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Temporal change in minimum mortality
temperature under changing climate

A multicountry multicommunity observational study spanning 1986-2015
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Background: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to
nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity.
We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries.
Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986—
2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP
for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates
using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by
climate zone, geographical region, and country.

Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6)
to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous
across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02)
and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = -0.46,
P = 0.05). MMTP decreased temporally in North Europe (LS = —3.45, P = 0.02) and South Europe (LS = -2.86, P = 0.05).
Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum

temperature may have changed under a warming climate, albeit with large region-dependent variations.
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Introduction

A U- or J-shaped association has been established between
ambient temperature and human mortality, with a threshold
temperature at which the lowest mortality occurs.!? This thresh-
old value has been referred to as the “minimum mortality tem-
perature” (MMT) and is considered one of the key indicators of
population susceptibility to nonoptimum temperatures.* MMT

What this study adds:

This study examines the geographical heterogeneity in the tem-
poral changes in minimum mortality temperature (MMT) across
34 countries (699 communities) over the 30-year period span-
ning 1986-2015. This study attempts to investigate both the
pooled evidence and the heterogeneity in the temporal change in
MMT on a global scale. Our findings suggest an overall increase
in MMT globally over the 30 years, with certain country- or
region-specific trends displaying both upward and downward
movements without discernible patterns. Moreover, the results
indicate that the temporal change in MMT is not fully explained
by the warming temperatures over time.



Yang et al. ® Environmental Epidemiology (2024) 8:e334

has changed over the last few decades,!* possibly indicating
changes in human susceptibility to nonoptimum temperature.

These observed temporal changes are, however, inconsistent
across studies. While certain studies have reported increasing
MMT, although at different rates,”!! other studies have shown
approximately identical or decreasing MMTs over time.!-!3
Therefore, synthesizing and comparing the results of previous
studies are difficult because the study population, study period,
causes of death, and analytical methods have varied. To gain a
better understanding of the changing MMT, we require a large-
scale, multicountry, multicommunity study that involves the
analysis of time-series data from multiple populations using a
unified statistical analysis framework.

MMT shows a close linear relationship to the average tem-
perature (AT).">!5 Therefore, MMT can be assumed to increase
over time as AT increases under a warming climate. Future
changes in MMT have been extrapolated, assuming that the lin-
ear relationship between MMT and AT remains unchanged.'
However, this relationship has been derived based on the spatial
variation in MMT and AT and not on the temporal variation.
Further investigations are required to determine the potential
relationship between MMT and AT based on temporal varia-
tion and/or whether the temporal change in MMT can be fully
explained by the temporal change in AT. Other temporally
varying factors may affect MMT (e.g., factors that change the
temperature-mortality association itself). In such cases, the
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temporal change in MMT may not strictly reflect the temporal
change in AT.

In this study, we investigate the temporal change in MMT
and MMT percentile (MMTP) across 699 communities span-
ning 34 countries by analyzing historical time-series data per-
taining to mortality and temperature spanning 1986-20135. The
present study aimed to examine (1) how MMT and MMTP
have changed over the past decades in the entire study popu-
lation, (2) heterogeneity in the temporal change in MMT and
MMTP across different climate zones, regions, countries, and
communities, and (3) whether the temporal change in MMT
and MMTP is explained by the temporal change in AT under a
warming climate.

Methods

Data collection

Data collection was performed as described in previous stud-
ies using the Multi-Country Multi-City Collaborative Research
Network dataset.!= In this study, we used daily time-series data
for mortality and ambient temperature collected from 699 com-
munities across 34 countries (Table S1 and Figure S1; http://
links.lww.com/EE/A298). Data consisted of daily death counts
for all causes or nonexternal causes (International Classification
of Diseases 9th Revision [ICD-9] 0-799 and 10th Revision
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[ICD-10] AO0-R99) and daily mean temperature for each com-
munity. The data collection period varied by country, ranging
from 10 (in Moldova, Greece, and Thailand) to 50 (in Norway)
years (Figure S2; http://links.lww.com/EE/A298). We restricted
our analysis to a 30-year study period spanning 1986-20135;
wherever possible, we ensured that the study periods across
countries overlapped.

We also collected data on community-specific indicators for
climate zones, classifying each community into one of the four
Koppen climate zones: tropical, dry, temperate, and continen-
tal (Figure S1B; http:/links.lww.com/EE/A298). In addition, we
created an indicator for geographical regions, classifying each
community into one of the 11 regions: North America, Central
America, South America, North Europe, Central Europe, South
Europe, South Africa, the Middle East, East Asia, South-East
Asia, and Australia (Table S1 and Figure S1C; http:/links.lww.
com/EE/A298).

Statistical analysis

A two-stage meta-analysis was conducted. In the first stage, we
estimated the MMT or MMTP for each community for each
of the 5-year nonoverlapping subperiods. In the second stage,
community-specific temporally varying MMTs or MMTPs were
pooled for the entire study population, as well as by climate
zone, geographic region, and country. For computations, we
used R statistical software (version 4.0.3; R Development Core
Team, Vienna, Austria) with functions from the packages dlnm
and mixmeta.

Estimating community-specific temporally varying
minimum mortality temperature/minimum mortality
temperature percentile

We divided the entire study period spanning 1986-2015 into
S-year nonoverlapping subperiods (i.e., 1986-1990, 1991-
1995, 1996-2000, 2001-2005, 2006-2010, and 2011-2015).
We also conducted a sensitivity analysis using the data from the
years 2001-2015 to examine how sensitive the analysis results
are to the length of the data period. For each community and
subperiod, we fitted a quasi-Poisson regression with splines,
enabling overdispersion to estimate the temperature-mortality
association as follows. Let y, be the daily death count on day
tand x, = (x, x,_,, ..., x, ;) be the vector of daily mean tem-
peratures on day ¢ and over the previous L days. We used the
following generalized linear model with a quasi-Poisson family.

y: ~ quasi-Poisson (),
J
log (A;) = ap + s (x5 8) + Zh/ (w;i37j), fort=L+1,...,N

(1)

where A, = E(y)) is the expected mortality count on day ¢, & is a
model 1ntercept u, is the jth control variable on day 7, and h ()
is a flexible function to represent the effect of the jth control
variable, characterized by y.. In our analysis, b; (-) corresponds
to a natural cubic B-spline of time with eight degrees of freedom
(df) per year to account for seasonality and long-term trends. In
addition, we included indicator variables to mitigate the effect
of the day of the week.

In Equation (1), s () is a flexible function to describe a non-
linear and delayed association between temperature and mor-
tality, and we used a distributed lag nonlinear model (DLNM)?¢
as follows. The DLNM defines a cross-basis for temperature
and lag: Let f1 (), , fu () be the basis to describe the nonlin-
ear temperature—mortality association with dimension vx, and
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let g1(-), - ,8y, (-) be the basis to describe the relationship
across the lag space. Then, the DLNM for s (-) is expressed as
follows.

Uy vy
S Xt) Z Z rt/CkB/k (2)
=1 k=1
where 1; = (f; (%) fi (xth))/ is the transformed vec-

tor using the jth basis f. in the temperature dimension, and
ce = (g (0),--ge (L)) " is the transformed vector using
the kth basis g, in the, lag dimension. The coefficient vector
B = (B11,B12, - -->Buw) has the length of v, x v;. In our analy-
sis, we used a natural cubic B-spline for temperature with three
internal knots placed at the 10th, 75th, and 90th percentiles of
location-specific temperature distributions and a natural cubic
spline for the lag with an intercept and three internal knots
placed at equally spaced values in the log scale. Therefore, v_= 4,
v, = 5, and there are 4x5=20 coefficients in s (-). The lag was
extended to L = 21 days to capture long-delayed effects. These
specifications were based on the results of model selection in a
previous study.!

After fitting the quasi-Poisson regression, the coefficients for
the cross-basis term were extracted and reduced to summarize
the cumulative association between temperature and mortality

over the lags'” as follows.
0=M3
V(0) =MV ()M (3)

where B is the set of 20 coefficients, My = I, ® 1L+1C is a reduc-
ing matrix, 0 = (01,62 ...,6,,) is the set of reduced coefficient
with a length of v, and V(G) is the associated error covariance
matrix. The v_ = 4 coefficients represent the temperature-mor-
tality association cumulated over the lags.

Using the reduced coefficients and the corresponding stan-
dard error matrices, we estimated the MMT and its stan-
dard error using a Monte Carlo simulation method.'®"” Let
¢ be an estimate for 8 and V (6) be the corresponding error
matrix. Using 0, we obtained a point estimate for the MMT as
MMT = argmin, (Zk 1 Oufs (x )) where f,(x) indicates the kth
basis in the temperature dimension evaluated at temperature x.
Then, using # and V 0), we obtained its standard error through
a Monte Carlo sampling method. We first simulated 6's from a
multivariate normal distribution with the mean specified as a
pooled estimate # and the covariance as V (6 ). Then, we esti-
mated the MMT for each simulated 0 as follows:

0y ~N(6,V(6))

MMT ;) = argmin, (Z Ok, (j)fe (x)) (4)

k=1

where (j) indicates the jth simulation, x indicates the observed
temperature range, and f (x) indicates the kth basis in the tem-
perature dimension evaluated at temperature x. We obtained
1000 Monte Carlo samples of the MMT through the simulation
procedure and used the sample standard deviation as its standard
error. We restricted our search for the MMT within the range
encompassing the 25th-99th percentiles of the community-
specific temperature distribution such that MMT values were
not estimated beyond a range where the corresponding statis-
tical uncertainty tended to increase. We also estimated MMT
in the range spanning the 1st to 99th percentiles to test the
sensitivity of the results to the range restriction. To obtain the
MMTP, we converted the estimated MMT to MMTP based
on the empirical distribution of observed temperature for each
community and subperiod.
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Pooling the community-specific temporally varying
minimum mortality temperature/minimum mortality
temperature percentile

We pooled the community-specific MMTs or MMTPs esti-
mated for nonoverlapping subperiods using mixed-effects
meta-regression (MEMR).2° For the ith country, jth community,
and wth period, let MMTj;,, be the MMT and sd, be the corre-
sponding standard error. Let time, be an integer-valued variable
for the wth period (1, 2, ..., 6). First, we pooled temporally vary-
ing MMT’s or MMTP’s for the entire population by fitting the
MEMR, where a temporal variable (considering values from 1
to 6 for each subperiod) was included as a linear term.

MMTj, = (a+aj + &) + (B + bij + d;) timey, + €0

(a5, b)) ~N (0, ¥ @), (ci,d) ~N (0, ¥ V),
€ijw ~ N (0, sd? ) (5)

jw

where @ and f3 are the population intercept and slope terms (i.e.,
fixed effects), respectively, a, and ¢, are the community- and
country-specific intercept terms, respectively, and b, and d, are
the community- and country-specific slope terms, respectively
(i.e., random effects). W"’s are the random effect covariances
for level I. We reflected the two-level structure of country and
community. From the fitted model, we obtained the best linear
unbiased predictor for country- and community-specific esti-
mates for MMTs and MMTPs.

Second, we pooled temporally varying MMTs or MMTPs
by climate zone by separately fitting the MEMR for each of
the four climate zones. We fitted the MEMR model in Equation
(5) separately for each of the four climate zones to pool the
community-specific temporally varying MMT by climate zone.
Third, we pooled temporally varying MMTs or MMTPs by
geographical region by fitting the MEMR separately for each
of the 11 geographical regions. We fitted the MEMR model
in Equation (5) separately for each of the eleven geographi-
cal regions to pool the community-specific temporally varying
MMT by geographical region.

Investigating heterogeneity

We investigated heterogeneity in the temporal trends of MMT
and MMTP across communities, countries, geographical
regions, and climate zones. First, we tested whether the country-
and community-specific random slopes improved the model fit
by comparing the MEMRs with and without the corresponding
random slopes, because the temporal trend was represented by
the coefficient for the temporal variable (i.e., linear slope [LS]
for time) in MEMR. In addition, we tested whether the temporal
trends of MMT and MMTP were heterogeneous across regions
and climate zones by comparing the MEMRs with and without
the interaction term between region or climate zone indicators
and time. Model comparison was based on the likelihood ratio
(LR) test and two model fit statistics, the Akaike information
criterion and the Bayesian information criterion.

Investigating the possible influence of temporal change

in average temperature on temporal changes in minimum
mortality temperature or minimum mortality temperature
percentile

We investigated whether the temporal changes in MMT or
MMTP could be explained by temporal changes in AT. We

examined the change in the LS estimate for the time variable and
its P value by fitting the MEMRs with and without temporally
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varying AT as an additional meta-predictor. The MEMR model
with temporally varying AT is as follows.

mi/w = (a + aij + C,‘) + (6 + b,‘/ + d,) time,, + ’}/AT,'/'W
+ €jjy (model 1)

I\TM\T,-,W = (oz +a; + C,') + (5 + b,‘,’ + d,) time,,
+ (ATiiw — TAT,‘,') + €ijw (model 1)

where AT refers to the average temperature in the wth period
at the jth community of the ith country, TAT refers to the time-
averaged average temperature at the jth community of the ith
country. The models for the random terms remain unchanged.

Results

The top-left panels in Figure 1A and B show the temporal
changes in MMT and MMTP, respectively, which were observed
in the entire population. Evidence for a temporal increase in
MMT and MMTP is shown from 19.5 °C (95% confidence
interval [CI]: 17.9, 21.1) to 20.3 °C (95% CI: 18.5, 22.0) and
from the 74.5th (95% CI: 68.3, 80.6) to the 75.0th (95% CI:
71.0,0.78.9) percentiles from the first to last subperiods, respec-
tively. However, both changes were not significant; the slopes
for the linear change in MMT and MMTP were estimated to
be 0.16 (P = 0.19) and 0.1 (P = 0.90), respectively. Figure 1A
and B also shows region-specific results. Evidence of a temporal
increase or decrease in MMT and MMTP was observed in dif-
ferent regions; however, only a subset of them were significant.
The temporal increases in MMT were significant in East Asia
and South-East Asia (LS = 0.91, P = 0.02 and LS = 0.62, P =
0.05), and the temporal decrease in MMT was significant in
South Europe (LS = -0.46, P = 0.05). In addition, the temporal
decreases in MMTP were significant in Northern and Southern
Europe (LS = -34.51, P = 0.02 and LS = -28.56, P = 0.05).

Figure 2 shows the temporal changes in the MMT and
MMTP in each of the four climate zones. Temporal increases in
MMT were observed in all climate zones; however, none were
significant. MMT either increased or remained relatively con-
stant from 26.5 °C to 26.9 °C, 19.2 °C to 19.5 °C, 15.4 °C to
16.9 °C, and 21.6 °C to 24.4 °C in the tropical, temperate, con-
tinental, and dry zones, respectively (Figure 2A). The MMTP
increased or remained constant from the 39.9th to 77.7th,
76.6th to 76.3th, 70.1th to 73.5th, and 66.6th to 76.6th per-
centiles (Figure 2B). Figure S3; http:/links.lww.com/EE/A298
presents the temporal changes in MMT and MMTP for each
of the 34 countries. Overall, country-specific results followed
region-specific results; however, the direction and magnitude of
temporal changes were heterogeneous across countries in cer-
tain geographical regions.

Figure 3 displays the distribution of community-specific MMT
and MMTP in the first (1986-1990) and last (2011-2015) subpe-
riods for the entire population and for each geographical region.
The top-left panels in Figure 3A and B show that in the entire
population, the MMT and MMTP distributions moved slightly
to the right. The distribution shifted to the right in the regions of
North America, Central America, South America, East Asia, and
South-East Asia, where evidence for temporal increases in MMT
and MMTP was observed (Figure 1). Moreover, the distribution
moved to the left in the regions of North and South Europe,
wherein evidence for temporal decreases in MMT and MMTP
was observed (Figure 1). Figure 4 presents the community-
specific changes in MMT and MMTP from the first to last sub-
periods. Consistent with Figures 1 and 3, increases (red dots)
in MMT and MMTP were observed in several communities in
North America, Central America, East Asia, and South-East Asia,
whereas decreasing values (blue dots) were observed in several
communities in North and South Europe.
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Figure 1. Temporal change in (A) MMT and (B) MMTP in the entire study population (top left) and each of the 11 geographical regions. The linear slope (LS) is

presented with the corresponding P value.

We tested whether the heterogeneity was statistically signifi-
cant across climate zones, regions, countries, and communities
by comparing the MEMRs with different model specifications
using an LR test. The model comparison results are presented
in Tables S2 and S3; http:/links.lww.com/EE/A298. We found
that the heterogeneity was significant across climate zones

(P < 0.0001 when comparing model 2 to model 1 in Table S2;
http://links.lww.com/EE/A298) and regions (P < 0.0001 when
comparing model 4 to model 3 in Table S2; http:/links.lww.
com/EE/A298). Next, we confirmed that intercountry heteroge-
neity was significant by comparing the MEMR with and with-
out country-specific random slopes for time (P < 0.0001 when
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Figure 2. Temporal change in MMT (A) and MMTP (B) in each of the four climate zones. The linear slope (LS) is presented with the corresponding P value.

comparing model 0 to model 1 in Table S3; http:/links.lww.
com/EE/A298). We further confirmed that intercommunity het-
erogeneity was also significant by comparing the MEMR with
and without community-specific random slopes using the LR
test (P < 0.0001 when comparing model 1 to model 2 in Table
S3; http:/links.lww.com/EE/A298).

We examined whether the temporal change in MMT or
MMTP could be explained, at least in part, by the temporal
change in AT by comparing the slope estimates for time (and
its P value) with and without temporally varying AT in the
MEMRs as an additional meta-predictor (Table S4; http:/links.
lww.com/EE/A298). For MMT, we focused only on East Asia,
South-East Asia, and South Europe, where temporal changes
were significant. In East Asia, the positive slope estimates
decreased slightly with larger P values (but were still signifi-
cant). In South-East Asia, the positive slope increased, but with
a larger P value, indicating that the temporal increase was not
significant. Meanwhile, in Southern Europe, the negative slope
further decreased, with a significantly reduced P value. For
MMTP, we examined Northern and Southern Europe, where
the temporal decreases were significant. In Northern Europe, the
negative slope slightly increased with an increased P value (not
significant), while the negative slope in Southern Europe further
decreased with a significantly reduced P value.

The results of the sensitivity analysis are shown in Figures
S4-S7; http://links.lww.com/EE/A298. First, we restricted the
MMT to the range spanning the 1st to 99th percentiles of the
temperature distribution when estimating the community-
specific temporally varying MMT. Figure S4; http:/links.
lww.com/EE/A298 shows the temporal changes in MMT and
MMTP in the entire population and for each geographical
region. Figure S5; http://links.lww.com/EE/A298 shows the
empirical distribution of MMT and MMTP in the first and last
subperiods globally and for each region. The results closely
resembled those presented in Figures 1 and 3. Additionally, we
limited the study period to the years 2001-2015. Figures S6
and S7; htep://links.lww.com/EE/A298, respectively, show the

temporal change in MMT and MMTP by region and climate
zone. Figure S6; http:/links.lww.com/EE/A298 shows that the
results were generally similar to Figure 1. Nevertheless, in sev-
eral regions like North America, North Europe, and Australia,
the restricted period analysis has captured short-term fluctua-
tions more than long-term trends with larger statistical uncer-
tainty. Similarly, results in Figure S7; http:/links.lww.com/EE/
A298 are generally similar to those in Figure 2 except that
in the Continental zone, the shorter-period analysis showed
a decreasing trend while the longer-period analysis led to an
increasing trend.

Discussion

We conducted an observational study to investigate the tempo-
ral changes in MMT and MMTP and their heterogeneity in 699
communities across 34 countries spanning 1986-2015. This is
the first global-scale study to synthesize inconsistent findings on
temporal changes in MMT and MMTP from multiple popula-
tions. Our pooled results showed that MMT and MMTP may
have remained at the same level throughout the study period in
the entire population. However, the direction and magnitude of
the temporal changes in MMT and MMTP were largely hetero-
geneous across climate zones, geographical regions, countries,
and communities. Among the heterogeneous results, signifi-
cant increases in MMT were observed in East Asia and South-
East Asia, and significant decreases in MMT and MMTP were
observed in North and South Europe. We further investigated
whether the temporal changes in MMT or MMTP could be
explained by the temporal changes in AT. The results showed
that the changes in AT might not fully explain the region-wise
changes in MMT or MMTP.

Although insignificant, MMT might have increased slightly
(LS = 0.16, P = 0.19), while MMTP might have remained con-
stant (LS = 0.1, P = 0.90) globally. Potentially, this can be inter-
preted as warming temperatures might have increased MMT if
MMTP was fixed at a certain percentile and all other factors
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Figure 3. Distribution of the community-specific (A) MMT and (B) MMTP in the first (1986-1990) and last (2011-2015) subperiods in the entire population (top

left) and each of the 11 geographical regions.

remained constant.!> However, our pooled results should not be
interpreted as a single general trend but rather as the result of
cancelations of temporal increases and decreases over multiple
locations. As discussed in the following paragraphs, heteroge-
neous evidence of temporal increases and decreases was found
depending on the region, country, and community.

We found that the temporal change in MMT or MMTP
was heterogeneous across different climate zones. The LSs for
temporal change were estimated to be positive, although not
significant. However, the slope estimates differed significantly
across climate zones, suggesting that the magnitude of temporal
increases varied across climate zones.
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Figure 4. Change in the community-specific (A) MMT and (B) MMTP between the first (1986-1990) and last (2011-2015) subperiods for each of the 677

communities.

Regionally, greater heterogeneity was observed. Temporal
increases in MMT were found in East and South-East Asia.
We propose two plausible interpretations: either populations
have become less susceptible to heat or warming climates have
increased MMT. To test whether warming climates have raised
MMT, we examined whether the temporal increase in MMT
can be explained by the temporal increase in AT; the results
showed region-wide variation. After adjusting for temporally
varying AT, the temporal increase in MMT became nonsignif-
icant in South-East Asia but not in East Asia. This indicates
that the temporal increase in MMT is not fully explained by
the change in AT in East Asia; the former interpretation of
population adaptation might be more plausible. Populations
may have adapted to increasing temperatures via multiple
mechanisms, such as physiological adaptation, behavioral

changes, technological adaptation, and changes in public
health infrastructure.5-!!

Alternatively, temporal decreases in MMT and MMTP
were observed in Northern and Southern Europe. These
results are consistent with those of recent studies conducted in
Spain.!'13 A plausible hypothesis is that MMTP can decrease
because of warming temperature without changing the MMT
value. However, in Southern Europe, both MMT and MMTP
decreased, indicating that the temperature-mortality associa-
tion has changed such that both metrics shifted to the left with
a warming climate. Recently, it has been observed that the tem-
perature—mortality association curve flattens at its lower end,
thereby changing the association from a V-shape to a U-shape,
which resulted in a reduction in MMT with greater levels of
uncertainty.!?
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The country-specific results (Figure S3; http://links.lww.
com/EE/A298) suggest greater heterogeneity across countries,
which is supported by the LR test for including country-specific
random slopes in the MEMR model. Some of our country-
specific results are consistent with those of previous studies.
We observed that MMT and MMTP increased in Japan and
France and decreased in Spain; both trends were consistent
with the findings of previous studies.®*!3 However, some of our
results do not support those of previous studies conducted in
the Netherlands,!® Sweden,” and Spain.!! We found that MMT
has remained constant, whereas MMTP has decreased in the
Netherlands and Sweden; however, it has been previously
reported that MMT increased in those two countries. The study
population could be a source of discrepancy; while the earlier
study' only considered the elderly population, we included
the total population. Moreover, while the study in Sweden’
investigated trends from earlier periods (i.e., 1901-2009), we
investigated the more recent period spanning 1986-2015. Their
results indicated that MMT remained similar at the end of the
study period, which might suggest that MMT would remain
after that. In addition, while the study from Spain focused
on cardiovascular mortality,!" we considered total mortality.
Similar results have been reported for respiratory and total
mortality in other studies from Spain.!!3

Recently, a multicountry, multicommunity study was con-
ducted to investigate the spatial heterogeneity of MMT and the
underlying predictors that explain spatial heterogeneity.> AT was
found to be the strongest predictor of spatial variation in MMT.
Moreover, MMT and AT showed a linear relationship with the
LSs varying across different climate zones. However, in any
of the previous studies, whether the temporal variation of AT
explains the temporal variation of MMT remained unexplored.
This study is the first attempt to examine this hypothesis, and
the results showed that depending on the regions, the change in
AT might not fully explain the change in MMT or MMTP. We
can interpret this as population susceptibility that might have
changed due to other temporally varying factors than the AT,
such as physiological adaptation, behavioral changes, techno-
logical adaptation, and changes in public health infrastructure.

Various previous studies examined the hypothesis related to
potential drivers or mechanisms by which populations adapt
to climate change. One study showed that changes in climate,
demographic, and socioeconomic factors may be associated
with the changes in MMT, suggesting that those factors may be
potential drivers of the adaptation of the Japanese population
to heat.® Other studies found that there exists an association
between AC prevalence and heat risk in Japan and the United
States.?"?> A multicountry study proposed that the development
of public health strategies may have mitigated heat-related
climate change impacts.?®> Another multicountry research on
summer heat indicated that several factors, such as true acclima-
tization, adaptive behaviors, or harvesting effects, could explain
the changes in susceptibility to heat.® In this study, we could not
investigate the underlying mechanism of climate change adapta-
tions more specifically because relevant data were available only
for a limited number of countries. Certainly, this should be one
of the follow-up topics to be studied in the near future.

As indicated in previous studies, MMT estimates can be
affected by the statistical methods used.”!® Various methodol-
ogies can be employed for estimating MMT. The majority of
older studies used Poisson regression with a piecewise linear
spline, which assumes a V-shaped association between tempera-
ture and mortality. Given the prevalence of nonlinear lag effects,
modeling nonlinear associations with splines has become more
common in recent studies. A widely used method is the DLNM,
which assumes a nonlinear and nonlinearly delayed association
between temperature and mortality. A recent study compared
these methods and evaluated how they affect the results of the
temporal shift in MMT in the Netherlands,' concluding that
the estimates differ depending on the statistical method used.

www.environmentalepidemiology.com

In the present study, we adopted the DLNM approach, as it is a
less restrictive and more flexible method to model the tempera-
ture-mortality association. When using the DLNM approach,
model selection is crucial because the results can be sensitive to
the complexity of the splines (i.e., the type of spline, degrees of
freedom, knot locations, and maximum lag). The present study
referred to the choices selected in a previous study,! where var-
ious specifications were evaluated in modeling multicountry
multicommunity data.

In addition to statistical methods, temporally varying MMT
estimates can be affected by the definition of the temporal unit
to examine the temporal shift.” In several studies, moving sub-
periods (i.e., overlapping subperiods) were used with different
sizes of moving windows.”’ In other studies, nonoverlapping
subperiods of varying lengths were used.?’ Alternatively, the
entire data period can be modeled simultaneously using a
time-varying DLNM approach.® We used the second approach
(i.e., S-year nonoverlapping subperiods) because independent
temporal estimates could be obtained to satisfy the assumption
required to execute the MEMR in the second stage. In addition,
the length of the temporal unit was carefully selected to stably
estimate the temporal trend.

In addition, quantifying the uncertainty of the MMT esti-
mate (i.e., CI) is crucial for two reasons. First, certain studies
have provided only point estimates,!"'> which can be misleading
because the CI can be very wide'® if the temperature-mortality
association is J- or U-shaped with a wide bottom. Consequently,
presenting only point estimates without uncertainty can result
in misleading conclusions regarding the temporal shift of MMT.
Second, when pooling the community-specific temporally vary-
ing MMT estimates through MEMR, the uncertainty should be
incorporated into the model. In the present study, we adopted
a Monte Carlo simulation approach that had been previously
introduced in studies'®" to generate Cls for point estimates of
MMT, a method that has become a standard practice in tem-
perature-mortality studies.

This study has several limitations. First, the data collection
period varied by country and ranged between 10 and 30 years.
This indicates that, when pooling the temporally varying MMT
across communities or countries, the available information var-
ied over time. To ensure the reasonability of the pooled results
while attempting to maintain a sufficiently extended period
conducive to stable temporal shift estimation, we restricted our
analysis to the study period spanning 1986-2015; this ensured
that, wherever possible, the periods overlap across countries,
enabling the analysis of approximately 30 decadal periods of
data. Nevertheless, the pooled results should be interpreted with
caution because of the imbalanced data over time. Second, com-
munity types differ across countries, cities, regions, provinces,
and prefectures. In addition, in certain countries, communi-
ties represent the entire population of the country, while only
selected locations are included in other countries. Therefore,
country-specific results should be carefully interpreted, not-
ing that not all communities are included to produce pooled
results in certain countries. Third, we assumed a linear trend
for temporal changes in MMT or MMTP. Alternatively, we
used categorical indicators for the subperiod and examined an
unstructured trend from which evidence showing a nonlinear
trend was observed (results not shown). Although nonlinear
trends can be modeled, we assumed linearity because the study
period was relatively short (approximately three decades), and
only six subperiods were defined as temporal units. In future
studies, when more extended data periods are available, more
complex temporal trends are worth investigating. Fourth, we
did not investigate the potential role of humidity in the temporal
changes of MMT because the data for humidity were available
for a limited number of countries. A recent study,?* however,
showed that the role of humidity in the temperature-mortality
association is not significant by analyzing the data for a subset
of our study population, which implies that humidity may not
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be a relevant factor that may explain the temporal change in
MMT. Finally, subgroup (i.e., by sex or age group) analysis and
cause-specific analysis are warranted to scrutinize the underly-
ing factors for the temporal trend of MMT and MMTP.

Conclusions

We conducted a global-scale, multicountry observational study
to synthesize inconsistent findings on the temporal changes in
MMT and MMTP in multiple populations. The results showed
that MMT and MMTP may have changed or remained constant
globally over the study period, but the direction and magnitude
of the temporal changes have been largely heterogeneous across
climate zones, geographical regions, countries, and communi-
ties. The results suggest that human adaptation, in terms of opti-
mum temperature, might largely depend on climatic conditions
and regional and country-specific characteristics.
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