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ABSTRACT

Modern large language models (LLMs) have reshaped the workflows of people across countless fields—and biostatistics is no
exception. These models offer novel support in drafting study plans, generating software code, or writing reports. However, reliance
on LLMs carries the risk of inaccuracies due to potential hallucinations that may produce fabricated “facts”, leading to erroneous

statistical statements and conclusions. Such errors could compromise the high precision and transparency fundamental to our

field. This tutorial aims to illustrate the impact of LLM-based applications on various contemporary biostatistical tasks. We will

explore both the risks and opportunities presented by this new era of artificial intelligence. Our ultimate conclusion emphasizes
that advanced applications should only be used in combination with sufficient background knowledge. Over time, consistently
verifying LLM outputs may lead to an appropriately calibrated trust in these tools among users.

1 | Introduction

In recent years, generative artificial intelligence (AI) has created
numerous opportunities to enhance everyday tasks across vari-
ous professions, including those of biostatistics. Large language
models (LLMs) are readily available through commercial chat-
bots such as ChatGPT by OpenAl, Copilot by Microsoft, Gemini
by Google, LlaMA by Meta Al, and DeepSeek by DeepSeek. These

models generate text outputs based on input prompts using com-
plex pre-trained probabilistic models. As of June 12, 2025, the
website huggingface.co/models lists and offers more than 240 000
pre-trained models under the category “Text Generation”, along-
side many other sub-categories within “Natural Language Pro-
cessing”. The domain of LLMs is rapidly evolving; in addition to
increasing complexity, many LLMs now integrate image-focused
Al capabilities or possess the ability to write and compile software

Abbreviations: Al artificial intelligence; API, application programmer interface; LLM, large language model.
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code. For example, ChatGPT has incorporated the text-to-image
generating system DALL-E and the text-to-video generator Sora,
and it utilizes the programming language Python internally [1, 2].

The relevance of Al—and LLMs specifically—in medical and
biostatistical fields is widely recognized beyond these profes-
sional fields. For example, magazines like Ecologist! have fea-
tured articles highlighting their current applications and poten-
tial future developments.

Extensive literature exists on the use of LLMs in biostatistics.
Two examples concern analyses of observational data from the
National Health and Nutrition Examination Survey (NHANES)
[3] and of clinical trial data [4]. Systematic studies have assessed
the quality of data analyses provided by LLMs for tasks focused
on coding [5], selecting appropriate tests [6] or conducting sim-
ple statistical analysis [7]. Thapa and Adhikari [8] and Clusmann
et al. [9] discussed multiple opportunities, pitfalls, and potential
future directions of LLMs in (bio)medical research. Within radi-
ology research’s biostatistical tasks, Ghosh et al. [10] concluded
that LLMs are most beneficial for researchers with foundational
knowledge in biostatistics or machine learning. Goh et al. [11]
conducted a randomized clinical trial involving 50 physicians to
investigate LLMs’ influence on diagnostic reasoning, but they
did not find significant improvements due to their use. Fichtner
et al.’s study [12] examined integrating LLMs into academic sta-
tistical consulting services as supportive tools over six months to
assess impacts on workflows and potential benefits. (The analysis
of the study data is currently ongoing.)

Sohail [13] conducted a Scopus search revealing rapid growth
in scientific publications about ChatGPT—approximately 26%
related to medical science—yet an in-depth tutorial tailored for
biostatisticians remains absent. Another survey [14] identified
recent trends and applications of LLMs in healthcare through
analysis of 175 relevant publications.

This tutorial aims to demonstrate text-based generative AI’s
potential usefulness for professional biostatisticians while high-
lighting caveats requiring attention. It serves as a guide (i) why
LLM outputs should not be blindly trusted, (ii) in which cases
they seem reliable, and (iii) potential strategies for effectively
utilizing these tools to simplify work processes. We exemplify
this through several use cases: Meta-analysis, latent class analy-
sis, individual surrogacy estimation, sample size planning, causal
analyses, simulation studies, and programming language trans-
lation. Given that ChatGPT is among the most recognized gen-
erative Al tools and because of its built-in data analysis mode,
our focus is on OpenAI’s GPT-40 model with the Plus subscrip-
tion, while also including targeted analyses of the newer o4-mini
variant for specific cases. This tutorial primarily targets practi-
cal biostatisticians who possess sufficient background knowledge
in statistics. One of our findings is that the user must be able to
verify and, if necessary, correct the output of the LLM. We view
LLMs as valuable tools for streamlining many routine tasks of
biostatisticians. However, this tutorial does not address regula-
tory aspects [15] nor does it assess their general summarization
abilities, writing skills, mathematical logic, or capacity for rigor-
ous mathematical proofs.

This paper originated from members of the International Bio-
metric Society (German Region) interested in exploring the

“Use of LLMs by Biostatisticians” within the society’s initiative
“Al and Biometry”. The initiative also includes focal points on
“Biometry’s Contributions to Al Projects” and “Teaching Al in
Biometry”. These contributions complement the earlier position
paper “Is there a role for statistics in artificial intelligence?” [16]
authored by members of the German Consortium in Statistics
(DAGStat).

This tutorial paper is organized as follows. Section 2 contains
brief general descriptions of LLM functionalities and character-
istics, with specific reference to OpenAI’'s ChatGPT. Section 3
contains exemplary use cases along with lessons learned. Finally,
Section 4 re-evaluates and summarizes our findings while dis-
cussing additional relevant aspects for biostatisticians utilizing
LLMs. The Supporting Information contains all the chats we
used during the preparation of the present paper. In addition,
an online repository? contains all relevant software code and
data sets generated by GPT-40 and, where applicable, the newer
04-mini model.

2 | A Few Words on LLMs in General and
ChatGPT in Particular

2.1 | LLMsin General

LLMs are text-based machine learning models with a large
number of parameters. These parameters are learned by self-
supervised training on extensive text corpora, often sourced from
the internet. A notable example is generative pre-trained trans-
formers (GPTs), which are deep learning models employing artifi-
cial neural networks with multiple layers and a multi-head atten-
tion mechanism [17].

One well-known concern with LLMs is their handling of fac-
tual information. As complex probabilistic models, LLMs may
produce hallucinations [18]. The model parameter known as
temperature influences the randomness of an LLM’s output;
higher temperatures result in more varied outputs. Conse-
quently, submitting identical prompts multiple times generally
yields different results.

2.2 | ChatGPT in Particular

OpenAl does not publicly disclose the training data corpora or
the number of model parameters for its LLMs. Users can enhance
ChatGPT’s output by assigning roles and providing background
information, such as acting as a biostatistician working on a
Phase II trial for advanced pancreatic cancer at a pharmaceutical
company. It is important to note that OpenAl may update specific
versions of ChatGPT without notifying users.

A ChatGPT Plus subscription offers unlimited access to the
web-based service, while the ChatGPT Application Programming
Interface (API) requires payment based on token usage. A token
represents part of a sentence, such as a word or text symbol;
approximately four characters (or three-quarters of a word) con-
stitute one token, with 100 tokens equating to roughly 75 words.?

For this paper’s preparation, we obtained ChatGPT Plus subscrip-
tions, which provided enhanced access to the data analysis mode.
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Itis particularly beneficial for biostatistical analyses, simulations,
coding tasks, and more, as it integrates Python for high-level
software execution.* Additionally, it facilitates data visualizations
and enables software code preparation in other programming lan-
guages like R.

By the time of writing this manuscript, the model GPT-40 was
chosen for investigating the use cases due to its unique access
to the data analysis mode. However, on April 16, 2025, OpenAl
introduced the newer models 03 and o4-mini. To also evaluate
their performance on certain tasks like coding or statistical analy-
ses, we tested these models on the meta-analysis, sample size cal-
culation, and simulation study use cases. In this connection, we
also tried the new functionalities of deep research (web-retrieval)
and reasoning in Sections 3.2 and 3.7. While deep research can
be activated via a corresponding button, the prompted request to
search through documents on the internet via web-retrieval has
the same effect.

2.3 | How to Prompt

Prompting strategies can vary, and we will focus on two pri-
mary approaches. The first involves crafting a single, detailed
prompt that outlines the general context, prerequisites, specific
tasks, desired output format, and other relevant details. Alterna-
tively, users may opt for multiple shorter prompts that iteratively
provide specific details. The advantage of the latter approach
is the ability to address and correct any flawed outputs on the
fly. In preparing this paper, we experimented with both meth-
ods and found that they ultimately produced similar results;
therefore, we do not differentiate between these prompting styles
in subsequent discussions; see the screenshots of the chats
related to Sections 3.3 and 3.4 below, where different prompt-
ing strategies were applied. Supporting Information includes
all chat interactions used during the paper’s preparation, while
our online repository contains all software code and datasets
generated.

In this tutorial paper, we aim to represent an average reader of
Statistics in Medicine who works as a biostatistician. While such
readers may not be familiar with every technical term, we antic-
ipate that they possess broad background knowledge and the

TABLE1 |
Low; 10: High).

capability to acquire additional expertise while critically evalu-
ating outputs from GPT-4o0.

3 | Use Cases

We conducted a series of use cases to illustrate the typical
application of generative LLMs by biostatisticians and highlight
potential caveats. Specifically, we focused on tasks categorized
into reasoning and modeling (such as 3.2 meta analyses; 3.3
latent class analysis; 3.4 individual surrogacy) or coding and
analysis (including 3.5 samples sizes planning for survival out-
comes; 3.6 causal inference; 3.7 simulation studies; 3.8 transla-
tion between multiple statistical programming languages). Each
use case involved a case study using OpenAI's ChatGPT-4o, for
meta analyses, sample size planning, and the simulation study,
we additionally evaluated the newer models 03 and o4-mini.
Despite the advantages of the API—such as easier control over
system settings, scalability, and increased efficiency —we decided
not to use it. Instead, we employed the more accessible chat-based
user interface, anticipating that most biostatisticians would pre-
fer this option as the default.

Table 1 provides an overview of the tasks based on their (sub-
jective) difficulty and the precision with which users specified
them. It also includes the users’ (subjective) overall satisfaction
with the solutions provided by the LLM. Here, “users” refers to
us, the team of authors; the use cases were distributed among the
authors.

To assess consistency in outcomes, each analysis was performed
as identically as possible across ten separate chats. In each chat
session or general background information setup, the LLM was
instructed to assume an expert biostatistician role after clearing
its memory prior to task specification. Initial prompts are detailed
in corresponding sections below; however, for ease of presenta-
tion, we do not include prompts related to memory clearing or
role assignment here. To maintain uniformity across sessions,
additional methodological prompts were generally not allowed
beyond initial instructions; minor prompts necessary for result
extraction were exempted from this restriction. Figure 1 illus-
trates our general approach via a flowchart; minor deviations spe-
cific to certain use cases may occur.

Overview of use cases with categorization according to task difficulty and specification, including subjective users’ satisfaction score (1:

Difficulty
Specification Basic Score Medium Score Advanced Score
Loose — — Section 3.2 meta 35 — —
analyses (RM)
Medium Section 3.2 data extraction 7.5 Section 3.7 simulation 7.0 Section 3.3 latent 9.0
in systematic reviews (RM) study (CA) class analysis (RM)
Section 3.4 individual 9.0
surrogacy (RM)
Precise Section 3.5 sample size 8.0 Section 3.8 translation 5.5 Section 3.6 causal 5.0
planning (CA) between programming inference (CA)
languages (CA)
Abbreviations: RM: Reasoning and modeling; CA: Coding and analysis. The scores refer to the best-performing models used below.
Statistics in Medicine, 2025 3of21



Clear memory and assign
role of expert biostatistician

Define use case
and formulate prompt

Prompt correctly Adjust
understood? and retry
Evaluate: Adjust

Output correct? and retry

No but further improve-

ments expected
Yes or no further

improvement expected

Terminal evaluation
and stop

FIGURE1 |
repeated ten times per use case.

Flowchart of the use case execution, independently

Each use case is briefly introduced before conducting
ChatGPT-based analyses, followed by specific summaries at
each subsection’s conclusion; therein, we also provide various
human-in-the-loop checkpoints to strengthen the practical
guidance — this was suggested by a reviewer.

31 | Reasoning and Modeling Tasks

3.1.1 | Systematic Reviews and Meta-Analyses
Systematic reviews synthesize existing research results to pro-
vide a comprehensive overview of a topic. Meta-analysis is a
specific approach that enjoys great popularity; it uses statisti-
cal methods to combine study results, thereby increasing statis-
tical power. Methods range from simple weighted averages to
more sophisticated models like random-effects, regression, and
network meta-analyses models [19-21]. LLMs hold promise for
offering valuable support in conducting systematic reviews and
ensuring accurate methodological execution of meta-analyses.
These aspects are exemplarily explored in the following, using a
case study on the random effects meta-analysis of long-term out-
comes of the disease ductal carcinoma in situ—a non-invasive
form of breast cancer—conducted by Stuart et al. [22] In this
use case, we evaluated both GPT-40 and the newer o4-mini
model, each under two configurations: With reasoning mode and
web-retrieval and without both, to compare different strategies.

3.1.2 | Systematic Reviews

The most labor-intensive aspect of meta-analysis is often
the systematic literature review. Guidelines for conducting
meta-analyses, such as PRISMA [23], require precise data

inclusion criteria as the foundation for the literature search,
making AI and LLMs promising tools for automation. While
Al-driven searches show potential [24, 25], practice shows that
fully automated reviews remain challenging due to complex-
ities in (medical) questions, the number of different litera-
ture databases, and their accessibility and LLM token limits. A
promising approach is the Al-assisted search string generation,
enhancing literature search queries (e.g., keywords, MeSH terms)
for databases such as PubMed [26].

A subsequent task involves extracting data from selected arti-
cles, leading to the question of whether the correct endpoints and
effect sizes can be extracted by LLMs. Clear descriptions of tar-
geted effect sizes and strict inclusion criteria are essential for this
task; success also depends on how effect sizes are presented in the
source paper. Using GPT-40, we assessed Al-based data extrac-
tion for the studies of Vidali et al. [27] and Rudloff et al. [28]
which were included in Stuart et al.’s meta-analysis [22]. Based
on this meta-analysis, the objective was to extract the 10-year ipsi-
lateral local recurrence rates in cases of ductal carcinoma in situ
along with basic study characteristics. We submitted the respec-
tive paper as a PDF file and a prompt with an extraction instruc-
tion, repeating the procedure ten times for each of two prompt-
ing strategies (first, with reasoning mode and web-retrieval and,
second, without) and for both GPT models (40 and o4-mini).
The resulting chats and the prompts used are included in
the Supporting Information. Basic study data—such as patient
age (median, min, max) and follow-up time—were correctly
extracted for most runs. However, the reported recurrence rates
varied between chats, models, and prompting strategies; overall,
GPT-40 performed consistently well across the two studies and
prompting strategies. With reasoning and web-retrieval enabled,
GPT-40 identified the correct recurrence rates in all ten runs for
the Vidali et al. study [27] (9.6%) and in eight out of ten runs
for the Rudloff et al. study [28] (11.9%). Only for two chats, an
incorrect rate of 22% was reported for the latter study. The results
without reasoning and web-retrieval were nearly identical: All
ten runs were correct for Vidali et al., and nine were correct for
Rudloff et al., with the one incorrect run again reporting 22%.

The results of the newer 0o4-mini model showed more variation.
With reasoning and web-retrieval, the results were similar to
those by GPT-40: The correct rate was extracted in nine out of
ten runs for Vidali et al., with one run producing an incorrect
rate of 8.3%. For Rudloff et al., eight runs were correct, while
two reported the incorrect 22% rate. This drastically changed for
04-mini without reasoning and web-retrieval: The Vidali et al.
rate was still correctly identified in nine runs, with one run
extracting a 10% rate—Ilikely influenced by a figure referencing
a follow-up period of 11.3 years as also used in the meta-analysis
by Stuart et al. [22] However, for Rudloff et al. only two out of ten
runs yielded the correct rate; four reported 22%, three failed to
return a recurrence rate at all, and one run returned results from
a completely different study by Correa et al. [29].

3.1.3 | Meta-Analysis

Unlike literature searches, meta-analyses require sound statisti-
cal expertise. GPT can function as a consultant here, assisting
with key methodological decisions such as choosing between
fixed effects (FE) and random effects (RE) models, assessing

40f21

Statistics in Medicine, 2025



Forest plot: Biopsy-only

Betsill | : =
i
[}
]
i
1
Collins :
[}
]
[}
[}
i
[}
Sanders !
|
[}
i
[}
Eusebif —&——— : ——- Pooled estimate
1 1 1 1 L L 1 L 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Local recurrence rate
FIGURE2 |

the meta-analysis of Stuart et al. [22].

heterogeneity and selecting suitable estimators, constructing
confidence intervals (CIs) for overall effects, deciding on the
application of transformations, and evaluating the need for
meta-regression or subgroup analyses.

We tasked ChatGPT with performing a meta-analysis based on
the data from Stuart et al. [22] for invasive ipsilateral local recur-
rence rates across ten iterations; the full dataset (see Figure 2
therein) was provided to ChatGPT. An initial series of runs
was performed with a shorter prompt and GPT-4o0. The initial
prompt and the results are shown in the Supporting Informa-
tion. Another ten chats were conducted with the newer o4-mini
version and a prompt asking GPT to provide more detailed rea-
soning, and the use of web retrieval to support methodological
decisions. The results of these chats are presented below. The
prompt used was as follows.

Prompt: The goal is to perform a subset meta-analysis
for the given data set. The target variable is the local
recurrence rate. Create a subset for all treatment types.
Decide all methodological questions yourself (fixed
effect vs. random effects, etc.). Follow clearly formu-
lated rules for selecting the model type. Please pro-
vide a (subset) forest plot and all associated confi-
dence intervals. Do not forget the pooled overall esti-
mate and its confidence interval. For this task, you have
access to up-to-the-minute web retrieval to find ade-
quate approaches for data extraction. When answering
the task above, please proceed as follows:

1. Fetch the most relevant sources.
2. Show your step-by-step reasoning.
3. At the end, give me a concise answer citing the

sources you used.

The dataset’s complexity arises from rates bounded between 0
and 100, with some values being zero. Appropriate preliminary
steps, like zero corrections and transformations (e.g., logit,
arcsine, or double arcsine), are advisable to ensure valid analysis
[20, 30].

Overall Meta-analysis (Fixed-Effect): Pooled=nan (95% Cl nan-nan), 12=0.0%

==~ Pooled estimate
Individual studies

Simpson
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Forest plots of Chat 1 (well analyzed, treatment Biopsy-only) and Chat 5 (erroneously analyzed, overall analysis) in the reanalysis of

In nearly all ten independent replications, GPT-04-mini’s anal-
yses appeared to be technically sound and promising. However,
each of the ten runs produced distinct meta-analysis results, and
no run fully aligned with our preferred analysis approach. The
pooled estimates for each treatment and applied transformations
alongside model selections for all chats are detailed in Table 2.
It should be emphasized that there is no single correct model.
Our chosen benchmark model (see the last row of the table) is
a frequentist hierarchical model that is structurally comparable
to the approaches used by ChatGPT. Given the heterogeneity of
the data, this model includes random effects and employs a logit
transformation to appropriately model the rates.

Key findings of the ten runs are as follows: In 9 out of 10 runs,
GPT-04-mini correctly identified the hierarchical structure of
the dataset, and the resulting estimates were close to our anal-
ysis. Only in Chat 9 were larger deviations at hand for four of
the five treatment-specific estimates. This could be due to con-
fusion between the surgery without radiation and biopsy-only
subgroups. A logit transformation was applied only once. The
transformation simplifies the handling of 0 event studies and pre-
vents negative estimates or CIs. In some of the chats, where no
such transformation was used, such implausible negative results
appeared. A continuity correction for zero counts was applied
in four chats; in one chat, a similar adjustment was made to all
counts, not just zero counts. In two of the cases where no trans-
formation was present, some of the estimates became zero due to
estimation problems (Chats 3 and 8).

GPT-04-mini provided both FE and RE results together with
a recommendation for model selection (FE vs. RE) based on
the heterogeneity statistic I2—the percentage of variability
attributed to heterogeneity. Unlike GPT-40 (see Supporting Infor-
mation), the newer o4-mini version applied this criterion consis-
tently across all ten chats; only the I* cut-off value for applying
an RE model was at least 0.5 six times and greater than 0.5 and
four times. While the model clearly stated these decision crite-
ria when prompted, its reliance on I? as a threshold-based deci-
sion rule highlights a common pitfall. This criterion is usually
not recommended in the literature. Instead, a decision between
an FE and an RE model should be conceptually driven by the

Statistics in Medicine, 2025
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TABLE 2 | Obtained effect estimates for each treatment and each of the ten GPT-04-mini chats, together with information about the usage of a
transformation and the decision between RE and FE. In addition, the last row shows a re-analysis using the logit transformation and hierarchical RE

model structure.

Surg. & Surg. no Biopsy- Rate Decision

Pooled est. Mastectomy radiation radiation only Overall transf. RE/FE criterion

Chat 1 0.03 0.07 0.11 0.26 0.09 Logit Mixed 1> > 05

Chat 2 0.02 0.06 0.11 0.26 0.08 Continuity correction Mixed 1?>0.5

for all counts

Chat 3 0.00 0.06 0.11 0.25 0.00 — RE I’ >0.5

Chat 4 0.02 0.06 0.11 0.26 0.07 Continuity correction Mixed ’>0.5
for zero counts

Chat 5 0.02 0.06 0.11 0.25 0.15 — Mixed I’>0.5

Chat 6 0.00 0.06 0.11 0.25 0.07 Continuity correction Mixed I’ >0.5
for zero counts

Chat7 0.01 0.06 0.11 0.25 0.07 Continuity correction Mixed I*>0.5
for zero counts

Chat 8 0.00 0.06 0.11 0.25 0.00 —_ RE 1*>05

Chat 9 0.03 0.06 0.21 0.16 0.11 — Mixed I*>0.5

Chat 10 0.02 0.06 0.11 0.26 0.07 Continuity correction Mixed 1> >0.5
for zero counts

Our analysis 0.03 0.07 0.11 0.25 0.08 Logit RE —

study context and underlying assumptions about effect variability 3.1.4 | Summary of the Use Case Assessment

[20, 31, 32]. Thus, selecting the appropriate model still requires
user expertise.

Despite this variability, some runs produced fairly accurate
results. An example of a rather correct first-try analysis is given
in Chat 1. The corresponding forest plot for the treatment
biopsy-only subgroup is shown in Figure 2 (left). Here, the LLM
performed a logit transformation along with nearly-correct sub-
group analyses that would have led to the same conclusions. In
contrast, Figure 2 (right, from Chat 5) illustrates a very problem-
atic result where no rate transformation was applied and the com-
puted CIs included implausible negative values. Thus, the user
may be fortunate and receive a fairly accurate result (as in Chat
1), or encounter an incorrect one (as in Chat 9). The forest plots
resulting from the other chats are included in the Supporting
Information.

It should also be noted that the forest plots generated by
GPT-04-mini and GPT-4o differ from standard presentations in
the biostatistical literature, likely due to the underlying Python
code used to produce them. However, both GPT versions can out-
put high-quality R code that can be executed locally by the user,
making it possible to produce more standard visualizations. Here,
popular meta-analysis packages such as metafor [33] are well
implemented.

It is important to emphasize that GPT tends to address method-
ological problems only when explicitly asked about. For example,
for meta-analyses with few studies, (modified) Knapp-Hartung
CIs are usually recommended due to a more reliable coverage
[31, 34, 35]. In our evaluations, the GPT models did not mention
these options unless specifically asked. Similarly, the application
of transformations that are often recommended for rates [20, 30],
such as logit or (double) arcsine, were rarely discussed without
user intervention.

Our analyses underline the need for expert oversight. While
GPT can assist with implementation and, to some extent, also
with data extraction, it does not yet reliably and critically recog-
nize or address all methodological considerations so as to con-
duct a sound meta-analysis. The observed variability—across
runs, models, and prompting strategies— further underscores the
importance of careful review and expert guidance when using
LLMs for such sophisticated statistical tasks.

Human-in-the-loop checkpoints

« Data Extraction: While LLMs can assist in identifying plau-
sible values, all extracted data should be checked manually
for correctness. When using GPT-o4-mini, we strongly rec-
ommend enabling reasoning and web-retrieval.

« Statistical Methods: Explicitly inquire the methodological
aspects relevant to the meta-analysis. Key topics include, but
are not limited to: The choice between random-effects and
fixed-effect models, the use of data transformations, estima-
tion procedures (e.g., between-study variance estimation),
and the construction of confidence intervals/inference.

« Visualization: Study visualizations of the results; even basic
forest plots can reveal the LLM’s failure to correctly interpret
some structure in the data.

3.2 | Latent Class Analysis - Unknown Gold
Standard in Diagnostic Quality Assessment

In this use case, we evaluate ChatGPT’s capability to assist a
biostatistician in structuring and developing an analysis project
aimed at estimating quality measures for two diagnostic tests. The
objective is to obtain guidance on the theoretical background,
concepts, and assumptions. Additionally, the interaction with
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ChatGPT should yield a log-likelihood as a foundation for infer-
ence: Estimates and confidence intervals. Given that all parame-
ters naturally fall within the interval [0, 1], reparameterization is
of interest to circumvent numerical issues associated with bound-
ary constraints. Finally, ChatGPT is tasked with generating an R
script that incorporates the analysis and can be executed in the
biostatistician’s working environment.

3.21 | Formalizing the Problem

The task involves estimating the sensitivities and specifici-
ties of two diagnostic tests in the absence of a gold standard.
Diagnostic outcomes (7T}, T,) are available within two popula-
tions with differing but unknown disease (D) prevalences—a
classical problem addressed by Hui and Walter [36]. The
respective log-likelihood can be straightforwardly derived
using the true yet unknown disease state as a latent variable.
The key concept enabling likelihood identifiability is condi-
tional independence of both tests given the true disease state:
P(T,.T,|D) = P(T,|D) - P(T|D).

It is important to note that conditional independence may
not hold; relaxing this assumption would necessitate modeling
P(T,|T,, D) vialogistic regression possibly incorporating an inter-
action between T; and D—introducing two additional parame-
ters, that is, log odds ratios (log ORs). Under these conditions,
likelihood maximization will have infinitely many solutions. One
way to handle this problem is to calculate the maximum likeli-
hood (ML) estimates for a given pair of log ORs within the model
framework.

The use case implements the model under conditional indepen-
dence while leaving exploration under a more complex modeling
for P(T,|T,, D) to interested users. Assuming conditional inde-
pendence, numeric methods are needed to determine the ML
estimates of six parameters. Confidence intervals can be derived
by calculation of the Hessian or by bootstrap strategies. The six
parameters for sensitivities, specificities, and prevalences range
within the interval [0, 1], which can result in numerical problems;
logistic reparameterization mitigates those challenges.

3.2.2 | Experiences Made by Using ChatGPT

The following prompts were used either as single (prompt after
prompt), blocked (using thematic grouping), or total input:

Prompt: ‘T would like to determine the sensitivity and
specificity of two diagnostic tests. I do have the diagnos-
tic test outcomes, but I do not know the gold standard.
What can I do?

Please, tell me more about the latent class analysis.

I have two populations with two different disease preva-
lences. I have two diagnostic tests that are conditionally
independent. I would like to get the log-likelihood of this
setting.

What is the Hui-Walter paradigm?

T'would like to see a worked example and an R script that
implements this model.

TI'would like to add confidence intervals to the estimated
sensitivities, specificities, and prevalences.

I'would like to run a bootstrap version for robust confi-
dence intervals.

I would like to reparametrize my model using a logis-
tic parametrization for the prevalences, sensitivities, and
specificities.

Please update the bootstrap function too.

Could you also perform the calculation of the confidence
intervals via the Hessian? Please provide a comprehen-

sive R code for the issues discussed in this session.’

In each session, ChatGPT explains the classification of the
problem in the area of latent class analysis and emphasizes the
conditional independence of diagnostic tests as an important
prerequisite for the analysis, referencing the article by Hui and
Walter [36]. The methodological guidance provided is convinc-
ing, offering useful alternatives to ML approaches and advis-
ing on Bayesian strategies. It consistently delivers a correct
log-likelihood (LL), explains LL maximization methods, and pro-
poses a numerical procedure for computing the negative inverse
Fisher information matrix.

ChatGPT provides code for calculating 95% confidence intervals,
illustrating this with examples, and also suggests using a para-
metric bootstrap for the interval estimation. The results of Hui
and Walter can be reproduced. However, the main issue in this
use case is numerical problems when executing some of the R
scripts provided by ChatGPT; interestingly, these problems were
not apparent during the sessions. It appears that the underly-
ing Python procedures were more robust in addressing specific
numerical challenges than corresponding R procedures; also see
the use case on translation between programming languages in
Section 3.8 below.

To circumvent boundary problems with the R function optim (),
it is necessary to specify the lower and upper parameters;
ChatGPT used 0 as lower and 1 as upper bounds, resulting in
numerically unacceptable solutions. Adjusting the bounds to
0.001 (lower) and 0.999 (upper) resolved these problems. In sev-
eral instances, the user needed to modify the provided R code for
successful execution.

To avoid these numerical boundary problems, ChatGPT was
also tasked with an analysis based on logistically transformed
parameters— ChatGPT executed this flawlessly. Calculating the
Hessian was sometimes numerically unstable, producing NaNs
for the canonical parameters; however, ChatGPT’s proposal for
a parametric bootstrap procedure proved effective. With trans-
formed parameters, confidence intervals could be calculated from
the Hessian and the delta method, alongside standard errors on
the probability scale; the parametric bootstrap also yielded com-
parable confidence intervals.
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3.23 | Summary of the Use Case Assessment

ChatGPT articulated analytical principles clearly while inviting
the user to explore alternative approaches; however, we did not
follow the suggestion to look at Bayesian strategies. The examples
provided by the AT looked reasonable. Execution of the R scripts
made clear that specific parameter settings are needed to make
the problem numerically work—for instance, beginners might
overlook the crucial relevance of the parameters lower and
upper in the function optim().

Human-in-the-loop checkpoints:

Concepts: Check whether conceptual frameworks are well
reflected, and whether modeling assumptions and the the-
oretical background are correct.

« Mathematics and formal derivations: Ensure that the mathe-
matical derivations are correctly presented.

o R Codes: Review and test the R codes.

Interpretability: Ascertain that the outputs are interpretable
and that they correspond to the theoretical expectation.

« Robustness and alternative: Use the offered Bayesian alterna-
tives and check for consistency of results.

3.3 | Individual-Level Surrogacy (ILS) in the
Context of Information Theory

Individual-level surrogacy (ILS) in clinical trials refers to how
well a surrogate endpoint (S) predicts the true clinical outcome
(T) within individual patients. It measures how strongly variabil-
ity in S explains variability in T within patients. Key questions
arise regarding treatment decisions: Does a favorable surrogate
value more likely indicate a favorable true clinical outcome? Does
individual variation in .S reflect individual variation in 72 In lin-
ear models, the coefficient of determination R? is the measure
providing the relevant information. Here, its generalization, the
mutual information (MI), offers a powerful way to assess ILS
beyond simple (linear) correlations. It captures any dependency
between .S and 7. Unlike meta-analytic approaches to trial sur-
rogacy, information-theoretic ILS is not part of core clinical trial
methodology — thus, exploring its application through ChatGPT
is valuable for experienced biostatisticians.

3.31 | Formalizing the Problem

Alonso and Molenberghs [37] proposed analyzing ILS via an
information theory approach. Analysts first require guidance on
relevant concepts, followed by understanding MI, which quan-
tifies how much knowledge of one variable (.S) informs about
another variable (T')—essentially, the uncertainty reduction
about T given S. Further exploration involves expressing MI
within statistical models like generalized linear models (GLMs)
and understanding its relation to the likelihood reduction fac-
tor (LRF). Next, practical scenarios necessitate calculating MI:
What is the MI for a 2-by-2 table? Can it relate to ROC curves
or positive predictive values? How does MI manifest within
logistic regression or Cox proportional hazards models? In the
subsequent subsection, we explore ChatGPT’s guidance through
these questions and the usefulness of a GPT-40-generated R script
with illustrative examples.

3.3.2 | Experiences Made by Using ChatGPT

The questions mentioned in the previous subsection motivate the
following prompts, again used either as a single prompt (prompt
after prompt), blocked (using thematic grouping), or total input
in the ten independent chat sessions:

Prompt: Can you explain to me the information-
theoretic approach to individual-level surrogacy? Please
recommend a paper that treats the subject from a predic-
tive angle.

Can you explain to me the difference between the
meta-analytic approach and the information-theoretic
approach to individual-level surrogacy?

What is mutual information?

Is there a relationship between mutual information and
the deviance?

What is the Likelihood Reduction Factor and how does
it relate to mutual information?

Can you help me calculate the mutual information of a
2-by-2 table? Could you provide me with an R script to
do this calculation?

Is there a formal relationship between positive predictive
value and mutual information?

Is it possible to calculate the mutual information for an
ROC curve?

A ROC curve is defined by thresholds. Each threshold
defines a 2-by-2 table. Can you give me a graph with the
MI for each threshold in a ROC curve?

Can you give me an R script to compute MI across
thresholds?

Please provide me with R code to estimate MI from score
+ class labels.

I would like to extend this concept to a binary logistic
regression setting and the prevalence of the risk factor
combinations. Can you give me an R script for a simple
logistic regression to calculate its mutual information?

Can you give me an R script for a simple Cox regression
to calculate its mutual information?

Please, provide me a comprehensive R script which con-

tains all issues discussed in this session.’

ChatGPT delivered a solid introduction to the methodological
field, covering its key concepts and definitions. Each session
provided the same formal definition of the MI, accompanied by
more or less extensive explanations in lay language. In all ses-
sions, the Al provided a helpful, simple, and tabulated summary
to differentiate between meta-analytic and information-theoretic
approaches. It was particularly adept at translating formal defini-
tions into practical examples with corresponding R code.

However, ChatGPT’s inability to supply accurate literature ref-
erences was surprising; many cited articles could not be found
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in existing literature, and even when citations were correct, DOI
identifiers were often inaccurate. Among the ten R scripts gen-
erated, one resulted in an error due to improper usage of breaks,
which was subsequently corrected. The R scripts for calculating
MI across different contexts—such as 2-by-2 tables, MI and ROC
curves, MI of a logistic regression, and of a Cox regression —were
consistent.

Observing how ChatGPT processed prompts proved insight-
ful: It began with task structuring before presenting specific
responses as answers, followed by a summary and an outlook on
potential extensions. The initial task structuring offered valuable
insights into whether the AI’s response aligned correctly with
the intended direction, facilitating the formulation of focused
follow-up inquiries.

3.3.3 | Summary of the Use Case Assessment

ChatGPT provided a good introduction to a challenging and com-
plex field. The additionally provided suggestions for subsequent
steps and post-prompt processing were helpful—although these
recommendations were not pursued further. The most unex-
pected limitation encountered was the system’s inability to pro-
vide pertinent literature references.

Human-in-the-loop checkpoints:

« Check the references: Check if recommended papers exist and
discuss information-theoretic individual surrogacy.

o Concepts well explained: Check whether meta-analytic
and information-theoretic approaches are appropri-
ately explained; also, whether the relationship between
log-likelihood improvement and mutual information is
properly characterized.

« Correct buss words: Verify that joint-modeling, entropy
reduction, and mutual information are mentioned.

o Formal correctness: Confirm that the formula and the dis-
cussed derivations are correct.

» R Codes: Ensure that the R codes are correct and the output
makes sense.

« Robustness and alternative: Compare results with alterna-
tive predictive metrics; use alternative packages (scor-
ingRules) to get a deeper understanding.

3.4 |
341 |

Coding and Analysis Tasks
Sample Sizes Planning for Survival Outcomes

LLMs offer various applications in the context of study plan-
ning and data analysis. Beyond calculating required sample sizes,
LLMs can assist in preparing these calculations and generat-
ing structured text for study protocols regarding sample size
planning.

3.4.2 | Aspects for Sample Size Calculation
in Survival Analysis

Unlike study designs with fixed time outcomes, survival
analysis focuses on time-to-event data, necessitating specific

considerations for sample size calculation. In addition to stan-
dard parameters—significance level («) and power (1 — f)—
factors such as the expected number of events, follow-up
duration, and censoring must be accounted for. The chosen
statistical method — often log-rank tests or Cox regression—also
influences the required sample size. For detailed guidance on
sample size calculations in proportional hazards models, refer to
Schoenfeld’s work [38].

3.43 | Example

In this use case, we consider a treatment comparison in a survival
framework: A new drug for the treatment of advanced pancreatic
carcinoma has been developed; to assess its efficacy compared
to standard therapy, a study is planned with overall survival as
the primary outcome. Consequently, a sample size calculation is
necessary.

As biostatisticians, we are familiar with the methodological
requirements for such a calculation and have already discussed
relevant parameters with the clinical investigators. GPT-4o0 is
employed in this scenario to support the following tasks: (i) con-
ducting the sample size calculation based on predefined assump-
tions; (ii) generating appropriate text for inclusion in the study
protocol; and (iii) simulating corresponding data to aid statistical
analysis preparation. Our use case-specific prompt contained the
sample size calculation task:

Prompt: ‘I would like to compare a new therapy with
the standard therapy regarding survival in advanced
pancreatic carcinoma. Please perform a sample size
calculation and incorporate the following parameters:
- Primary outcome: Overall survival.
- Median survival time in the standard therapy
group: 12 months.
- Median survival time in the new therapy group:
18 months.
- Power =80% (1 — p =0.8)
- a two-sided significance level of a = 0.05.
- The allocation ratio should be 1:1 (equal group
sizes).
- Patients will be followed up for 2 years.
- We expect a dropout rate of 15%.

Use the data analysis mode.

While we do not focus on the correctness of the specific
assumptions provided, our emphasis is on the correctness
and consistency of ChatGPT’s responses across the ten ses-
sions. Each chat followed the same prompt guideline to ensure
comparability of outputs; see the Supporting Information for
details. The initial prompt for the sample size calculation pro-
vides clear input about the required parameters, which is then
followed by a series of interactive and logically structured
prompts.

Assuming an exponential distribution, the median survival times
provided correspond to hazard rates of 0.0578 for the standard
treatment group and 0.0385 for the new treatment group,
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Details immer anzeigen

alpha = ©.05

power = 0.80
median_control = 12
median_treatment = 18
dropout_rate = 0.15
follow_up_time = 24

lambda_control = np.log(2) / median_control

lambda_treatment = np.log(2) / median_treatment

HR = lambda_treatment / lambda_control

z_alpha = norm.ppf(1 - alpha / 2)

z_beta = norm.ppf(power)

required_events = ((z_alpha + z_beta) ** 2) / (np.log(HR) ** 2)

p_event_control = 1 - np.exp(-lambda_control * follow_up_time)

Lp_event_treatment = 1 - np.exp(-lambda_treatment * follow_up_tin

© Kopieren

FIGURE3 |
accounting for group proportion.

resulting in a hazard ratio (HR) of 0.6667. Using this information
alongside group allocation ratios, the required event numbers
were calculated according to Schoenfeld’s method [38]. Incorpo-
rating the planned follow-up period and the anticipated dropout
rate, the probability of an event can be estimated using the expo-
nential survival function. This enables the determination of the
overall sample size needed. Using the power logrank com-
mand in STATA/SE 17.0 and Schoenfeld’s method, the given
parameters yield an estimated overall sample size of 334, that is,
167 per group.

Running only the first three prompts (without further interac-
tion) ten times resulted in five different estimates of the over-
all sample size (min = 78, 1st quartile = 83, median = 84, 3rd
quartile = 84, max = 665). Chat 6 was the only chat with a sample
size greater than 88. ChatGPT usually started with the calcula-
tion of the number of events needed, followed by the calculation
of the overall group size, incorporating the duration of follow-up
and the dropout rate. Some of the variability in the reported sam-
ple sizes may be attributed to rounding during intermediate steps
of the calculation.

Checking the complete explanations of each step in the sample
size calculation performed, provided by ChatGPT upon request,
and a look into the compiled Python code allowed for an evalua-
tion of whether the sample size calculation was valid and, if not,

Code snippet from Chat 3 showing the calculation of the required number of events in the data analysis mode of GPT-40 without

where the calculation went wrong. In each run, ChatGPT had
trouble with the determination of the number of required events.
ChatGPT consistently failed to incorporate group proportions in
the denominator when applying Schoenfeld’s formula [38], lead-
ing to underestimated event counts. A screenshot of the corre-
sponding Python code compiled in Chat 3 is shown in Figure 3.
Note that, when ChatGPT explained the sample size steps, the
results of intermediate calculations provided as text might not
correspond to the actually calculated intermediate results; com-
pare with the explanation of the initial sample size calculation in
Chat 10 for the estimated event probability in 24 months; see the
Supporting Information for a screenshot of the chat.

Only Chat 6 initially incorporated the group proportion correctly.
However, in this chat, ChatGPT considers the overall number of
events needed as the events needed per group, and hence effec-
tively doubles the required number of events, resulting in an
overestimated sample size. After prompting ChatGPT to check
the calculation of the required number of events and whether
group proportions were correctly accounted for, this led to a cor-
rection in each chat. The revised estimates resulted in six dif-
ferent values (min = 311, 1st quartile = 332, median = 333, 3rd
quartile = 334, max = 350), which were all close to the sample
size calculated via STATA.

The paragraphs for the study protocol provided by ChatGPT
were comprehensive, incorporating the assumed parameters and
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explanations on how the sample size was determined. Simula-
tion of the corresponding data to prepare the data analysis worked
straightforwardly. ChatGPT incorporated risk factors suitable for
the setting of pancreatic carcinoma. For instance, the Eastern
Cooperative Oncology Group (ECOG) performance status was
simulated in each chat. The ECOG performance status is known
to be a prognostic factor in pancreatic cancer [39, 40].

When asking for a visualization of the data, usually Kaplan-
Meier (KM) curves are provided. In three of ten chats, KM curves
did not start at time zero with the value 100% (Chats 7, 9, 10). In
Figure 4, the initial KM plot of chat 9 is shown.

Performing the Cox regression caused some troubles in produc-
ing the results table, which were usually solved by ChatGPT with-
out further interaction.

When asking ChatGPT to provide the code needed to run the
analysis in R, the returned code worked without any corrections
in seven of the ten chats. In Chats 3, 6, and 10, however, there
were some issues with producing the plot or the results table. In
Chat 7, the simulation of the data was included in the R code.

3.4.4 | Results Based on Newer ChatGPT Models

To compare ChatGPT’s analytical results across different mod-
els, we additionally ran three chats per newer version (03 and
04-mini) following the initial prompts of the prompt guideline to
evaluate whether the estimated sample sizes would more closely
approximate the one obtained using Schoenfeld’s formula (refer-
ence value obtained via STATA/SE 17.0 is an overall sample size
of 334). Recall that the initially returned sample size estimations
with the 40 version resulted in five different numbers (min = 78,
1st quartile = 83, median = 84, 3rd quartile = 84, max = 665).
The resulting overall sample sizes after the initial estimation via
the O3 version are 84, 84, and 333, respectively. In one of the three
runs, the group allocation was incorporated correctly (Chat 3). In

Initial Kaplan Meier curves given by ChatGPT in Chat 9. The curves do not start at time zero with 100%.

one of the remaining two runs, it took ChatGPT 03 almost five
minutes to check and correct this (Chat 1). On the other hand,
ChatGPT o04-mini initially returned the overall sample sizes 334,
334, and 81, respectively. Only the third chat did not incorpo-
rate the group allocation correctly. Overall, ChatGPT o4-mini
(<26 s each) was much faster in providing a first estimation of the
sample size than ChatGPT 03 (> 43 s each). In summary, based
on three runs with the newer model, ChatGPT o4-mini outper-
formed both ChatGPT o3 and GPT-40 by providing more accurate
initial sample size estimates.

3.4.5 | Summary of the Use Case Assessment

While ChatGPT was able to provide complete explanations, the
sample size calculations showed substantial variability across ses-
sions, with only partial adherence to established methodology
such as Schoenfeld’s formula. Specifically, a systematic error in
the denominator was observed in all sessions, failing to account
for group allocation proportions. After pointing this out to Chat-
GPT, the corrected sample sizes ranged from 311 to 350 com-
pared to 334 from STATA 17.0. Some of the observed variability
may also be attributed to rounding during intermediate steps.
The generation of protocol text and simulated data was success-
ful, and Kaplan-Meier visualizations could be obtained with
minor limitations. The ability to generate functional R code for
analysis varied, but was generally acceptable. Overall, ChatGPT
can be a helpful tool for support with such routine biostatistical
tasks, but expert oversight is essential to ensure methodological
correctness.

Human-in-the-loop checkpoints:

« Check formula considered by ChatGPT: Ensure that the
suggested formula aligns with standard methodology —for
example, Schoenfeld’s formula for survival data—as devia-
tions or oversimplifications are common and may go unno-
ticed without domain knowledge.
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 Ensure correct incorporation of assumed parameters into the
sample size calculation: For instance, verify if group allo-
cation ratios, effect sizes, power, and significance level are
appropriately accounted for.

» Run several chats to check consistency in the returned sam-
ple sizes: Variability across sessions may indicate mistakes in
ChatGPT’s approach and can help to identify where correc-
tions are needed.

3.5 | Causal Inference and the Use of IPCW to
Adjust for Treatment Switching

3.51 | Causal Estimands and Intercurrent Events

Randomized controlled trials estimate causal treatment effects
by comparing outcomes across different treatment arms, assum-
ing that the initial balance achieved through randomization
holds throughout follow-up [41]. This assumption may be
disrupted by intercurrent events (ICEs) such as cross-over,
treatment discontinuation, initiation of second-line therapy, or
death [41, 42]. When such events occur, they may compromise
the interpretability of the outcome or preclude its observation
[43], posing challenges for valid causal inference [42]. Crossover
is particularly common in oncology trials, where control-arm
patients are often permitted to cross-over to the experimental
treatment—typically after disease progression—once interim
analyses suggest a potential benefit [44, 45]. Despite its potential
to bias estimates, treatment crossover is typically not addressed
in the intention-to-treat (ITT)-based primary analysis of overall
survival. This leads to two key limitations: First, the potential
benefits received by those who crossed over to the experimental
treatment are not properly accounted for, typically resulting in
an underestimation of the experimental treatment effect [46];
second, ignoring the cross-over behavior—that would not occur
outside the trial setting—limits the relevance of trial findings
for real-world decision-making [47]. It is therefore of interest for
different stakeholders to explore causal effects under hypotheti-
cal strategies that prohibit treatment cross-over [48]. Addressing
this requires a principled methodological approach for defining,
estimating, and interpreting treatment effects in the presence
of ICEs.

3.5.2 | Example

In this use case, we examine a scenario commonly encountered
in oncology trials, where a substantial proportion of patients with
non-small cell lung cancer switched to the experimental treat-
ment following disease progression. Our objective was to esti-
mate the causal effect of sustained treatment intake with the
experimental versus control therapy on overall survival, under
a hypothetical strategy in which crossover would not occur.
Answering this question requires a combination of causal rea-
soning and statistical modeling, particularly in the presence of
time-varying confounding affected by prior treatment intake.
Here, we explored the use of the inverse probability of censoring
weighting (IPCW) approach to estimate causal treatment effects;
we evaluated ChatGPT as a tool to support our analytical process,
in particular, with the following tasks:

a. defining the target estimand according to the ICH E9(R1)
framework [43];

b. identifying methodological limitations of standard statisti-
cal approaches and motivating the use of advanced causal
methods such as IPCW;

c. Depicting causal relationships using a directed acyclic graph
(DAG);

d. interpreting relevant literature;

e. implementing the IPCW approach in R.
The initial prompt used for all runs is as follows:

Prompt: T have data from a randomized clinical trial.
T'want to compare the efficacy of the experimental treat-
ment with that of the control on overall survival in
patientswith non-small cell lung cancer. In this two-arm
RCT, a considerable number of patients in the control
arm switched to the experimental treatment after dis-
ease progression, while those in the experimental arm
never switched. My goal is to estimate the causal effect
of sustained intake of the experimental treatment versus
sustained intake of control on Overall survival, had the
control group patients not been allowed to switch. Based
on the information provided above, please define my tar-
get Estimand, following the guidance from the Estimand
framework (ICH-E9 addendum).’

A key methodological challenge in estimating causal effects—
formalized by the target estimand described in the initial
prompt—is the presence of treatment-confounder feedback,
whereby time-varying covariates, such as ECOG performance
status or progression, not only influence treatment decisions
over time, but are also affected by prior treatment. This struc-
ture invalidates the use of standard time-dependent Cox mod-
els [49], necessitating alternative approaches such as g-methods,
including IPCW [50]. We then instructed ChatGPT to represent
the causal structure using a DAG, and later supplied a screen-
shot of a more carefully specified DAG to guide subsequent
responses. Based on this input, ChatGPT was asked to provide
a suitable IPCW analysis approach in R. In this setting, IPCW
should reweight the risk sets to construct a pseudo-population
that emulates a scenario in which no cross-over occurs [47, 51].

Here, we do not evaluate the plausibility of the assumptions made
with the IPCW approach, but rather assess the methodological
consistency and correctness of ChatGPT responses across all ten
sessions. To allow direct comparison across sessions, all sessions
were initiated with identical prompts and followed a fixed prompt
sequence. We did not intervene during the sessions, as doing so
would have introduced unnecessary complexity without poten-
tially affecting subsequent outputs. Table 3 displays for some key
criteria whether they were satisfied within each chat.

In the clinical context under consideration, only control-arm
patients who progressed were permitted to switch to the experi-
mental treatment. Our objective was to estimate the causal effect
of sustained treatment strategies under a hypothetical scenario
in which cross-over does not occur. Based on this objective,
ChatGPT consistently returned a correct definition of the target
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TABLE 3 | Overview of fulfilled criteria across the ten GPT-40 chat sessions for the causal inference use case.
Target estimand  Causal methods  DAG showing treatment-  Literature correctly = IPCW correctly
Chat defined motivated confounder feedback interpreted implemented
Chat 1 v v X X X
Chat 2 v v v X X
Chat 3 v v X X X
Chat 4 v v v X X
Chat 5 v v v X X
Chat 6 v v X X X
Chat 7 v 4 X X X
Chat 8 v v X X X
Chat 9 v v/ v X X
Chat 10 v 4 v X X

estimand, structured according to the five attributes outlined in
the Estimand framework [43]. This was successfully achieved
in all sessions. Each session included an explanation of the
time-varying confounding structure influenced by prior treat-
ment, illustrated with examples. In all chats, ChatGPT correctly
identified this as “treatment-confounder feedback” and acknowl-
edged that standard approaches, such as time-dependent Cox
regression, yield biased estimates in this context. Consistently,
appropriate causal methods were recommended, including
inverse probability of censoring weighting (IPCW), marginal
structural models (MSMs), and G-estimation of structural nested
models.

However, when prompted to generate a DAG reflecting the
described treatment-confounder feedback structure, ChatGPT
failed to capture the feedback mechanism in 5 of 10 sessions. In
all sessions, the graphical output lacked clarity and rigor, mak-
ing it unsuitable for use in scientific writing. We also assessed
ChatGPT’s ability to summarize foundational literature. When
asked to explain the IPCW method introduced by Robins and
Finkelstein [52], all sessions provided a broadly consistent and
relevant explanation of the core methodological concept. How-
ever, when prompted for study-specific details, such as treatment
arms, endpoints, and the type of intercurrent events, hallucina-
tion behavior was observed in all sessions. Despite understand-
ing the IPCW approach conceptually, ChatGPT’s implementa-
tion quality varied considerably. All chats returned R code that
followed a two-step approach: First, a pooled logistic regression
model (weighting model) was used to estimate the probability of
remaining unswitched; and second, an outcome model was fitted
to the reweighted data. Before this prompt, we had provided a
deterministic switching rule—only control-arm patients are eli-
gible to switch following disease progression—and provided a
screenshot of a detailed DAG. In this context, we expected Chat-
GPT to either (i) include the treatment arm as a covariate in the
weighting model, or (ii) restrict the weighting model to the con-
trol group. Only 2 sessions acknowledged the first strategy, while
only 1 implemented the second; the remainder did not account
for this distinction. The role of post-progression covariates in
the censoring model was explicitly considered in 2 sessions. In
5 sessions, weights were calculated based on cumulative proba-
bilities. Stabilized weights were calculated in 4 sessions, using a

baseline-only or time-only numerator model; one session applied
an overly simplistic and potentially problematic truncation rule.
For the outcome model, 2 sessions correctly restricted the data
to uncensored observations, while the others either included all
data (including post-censoring data) or only considered the last
weighted observation. Overall, we observed a considerable varia-
tion in the quality of IPCW implementation in R, which ranged
from poor to adequate. No session produced a fully correct and
ready-to-use analysis code.

3.5.3 | Summary of the Use Case Assessment

Across ten sessions, ChatGPT consistently recognized the core
challenges associated with estimating causal effects in the pres-
ence of treatment switching and time-varying confounding.
While all sessions correctly identified the need for IPCW and
were able to outline its conceptual implementation, there was
substantial heterogeneity in the representation of causal struc-
tures, the construction of weights, and the accuracy and com-
pleteness of the R software. As with other advanced causal infer-
ence methods, expert oversight remains essential to ensure cor-
rect implementation.

Human-in-the-loop checkpoints:

« Causal DAG specification: Review and correct LLM-
generated DAGs for clarity, completeness, accuracy, and
inclusion of treatment-confounder feedback. Validate the
temporal ordering of variables in the DAG.

Literature Review: Cross-check any literature cited or sum-
marized by the LLM for accuracy and relevance. Confirm
that key references (e.g., by Robins and Finkelstein [52] on
IPCW) are correctly interpreted and contextualized.

o IPCW weighting model: Check inclusion of appropriate base-
line and time-varying confounders. Verify correct handling
of treatment-arm-post-progression specific switching eligi-
bility (e.g., restricting censoring model to control arm after
progression). Ensure that stabilized weights are correctly
computed, with a reasonable numerator model specification.

o IPCW outcome model: Confirm proper definition of risk sets
and accurate identification of censoring times.
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TABLE4 |

Overview across the ten GPT-40 (Chats 1-10) chat sessions performing Monte Carlo simulation studies to assess the coverage probability

of an exact confidence interval under no association in a case-control design. Chat sessions 11-13 refer to results of GPT-03 + deep research. A slash

(“/”) indicates that the assessment was not possible (e.g., no code was provided, but a table was presented).

Prompt Exact CI Correct Plausible Setting Correct
Chat working chosen implementation coverage requirements met comments
Chat 1 X X 4 X 4 v/
Chat 2 v X v v v v
Chat 3 X X v / v/ /
Chat 4 v X / v v v
Chat 5 X X v 4 4 v/
Chat 6 X X v/ v X v/
Chat 7 v X v v v v
Chat 8 X X v / v v
Chat9 X X v/ 4 4 v/
Chat 10 X X 4 / X /
Chat 11 v v v v v v
Chat 12 v v v v v v
Chat 13 v v v v v v
3.6 | Simulation Study to Evaluate the Coverage suggested an exact confidence interval (CI) right from the start

Probability of a Confidence Interval

Another frequently performed task of biostatisticians is the cod-
ing of simulation studies. Sample size planning—in particular,
those for complex designs with many parameters—is one of
the most frequent applications. As sample size planning was
already addressed in Section 3.5 above, we decided to run a
Monte Carlo simulation study to assess the coverage probability
of a confidence interval. The setting was a case-control study in
which we asked for a suitable exact confidence interval for the
point estimate of a risk factor effect. We asked for ten different
scenarios with varying (small) sample sizes generated under the
null hypothesis.

Prompt: ‘The goal is to perform a simulation study to
assess the coverage probability of a confidence interval
with nominal coverage 95%. The setting is a case-control
study design, which is a retrospective observational
study that compares individuals with a disease (cases)
to those without it (controls) to identify potential risk
factors or exposures associated with the disease. We
aim at the coverage probability of an appropriate effect
size estimate in a parametric model. Propose a suit-
able exact confidence interval and investigate its empir-
ical coverage under the null hypothesis of no effect. Use
5000 Monte Carlo runs, and the sample sizes must vary
between 20 and 40. Provide results for ten different set-
tings with different sample sizes and marginal proba-
bilities. Be concise in your answer and do not provide

unnecessary descriptions.’

Each of the sessions was evaluated based on six criteria (all
yes/no). First, we assessed whether the prompt functioned
correctly from the outset. Second, we documented if ChatGPT

and, if so, which CI was reported. Third, we checked if the imple-
mentation of the simulation was (roughly) correct and, fourth,
if the reported coverage was (roughly) plausible (approximately
95%). Fifth, we reviewed whether the required ten simulation
settings were met. Finally, we ascertained whether ChatGPT pro-
vided correct comments or interpretations of the results. The
results of the ten independent chat sessions submitted to GPT-40
with the identical prompt are summarized in Table 4. Based on
the results, we also decided to add three additional chat sessions
(Chats 11-13 in Table 4) using GPT-03 + deep research.

3.6.1 | Summary of the Use Case Assessment

Initially, we did not require an exact confidence interval in the
prompts. This resulted in quite similar (and largely correct)
results after some prompt tests, since our original attempts often
yielded 0% coverage. The request for exact confidence intervals
turned out to be difficult for GPT-40; none of the ten chats pro-
vided an exact CI. Exploring this issue beyond the ten chats (and
less systematically) at least resulted in some feedback by Chat-
GPT; for example, that a Firth correction should be applied. In
Chats 11-13, in which the same prompt was used with GPT-03 +
deep research, the results were significantly better. However, the
initial prompt always resulted in additional requests that required
some prior knowledge in biostatistics.

Conversely, the code to implement the Monte Carlo simula-
tion to investigate the coverage probability was correct in nearly
all instances. Similarly, if coverage probabilities were provided,
they were plausible. ChatGPT correctly met the simulation set-
ting requirements. Finally, while the comments and interpreta-
tions offered by GPT-40 were largely correct, they tended to be
quite generic. For GPT-03 + deep research, the interpretation was
more detailed (e.g., indicating that exact confidence intervals may
sometimes be conservative) and relatively similar—at the level of
detail—across all three chats.
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Human-in-the-loop checkpoints:

« Prompt engineering: LLMs seem to support simulation stud-
ies relatively well—at least with the latest models that
include reasoning. However, if the prompt is vaguely for-
mulated or the LLM is left to make certain selections inde-
pendently, this leads to additional queries in the model. The
quality of the results then depends on the user’s answers to
these questions.

« Code monitoring: GPT-40 sometimes generated pseudo-
code, whereas GPT-03 + deep research provided commented
code that was better suited for subsequent work. In both
cases, however, additional code development or code moni-
toring is recommended.

« Result presentation: Requirements for the table presentation
were largely met—but it is recommended to verify the (face)
validity of the results.

3.7 | Translation Between Multiple Statistical
Programming Languages

In collaborative research projects, analyses are often carried
out in different systems by researchers with expertise in vary-
ing statistical programming languages. Certain tasks are only
implemented in a specific software, while some programming
languages have superior computational speed compared to the
language a researcher is most proficient with. Thus, it is often
desirable to translate statistical code into other programming
languages. This translation process can be a time-consuming,
tedious task that involves the search for comparable software
packages for specific use cases, adaptation of language-specific
syntax, and careful consideration of different function arguments
and nomenclature.

The access of LLMs to software documentation and forum discus-
sions makes them promising to reliably automate this task. This
capability is explored in this section by examining ChatGPT’s
ability to translate statistical models of intermediate complexity
into Python and R and comparing the results.

We considered fitting a logistic regression model with data-driven
feature selection for the Breast Cancer Wisconsin dataset [53].
The dataset contains 569 instances of breast mass fine needle
aspirates (FNA). From each FNA, 30 continuous features were
computed and used as candidate features for logistic regression.
The dataset contains 212 malignant cases and 357 benign cases. A
stepwise regression model was fitted that started from an empty
feature set and iteratively added or removed features to optimize
a certain criterion. The specific criterion varied between applica-
tions and programming languages and is further described in the
following sections.

3.71 | Translating R Into Python

We specified a model that uses AIC minimization for feature
selection. This is implemented in the stepAIC function of the
MASS package [54] in R, while at the time of writing, no imple-
mentation corresponding to AIC-based feature selection existed

in Python. The data were randomly split into a training and a test
set (80% and 20% of cases, respectively). Model evaluation was
performed on the test set. For this use case, the used prompt sim-
ply asked to translate the provided R code into Python without
further explanation or specification. The prompt was replicated
ten times, each time using the same training/test split. To evalu-
ate ChatGPT’s ability to truthfully transfer the specific statistical
model to R, several aspects were considered, such as model accu-
racy, features in the final model, inclusion/exclusion criteria in
the stepwise feature selection, and the code’s general ability to
compile without further amendments.

Prompt: ‘Translate the following code into python:

library(MASS)
set.seed(1)
temp < tempfile()
download.file(“https://archive.ics.uci.edu/static/
public/17/breast+cancer+wisconsin+diagnostic.
zip”, temp) data < read.table(unz(temp, “wdbc.data”),
sep="")
data$V2 < data$V2 == “M”
unlink(temp)
train_index <« sample(seq_len(nrow(data)), round
(nrow(data) - 0.8))
train < dataftrain_index, —1]
test < data[-train_index, —1]
base_model « glm(V2 ~ 1, data = train, family = bino-
mial)
step_model « stepAIC(

base_model,

direction = “both”,

scope = list(
lower =V2 ~ 1,

upper=V2~V3+V4+V5+V6+V7+V8+V9
+VI10+ V11 +

Vi2+Vi3+V14+VI5+ V16 + V17 + VI8 +
V19 + V20 + V21 +

V22 4+ V23 4+ V24 4+ V25+ V26 4+ V27 + V28 +
V29 + V30 + V31

)
)
summary(step_model)
test_pred < predict(step_model, test, type = “response”)
sum((test_pred > 0.5) == test$V2)/nrow (test)

names(coef (step_model))’

In six out of ten runs, the code provided by the LLM compiled
without further need for debugging. In the four cases where
the code was erroneous, all chats resolved the issue by sim-
ply naming the lines that caused errors and providing the error
messages. One error was caused by the use of a deprecated
naming convention. Further errors were caused by numerical
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TABLE5 |
debugging was necessary after successful compilation.

Results of translating a logistic model with AIC-based stepwise feature selection from R into Python. A slash (*/”) indicates that no

Chat Functional code Successful debugging Selection metric AIC-based alternative Out-of-sample accuracy
Chat 1 v / p value v 0.9737
Chat 2 v / p value X 0.9737
Chat 3 X v pvalue v 0.9737
Chat 4 X v pvalue v 0.9737
Chat 5 v / p value v 0.9737
Chat 6 X v AIC / 0.8859
Chat 7 v / p value v 0.9737
Chat 8 v / p value v 0.9737
Chat9 X v p value X 0.9737
Chat 10 v / AIC / 0.9737

issues regarding feature collinearity arising in specific train/test
splits. While these cases were easily solved with further ChatGPT
prompts, this demonstrates the need for special consideration of
input constellations that may lead to exceptional errors, which
might not be covered in the original prompt.

Notably, only two of the ten chats offered an AIC-based fea-
ture selection. Two chats relied on the SequentialFeatureSelector
(SFS) method, which by default uses accuracy as a scoring met-
ric. In one of the SFS-based solutions, however, ChatGPT imple-
mented a custom scoring metric that uses AIC. The other chats
relied on p values for feature selection. This discrepancy in selec-
tion criteria was, however, explicitly stated in the reply in all eight
chats. Seven chats offered to provide an alternative AIC-based
implementation. The success of each run in accurately imple-
menting the specified model is summarized in Table 5.

The last column indicates a homogeneous out-of-sample accu-
racy for 9 out of 10 models. Moreover, most models selected the
same features, except for chats 6, 7, and 10. However, the fea-
tures chosen by these models differed from those selected by
the R model. Thus, ChatGPT cannot exactly replicate results
after translation into a different programming language. This is
most likely due to a different handling of random number gen-
eration and/or libraries for the numerical backend of model fit-
ting. Validation metrics, debugging messages, and output formats
were consistent between the provided R implementation and all
LLM-generated Python implementations without further specifi-
cation other than the original code.

Only one of the ten chats mentioned the potential need for man-
ual package installation in Python. The generated code was docu-
mented and explained in all prompt iterations. However, despite
ChatGPT correctly stating that the models do not optimize w.r.t.
AIC in the chat replies, several generated code documentations
wrongfully stated that AIC had been used for feature selection.

3.7.2 | Translating SPSS Into R

We further investigated the capability of ChatGPT to gener-
ate R code based on SPSS syntax. The graphical interface and
wide range of statistical methods in SPSS make it a com-
monly used tool for clinical researchers. However, using a

free, open-source software may increase reproducibility, and the
script-based workflows and dynamic extension of the R language
through user-provided packages enable more collaborative work
and application (and implementation) of novel methods. Again,
a logistic regression model with forward stepwise selection was
applied to the Wisconsin breast cancer dataset. Starting with an
empty feature set, new features were added if the p value of the
likelihood ratio test was lower than 0.05, whereas features with
p > 0.1 were removed from the model. The code was supplied to
ChatGPT in SPSS syntax. In the prompt, only the task of trans-
lation into R was specified without giving further context on the
syntax. The ability to run the code as-is, selected coefficients, and
truthfulness to the original code were considered for evaluation.

Prompt: ‘I am running the following analysis in SPSS:
DATASET ACTIVATE DataSet5. LOGISTIC REGRES-
SION VARIABLES V2/METHOD=FSTEP(LR) V3 V4
V5Ve V7 V8 V9 V10 V11 V12 Vi3 V14 V15 V16 V17
V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28
V29 V30 V31 V32 /CRITERIA=PIN(0.05) POUT(0.10)
ITERATE(20) CUT(0.5).

Translate this into R code.

The data is loaded into R with

temp < tempfile()
download.file(“https://archive.ics.uci.edu/static/
public/17/breast+cancer+wisconsin+diagnostic.
zip”, temp)

data < read.table(unz(temp, “wdbc.data”), sep = ")
data$V2 « data$V2 == “M”

unlink(temp)’

All generated scripts used either the step or stepAIC R functions,
both of which are AIC-based forward selection methods instead
of likelihood ratio tests at the above p value thresholds. One query
offered an additional alternative implementation using p values
for feature selection in the first reply. Of the remaining 9 mod-
els, 7 explained this discrepancy in the chat and offered to pro-
vide more truthful custom implementations on request. In two
of those alternatives, inclusion was not correctly implemented,
so that no features were selected. Further investigation showed
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TABLE6 |

Results of translating a logistic model with LR-test-based stepwise feature selection from SPSS into R. Column “Overlap SPSS” shows

the fraction of selected features in the SPSS model that were also selected in the model generated by the respective chat.

Chat Functional code Selection metric LR-based alternative Overlap SPSS
Chat 1 v AIC 4 75%
Chat 2 v AIC X 62.5%
Chat 3 v AIC v 62.5%
Chat 4 v AIC v 62.5%
Chat 5 v AIC 4 62.5%
Chat 6 v AIC v 0%
Chat 7 v AIC X 0%
Chat 8 v AIC & pvalue v 62.5%
Chat 9 v AIC v 62.5%
Chat 10 v AIC v 62.5%

that this was the result of a change in the functionality of the used
packages, highlighting the issue of unspecified package versions
in the generated R code. A summary of code errors, the used eval-
uation criterion, and overlap in selected features with the SPSS
model is given in Table 6.

While the exact feature set obtained from SPSS was not recovered
in any of the chats, the majority of the chats selected a consistent
set of features that had moderate overlap with the SPSS model
(5 out of 8 features selected in the SPSS models were selected in
80% of chats). The consistency of the results, combined with the
high correlation between features, suggests that this was not due
to inherent variability of the solutions provided by ChatGPT, but
rather by differences in the numerical backend of model fitting.

Only one out of the ten chats covered the installation of unin-
stalled R packages. Although the prompt did not explain the data
structure except for the name of the outcome variable, all gen-
erated scripts were compatible with the input format of the used
data. All chats generated code documentation through additional
comments.

3.7.3 | Summary of the Use Case Assessment

In our examples, the overall ability of ChatGPT to translate
programming languages was successful and accessible with-
out deeper knowledge of the target software. However, certain
limitations are to be considered. While GPT-40 was able to
generate similar statistical models in different programming
languages, it did not accurately translate the statistical details
of the models. In both use cases (SPSS — R and R — Python),
ChatGPT used simpler implementations, at times relying on
existing implementations, instead of generating code that uses
the same evaluation metrics. The majority of chats (80% in
both Python and R translations) explained this discrepancy and
offered to provide more truthful implementations. Furthermore,
there are inherent differences between the programming lan-
guages, for example, regarding random number generators. That
is why one should expect certain differences in the outcomes
in non-deterministic tasks or code that is heavily reliant on
numerical operations. It should, however, be noted that some
generated scripts were wrongfully stated to be accurate code

translations, while in rare cases, the generated code documen-
tation was incorrect. A certain degree of familiarity with the
target language is thus recommended to verify the truthfulness
of the translation. In most chats, the generated documentation
was helpful for understanding the translation. All chats also
offered short summaries of the generated code, as well as sug-
gestions for further extensions, output metrics, and visualization
tools.

A further caveat is the use of deprecated software packages or
function argument names. These arose in both considered use
cases. While all of these issues were resolved after providing Chat-
GPT with the resulting error messages, changes in parameter
names or functionality of packages that do not result in errors
might go unnoticed.

In summary, ChatGPT can be helpful in translating code into dif-
ferent programming languages, although slight adaptations and
careful checking of implementation details might be necessary to
ensure truthful translations.

Human-in-the-loop checkpoints:

» Package availability and deprecation: ChatGPT generates
solutions based on forum posts and software documenta-
tion that may be out of date. Users should verify that the
suggested packages or modules are still available or might
be deprecated, and check if functionality and syntax deviate
from the usage suggested by ChatGPT.

« Evaluation metrics: ChatGPT does not generally consider dif-
ferences in the default implementations of statistical meth-
ods across different programming languages, especially with
regard to evaluation metrics and the tuning of hyperparam-
eters. Users should therefore examine such possible differ-
ences and adjust the code as appropriate.

Generalizability: With code involving randomly generated
data or intended for use with multiple datasets, the gener-
ated translations may fail in certain input constellations. In
these cases, users should run the generated code either mul-
tiple times or using different datasets to detect and debug
potential issues.
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4 | Final Conclusion, Recommendations,
and Discussion

This tutorial paper employs multiple use cases to demonstrate
how generative Al can be integrated into the daily workflow
of professional biostatisticians. While some tasks were com-
pleted rather satisfactorily, others suffered from severe issues. For
instance, some meta-analysis results appeared generally sound,
yet not perfect. Their high variability across runs shows the
inherent randomness of large language models. Note that vari-
ability can also occur when analyses are conducted by expe-
rienced human statisticians due to the multiplicity of possible
meaningful analysis strategies [55]—see, for example, a recent
multiverse meta-analysis yielding very diverse, even conflicting,
results [56]—since there is rarely a single correct solution for
related statistical tasks. However, solutions proposed by ChatGPT
in some of the runs were completely incorrect. In another use
case, ChatGPT provided the correct methodological background
and R scripts for the latent class analyses. To handle numerical
problems when using these R scripts, the analysts had to per-
form specific changes in the central function and choose sensible
parameters. Next, ChatGPT provided a helpful teaching session
to understand individual-level surrogacy and related numerical
measures, explaining the relationship between mutual informa-
tion and likelihood reduction factor with helpful examples and R
scripts. However, sample size calculations were often underesti-
mated across runs. Also, the statistical plots provided by Chat-
GPT exhibited deficiencies at times. In the causal inference use
case, ChatGPT provided conceptually plausible explanations but
struggled with key technical aspects, including misrepresenting
causal relationships in a DAG and inadequately (or incorrectly)
implementing inverse probability of censoring weights. Simi-
lar observations were made in the simulation use case, where
ChatGPT struggled to choose exact confidence intervals. More-
over, it required multiple attempts to find a prompt resulting
in somewhat sensible confidence intervals. Conversely, trans-
lation between programming languages typically worked well,
although users must ensure that specific statistical model build-
ing is neither compromised nor reliant on deprecated software
packages.

One important conclusion from these findings on ChatGPT
is that numerous pitfalls exist within the details of statisti-
cal analyses—often inadequately addressed by LMMs. When it
comes to such details, carefully supervising the AT’s results and
adjusting the prompts if needed, is of the essence. In particular,
we strongly warn about the non-skeptical use of LLMs. Rely-
ing naively on the correctness of their output is irresponsible,
and statistical studies can be seriously corrupted. Consequently,
expert knowledge from biostatisticians remains indispensable,
along with maintaining a questioning stance towards Al outputs.

Despite these challenges, we still see great potential in the use
of large language models by biostatisticians because they hold
promise for saving a considerable amount of time. Although
Al requires steering and oversight, it delivers rapid results
while often self-correcting upon request. Prompt engineer-
ing—structuring input prompts for optimal output—is partic-
ularly relevant for API users who enjoy greater flexibility; how-
ever,common chat interfaces also benefit from testing input order

relevance: While there was hardly any influence on the results
of sample size planning, the results of the simulation study were
severely influenced by the wording and structuring of the prompt.
One may speculate that ChatGPT had more learning material for
the sample size use case compared to the less frequent simulation
of coverage probabilities. This would at least match the failure to
suggest exact confidence intervals.

Derived from the experience collected in the various use cases
of this paper, we propose the following guidelines for biostatisti-
cians when working with generative LLMs, in this case coined to
OpenATI’s GPT-40:

« utilize generative LLMs for expediting routine tasks or com-
ponents thereof to save time;

« provide sufficient context to the LLM so as to thoroughly pre-
pare it for the task;

« critically double-check outcomes as the LLM does not
always accurately reproduce or apply human expertise;

« even double-check whether the results in the LLM’s
response text align with the results visible in the data analy-
sis mode;

« rectify the LLM’s results by confronting it with earlier flaws
or making suggestions for improvements;

« be aware of the inherent randomness of the LLM; potentially
re-run analyses in multiple, independent chats to assess the
variability and stability of its outputs;

« keep in mind the statistical results’ dependence on the pro-
gramming language used by the LLM,;

« understand that the LLM evolves over time, which might call
for adjusted strategies of usage.

We advocate training students to use LLMs effectively, e.g., in the
context of programming, applied data analysis, or lectures intro-
ducing statistical methods and approaches. It is essential for users
to recognize the limitations of LLMs and the necessity of criti-
cally validating their results, as outlined in the guidelines above.
Ultimately, the responsibility for ensuring the correctness of a
statistical analysis lies with the biostatistician. While LLMs can
assist with certain tasks in biostatistics, they cannot replace the
expert knowledge of a well-trained biostatistician —this expertise
is a crucial prerequisite for appropriate usage of LLMs.

In view of the newer ChatGPT models that have been released
during the preparation of this tutorial, and also given the rapid
advancement of large language models in recent years, we expect
great improvements yet to come. It is possible that our assessment
in the present paper will soon require revision. In particular, we
observed that many (but not all) results seemed more promis-
ing when obtained from the newer models 03 or 04-mini com-
pared to 40. However, the choice of whether to use deep research
and/or reasoning can make a crucial difference. Additionally, just
when the revision of this document was finalized, GPT-5 was
released on August 7, 2025. Based on these findings, we recom-
mend users continuously reassess Al reliability as models evolve
and improve. As with many papers in fast-evolving fields, the
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present paper will become outdated quickly; however, we expect
our core insights to remain relevant.

Note that we have not evaluated GPT-40’s capabilities in writing,
reviewing, and summarization, or their mathematical-statistical
abilities to prove assertions without logical flaws. These tasks
are undoubtedly important skills for biostatisticians, but such
investigations are beyond the scope of the present paper. Here,
we mainly focused on various data analytical and statistical
software-related tasks. However, to briefly address ChatGPT’s
summarization and reviewing skills, we also investigated Edi-
tor Paul Albert’s idea to let ChatGPT reflect on the present
manuscript. That analysis, alongside screenshots of the corre-
sponding chats, is part of the Supporting Information.

While our paper focuses on the potential applications of LLMs
and their output accuracy, we have deliberately not explored
other important aspects of their impact on the profession of
statisticians—for instance, the broader implications for job sat-
isfaction. The reduction of routine tasks through LLMs is likely
to be seen as a positive development. However, recent research
by Woodruff et al. [57]—though not specifically focused on
biostatistics—suggests that increased AI usage among knowl-
edge workers may also lead to negative consequences like
deskilling, dehumanization, and disconnection. They also quote
comments from software developers in their research workshop
that might also apply to biostatisticians: “[...] some of us are
motivated by our love of tinkering and problem solving, and gen-
erative Al may take over a lot of the work that brings us joy” or
“There are folks who get their joy and their sense of meaning
from writing code and that’s kind of their thing [ ...].” It is easy
to imagine that, for some of us, reviewing analysis pipelines and
software code does not provide the same sense of intellectual sat-
isfaction as actively creating them. Nevertheless, similar to previ-
ous industrial revolutions, these advancements also necessitate
adaptation and new skills. The challenge for future biostatisti-
cians will be to leverage the considerable potential of LLMs while
ensuring high-quality work and maintaining job satisfaction.
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Endnotes

L https://www.economist.com/technology-quarterly/2024/03/
27/can-artificial-intelligence-make- health-care-more-efficient,
https://www.economist.com/technology-quarterly/2024/03/27/
ais-will-make-health-care-safer-and-better.

2 https://github.com/dennis-dobler/ChatGPT-as-a-Tool-for-Biostatistic
ians.

3 https://platform.openai.com/tokenizer, accessed March 10, 2025.

“https://openai.com/index/improvements-to-data-analysis-in-chatgpt/,
accessed June 8, 2025.
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