting in which the data generating 
process is characterized by a joint probability distribution P(x,  y) over X  ×  Y. 
Given a loss function �(ŷ, y) that quantifies how different a prediction ŷ is from 
the  true  outcome  y, the risk of a classifier h : X −→ Y is defined as

R(h) = E
[

� (h(x), y)
]

=
∫

� (h(x), y) dP(x, y). (4) 

As the distribution P(x,  y) is unknown, the true risk is substituted with the 
empirical risk on observed training data Dtrain = {(x,  y)}N 

n=1:

Remp(h) =
1
N

N
∑

n=1

�
(

h(xn ), yn
)
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In our listwise scenario, we are not considering a single model, but rather a 
sequence of models h =  (h1,  .  .  .  ,  hK) ∈  HK ,  where  H is an underlying hypoth-
esis space (in our case the set of scoring systems). The learning objective is to
find such a sequence of models, or decision list, that has minimal global risk
throughout the stages, i.e.,

h∗ ∈ arg min 
h∈H 

R(h1) ⊕ R(h2) ⊕  · · ·  ⊕ R(hK) , (5) 

where ⊕ is a s uitable aggregation operator1 (e.g., the s um).
It is important to note that an optimal decision list (5) does not necessarily 

consist of elements hk that have minimal stagewise risk, as the stage-optimal 
models may not constitute a valid MSL due to conflicting feature selections and 
score assignments. Hence, the problem is not decomposable in the sense that
we could simply identify optimal models for the individual stages and combine
them into a decision list.

In the following, we propose a learning algorithm for inferring MSLs from 
training data Dtrain. The learning algorithm has to identify three components, 
that is, the order of features F , the score matrix S,  and  the  bias  term  b. Note 
that this search space is rather large, precisely, the number of candidate MSLs 
for a score set S, K features, and C classes is 

K! ·  |S|(C·(K+1)) , 

as it consists of all possible feature permutations and score assignments. Needless 
to say, an exhaustive search in such a huge s pace is not feasible. Thus, a heuristic
approach has to be employed, that does not consider all candidate solutions. A
natural strategy is to build the model bottom-up and stage by stage, starting
with an empty list, first identifying the bias term, and then adding locally optimal
features and score assignments for each stage consecutively.

An illustration of such a greedy forward selection procedure is given in Algo-
rithm 1. The function evaluate is used to compute a loss value for candidate 
solutions, fully specified through F , S and b, given the training data Dtrain.  The  
core of the greedy forward selection is the loop starting in line 2, that continues 
until all a vailable features have been added to the MSL. In the first iteration,
the bias term b is identified by considering all possible b ∈ SC .

Afterwards, the subsequent stages are constructed: In each iteration, the 
locally optimal extension of the current MSL is identified by selecting the feature 
f ∈ F̄ and corresponding score vector s ∈  SC that minimizes the loss achieved 
on the training data in line 6.  As  there  are  |S|C many possible score vectors and 
| ̄F | many remaining features, this step takes |S|C · |F̄ | many calls of evaluate.
In the beginning, we start with the full feature set and have |F̄ | = K, which is

1 The learning algorithm we propose below is of heuristic (greedy) nature and does not 
directly optimize a specific global risk. Therefore, the concrete form of ⊕ is not that 
important. The essential p roperty assumed by the algorithm is the monotonicity of
⊕, which is naturally fulfilled by all meaningful candidates.
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reduced by 1 in each iteration, as features are being added to the MSL. This 
results in 

|S|C + 
K(K +  1)  

2
·  |S|C ∈  O(K2 ·  |S|C) 

overall calls of evaluate for identifying the entire MSL including the bias term.
The loss function � can be instantiated with any meaningful loss that com-

pares  a  class  label  y with probability estimates. We cho ose the well-established
cross-entropy loss

�(p̂, y) = − log p̂y , (6) 

where p̂y is the predicted probability for the true c lass label y.
To further trade-off interpretability and performance, an L2-loss of all scores 

can be added to the cross-entropy loss as a regularizer. This yields models with
even smaller scores with often little to no expense in performance.

4 Football Player Dataset 

Along with the MSL, we introduce a dataset containing the career statistics of 
football players and their position (goalkeeper, defender, midfielder,  and  forward) 
as the classification label. Although a classification of players to their positions 
may not look lik e a very important problem, it provides distinct advantages in
experimental human-(X)AI interaction research.

In human-(X)AI interaction experiments, participants are often assigned clas-
sification tasks drawn from various datasets and task types, such as quiz question
answering [10], and playing chess moves [9]. While several well-known tabular 
datasets exist for binary classification and regression in h uman-(X)AI experi-
ments (e.g., income [24], recidivism [49], or house pricing [43]), there is a lack 
of comparable datasets for multi-class classification [26]. This gap is partly due 
to the common practice of recruiting lay participants—often via crowdsourcing 
platforms lik e Prolific—which necessitates easy understandable tasks to ensure
valid results.

In our view, popular multi-class datasets in the machine learning literature,
such as iris [11], wine [1], and heart [20], do not fully meet this criterion and 
therefore cannot be as readily adapted for human-(X)AI research as the afore-
mentioned binary and regression datasets. Football, as the world’s most popular 
sport, offers a clear advantage in this context. Its universal app eal ensures that a
diverse participant pool is already familiar with the game, enhancing both task
engagement and the reliability of study outcomes.

Our raw dataset comprises 5,449 active professional football play ers from
eight professional leagues2. It includes all players who were on their teams’ ros-
ters at the time of data collection. The dataset contains performance statistics 
spanning each player’s entire career up to the time the dataset was compiled

2 England and Germany (1st and 2nd divisions), and the top-tier (1st division) leagues 
in Spain, France, Italy, P ortugal, the Netherlands, Russia, Turkey, and the USA.
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Algorithm 1: Greedy MSL 
input : dataset Dtrain , number of classes C, 

set of all features F including the ∅ for the bias term 
the available scores S, loss function � to evaluate a hypothesis 

output : MSL model h 
1 F, S ← (),

[]

# While not all features have been used. For set difference and 
inequality operators we treat F as a set for ease of notation. 

2 while F �= F do 
# In the first iteration compute the bias term 

3 if ∅ /∈ F then 
4 b ← arg minb∈SC

{
evaluate

(
(),

[]
, b

)}

# Select all remaining features 
5 F̄ ←  F  \  F 

# Evaluate remaining features with all comb. of scores per class 

6 f, s ← arg minf ∈ F̄  ,s ∈SC

{
evaluate

(
F ‖ (f ),

[
S 
s

]
, b

)}

7 F ← F ‖ (f ) 

8 S ←
[
S 
s

]

9 return h = 〈F, S, b〉
10 Function evaluate(F, S, b): 
11 L ← 0
12 for (x, y) ∈ Dtrain do
13 xF ← x[F ] /* Select features F of instance x */

# Matrix product of scores and selected features and bias
14 s ← SxF + b
15 p̂ ← softmax(s) /* Softmax probabilities acc. to Eq. 2 */ 
16 L ← L + �(p̂,  y) 
17 return L

(11th November 2024). In addition to basic information such as name, national-
ity, age, height,  and  current team, the dataset provides a variety of performance 
metrics, including the number of matches played, total minutes played, goals, 
assists, yellow and red cards, shots, pass success percentage, aerial duels won 
percentage, and each player’s primary playing position. To o ur knowledge, no
comparable dataset exists. Other publicly available football datasets typically
include information from only a single season or provide fewer performance indi-
cators.

Because some players occupy multiple positions (e.g., central defender or 
defensive midfielder), various approaches to handling such cases are possible. For 
our evaluation, we chose four broad categories—goalkeeper, defender, midfielder,
and forward. Players who could be assigned to more than one of these four
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Fig. 1. Correlation of classes and features in fo otball player dataset.

categories were removed, leading to the exclusion of 1,582 players (29%). An 
additional 256 players (6.6%) were removed due to missing data, resulting in
3,611 players in the cleaned dataset. Figure 1 presents the cross-correlation of 
the classes and features on the dataset.

5 User Study 

We conducted an online user study as a benchmark for the MSL. Our main objec-
tives were to assess how accurately participants perform the classification task 
and gauge the dataset’s comprehensibility. Moreover, to determine the poten-
tial for automated decision support, we wa nted to compare the performance of
human decision-makers with the performance of a data-driven approach, namely
a machine learning model.

We recruited 31 participants through the Prolific platform. Each participant 
was asked to predict the playing positions of football players drawn from our 
dataset. The study included detailed instructions, which were verified through 
comprehension checks. Before making their predictions, participants completed 
four Likert-scale questions assessing their familiarity w ith football. They were
then asked to describe their decision-making process during the classification
tasks, after which they received feedback on their responses.

The study included incentives: participants received a fixed payment of € 2 
and an additional € 0.40 for each correct prediction. Only UK residents with 
English as their native language were eligible to participate. Moreover, partic-
ipants were required to have a Prolific acceptance rate of at least 95% and to
have successfully completed more than 10 prior studies on the platform.
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The dataset was adapted specifically for this user study: we included only 
players who had participated in more than 50 games, as those with fewer games 
were particularly difficult to classify during a pretest. This criterion removed 54% 
of the 3,611 players, but the r emaining total of 1,957 players was still sufficient.
Additionally, we included a variable called Man of the Match, which cannot be
published for legal reasons.

Fig. 2. Distribution of participants’ accuracy on the football dataset. The red line 
shows the mean (63%), and the green line s hows the accuracy of the 12th stage of an
MSL model (83%).

The remaining dataset contained 1,957 players, which was then split into 
training and test sets. Only players from the test set were presented to partic-
ipants to allow a fair comparison. Each participant was randomly assigned 10 
pla yers, ensuring the selected positions mirrored the overall class distribution.
The participant were not made aware of this stratification.

Figure 2 shows the distribution of participants’ classification accuracies com-
pared to the MSL. For a fair comparison, the MSL is trained on the training 
data and evaluated on the same test samples as the participants. Their aver-
age accuracy of 63% fell below that of the MSL model, which achieved up to 
83%. These results demonstrate that meaningful classifications are possible from 
humans (crowd-sourced workers), but also that performance can be improved 
through data-driven methods based on machine learning. Pe arson correlation
between accuracy and self-reported football knowledge (r = 0.246, p = 0.165)
suggests that greater familiarity with soccer did not necessarily lead to better
performance, although this may be due to self-selection effects in the study or
insufficient sample size.

Figure 3 further analyses the classification errors with the help of a confusion 
matrix. In general, the participants make less precise decisions, however, many of 
the participants can better judge whether a player plays in the forward position. 
Albeit, this is not due to misclassifications, but is caused by many ties during
prediction. Since the MSL implementation is configured to resolve ties at random,
this yields to sub-par performance for ambiguous decisions. Yet, this is not an
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Fig. 3. Confusion matrices for classifier predictions (left) and participant classifications 
(right). The matrices show the distribution of predicted lab els for each true label, with
row summing to 1.

issue in a decision-support setting, as the classifier will yield both potential 
classes, allo wing the decision maker to disambiguate.

6 Evaluation 

In this section, we provide an evaluation of our newly introduced classifier on 
various datasets including the football player dataset presented in Sect. 4.  The  
detailed experimental setup and implemen tation is publicly available3 as is the 
implementation of the learning algorithm4. 

6.1 Datasets 

To evaluate our classifier, we use well-known binary and multi-class datasets 
from the UCI rep ository in addition to our newly introduced dataset.

Table 2 provides an overview of all used datasets. For all datasets we report 
the entropy with respect to the base of the class count. A uniform class bal-
ance will, therefore, yield and entropy of 1. A dataset with 1:2 class-imbalance 
will yield an entropy of 0.92. The three binary datasets stem from the medi-
cal domain. Note, that the ilp is therefore relatively unbalanced, with signifi-
cantly more positive samples (416) than negative samples (167). The multi-class
datasets include the previously introduced football player dataset as well as one
harder dataset: the customer segmentation dataset, also used in [13]. 

Since the MSL classifier can only work with binary features, all numerical 
features have been binarized by calculating a threshold to minimize the expected 
entropy over the two subsets, similar to splits of a decision stump. Note, that

3 https://github.com/TRR318/pub-msl. 
4 https://github.com/TRR318/scikit-psl. 
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Table 2. Overview of the datasets used in the evaluation. Entropy is calculated to the 
base of the number of classes of the dataset.

Name Classes Instances Features Entropy Task OpenML Ref. 
breast 2 116 9 0.99 Breast cancer 42900 [ 35] 
ilp 2 583 10 0.86 Liver disease 41945 [ 37] 
diabetes 2 768 8 0.93 Diabetes 37 [ 44] 
wine 3 178 13 0.99 Wine origin 187 [ 1] 
player 4 3611 11 0.90 Football player position 46764 ours 
segmentation 4 6665 9 1.00 Customer category [ 48] 

binarization will be problematic if features do not exhibit a monotonic relation-
ship with the target classes. The (close-to) optimal split is selected by employing
a hierarchical search heuristic introduced in [15]. The categorical features in the 
segmentation dataset were one-hot-encoded. The detailed dataset preparation 
can b e found in the experimental repository.

6.2 Setup and Baselines 

To evaluate the out-of-sample performance of the classifiers, all experiments have 
been conducted using Monte Carlo cross-validation (MCCV) with 20 splits where 
2 
3 of the data was used for training and the remainder held back for evaluation. 
The resulting performances have been aggregated and are reported by mean 
performance and its 95% confidence interval. All experiments have been executed 
on a single core of a Intel i7-9750H and parallelized over the folds. The total 
training time of all experiments was more than 40h when parallelized over 12 
cores and mostly dominated by the evaluation of MISS, one of our baselines. All 
MSL instances were learned without regularization and configured with a score
set of {0,±1,±2,±3}. Some metrics, like accuracy, precision, or informedness,
do not rely on probability predictions but on discrete classifications. However,
the discrete nature of MSLs small score set will often yields ties, especially in
earlier stages of the classifier. For example, if only the bias term is evaluated (ref.
Table 1), there might be multiple classes with the same maximal total score. In 
the case of such a set-v alued prediction, we select one of the highest-scoring
classes uniformly at random.

In each evaluation, we train the PSL and MSL models on all features of the 
training dataset. Both classifiers create a decision list, i.e., a sequences of decision 
models for on a nested sequence of features. W e call these models “stages”. All
other baseline models only create single decision models for a specific set of
features. Table 3 provides an overview of the training and evaluation method for 
each stage and the baseline models. In the following paragraphs, we explain in 
detail how those baseline models can be adapted to those stages.

In Sect. 3.1, we have shown the connection to NB. Using only the likelihoods 
P (xk | c) of the features available at stage k, NB can naturally be extended to
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Table 3. Overview of all models used in the evaluation. k is the number of features 
used in the kth stage. modelk is the model at the stage k

Model Training Training features Evaluation per stage Consistent 
PSL global all global ✓ 
MSL global all global ✓ 
NB global all features of MSLk ✓ 
MISS local k features of MISSk ✗ 
LR, RF, XGB local features of MSL k features of MSLk ✗ 

the setting of scoring lists. Similarly to the MSL, the NB classifier is trained on 
all features of the training dataset. At p rediction time, we only use the same
features that the MSL has selected on that stage.

Grzeszczyk et al. [13] introduced learning algorithm for multinomial scoring 
systems. Apart from the fact that miss cannot natively produce decision lists, 
we consider this model closely related to our work. The MISS model at each 
stage was trained with all features but parametrized to use exactly as many fea-
tures as the MSL did on this stage. Note, that this will not create a consistent 
list of models, as selected features and assigned scores can be completely differ-
ent between each model. We have executed MISS with two different timeouts
throughout the experiments. MISS90 and MISS1800 refers to a training timeout
of 90 s, and 30min vice-versa.

Finally, we have selected three additional models as the baseline that have 
been trained and evaluated on the same subset of features that the MSL selected 
on the stage: Logistic Regression (LR), Random Forest (RF), and XGBoost 
(XGB). Overall, we can see that MISS has the largest amount of freedom of
all models with respect to feature selection, as only the number of features is
dictated by the MSLs stage.

To evaluate our model, we rely on two metrics: accuracy (classification 
rate) and expected calibration error (ECE). While the classification rate (frac-
tion of correct predictions) is a standard measure of the correctness of the 
learner’s final (deterministic) decisions, calibration aims to assess the model’s 
probability estimates. Here, we adopt a standard notion of classifier calibra-
tion called confidence-calibration: A probabilistic classifier producing predictions 
p̂(x)  =  (p̂1(x),  .  .  .  ,  ̂pC(x)) is (confidence-)calibrated, if 

P
(

y = arg max 
i 

p̂i(x) | max 
i 

p̂i(x)  =  α
)

= α 

for all α ∈ [0, 1]. In words, if the model reports α-confidence in its decision, i.e., 
the probability predicted for the (presumably) most probable class is α, then this
decision is indeed correct with probability α. For example, among all decisions
for which the model reports a confidence of 80%, indeed 80% of the cases are
correct. While this notion of calibration can be criticized (e.g., because it does
not condition on the instance x itself), it does appear useful from the point of
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view of explainability and informed decision-making. In particular, it provides 
reasonable support for the stopping condition: A calibrated confidence at stage 
k of the decision process provides the decision maker with a clear idea of how
safe or risky it might be to stop and make a final decision at that stage.

Practically, as ground-truth probabilities cannot be observed in the data, 
the calibration of a model is measured in terms of the expected calibration error 
(ECE), which is based on the partitioning of the unit interval in to a set of bins
(intervals) B1, . . . , Bm. Formally, ECE is then defined as follows [14]: 

ECE = 
m

∑

j=1 

|Bj | 
N 

|acc(Bj) − conf(Bj)| , (7) 

where N is the number of data points, |Bj | is the number of points falling in 
bin Bj ,  acc(Bj) is the fraction of points in bin Bj for which the model predicted 
correctly (i.e., the accuracy in that bin), and conf(Bj) the average confidence 
reported by the model for points in Bj . We rely on the implementation of Kumar
et al. for an unbiased estimate of the ECE [25]. 

6.3 Classification Accuracy 

Binary classification problems can be interpreted in two ways: Either as the 
presence of absence of the positive label or as a genuine two class problem. This 
allows comparing the PSL model, which can only make predictions towards the 
positive class and the MSL which collects evidence towards all alternative classes.
Recall, that Naïve Bayes and MSL operate on the same features at prediction
time.

Fig. 4. Classifier accuracy across different stages for all binary datasets. The shaded 
regions represent confidence intervals of the mean.

Overall, the predictive performance of the compared classifiers yield mixed 
results on the binary datasets as seen in Fig. 4. While MISS performes good 
on the breast and diabetes dataset it exhibits poor accuracy on the unbal-
anced ilp dataset. MSL performes generally sligtly worse than the PSL which is
particularly tuned for binary classification problems. On the particularly small
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breast dataset 20 MCCV splits appear to have insufficient statistical power to
clearly distinguish classifiers performance.

In the multi class setting, we cannot compare to the PSL. Hence, we add 
multinomial logistic regression and two less interpretable decision models (RF,
XGB).

Fig. 5. Classifier accuracy across different stages for all multi-class datasets. The 
shaded regions represent confidence intervals of the mean.

Figure 5 shows the accuracy of the classifiers across the datasets sorted by 
sample size. While the MSL performance is worse in general, it must be noted 
that the MSL and NB construct one list of models that are consistent to each 
other: Feature subsets form a nested sequence, and the score assigned to a feature
remains constant across stages. This is arguably important from an interpretabil-
ity point of view [18]. The remaining classifiers can create different models for 
each stage, thereby compromising interpretability. While LR, RF, and XGB 
at least use the same features that the MSL uses, MISS will only use the same 
number of features. The parametrizations across those models are not consistent. 
Still, the MSL performs similarly well to the other classifiers. The performance o f
MISS declines on the largest dataset (segmentation) as more and more features
become available. This can only be explained by the 30min timeout, meaning
the models still have a large optimality gap.

6.4 Probability Calibration of the Classifier 

In this section we analyze the classifiers probability calibration against t he same
baselines used in the previous chapter.

Figure 6 shows that all classifiers provide fairly calibrated probability esti-
mates, except for the Naïve Bayes classifier, which is known to be a good classifier
but a sub-par probability estimator [51]. 

On the multi-class datasets (ref. Figure 7) MISS performs slightly worse when 
only little features are available. In absolute terms, most models exhibit low 
calibration errors across all stages. The strikingly bad performance of MISS on
the segmentation can again be explained by the premature terminated training
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Fig. 6. Expected Calibration Error across different stages for three binary datasets. The 
plots compare the calibration performance of four models: PSL, MSL, Naïve B ayes, and
MISS1800. The shaded regions represent confidence intervals.

Fig. 7. Expected Calibration Error across different stages for all multi-class datasets. 
The plots compare the calibration performance of four models: PSL, MSL, Naïve B ayes,
and MISS1800. The shaded regions represent confidence intervals.

due to timeouts. This can also be seen on the player dataset, which is also 
stopped due to timeouts for stages 8 and following. Fortunately, on this dataset,
only a relatively small optimality gap is retained after exhausting the 30min
training budget.

6.5 Runtime Analysis 

In the previous sections, we have seen mostly competitive performance of the 
MISS classifier. However, particularly on the segmentation dataset, the perfor-
mance was often suboptimal, even though the MISS baseline, was the one with
the most flexibility as it was only constrained regarding the number of features
used.

The MISS classifier is learned by solving a mixed integer program with the 
help of the cplex solver. This can yield provably optimal solutions with respect 
to the loss function and the training data. However, this training method is 
also very costly in terms of training time. This is exacerbated in the scenario of
decision lists, because many decision models have to be learned independently.
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Figure 8 shows the performance of the MSL classifier and two parametriza-
tions of the MISS classifier: one with 90 s and one with 30 min. With only 90 s 
per stage, the performance of MISS already stagnates after 3 features and hardly 
exceeds the performance of the MSL, even though the MSL will additionally 
enforce coherence of the whole decision list. Even with 30 min, stages 6 and fol-
lowing time out, however, with significantly higher performance, which can even
be seen in the slight performance decrease after stage 8. For the segmentation
dataset, not even 30min per stage are sufficient and large optimality gaps remain.

Fig. 8. Accuracy and runtime analysis for the Football Player dataset. The left plot 
shows accuracy across different stages for MSL and the two 90s and 30min timeout
configurations of MISS. The right plot shows the total training time for all stages.

7 Conclusion 

In the search for explainable AI, two approaches are currently pursued: post-hoc 
explaination of complex models and inference of inherently (ante-hoc) explain-
able models. Although the former approach has been fostered by advances in 
generative AI, very recent research has shown that explaining complex or even 
black-box mo dels in easy terms can result in undesirable outcomes, including
overreliance on AI if predictions are accompanied by explanations that appear
to be comprehensive [17]. 

In this paper, we therefore pursue a different path to improve the performance 
of AI in (human) decision-making tasks. We propose a method for learning 
scoring systems that are commonly used and widely accepted for decision support 
in real-world applications. In contrast to existing approaches, our method is 
able to handle problems with more than two choice alternatives. Moreo ver, by
constructing a coherent decision list instead of a single model, MSL supports
a stagewise decision-making process, where a decision can be made as soon as
enough evidence has been accumulated.

Not less importantly, MSL is inherently explainable due to its restriction to 
integer scores, its simple additive structure, and the coherence of the models that 
form a decision list (feature subsets are nested and scores remain unchanged).
Admittedly, compared to black-box models or models being less restricted (e.g.,
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additive models with real-valued instead of integer scores, such as logistic regres-
sion), MSL may exhibit slightly weaker predictive performance. However, the loss 
in performance is in general not very high and appears to be acceptable in view 
of the gain in explainability. Future work should empirically inv estigate MSL
with regard to interpretability and explainability, particularly examining how
the stages are used in different decision-making scenarios and how this affects
decision quality.

We evaluated human performance on a specific dataset that is especially 
suited for analyzing AI-human collaborative decision-making, and show that 
humans perform significantly worse than our approach. Despite this, we believe 
that a hybrid approach—where a human expert supports a machine learning 
algorithm in constructing an MSL, or more broadly, engages in an AI-human 
co-construction of decision mo dels—is a promising direction that we plan to
explore in future work, especially given that prior research has shown human-in-
the-loop approaches can enhance model performance [34, 50], improve decision-
making [19], and increase model acceptance [33], even though such methods 
may be limited when experts are biased [16]. Broadly speaking, the idea is to let 
the human support or correct decisions about the order of features, the scores 
assigned to features, etc. This might be beneficial for the learning algorithm, in 
particular to counteract the heuristic nature of its greedy search strategy. At 
the same time, a hybrid approach could be appealing for the human expert and 
increase the acceptance and adoption of automatic decision support — a model 
that a human expert co-constructed herself will likely increase acceptance, trust, 
and understanding compared to a model that was constructed in a purely data-
driven way and impose on the expert from outside.
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