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ABSTRACT: The impact of rising temperature variability driven
by climate change on metabolic health remains understudied,
especially considering the global increase in diabetes prevalence,
with long-term effects on glucose metabolism unexplored. This
study investigated associations between long-term temperature
variability exposure and glucose metabolism in a population-based
cohort of 2997 participants (4954 observations) over a 7-year
period from KORA F4 and FF4 cohorts in Augsburg, Germany.
Long-term exposure to temperature variability was estimated as the
standard deviation of the daily mean air temperature over the 365-
day period preceding each examination. We applied generalized
estimating equations to examine the longitudinal associations
between long-term exposure to temperature variability and
multiple glucose metabolism biomarkers: fasting glucose, 2h
glucose, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), homeostasis model assessment of β-cell
function (HOMA-B), quantitative insulin sensitivity check index (QUICKI), and glycated hemoglobin (HbA1c). We found that a 1
°C higher temperature variability was significantly associated with higher fasting insulin, HOMA-IR, and HbA1c with % changes
(95% CI) of 2.62 (0.79; 4.49), 2.81 (0.79; 4.87), and 2.38 (1.97; 2.79), respectively, and lower QUICKI (−0.41 [−0.70; −0.11]).
These findings suggest that increasing temperature variability exposure may contribute to metabolic dysfunction, potentially
accelerating the global diabetes epidemic.
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1. INTRODUCTION
Climate change is an increasingly pressing concern for nations
across the globe. Beyond raising global average temperatures,
climate change also leads to greater temperature variability,
resulting in amplified fluctuations across both seasonal and
interannual timescales.1−5 Climate model projections indicate
that temperature variability increases by approximately 15%
per degree of global warming in regions such as Amazonia and
Southern Africa and by about 10% in subtropical hotspots of
the Northern Hemisphere, mainly due to mechanisms such as
soil drying and shifts in atmospheric structure.1 A review study
further revealed that surface air temperature variability on
longer timescales, such as annual variability, appears to be
increasing.3 Despite these trends, limited research has
examined the long-term health impacts of increased temper-
ature variability.3 Emerging epidemiological evidence suggests
that long-term exposure to greater temperature variability is
associated with increased mortality in older adults6 and a
higher prevalence of chronic conditions such as cardiovascular
disease, respiratory illnesses, arthritis, and cataracts.7 These

findings highlight the possibility that temperature variability
may constitute a significant health risk.
Diabetes is the eighth leading cause of disability-adjusted

life-years globally and continues to increase in prevalence.8,9

Biomarkers of glucose metabolism including fasting glucose, 2
h glucose (2h glucose) in an oral glucose tolerance test, fasting
insulin, homeostasis model assessment of insulin resistance
(HOMA-IR), homeostasis model assessment of β-cell function
(HOMA-B), quantitative insulin sensitivity check index
(QUICKI), and glycated hemoglobin (HbA1c) are of
paramount importance in the evaluation and comprehension
of the progression of diabetes.10 Previous studies suggest that
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low or high temperature exposure may have a detrimental
effect on glucose metabolism and diabetes-related mortal-
ity.11−14 Yet, although temperature variability itself is growing
under climate change, its long-term impact on glucose
metabolism biomarkers has not been investigated. Given the
long-term progression of diabetes and related metabolic
disorders, examining the chronic effects of temperature
variability over extended periods can provide important
insights into chronic physiological adaptations and cumulative
health impacts.
Therefore, we aimed to assess the associations between long-

term exposure to temperature variability and glucose
metabolism biomarkers with fasting glucose, 2h glucose,
fasting insulin, HOMA-IR, HOMA-B, QUICKI, and HbA1c
repeatedly measured seven years apart.

2. METHODS
2.1. Study Design and Participants. Data for this

longitudinal analysis were obtained from the population-based
KORA (Cooperative Health Research in the Region of
Augsburg) studies F4 (2006−2008) and FF4 (2013−2014),
both follow-up examinations of the fourth survey of the
population-based KORA study (KORA S4, 1999−2001)
conducted in the city of Augsburg, Germany, and its two
surrounding districts.15 The framework, design, measurement
methods, and data collection of the KORA cohort have been
described elsewhere.15−17 The present study included
participant observations with available data on fasting glucose,
2h glucose, fasting insulin, HOMA-IR, HOMA-B, QUICKI, or
HbA1c measurements if participants were not taking glucose-
lowering medication and if their blood sample was drawn
before 11:00 am. For the analysis of 2h glucose biomarkers,
participants with clinically diagnosed diabetes were excluded,
as they did not undergo the oral glucose tolerance test
(OGTT), which is required to obtain 2h glucose measure-
ments.
The present study included 4954 observations of 2997

participants, comprising of 2880 who took part in KORA F4
and 2074 who took part in KORA FF4. Out of these, 1957
participants (65.3%) completed both examinations, while 1040
participants (34.7%) attended one examination. Thus, our
sample consists of participants who joined at F4 only,
participants who newly joined at FF4, and participants who
participated in both waves.
The study complied with the Declaration of Helsinki and

was approved by the Ethics Committee at the Bavarian
Chamber of Physicians (Munich, Germany). All participants
gave their written informed consent.
2.2. Exposure Assessment. Assessment of air temper-

ature has been described in detail previously.18 In brief,
spatiotemporal regression-based models were used to simulate
the countrywide high-resolution (1 × 1 km) daily air
temperature data, consisting of the mean, minimum, and
maximum temperatures. Three-stage models were employed to
generate historical air temperature data that offer a broad
temporal and spatial coverage. In the initial step, a linear mixed
model was formulated that incorporated daily random
intercepts and slopes for land surface temperature (LST)
and adjusted with spatial predictors to estimate air temperature
in grid cells that contained both air temperature measurements
and LST data. In the subsequent stage, this model was
employed to estimate air temperature for grid cells, which had
available LST data but no air temperature measurements. The

third step consisted of regressing the second stage predictions
against interpolated air temperature values to acquire air
temperature all across the country. The models’ estimations
when evaluated through a 10-fold cross-validation against
ground measurements in the stations’ locations around
Germany showed high precision (R2 ranging from 0.91 to
0.98) and low errors (root-mean-square error [RMSE] from
1.03 to 2.02 °C). In addition, an extensive validation was
conducted specifically for Augsburg, where our participants
live, against a dense (around 80 HOBO-Logger sensors) and
independent monitoring network, further supporting the
reliability of the temperature estimates in the KORA study
region (0.95 ≤ R2 ≤ 0.99 and 1.07 °C ≤ RMSE ≤ 1.80 °C).
Daily temperature data were assigned to each participant

based on their residential address at the day of examination
(blood draw). Residential addresses were geocoded and
matched to the nearest 1 × 1 km grid cell from our high-
resolution temperature data set. Residential address informa-
tion for each participant in the initial KORA S4 survey was
obtained from official local registration office records. For
follow-up examinations (KORA F4 and KORA FF4),
addresses were updated if invitation letters were undeliverable,
through active contact with participants (by phone) or new
data from registration offices. Therefore, we obtained geo-
coded addresses that were valid for each participant at the time
of their clinical examination. In addition, we had indicators for
relocation between survey waves and variables estimating
residence duration at each follow-up phase. Temperature data
coverage was 100% complete over the study period, ensuring
no gaps in exposure assessment. For each participant, long-
term temperature variability exposure was calculated as the
standard deviation (SD) of daily mean temperatures over the
365-day period immediately preceding their examination date.
This individual-specific temporal exposure window ensures
that each participant’s temperature variability exposure reflects
their unique examination timing rather than a fixed calendar
period.
Through the application of land-use regression (LUR)

models, the average mean concentrations of ozone (O3),
particulate matter with an aerodynamic diameter of ≤2.5 μm
(PM2.5), and nitrogen dioxide (NO2) were determined.19

Between March 6, 2014 and April 7, 2015, three 2-week
measurements were accomplished at 20 locations within the
KORA study area throughout the warm, cold, and intermediate
seasons, to obtain annual average air pollutant concentrations.
Subsequently, regression of the obtained annual average
concentrations in 2014−2015 against geographic information
system-based spatial predictors was then used to construct
LUR models, which were further applied to the residential
addresses of participants to assess their exposure levels.
2.3. Measurement of Biomarkers of Glucose Metab-

olism. Prior to the visit to the KORA study center,
participants were requested to fast for at least 8 h and to not
consume anything except mineral water. Furthermore, physical
exertion and smoking were prohibited on the day before and
on the morning of the sample collection. The blood samples
were acquired after a rest of 5 min with the participants in a
sitting position.
We assessed fasting glucose, fasting insulin, 2h glucose,

HOMA-IR, HOMA-B, QUICKI, and HbA1c. Fasting glucose
was defined as the concentration of glucose in blood after
fasting for at least 8 h, reflecting baseline glycemic status.
Fasting insulin, measured in circulatory blood after fasting for
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at least 8 h, was used as an indicator of basal insulin secretion.
The 2h glucose measurement refers to the plasma glucose
concentration determined 2 h after a standard OGTT, thereby
reflecting postchallenge glycemic response.20 HOMA-IR is an
index calculated from fasting glucose and fasting insulin
concentrations to estimate insulin resistance.10,20 HOMA-B is
derived from fasting glucose and fasting insulin to provide an
estimate of pancreatic β-cell function.10 QUICKI is a
logarithmic index calculated from fasting glucose and insulin,
used to estimate insulin sensitivity.10,20,21 Finally, HbA1c
reflects average blood glucose levels over the previous two to
three months and serves as an indicator of chronic glycemic
control.22,23 Detailed descriptions of the methods used to
measure biomarkers of glucose metabolism, including measure-
ments of fasting glucose, fasting insulin, 2h glucose, HOMA-
IR, HOMA-B, QUICKI, and HbA1c, are provided in Table S1
and have also been previously described.24−27 The assessment
of covariates is provided in Text S1.
2.4. Statistical Analysis. We performed descriptive

analyses to summarize the characteristics of the study
population, as well as the distributions of exposure and
glucose metabolism variables. Continuous variables were
summarized using means and SD or medians and interquartile
ranges (IQR). Categorical variables were presented as
frequencies and percentages. Spearman correlation coefficients
were calculated separately to assess correlations among
exposure variables and among glucose metabolism variables.
We applied generalized estimating equations (GEE) to

explore the longitudinal associations between long-term
exposure to temperature variability at the participants’ home
address and repeatedly assessed biomarkers of glucose
metabolism: fasting glucose, 2h glucose, fasting insulin,
HOMA-IR, HOMA-B, QUICKI, and HbA1c. To exploit
within-person longitudinal information provided by repeated
measures and to maximize statistical power by including
nonrepeated measures, our main analysis includes all available
observations from KORA F4 and FF4. Natural log-trans-
formation of biomarkers of glucose metabolism was conducted
for the purpose of improving normality of residuals. A
preliminary analysis was carried out to explore the
exposure−response functions of temperature variability and
biomarkers of glucose metabolism by adding the temperature
variability as a spline with four degrees of freedom and using
the likelihood ratio test (LR test) to test for nonlinearity. We
found no remarkable deviations from linearity with regard to
the temperature variability on fasting glucose, 2h glucose,
fasting insulin, HOMA-IR, HOMA-B, and QUICKI (Table
S2). Furthermore, the exposure−response function for HbA1c
suggested a monotonic association, with the LR test indicating
some deviations from linearity and a particularly increased risk
at temperature variability values above approximately 7.5 °C
(Figure S1). To be consistent across biomarkers, temperature
variability was ultimately incorporated linearly into the GEE
models. Additionally, given the threshold at approximately 7.5
°C observed in the exposure−response curve for HbA1c, we
also conducted a segmented regression analysis with a knot at
7.5 °C as a secondary analysis. Based on prior literature and
our own experience,24 we adjusted the models for age, sex,
body mass index [BMI], education, cigarette smoking, alcohol
consumption, physical activity, occupational status, time of
blood withdrawal (hours), season of blood withdrawal (spring,
summer, fall, and winter), year of blood withdrawal, and high-

sensitivity C-reactive protein (hsCRP) levels, which have been
previously correlated with insulin resistance.28

Effect modification analyses were performed by including an
interaction term between temperature variability and the
following potential effect modifiers: age (<65 vs ≥65 years),
sex (male vs female), (pre)diabetes status (normal glucose
tolerance vs prediabetes/diabetes), physical activity (low vs
medium/high), overweight/obesity (BMI <25 kg/m2 vs ≥25
kg/m2), and smoking status (current vs former/never smoker).
We performed multiple sensitivity analyses to evaluate the

robustness of the results. First, we included only those
participant observations that had complete data for all
biomarkers. Second, we further adjusted for annual average
temperature in the main model. Third, to account for the
confounding from short-term effects, we controlled for short-
term exposure to temperature variability, defined as the SD of
the temperature over a 2-day period (lagged by 0−1 days), and
the average temperature, calculated as the moving average of
the temperature over the same 2-day period (also lagged by 0−
1 days), in the model. Fourth, we further adjusted for total
cholesterol, high-density lipoprotein cholesterol, and waist−hip
ratio. Fifth, we used the SD of the 365-day moving average of
daily minimum air temperature (Tmin) and the SD of the 365-
day moving average of daily maximum air temperature (Tmax)
before the blood draw as substitutes for the variability of mean
temperature. Sixth, we excluded participants who moved
during the study period to minimize the potential for exposure
misclassification. Seventh, to avoid overestimation of the
association due to extreme values, we excluded biomarkers of
glucose metabolism that fell below the first quartile of the data
minus 1.5 times the IQR or above the third quartile of the data
plus 1.5 times the IQR. Eighth, we included only participants
who had repeated measurements of biomarkers of glucose
metabolism (N = 1957 participants) in the analysis. Ninth, to
account for potential confounding by air pollutants, we
separately adjusted for the annual average concentrations of
PM2.5, NO2, and O3. To further control for confounding by
short-term air pollution exposure, we also conducted separate
adjustments for the moving average (lag 0−1 days) of PM2.5,
NO2, and O3. We also limited the analysis to unemployed
participants, who are more likely to spend most of their time at
home, to evaluate the robustness of our findings. Finally, to
determine whether the associations held when using clinically
meaningful categories and to further contextualize the clinical
significance of our observed effect sizes, we conducted an
additional sensitivity analysis by classifying participants into
binary categories (normal vs prediabetic/diabetic) for fasting
glucose (≥100 mg/dL), 2h glucose (≥140 mg/dL), and
HbA1c (≥39 mmol/mol) using American Diabetes Associa-
tion (ADA)-recommended thresholds.29 For other markers
lacking universally accepted cutoffs, we applied literature-based
thresholds for insulin resistance or metabolic syndrome:
HOMA-IR > 2,30,31 fasting insulin > 12.2 μIU/mL,31,32

HOMA-B < 94.74,33 and QUICKI < 0.33.31,34

Effect estimates are displayed as a percent change of the
geometric mean with 95% confidence intervals (CIs) for each
1 °C rise in temperature variability. For sensitivity analyses that
used glucose metabolism outcomes categorized as binary
variables, effect estimates are reported as odd ratios (ORs)
with 95% CIs. Multiple testing was corrected using
Benjamini−Hochberg false discovery rate (FDR) methods
with a significance level of p < 0.05. All statistical analyses were
performed using R software version 4.1.2.
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3. RESULTS
3.1. Study Population, Glucose Metabolism Bio-

markers, and Exposure Data. The descriptive character-
istics for the study population at each examination point are
shown in Table 1. For KORA F4 and KORA FF4, the mean
ages were 55.4 and 59.5 years, respectively, and 47.7 and 47.5%
of the participants were male, respectively.

The median levels of glucose metabolism biomarkers in
KORA F4 were as follows: fasting glucose, 93.0 mg/dL; 2h
glucose, 104.0 mg/dL; fasting insulin, 8.7 μIU/mL; HOMA-
IR, 2.0; HOMA-B, 104.5; QUICKI, 0.344; and HbA1c, 36.0
mmol/mol (Table 2). Corresponding median values in KORA
FF4 were as follows: fasting glucose, 97.0 mg/dL; 2h glucose,
104.0 mg/dL; fasting insulin, 8.9 μIU/mL; HOMA-IR, 2.1;
HOMA-B, 95.1; QUICKI, 0.340; and HbA1c, 35.0 mmol/mol

(Table 2). Temporal trends in glucose metabolism biomarkers
are shown in Figures S2 and S3, demonstrating that the levels
of these biomarkers exhibited no marked seasonal or cyclical
patterns during the study period. Figure S4 shows that there
were weak to moderate correlations between these glucose
metabolism biomarkers, except for strong correlations between
fasting insulin and HOMA-IR, HOMA-B, and QUICKI, and
between HOMA-IR and QUICKI.
For the KORA F4 study conducted between 2006 and 2008,

the mean temperature variability experienced by participants
(calculated as the SD of daily mean temperatures over the 365
days preceding each participant’s examination date) was 6.9 ±
0.7 °C (mean ± SD, Table 3). In the KORA FF4 study from
2013 to 2014, the corresponding value was 7.3 ± 0.6 °C (mean
± SD, Table 3). Table S3 presents the annual average
temperature and annual temperature variability for the
Augsburg region for each calendar year of the study period.
Figure S5 shows generally weak correlations between air

temperature and pollutant variables (r: −0.26 to 0.27), except
for temperature variability and annual average temperature (r =
−0.43 in KORA F4 and r = −0.64 in KORA FF4) and PM2.5
and NO2 (r = 0.79 in KORA F4 and r = 0.80 in KORA FF4).
3.2. Associations of Long-Term Exposure to Temper-

ature Variability with Glucose Metabolism. The associ-
ations of long-term exposure to temperature variability with
fasting glucose, 2h glucose, fasting insulin, HOMA-IR, HOMA-
B, QUICKI, and HbA1c are shown in Figure 1. We found that
a 1 °C higher temperature variability was significantly
associated with higher fasting insulin, HOMA-IR, and
HbA1c (% changes [95% CI]: 2.62 [0.79; 4.49], 2.81 [0.79;
4.87], and 2.38 [1.97; 2.79], respectively) and lower QUICKI
(−0.41 [−0.70; −0.11]), after adjustment for multiple testing.
However, we did not find statistically significant associations
between temperature variability and fasting glucose, 2h

Table 1. Descriptive Statistics of Participant Characteristics
at Each Examinationa

mean ± SD/median [IQR]/N (%)

KORA F4,
2006−2008 (N = 2880)

KORA FF4,
2013−2014 (N = 2074)

Age (years) 55.4 ± 13.1 59.5 ± 12.2
Sex (male) 1374 (47.7%) 986 (47.5%)
BMI (kg/m2) 27.4 ± 4.7 27.5 ± 4.9
missing 11 (0.4%) 2 (0.1%)
Education (years) 11.8 ± 2.7 12.0 ± 2.7
missing 5 (0.2%) 5 (0.2%)
Occupation
(employed)

1655 (57.5%) 1213 (58.5%)

missing 1 (0.0%) 2 (0.1%)
Smoking status
never 1205 (41.8%) 877 (42.3%)
former smoker 1149 (39.9%) 867 (41.8%)
current smoker 522 (18.1%) 330 (15.9%)
missing 4 (0.1%) 0 (0%)
Physical activity
low 894 (31.0%) 553 (26.7%)
nedium (∼1 h per
week)

1265 (43.9%) 960 (46.3%)

high (∼2 h per week) 718 (24.9%) 561 (27.0%)
missing 3 (0.1%) 0 (0%)
Alcohol consumption
(g/day)*

5.71 [20.0] 5.71 [21.6]

missing 3 (0.1%) 1 (0.0%)
hsCRP (mg/L)* 1.16 [2.01] 1.17 [1.97]
missing 16 (0.6%) 14 (0.7%)
Waist−hip ratio 0.88 ± 0.09 0.90 ± 0.09
missing 9 (0.3%) 3 (0.1%)
Total cholesterol (mg/
dL)

217 ± 39.3 218 ± 39.2

missing 0 (0%) 2 (0.1%)
High-density
lipoprotein
cholesterol (mg/dL)

56.3 ± 14.5 66.3 ± 18.8

missing 1 (0.0%) 2 (0.1%)
(Pre)diabetes status
normal glucose
tolerance

1785 (62.0%) 1083 (52.2%)

prediabetes/type 2
diabetes

1018 (35.3%) 913 (44.0%)

missing 77 (2.7%) 78 (3.8%)
aNote: Missing data were addressed using complete case analysis.
*Median [IQR].

Table 2. Glucose Metabolism Biomarkers at Each
Examinationa

KORA F4,
2006−2008 (N = 2880)

KORA FF4,
2013−2014 (N = 2074)

median
[IQR] mean ± SD

median
[IQR] mean ± SD

fasting glucose
(mg/dL)

93.0
[13.0]

95.8 ± 14.4 97.0
[14.0]

98.8 ± 13.9

2h glucose
(mg/dL)

104.0
[41.0]

112 ± 39.1 104.0
[42.0]

113.0 ± 40.9

fasting insulin
(μIU/mL)

8.7 [6.3] 10.6 ± 7.1 8.9 [6.9] 10.6 ± 6.8

HOMA-IR 2.0 [1.7] 2.6 ± 2.1 2.1 [1.9] 2.7 ± 2.1
HOMA-B 104.5

[67.4]
121 ± 70.8 95.1

[65.3]
109 ± 61.5

QUICKI 0.344
[0.041]

0.344 ± 0.031 0.340
[0.042]

0.342 ± 0.032

HbA1c
(mmol/mol)

36.0
[6.0]

36.3 ± 5.1 35.0
[5.0]

35.9 ± 4.8

aNote: HOMA-IR, homeostasis model assessment of insulin
resistance; HOMA-B, homeostasis model assessment of β-cell
function; QUICKI, quantitative insulin sensitivity check index;
HbA1c, glycated hemoglobin. Fasting glucose missing data: KORA
F4, 23 (0.8%); KORA FF4, 17 (0.8%). 2h glucose missing data:
KORA F4, 133 (4.6%); KORA FF4, 128 (6.2%). Fasting insulin
missing data: KORA F4, 53 (1.8%); KORA FF4, 17 (0.8%). HOMA-
IR missing data: KORA F4, 55 (1.9%); KORA FF4, 18 (0.9%).
HOMA-B missing data: KORA F4, 55 (1.9%); KORA FF4, 18
(0.9%). QUICKI missing data: KORA F4, 55 (1.9%); KORA FF4, 18
(0.9%). HbA1c missing data: KORA FF4, 6 (0.3%).

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.5c04956
Environ. Sci. Technol. 2025, 59, 24246−24256

24249

https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c04956/suppl_file/es5c04956_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c04956/suppl_file/es5c04956_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c04956/suppl_file/es5c04956_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.5c04956/suppl_file/es5c04956_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c04956?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


glucose, and HOMA-B, after adjustment for multiple testing
(p-adjusted >0.05).
In the segmented regression analysis for HbA1c with a knot

at 7.5 °C (Table S4), we found that for temperature variability
values at or above 7.5 °C, each 1 °C increase was associated
with a significant increase in HbA1c (% change [95% CI]: 6.71
[5.78, 7.65]), whereas no significant association was observed
for values below 7.5 °C.
3.3. Effect Modification. Figure 2 and Figure S6 show the

effect modification of long-term exposure to temperature
variability on glucose metabolism. For long-term temperature
exposure, we found trends toward stronger effects on glucose
metabolism among individuals aged 65 years and older,
compared to those under 65 years, although these differences
were not statistically significant. Moreover, there were no
significant effect modifications by sex, (pre)diabetes status,
physical activity, overweight and obesity, or smoking status.
3.4. Sensitivity Analysis. Generally, the longitudinal

associations between long-term exposure to temperature
variability and glucose metabolism remained consistent across
various sensitivity analyses (Figure S7). We observed
analogous associations when we included only participant
observations with complete data for all analyzed outcomes.
Similar results were also noted when the annual average
temperature was additionally factored into the model; although
the effect estimate of temperature variability on HbA1c
decreased, the association remained statistically significant.
Comparable results were observed when short-term temper-
ature variability and average temperature were additionally
considered in the model. The associations remained consistent
even when additional adjustments were made for total
cholesterol, high-density lipoprotein cholesterol, and waist−
hip ratio. Moreover, the effect estimates were consistent when
additional adjustments were made for both annual and short-
term air pollutants exposures (PM2.5, NO2, and O3).

Furthermore, similar effect estimates were obtained when the
SD of minimum or maximum temperatures were used. The
results remained unaffected by the exclusion of participants
who relocated during the study period, the exclusion of
outliers, the limitation to participants with repeated measure-
ments of glucose metabolism, and by restricting the analysis to
unemployed participants. Finally, sensitivity analysis using
binary clinical or literature-based categories (Figure S8)
revealed that higher long-term temperature variability exposure
was significantly associated with increased odds of abnormal
fasting insulin (>12.2 μIU/mL; OR = 1.23, 95% CI: 1.11−
1.37), HOMA-IR (>2; OR = 1.15, 95% CI: 1.04−1.27),
QUICKI (<0.33; OR = 1.13, 95% CI: 1.01−1.25), and HbA1c
(≥39 mmol/mol; OR = 1.45, 95% CI: 1.30−1.62) per 1 °C
increase in temperature variability. No significant association
was observed for fasting glucose, 2h glucose, and HOMA-B.
These findings were consistent with those from the main
analysis, supporting the robustness and clinical relevance of our
results.

4. DISCUSSION
Our study demonstrated that long-term exposure to increased
temperature variability was significantly associated with higher
levels of fasting insulin, HOMA-IR, and HbA1c and lower
levels of QUICKI. To the best of our knowledge, this is the
first investigation to assess the associations between long-term
exposure to temperature variability and glucose metabolism
over an extended period, providing novel insights into
potential mechanisms through which temperature variability,
as a potential consequence of climate change, may influence
metabolic health.
Fasting insulin, HOMA-IR, QUICKI, and HbA1c have a

substantial role in the progression of type 2 diabetes and are
likewise correlated with an increased risk of cardiovascular
disease.35,36 Our study found that a 1 °C increase in

Table 3. Descriptive Statistics of Air Temperatures and Air Pollutants during the KORA F4 and FF4 Study Period

KORA F4, 2006−2008 KORA FF4, 2013−2014

mean SD 5% 25% median 75% 95% mean SD 5% 25% median 75% 95%

temperature variability (°C) 6.9 0.7 6.0 6.4 6.7 7.1 8.6 7.3 0.6 6.4 6.7 7.6 7.8 8
annual average temperature (°C) 9.7 0.8 8.3 9.1 9.7 10.3 11 8.9 0.6 8 8.4 8.8 9.4 9.9
PM2.5 (μg/m3) 39.1 2.3 35.3 37.4 39.2 40.8 42.7 39.1 2.3 35.3 37.5 39.2 40.9 42.7
NO2 (μg/m3) 11.7 1 9.9 11 11.8 12.4 13.1 11.6 1 9.8 11 11.8 12.4 13.1
O3 (μg/m3) 14.2 4.4 7.3 10.6 13.8 17.5 21.9 13.9 4.3 7.3 10.4 13.5 17.1 21.4

Figure 1. Estimation of percent changes [95% CI] in geometric means of glucose metabolism biomarkers with a 1 °C increase in temperature
variability. Note: Error bars in red demonstrate significant associations after multiple testing (adjusted p-value <0.05).
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temperature variability was significantly associated with an
increase of 2.62% in fasting insulin, 2.81% in HOMA-IR, and
2.38% in HbA1c, as well as a decrease of 0.41% in QUICKI.
These associations were also consistently observed using
clinically relevant thresholds, with each 1 °C increase in
temperature variability associated with 15% higher odds of
HOMA-IR > 2, 23% higher odds of fasting insulin > 12.2 μIU/
mL, 45% higher odds of HbA1c ≥ 39 mmol/mol, and 13%
higher odds of QUICKI < 0.33. For example, in our study
population (KORA F4 and FF4), the prevalence of abnormal
HbA1c (≥39 mmol/mol) was 24.2%. A 1 °C rise in
temperature variability corresponds to an absolute increase in
the prevalence of abnormal HbA1c from 24.2% to approx-
imately 31.6%, assuming the association is causal. Furthermore,
historical climate data indicate a gradual increase in temper-
ature variability in Germany over recent decades;4 a similar
trend was observed in our study region, where the average
temperature variability exposure (calculated as the SD of daily
mean temperatures over the 365 days preceding each
participant’s examination) was 6.9 °C for participants
examined in 2006−2008 and 7.3 °C for those in 2013−

2014. Although these individual-level effect sizes are modest,
their application at the entire population level, especially in the
context of demographic aging and ongoing climate change,
could translate to a meaningful increase in metabolic disease
burden. These results suggest that higher temperature
variability may contribute to increased insulin resistance and
a higher risk of type 2 diabetes and related metabolic diseases.
While more research is needed, especially in diverse
populations and climates, it may be warranted for future
public health strategies to consider environmental factors such
as temperature variability in the broader context of metabolic
disease prevention and management.
We did not observe significant associations between

temperature variability and fasting glucose, 2h glucose, or
HOMA-B. The underlying reasons for this pattern are not fully
understood. It is possible that temperature variability may
more strongly affect specific pathways of glucose metabolism,
such as those related to insulin resistance (as reflected by
fasting insulin, HOMA-IR,10,20 and QUICKI10,20,21) or long-
term glucose regulation (HbA1c22,23), rather than short-term
glucose concentrations (fasting glucose and 2h glucose) or

Figure 2. Estimation of percent changes in geometric means of glucose metabolism biomarkers with a 1 °C increase in temperature variability
modified by age, sex, and (pre)diabetes status.
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pancreatic β-cell function (HOMA-B10). Further research is
needed to clarify these differential effects and to elucidate the
mechanisms involved.
It is important to note that higher fasting insulin, higher

HOMA-IR, and lower QUICKI mainly reflect hepatic insulin
resistance whereas the assessment of whole-body insulin
sensitivity would require additional data from a 5-point
OGTT or other tests. Despite this limitation, our research
contributes to a better understanding of the underlying
mechanisms linking climate change to the ongoing rise in
cardiometabolic diseases worldwide.9,37 In the context of
climate change, characterized by increased temperature
variability and extreme weather events,1,2 our findings
underscore the importance of developing comprehensive
strategies that simultaneously address climate change miti-
gation and public health protection, particularly in relation to
metabolic health.
The underlying mechanisms behind the association between

temperature variability and glucose metabolism are not fully
understood, necessitating further exploration. Long-term
exposure to higher temperature variability, characterized by
unstable weather conditions and frequent temperature
fluctuations, may put pressure on the thermoregulatory system,
making it more difficult to adjust to the local climate. In
response to these environmental temperature changes, the
body might redistribute blood flow between cutaneous and
visceral vascular beds, potentially influencing glucose levels.38

Our findings may indicate that temperature variability
potentially contributes to the dysregulation of the crosstalk
between the liver and the adipose tissue.39 Furthermore,
temperature variability may impact fat distribution and
activities of fat depots in multiple organs including the
brown adipose tissue (BAT). BAT, an insulin-sensitive tissue
implicated in thermogenesis, is known to be sensitive to
temperature40 and might alter its activity under conditions of
increased temperature variability. We hypothesize that this
would be especially relevant under conditions of global
warming that would shift the presence of BAT in populations
relative to previous generations. However, it is important to
emphasize that these proposed mechanisms remain speculative
and have yet to be validated in experimental studies. Future
research, particularly mechanistic and experimental work, is
needed to clarify the biological pathways linking temperature
variability to glucose metabolism.
The present study has several strengths. First, this is the first

investigation to explore the effect of temperature variability on
glucose metabolism through the use of a longitudinal study
design and a large sample size of 4954 observations. The two
repeated assessments of the KORA cohort were seven years
apart and took place at a time when temperature shifts were
already observable.18 Second, air temperature was assessed by
highly resolved spatiotemporal prediction models18 and
matched with detailed address information for each participant.
Residential address information was initially obtained from
official local registration office records and updated for follow-
up examinations. This approach minimized misclassification
error of residential exposure compared to monitoring station
measurements. Third, a wealth of information was collected in
the KORA cohort so that we were able to control for potential
confounders in the regression models and conduct multiple
effect modification analyses.
Our study, however, also had some limitations. First, as this

study was confined to a single geographical region, results

should be extrapolated to other regions with caution. Also, we
found indication that the effects may be potentially stronger in
individuals aged 65 years and older, but the present study did
not have the statistical power to investigate individuals with
underlying cardiometabolic disease or specific treatment
regimens separately. Second, using area-level exposure in lieu
of individual exposure, misclassification of exposure may have
been introduced. Our exposure assessment is further limited by
the inability to capture time participants spent away from
home (e.g., at work), which is a common challenge in
environmental epidemiology studies. We conducted a
sensitivity analysis restricted to unemployed participants, the
results were consistent with our main findings. Moreover,
although temperature data were matched to geocoded
participant addresses at the time of clinical assessment and
addresses were updated as needed, continuous address
histories were not available, raising the possibility that some
participants may have changed residence during the study
period. However, sensitivity analyses excluding participants
who moved during the study period yielded results consistent
with the main findings, supporting the robustness of our
conclusions. Additionally, the majority of study participants
(>73%) resided at their reported addresses for multiple years,
further supporting the stability of residential exposure
assignment in this study. Third, given the observational nature
of this study, the potential for residual and unmeasured
confounding cannot be entirely eliminated, thus precluding the
possibility of drawing definitive causal inferences. Additionally,
the absence of continuous blood glucose monitoring precluded
a more comprehensive overview of glucose levels. Future
research should consider examining other climatic zones over
more extended periods and include populations that might be
more vulnerable. Finally, our study lacked detailed dietary data,
which prevented adjustment for dietary factors known to
influence glucose metabolism. To our knowledge, no published
studies have assessed the relationship between annual
temperature variability and dietary patterns. Therefore, we
cannot exclude the possibility of unmeasured dietary
confounding. If dietary habits were to change in response to
annual temperature variability, for example, through higher
caloric intake or altered food choices during years with unusual
temperature swings, such changes could bias our observed
associations, most likely in the direction of overestimation if
these dietary shifts increase metabolic risk. However, we
consider this as rather unlikely in the study region.
In conclusion, our study provides novel evidence that long-

term exposure to higher temperature variability is associated
with insulin resistance in the general population. The findings
of this study may suggest that higher temperature variability
will also contribute to increased incidence and severity of type
2 diabetes globally and highlight the detrimental role of climate
change for cardiometabolic diseases.
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