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Abstract. A scoring list is a sequence of simple decision models, where
features are incrementally evaluated and scores of satisfied features are
summed to be used for threshold-based decisions or for calculating class
probabilities. In this paper, we introduce a new multi-class variant and
compare it against previously introduced binary classification variants for
incremental decisions, as well as multi-class variants for classical decision-
making using all features. Furthermore, we introduce a new multi-class
dataset to assess collaborative human-machine decision-making, which is
suitable for user studies with non-expert participants. We demonstrate
the usefulness of our approach by evaluating predictive performance and
compared to the performance of participants without AI help.

Keywords: machine learning * decision support -+ scoring systems -
user study

1 Introduction

Machine Learning (ML) methods have achieved remarkable accomplishments
in various application domains. While complex and powerful methods like deep
neural networks offer state-of-the-art predictive accuracy, they lack transparency
and inherent explainability, which are key requirements for high-stakes decision-
making [3]. In general, there are two competing approaches navigating the
accuracy-explainability trade-off in ML [2,4]: On the one hand, complex models
may be accompanied by simplistic post-hoc explanation methods like LIME [39]
and SHAP [28]. These can be applied to any predictive and complex model and
help mitigate some lack of transparency by explaining individual predictions.
Yet, they fail to provide full transparency.
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An alternative approach is the use of less complex models that are genuinely
interpretable, also known as ante-hoc explanation. Corresponding models have
a restricted, simple structure that humans can inspect, offering a global under-
standing of how different features influence the model predictions without the
need for additional explanation. This inherent property of explainability makes
them an appropriate choice for decision support in high-stakes domains [42] when
human understanding and accountability are required.

One of the most prominent model classes of this kind are scoring systems
with a long-standing tradition in clinical decision-making [38|. Simply put, they
assign an integer-valued score to each (binary) feature, and a decision is made by
comparing the sum of all scores for present features to a threshold. Recently, the
need for situation-adapted decision models of such kind has been addressed with
Probabilistic Scoring Lists (PSL) [15], for which a prediction can be made with
any prefix of features in an ordered list. This allows for adjusting the decision
process by stopping the feature acquisition once a prediction can be made with
sufficient confidence for the decision context at hand. A PSL is a simple model
that can be handled by lay persons [19].

While these methods have shown promising performance for the binary case,
they have not yet been adapted to polychotomous decision situations in which
three or more options are considered. However, many real-world applications
are multi-class problems, at least if there is more than one option available (in
addition to “do nothing”). For instance, in many medical situations, there is
more than one treatment available in addition to “do nothing”, which makes this
scenario already a multi-class problem.

In this paper, we introduce Multi-class Scoring Lists (MSL), an extension of
PSL to accommodate multi-class predictions. We evaluate the MSL’s predictive
performance against various baselines on benchmark datasets, and we observe
a favorable compromise between accuracy and interpretability. Additionally, we
introduce a new dataset rooted in the sports domain that is particularly well-
suited for studies on human-Al interaction. To this end, we have conducted a
first study to compare participants’ predictive performance on the dataset with
the introduced model class.

2 Related Work

Scoring systems are widely utilized in medical applications, including the assess-
ment of atrial fibrillation [27], pancreatitis [32], pneumonia [21], strokes [12], and
infants [52]. While their simplistic architecture may result in reduced accuracy,
their transparency and ease of use allow for application without computational
support. Additionally, such transparency and interpretability can lead to higher
acceptance. However, the potential increase in cognitive load compared to so-
called “black-box” decision support systems should be considered to avoid causing
the opposite effect [29,36].

Traditionally, scoring systems have been manually designed based on domain
expertise. However, recent advancements have introduced data-driven methods,
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such as Supersparse Linear Integer Models (SLIM) and RiskSLIM, which employ
mixed-integer programming (MIP) [46,47], as well as Interval Coded Scoring
(ICs) [5,7,8].

Although these models have demonstrated effectiveness in binary decision-
making, there remains a need for scoring systems capable of handling multi-class
classification. Established scoring systems are either considering the pure binary
setting, like the PERC rule [22], or scenarios in which multiple classes exhibit
an ordinal structure, most notably risk classes in the clinical setting, e.g., the
SAPS or APACHE scores [23,30]. In the first case, the total score is compared
to a threshold to make the decision, while in the latter case, the risk classes
correspond to predefined intervals, and membership is determined by checking
in which interval the total score falls. However, little attention has been paid
to the multi-class setting with nominal categories, and only a few proposed
methods exist. Rouzot et al. propose a one-versus-rest decomposition on top of
SLIM for solving multi-class classification problems [41]. While this is a natural
approach to transforming a binary into a multi-class classifier, the resulting
decomposition has one classifier per class. The more recent approach, MISS,
uses a multinomial approach instead [13]. Many existing multi-class approaches
leverage mixed-integer nonlinear programming for model learning [13,41].

Despite their potential, both binary and multi-class scoring models face a crit-
ical limitation: they become inapplicable when essential feature data is unavail-
able. This challenge arises in scenarios where data acquisition is costly or when
decision-makers operate under time constraints, limiting the available informa-
tion [6,45].

To address these constraints, adaptive decision support frameworks are
required. One approach involves decision lists, which apply predefined rules for
prediction. If no applicable rule is found, the decision-making process is deferred
to the next rule in the sequence [40]. Heid et al. [18] propose a framework of
complexity-ordered catalogues of models, where each successive model incorpo-
rates an additional rule compared to its predecessor, along with a methodol-
ogy for learning these models. Expanding on this concept, probabilistic scoring
lists have been introduced [15]. These systems, structured as sequentially depen-
dent scoring models, function similarly to decision lists but provide probabilistic
rather than deterministic predictions, akin to RiskSLIM.

3 Multi-class Scoring List

We consider a decision-making scenario in which decisions have to be made for
varying contexts that are specified in terms of binary features F = {f1,... fx }.
Moreover, decisions are incremental in the sense that the concrete values x; €
{0, 1} of these features are acquired in a stagewise fashion, one after another, in
a prespecified order. At each of these stages 1,..., K, the decision-maker (DM)
has the option to make a decision immediately or gather additional evidence in
terms of further feature values, until all features are exhausted. When learning
an arbitrary set of classifiers, e.g., logistic regression models, those models do
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not share any parameters, which makes it impossible to carry over partial results
from previous stages. Decision lists on the other hand are a joint model and can
also be interpreted as a sequence of models with coherence constraints.

The multi-class scoring list (MSL) is a decision support model tailored to
this scenario and is formally defined as follows:

Definition 1. A multi-class scoring list (MSL) over candidate features F
and score set S C Z is a triple h = (F,S,b), where F = (f1,..., fx) is a list
of (distinct) features from F, S € SC*K is a score matriz and b € S¢ is a
bias term, where ) is the set of classes and C = |Y| is the number of elements
therein.

At prediction time, stagewise decisions are formed in the following manner.

— Let s®) = (sgk), R sg)) denote the cumulative score vector at stage k, with

s&k) the score of class c. At stage k = 0, where no features have been evaluated
yet, the scores are formed by the bias term

s —=p

that can be interpreted as a general tendency towards a certain decision when
no information is available.
— For subsequent stages k > 0, the cumulative scores are given by

st = k=D 4§ xp, Yeey

where S, j, is the score associated with class ¢ at stage k (feature fi) in the
score matrix S.

— After computing the cumulative class scores, the prediction for stage k£ can
be conducted by computing the argmax set of these scores

= argg}ax sk (1)

Note that the argmax of the cumulative scores may indeed be ambiguous due
to the discrete nature of the scores. Hence, the prediction ¢ can be set-valued,
if several classes are scored maximally likely. This is a natural way for the
predictor to express its uncertainty about a predictive outcome [31].

— Another practical interpretation of the cumulative class scores s&k) is to use
them as logits for the softmax function. This way, we can obtain probabilistic

predictions

ox ( (k))

P\ Sc

De = oY Yee) (2)
ZC’E)} exp <Sc’ )

where p. denotes the estimated probability for class ¢. Therefore, multiple

maximal scores in the discrete decision scenario will be converted into equal
predictive probabilities in the probabilistic setting.
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— At every stage k, the decision maker can either exit with decision (1) or
continue the process and acquire the next feature fiy1. This question will
mainly be answered on the basis of the probability estimates (2), which pro-
vides information about the confidence in the decision (1).

Table 1. Example of a multi-class scoring list for football player classification. The
numerical features have been binarized through thresholding (The binarization thresh-
olds are as follows: Many shots > 0.55; Long Playing Time > 78.8; High Pass Success
Rate > 74.5; Many Aerial Duels Won/Match > 0.65; Tall Player > 183.5.). The model
was trained using a score set {0, £1,£2, £3} and Lo regularization of 107°.

Feature Forward | Midfielder | Defender | Goalkeeper
(Bias) 0 1 1 0
Many Shots 2 2 0 -3
Long Playing Time -3 -1 2 3
High Pass Success Rate -1 1 1 -1
Many Aerial Duels Won/Match 2 1 -3
Tall Player -1 -1 -1 2

Table 1 shows an exemplary MSL for classifying positions of football players.
The first row corresponds to the bias term: Here, the class forward and the class
goalkeeper have a score of 0, while midfielder and defender have a score of 1.
These bias scores, which are available before acquiring any feature values, hint
at the marginal distribution of classes. Overall, there are more midfielders and
defenders in a team than there are goalkeepers and forwards. The first feature
acquired is the average number of shots per match (second row). This feature
carries positive evidence for the classes forward and midfielder, no evidence for
defender, and strong negative evidence for goalkeeper. Again, this is intuitively
reasonable, as most shots are performed by players in offensive positions and
definitely not by goalkeepers. This can be continued until all features have been
consumed, and the final prediction is formed.

The MSLs score set S is specified in advance according to the DMs pref-
erences and typically comprises a set of small integers reflecting different lev-
els of “evidence” in favor or against a decision. For example, the score set
S = {0,41,+2, 43} distinguishes three levels of evidence: weak, medium, and
strong. Assigning a score of +1 to a feature then means that the presence of
that feature provides weak evidence in favor of a decision, whereas a score of —3
means strong evidence against that decision. Restricting the magnitude and num-
ber of admissible scores ensures that the resulting model is cognitively tractable
for a human expert. The influence of an individual feature can be immediately
understood and communicated, and in principle, predictions could even be made
without the help of computing devices.
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3.1 Connections to Other Interpretable Probabilistic Classifiers

Given the simple and inherently interpretable structure of MSL, one may won-
der how it distinguishes itself from other simple probabilistic classifiers. Most
notably, MSL resembles a multinomial logistic regression (MLR) with two major
differences: First, MLR has unbounded real-valued coefficients which are harder
to understand than integer-valued scores that stem from a small, predefined
score-set. Secondly, MLR does not provide stagewise predictions but uses the
full feature set for all predictions.

Another natural connection can be drawn to the Naive Bayes (NB) classifier,
which models the posterior probability of class ¢ given a feature vector x as

K
P(c|z) = P(c) H,;(lxz)ﬂ(xk B

Taking the logarithm on both sides yields

K
log P(c | ) = log P(c) + Zlog P(zy | ¢) —log P(x) (3)
k=1
which shows the relation to MSL. The log P(c) correspond to the bias term
b and the log-likelihoods log P(zy | ¢) in the sum correspond to the stagewise
class scores sgk). As P(x) is constant across all classes, it only serves to normalize
the values to form a valid probability distribution over class labels and can be
neglected.

Unlike MSL and MLR, NB can make predictions with any subset of fea-
tures, even without adhering to a predefined order, making it an interesting
choice for situated decision support. However, there are again two major disad-
vantages compared to MSL: The log-likelihoods in NB are not restricted to a
predefined score set, yielding the same disadvantages regarding score complexity
as MLR. Additionally, the probability estimates in NB are built upon the naive
assumption of conditional independence and are formed by normalization. MSL
can implicitly model feature dependencies by selecting scores that reflect the
combined influence of multiple correlated features on the predicted probability.

3.2 Learning Multi-Class Scoring Lists

Consider a standard supervised learning setting in which the data generating
process is characterized by a joint probability distribution P(x,y) over X x ).
Given a loss function (¢, y) that quantifies how different a prediction § is from
the true outcome y, the risk of a classifier h: X — ) is defined as

R(h) = E[¢ (h(z),y)] = / ((h(x).y) dP(z.y). (4)

As the distribution P(zx,y) is unknown, the true risk is substituted with the
empirical risk on observed training data Dyaim = {(x, y) }2_;:

Remyp(h) = %Zﬁ(h(wn),yn)
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In our listwise scenario, we are not considering a single model, but rather a
sequence of models h = (hy,...,hx) € HX, where H is an underlying hypoth-
esis space (in our case the set of scoring systems). The learning objective is to
find such a sequence of models, or decision list, that has minimal global risk
throughout the stages, i.e.,

h* € argmin R(hy) ® R(hs) ® --- & R(hk), (5)
heH
where @ is a suitable aggregation operator! (e.g., the sum).

It is important to note that an optimal decision list (5) does not necessarily
consist of elements hj that have minimal stagewise risk, as the stage-optimal
models may not constitute a valid MSL due to conflicting feature selections and
score assignments. Hence, the problem is not decomposable in the sense that
we could simply identify optimal models for the individual stages and combine
them into a decision list.

In the following, we propose a learning algorithm for inferring MSLs from
training data Dipain. The learning algorithm has to identify three components,
that is, the order of features F', the score matrix S, and the bias term b. Note
that this search space is rather large, precisely, the number of candidate MSLs
for a score set S, K features, and C classes is

K!. |S|(C-(K+1)) ,

as it consists of all possible feature permutations and score assignments. Needless
to say, an exhaustive search in such a huge space is not feasible. Thus, a heuristic
approach has to be employed, that does not consider all candidate solutions. A
natural strategy is to build the model bottom-up and stage by stage, starting
with an empty list, first identifying the bias term, and then adding locally optimal
features and score assignments for each stage consecutively.

An illustration of such a greedy forward selection procedure is given in Algo-
rithm 1. The function EVALUATE is used to compute a loss value for candidate
solutions, fully specified through F', S and b, given the training data Dy;,i,. The
core of the greedy forward selection is the loop starting in line 2, that continues
until all available features have been added to the MSL. In the first iteration,
the bias term b is identified by considering all possible b € S¢.

Afterwards, the subsequent stages are constructed: In each iteration, the
locally optimal extension of the current MSL is identified by selecting the feature
f € F and corresponding score vector s € S¢ that minimizes the loss achieved
on the training data in line 6. As there are |S|“ many possible score vectors and
|F| many remaining features, this step takes |S|” - |F| many calls of EVALUATE.
In the beginning, we start with the full feature set and have |F| = K, which is

! The learning algorithm we propose below is of heuristic (greedy) nature and does not
directly optimize a specific global risk. Therefore, the concrete form of @ is not that
important. The essential property assumed by the algorithm is the monotonicity of
@, which is naturally fulfilled by all meaningful candidates.
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reduced by 1 in each iteration, as features are being added to the MSL. This

results in

K(K+1)

2

overall calls of EVALUATE for identifying the entire MSL including the bias term.
The loss function ¢ can be instantiated with any meaningful loss that com-

pares a class label y with probability estimates. We choose the well-established

cross-entropy loss

|81 + 18|19 € O(K? -18]%)

where p,, is the predicted probability for the true class label y.

To further trade-off interpretability and performance, an Ls-loss of all scores
can be added to the cross-entropy loss as a regularizer. This yields models with
even smaller scores with often little to no expense in performance.

4 Football Player Dataset

Along with the MSL, we introduce a dataset containing the career statistics of
football players and their position (goalkeeper, defender, midfielder, and forward)
as the classification label. Although a classification of players to their positions
may not look like a very important problem, it provides distinct advantages in
experimental human-(X)AI interaction research.

In human-(X) AT interaction experiments, participants are often assigned clas-
sification tasks drawn from various datasets and task types, such as quiz question
answering [10], and playing chess moves [9]. While several well-known tabular
datasets exist for binary classification and regression in human-(X)AI experi-
ments (e.g., income [24], recidivism [49], or house pricing [43]), there is a lack
of comparable datasets for multi-class classification [26]. This gap is partly due
to the common practice of recruiting lay participants—often via crowdsourcing
platforms like Prolific—which necessitates easy understandable tasks to ensure
valid results.

In our view, popular multi-class datasets in the machine learning literature,
such as iris [11], wine [1], and heart [20], do not fully meet this criterion and
therefore cannot be as readily adapted for human-(X)AI research as the afore-
mentioned binary and regression datasets. Football, as the world’s most popular
sport, offers a clear advantage in this context. Its universal appeal ensures that a
diverse participant pool is already familiar with the game, enhancing both task
engagement and the reliability of study outcomes.

Our raw dataset comprises 5,449 active professional football players from
eight professional leagues?. It includes all players who were on their teams’ ros-
ters at the time of data collection. The dataset contains performance statistics
spanning each player’s entire career up to the time the dataset was compiled

2 England and Germany (1st and 2nd divisions), and the top-tier (1st division) leagues
in Spain, France, Italy, Portugal, the Netherlands, Russia, Turkey, and the USA.
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Algorithm 1: Greedy MSL

input : dataset Dirain , number of classes C,
set of all features F including the () for the bias term
the available scores S, loss function £ to evaluate a hypothesis
output : MSL model A
1 FS (), []
# While not all features have been used. For set difference and
inequality operators we treat F' as a set for ease of notation.
2 while F' # F do
# In the first iteration compute the bias term
3 if 0 ¢ F then
4 | b argmin,cgc {mvarvare ((), [],b)}
# Select all remaining features
5 F—F \ F

# Evaluate remaining features with all comb. of scores per class

6 f,8 argmin;cp o sc {EVALUATE (F Il (), {ﬂ ,b)}
7| F<F()
8 S |:S:|

S

9 return h = (F, S, b)

10 Function EVALUATE(F, S, b):

11 L+—0
12 for (x,y) € Dirain do
13 xp — x[F] /* Select features F of instance z */

# Matrix product of scores and selected features and bias
14 s« Sxr+b

15 D < SOFTMAX(S) /* Softmax probabilities acc. to Eq. 2 */
16 L L+ y)
17 return L

(11th November 2024). In addition to basic information such as name, national-
ity, age, height, and current team, the dataset provides a variety of performance
metrics, including the number of matches played, total minutes played, goals,
assists, yellow and red cards, shots, pass success percentage, aerial duels won
percentage, and each player’s primary playing position. To our knowledge, no
comparable dataset exists. Other publicly available football datasets typically
include information from only a single season or provide fewer performance indi-
cators.

Because some players occupy multiple positions (e.g., central defender or
defensive midfielder), various approaches to handling such cases are possible. For
our evaluation, we chose four broad categories—goalkeeper, defender, midfielder,
and forward. Players who could be assigned to more than one of these four
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Fig. 1. Correlation of classes and features in football player dataset.

categories were removed, leading to the exclusion of 1,582 players (29%). An
additional 256 players (6.6%) were removed due to missing data, resulting in
3,611 players in the cleaned dataset. Figurel presents the cross-correlation of
the classes and features on the dataset.

5 User Study

We conducted an online user study as a benchmark for the MSL. Our main objec-
tives were to assess how accurately participants perform the classification task
and gauge the dataset’s comprehensibility. Moreover, to determine the poten-
tial for automated decision support, we wanted to compare the performance of
human decision-makers with the performance of a data-driven approach, namely
a machine learning model.

We recruited 31 participants through the Prolific platform. Each participant
was asked to predict the playing positions of football players drawn from our
dataset. The study included detailed instructions, which were verified through
comprehension checks. Before making their predictions, participants completed
four Likert-scale questions assessing their familiarity with football. They were
then asked to describe their decision-making process during the classification
tasks, after which they received feedback on their responses.

The study included incentives: participants received a fixed payment of € 2
and an additional € 0.40 for each correct prediction. Only UK residents with
English as their native language were eligible to participate. Moreover, partic-
ipants were required to have a Prolific acceptance rate of at least 95% and to
have successfully completed more than 10 prior studies on the platform.
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The dataset was adapted specifically for this user study: we included only
players who had participated in more than 50 games, as those with fewer games
were particularly difficult to classify during a pretest. This criterion removed 54%
of the 3,611 players, but the remaining total of 1,957 players was still sufficient.
Additionally, we included a variable called Man of the Match, which cannot be
published for legal reasons.

Accuracy Distribution (N=31)

40%
---= Participant Mean Accuracy = 0.63
---= MSL Accuracy (12th Stage) = 0.83
30%
S 20%
<
- I I I I
" = B
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy

Fig. 2. Distribution of participants’ accuracy on the football dataset. The red line
shows the mean (63%), and the green line shows the accuracy of the 12th stage of an
MSL model (83%).

The remaining dataset contained 1,957 players, which was then split into
training and test sets. Only players from the test set were presented to partic-
ipants to allow a fair comparison. Each participant was randomly assigned 10
players, ensuring the selected positions mirrored the overall class distribution.
The participant were not made aware of this stratification.

Figure 2 shows the distribution of participants’ classification accuracies com-
pared to the MSL. For a fair comparison, the MSL is trained on the training
data and evaluated on the same test samples as the participants. Their aver-
age accuracy of 63% fell below that of the MSL model, which achieved up to
83%. These results demonstrate that meaningful classifications are possible from
humans (crowd-sourced workers), but also that performance can be improved
through data-driven methods based on machine learning. Pearson correlation
between accuracy and self-reported football knowledge (r = 0.246, p = 0.165)
suggests that greater familiarity with soccer did not necessarily lead to better
performance, although this may be due to self-selection effects in the study or
insufficient sample size.

Figure 3 further analyses the classification errors with the help of a confusion
matrix. In general, the participants make less precise decisions, however, many of
the participants can better judge whether a player plays in the forward position.
Albeit, this is not due to misclassifications, but is caused by many ties during
prediction. Since the MSL implementation is configured to resolve ties at random,
this yields to sub-par performance for ambiguous decisions. Yet, this is not an
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Fig. 3. Confusion matrices for classifier predictions (left) and participant classifications
(right). The matrices show the distribution of predicted labels for each true label, with
row summing to 1.

issue in a decision-support setting, as the classifier will yield both potential
classes, allowing the decision maker to disambiguate.

6 Evaluation

In this section, we provide an evaluation of our newly introduced classifier on
various datasets including the football player dataset presented in Sect.4. The
detailed experimental setup and implementation is publicly available® as is the
implementation of the learning algorithm?.

6.1 Datasets

To evaluate our classifier, we use well-known binary and multi-class datasets
from the UCI repository in addition to our newly introduced dataset.

Table 2 provides an overview of all used datasets. For all datasets we report
the entropy with respect to the base of the class count. A uniform class bal-
ance will, therefore, yield and entropy of 1. A dataset with 1:2 class-imbalance
will yield an entropy of 0.92. The three binary datasets stem from the medi-
cal domain. Note, that the ilp is therefore relatively unbalanced, with signifi-
cantly more positive samples (416) than negative samples (167). The multi-class
datasets include the previously introduced football player dataset as well as one
harder dataset: the customer segmentation dataset, also used in [13].

Since the MSL classifier can only work with binary features, all numerical
features have been binarized by calculating a threshold to minimize the expected
entropy over the two subsets, similar to splits of a decision stump. Note, that

3 https://github.com/TRR318/pub-msl.
4 https://github.com/TRR318 /scikit-psl.
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Table 2. Overview of the datasets used in the evaluation. Entropy is calculated to the
base of the number of classes of the dataset.

Name Classes|Instances Features Entropy|/ Task OpenML|Ref.
breast 2 116 9 0.99 Breast cancer 42900  [[35]
ilp 2 583 10 0.86 Liver disease 41945 |[37]
diabetes 2 768 8 0.93 Diabetes 37 [44]
wine 3 178 13 0.99 Wine origin 187 [1]
player 4 3611 11 0.90 Football player position/46764  |ours
segmentation/4 6665 9 1.00 Customer category [48]

binarization will be problematic if features do not exhibit a monotonic relation-
ship with the target classes. The (close-to) optimal split is selected by employing
a hierarchical search heuristic introduced in [15]. The categorical features in the
segmentation dataset were one-hot-encoded. The detailed dataset preparation
can be found in the experimental repository.

6.2 Setup and Baselines

To evaluate the out-of-sample performance of the classifiers, all experiments have
been conducted using Monte Carlo cross-validation (MCCV) with 20 splits where
% of the data was used for training and the remainder held back for evaluation.
The resulting performances have been aggregated and are reported by mean
performance and its 95% confidence interval. All experiments have been executed
on a single core of a Intel i7-9750H and parallelized over the folds. The total
training time of all experiments was more than 40h when parallelized over 12
cores and mostly dominated by the evaluation of MISS, one of our baselines. All
MSL instances were learned without regularization and configured with a score
set of {0,+1,+2,+3}. Some metrics, like accuracy, precision, or informedness,
do not rely on probability predictions but on discrete classifications. However,
the discrete nature of MSLs small score set will often yields ties, especially in
earlier stages of the classifier. For example, if only the bias term is evaluated (ref.
Table 1), there might be multiple classes with the same maximal total score. In
the case of such a set-valued prediction, we select one of the highest-scoring
classes uniformly at random.

In each evaluation, we train the PSL and MSL models on all features of the
training dataset. Both classifiers create a decision list, i.e., a sequences of decision
models for on a nested sequence of features. We call these models “stages”. All
other baseline models only create single decision models for a specific set of
features. Table 3 provides an overview of the training and evaluation method for
each stage and the baseline models. In the following paragraphs, we explain in
detail how those baseline models can be adapted to those stages.

In Sect. 3.1, we have shown the connection to NB. Using only the likelihoods
P(z | ¢) of the features available at stage k, NB can naturally be extended to
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Table 3. Overview of all models used in the evaluation. k£ is the number of features
used in the kth stage. modeli is the model at the stage k

Model Training|Training features/Evaluation per stage Consistent
PSL global |all global v
MSL global |all global v
NB global |all features of MSL v
MISS local k features of MISS, X
LR, RF, XGBjllocal features of MSLy features of MSLy X

the setting of scoring lists. Similarly to the MSL, the NB classifier is trained on
all features of the training dataset. At prediction time, we only use the same
features that the MSL has selected on that stage.

Grzeszezyk et al. [13] introduced learning algorithm for multinomial scoring
systems. Apart from the fact that miss cannot natively produce decision lists,
we consider this model closely related to our work. The MISS model at each
stage was trained with all features but parametrized to use exactly as many fea-
tures as the MSL did on this stage. Note, that this will not create a consistent
list of models, as selected features and assigned scores can be completely differ-
ent between each model. We have executed MISS with two different timeouts
throughout the experiments. MISSgy and MISS1gg¢ refers to a training timeout
of 90s, and 30 min vice-versa.

Finally, we have selected three additional models as the baseline that have
been trained and evaluated on the same subset of features that the MSL selected
on the stage: Logistic Regression (LR), Random Forest (RF), and XGBoost
(XGB). Overall, we can see that MISS has the largest amount of freedom of
all models with respect to feature selection, as only the number of features is
dictated by the MSLs stage.

To evaluate our model, we rely on two metrics: accuracy (classification
rate) and expected calibration error (ECE). While the classification rate (frac-
tion of correct predictions) is a standard measure of the correctness of the
learner’s final (deterministic) decisions, calibration aims to assess the model’s
probability estimates. Here, we adopt a standard notion of classifier calibra-
tion called confidence-calibration: A probabilistic classifier producing predictions
p(x) = (p1(x),...,pc(x)) is (confidence-)calibrated, if

P(y = argmax p;(z) | maxp;(z) = a) = a

for all « € [0,1]. In words, if the model reports a-confidence in its decision, i.e.,
the probability predicted for the (presumably) most probable class is «, then this
decision is indeed correct with probability «. For example, among all decisions
for which the model reports a confidence of 80%, indeed 80% of the cases are
correct. While this notion of calibration can be criticized (e.g., because it does
not condition on the instance x itself), it does appear useful from the point of
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view of explainability and informed decision-making. In particular, it provides
reasonable support for the stopping condition: A calibrated confidence at stage
k of the decision process provides the decision maker with a clear idea of how
safe or risky it might be to stop and make a final decision at that stage.
Practically, as ground-truth probabilities cannot be observed in the data,
the calibration of a model is measured in terms of the expected calibration error
(ECE), which is based on the partitioning of the unit interval into a set of bins
(intervals) By, ..., By,. Formally, ECE is then defined as follows [14]:

ECE=Y_ % lacc(B;) — conf(B;)], (7)

Jj=1

where N is the number of data points, |B;| is the number of points falling in
bin B;, acc(By) is the fraction of points in bin B; for which the model predicted
correctly (i.e., the accuracy in that bin), and conf(B;) the average confidence
reported by the model for points in B;. We rely on the implementation of Kumar
et al. for an unbiased estimate of the ECE [25].

6.3 Classification Accuracy

Binary classification problems can be interpreted in two ways: Either as the
presence of absence of the positive label or as a genuine two class problem. This
allows comparing the PSL model, which can only make predictions towards the
positive class and the MSL which collects evidence towards all alternative classes.
Recall, that Naive Bayes and MSL operate on the same features at prediction
time.
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Fig. 4. Classifier accuracy across different stages for all binary datasets. The shaded
regions represent confidence intervals of the mean.

Overall, the predictive performance of the compared classifiers yield mixed
results on the binary datasets as seen in Fig.4. While MISS performes good
on the breast and diabetes dataset it exhibits poor accuracy on the unbal-
anced ilp dataset. MSL performes generally sligtly worse than the PSL which is
particularly tuned for binary classification problems. On the particularly small
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breast dataset 20 MCCV splits appear to have insufficient statistical power to
clearly distinguish classifiers performance.

In the multi class setting, we cannot compare to the PSL. Hence, we add
multinomial logistic regression and two less interpretable decision models (RF,
XGB).
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Fig.5. Classifier accuracy across different stages for all multi-class datasets. The
shaded regions represent confidence intervals of the mean.

Figure 5 shows the accuracy of the classifiers across the datasets sorted by
sample size. While the MSL performance is worse in general, it must be noted
that the MSL and NB construct one list of models that are consistent to each
other: Feature subsets form a nested sequence, and the score assigned to a feature
remains constant across stages. This is arguably important from an interpretabil-
ity point of view [18]. The remaining classifiers can create different models for
each stage, thereby compromising interpretability. While LR, RF, and XGB
at least use the same features that the MSL uses, MISS will only use the same
number of features. The parametrizations across those models are not consistent.
Still, the MSL performs similarly well to the other classifiers. The performance of
MISS declines on the largest dataset (segmentation) as more and more features
become available. This can only be explained by the 30 min timeout, meaning
the models still have a large optimality gap.

6.4 Probability Calibration of the Classifier

In this section we analyze the classifiers probability calibration against the same
baselines used in the previous chapter.

Figure 6 shows that all classifiers provide fairly calibrated probability esti-
mates, except for the Naive Bayes classifier, which is known to be a good classifier
but a sub-par probability estimator [51].

On the multi-class datasets (ref. Figure 7) MISS performs slightly worse when
only little features are available. In absolute terms, most models exhibit low
calibration errors across all stages. The strikingly bad performance of MISS on
the segmentation can again be explained by the premature terminated training
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Fig. 7. Expected Calibration Error across different stages for all multi-class datasets.
The plots compare the calibration performance of four models: PSL, MSL, Naive Bayes,
and MISSig00. The shaded regions represent confidence intervals.

due to timeouts. This can also be seen on the player dataset, which is also
stopped due to timeouts for stages 8 and following. Fortunately, on this dataset,
only a relatively small optimality gap is retained after exhausting the 30 min
training budget.

6.5 Runtime Analysis

In the previous sections, we have seen mostly competitive performance of the
MISS classifier. However, particularly on the segmentation dataset, the perfor-
mance was often suboptimal, even though the MISS baseline, was the one with
the most flexibility as it was only constrained regarding the number of features
used.

The MISS classifier is learned by solving a mixed integer program with the
help of the cplex solver. This can yield provably optimal solutions with respect
to the loss function and the training data. However, this training method is
also very costly in terms of training time. This is exacerbated in the scenario of
decision lists, because many decision models have to be learned independently.
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Figure 8 shows the performance of the MSL classifier and two parametriza-
tions of the MISS classifier: one with 90s and one with 30 min. With only 90s
per stage, the performance of MISS already stagnates after 3 features and hardly
exceeds the performance of the MSL, even though the MSL will additionally
enforce coherence of the whole decision list. Even with 30 min, stages 6 and fol-
lowing time out, however, with significantly higher performance, which can even
be seen in the slight performance decrease after stage 8. For the segmentation
dataset, not even 30 min per stage are sufficient and large optimality gaps remain.
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Fig. 8. Accuracy and runtime analysis for the Football Player dataset. The left plot
shows accuracy across different stages for MSL and the two 90s and 30min timeout
configurations of MISS. The right plot shows the total training time for all stages.

7 Conclusion

In the search for explainable Al, two approaches are currently pursued: post-hoc
explaination of complex models and inference of inherently (ante-hoc) explain-
able models. Although the former approach has been fostered by advances in
generative Al, very recent research has shown that explaining complex or even
black-box models in easy terms can result in undesirable outcomes, including
overreliance on Al if predictions are accompanied by explanations that appear
to be comprehensive [17].

In this paper, we therefore pursue a different path to improve the performance
of Al in (human) decision-making tasks. We propose a method for learning
scoring systems that are commonly used and widely accepted for decision support
in real-world applications. In contrast to existing approaches, our method is
able to handle problems with more than two choice alternatives. Moreover, by
constructing a coherent decision list instead of a single model, MSL supports
a stagewise decision-making process, where a decision can be made as soon as
enough evidence has been accumulated.

Not less importantly, MSL is inherently explainable due to its restriction to
integer scores, its simple additive structure, and the coherence of the models that
form a decision list (feature subsets are nested and scores remain unchanged).
Admittedly, compared to black-box models or models being less restricted (e.g.,
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additive models with real-valued instead of integer scores, such as logistic regres-
sion), MSL may exhibit slightly weaker predictive performance. However, the loss
in performance is in general not very high and appears to be acceptable in view
of the gain in explainability. Future work should empirically investigate MSL
with regard to interpretability and explainability, particularly examining how
the stages are used in different decision-making scenarios and how this affects
decision quality.

We evaluated human performance on a specific dataset that is especially
suited for analyzing Al-human collaborative decision-making, and show that
humans perform significantly worse than our approach. Despite this, we believe
that a hybrid approach—where a human expert supports a machine learning
algorithm in constructing an MSL, or more broadly, engages in an Al-human
co-construction of decision models—is a promising direction that we plan to
explore in future work, especially given that prior research has shown human-in-
the-loop approaches can enhance model performance [34,50], improve decision-
making [19], and increase model acceptance [33], even though such methods
may be limited when experts are biased [16]. Broadly speaking, the idea is to let
the human support or correct decisions about the order of features, the scores
assigned to features, etc. This might be beneficial for the learning algorithm, in
particular to counteract the heuristic nature of its greedy search strategy. At
the same time, a hybrid approach could be appealing for the human expert and
increase the acceptance and adoption of automatic decision support —a model
that a human expert co-constructed herself will likely increase acceptance, trust,
and understanding compared to a model that was constructed in a purely data-
driven way and impose on the expert from outside.
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