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Abstract

Aims/hypothesis Despite playing critical roles in the pathophysiology of type 2 diabetes and other metabolic disorders, the
molecular mechanisms underlying circulating adipokine levels remain poorly understood. By identifying genomic regions
involved in the regulation of adipokine levels and adipokine-mediated disease risk, we can improve our understanding of
type 2 diabetes pathogenesis and inter-individual differences in metabolic risk.

Methods We conducted an epigenome-wide meta-analysis of associations between serum adiponectin (n=2791) and leptin
(n=3661) and leukocyte DNA methylation at over 400,000 CpG sites across five European cohorts. The resulting methylation
signatures were followed up using functional genomics, integrative analyses and causal inference methods.

Results Our findings revealed robust associations with adiponectin at 73 CpGs and leptin at 211 CpGs. Many of the identified
sites were also associated with risk factors for the metabolic syndrome and located in enhancers close to relevant transcrip-
tion factor binding sites. Integrative analyses additionally linked 35 of the adiponectin-associated CpGs to the expression
of 46 genes, and 100 of the leptin-associated CpGs to the expression of 151 genes, with implicated genes enriched for lipid
transport (e.g. ABCGI), metabolism (e.g. CPTIA) and biosynthesis (e.g. DHCR24). Bidirectional two-sample Mendelian
randomisation further identified two specific CpG sites as plausible drivers of both adiponectin levels and metabolic health:
one annotated to ADIPOQ, the gene encoding adiponectin; and another linked to the expression of SREBF1, an established
modifier of type 2 diabetes risk known to exert its effects via adiponectin.

Conclusions/interpretation Taken together, these large-scale and integrative analyses uncovered links between adipokines
and widespread, yet functionally specific, differences in regulation of genes with a central role in type 2 diabetes and its
risk factors.

Keywords Adiponectin - Causal inference - Epigenomics - Leptin - Lipid metabolism - Meta-analysis - Metabolic health -
Type 2 diabetes
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2SMR Two-sample Mendelian randomisation FDR False discovery rate
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What is already known about this subject?

e The regulation of circulating adipokine levels plays a crucial role in metabolic homeostasis

e Adiponectin and leptin levels are established as mediators in the development of type 2 diabetes

e DNA methylation, a key epigenetic modification, has been implicated in metabolic disease risk

What is the key question?

e  Whatis the relationship between circulating adipokines and DNA methylation, and how does this link to their role

in metabolic health?

What are the new findings?

e Through an epigenome-wide meta-analysis, we identify distinct but overlapping methylation signatures of serum

adiponectin and leptin

e |dentified CpGs lie in regions of active chromatin close to relevant transcription factor binding sites and can be
linked to nearby gene expression in large-scale blood-based cohorts

e  Bidirectional two-sample Mendelian randomisation finds two CpGs that plausibly drive adiponectin levels, and
methylation at these sites can be linked to expression of nearby genes (ADIPOQ and SREBF1) in adipocytes and

blood, respectively

How might this impact on clinical practice in the foreseeable future?

e These findings could serve as focal points for development of metabolic health biomarkers or targeted

therapeutics

LLS Leiden Longevity Study

mQTL Methylation quantitative trait locus
NK Natural killer

PBMC Peripheral blood mononuclear cell

PGS Polygenic score
RIN Rank inverse normal

SGBS Simpson-Golabi-Behmel syndrome
SHIP Study of Health in Pomerania
SREBP  Sterol regulatory element-binding protein

TF Transcription factor
TFBS Transcription factor binding site

Introduction

Adiponectin and leptin are key adipokines that play cen-
tral roles in regulating energy homeostasis and meta-
bolic processes, with influences on insulin sensitivity
and inflammation. Circulating levels of these adipokines
are directly implicated in the pathogenesis and progres-
sion of the metabolic syndrome and type 2 diabetes [1,
2], and a clearer understanding of their regulation could
uncover new avenues for predicting, preventing or treat-
ing metabolic disease.

@ Springer

Epigenetic modifications, such as DNA methyla-
tion (DNAm), are established as being both responsive
to lifestyle changes and capable of modifying disease
risk. Growing evidence supports epigenetic regulation of
adiponectin and leptin as partly driving inter-individual
differences in metabolic health [3, 4]. Blood-based epig-
enome-wide association studies (EWAS) have uncovered
robust and biologically meaningful correlations between
DNAm, metabolic diseases and their risk factors, even
where investigated traits are non-haematopoietic in ori-
gin [5, 6]. Supported explanations for detected associa-
tions in leukocytes include shared upstream drivers such
as diet [7], DNAm responses to circulating metabolic
traits [8] and immune cell mediation of the inflammatory
components of metabolic disease [9].

Despite substantial progress, however, research
directly examining relationships between adiponectin
and DNAm have been limited in sample size [10], and
leptin has thus far not been investigated on a genome-
wide scale. A comprehensive EWAS of these adipokines
is warranted in a sufficiently large sample size to detect
subtle molecular effects, with thorough interpretation
of the resulting methylation signatures for these critical
metabolic markers.
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Methods
Cohort analyses

Main analysis All contacted cohorts with sufficient data
followed a common analysis plan (see Cohort Descrip-
tions in electronic supplementary material [ESM] Meth-
ods for details), and all samples analysed were taken from
distinct individuals (i.e. there were no repeat measure-
ments included in the analysis). DNAm was measured
either by the Illumina Infinium HumanMethylation450
(in Leiden Longevity Study [LLS], Cooperative Health
Research in the Region of Augsburg [KORA], TwinsUK
and LifeLines DEEP [LLD] cohorts) or MethylationEPIC
BeadChip array (in Study of Health in Pomerania [SHIP]-
TREND cohort). Adipokine measurements below the limit
of detection and outlying values for DNAm, adiponectin
and leptin (more than three IQRs from the nearest quar-
tile) were removed prior to analysis. Cell-type proportions
were predicted from DNAm data using the IDOL algo-
rithm [11].

For each of j CpGs measured in i individuals, a linear
regression model (see Equation 1 for general specification)
was fitted of DNAm f values on natural log-transformed
adiponectin (ug/ml) or leptin (ng/ml). All models were
adjusted for age (in years), sex, cell-type proportions pre-
dicted from DNAm data (monocytes, CD8* T cells, CD4"*
T cells, natural killer [NK] cells and B cells) and techni-
cal covariates (left to the analyst’s discretion). Sex was
considered in the study design and included as a covari-
ate in statistical models to address potential biological
differences.

DNAm, = B, + B, log,(adipokine); + B, age; + p; sexFemale;
+ B, CDS8T; + B5; CDAT; + B4 NK; + ; Mono; €))]

+ fg technical_factors;

Analyses were not stratified by sex, and gender identity was
not recorded.

Sensitivity analyses Effects of adjustment for smoking
on the relationship between adipokines and our iden-
tified CpGs was investigated in a sensitivity analysis,
where each cohort added trichotomous smoking to the
cohort-specific base models as a categorical fixed effect.
In some cases, this resulted in a reduction of the sample
size as there was missingness in the smoking data. To
distinguish BMI-independent signals, cohorts also ran
an additional analysis adjusting for BMI (measured in
kg/m?).

Sensitivity analyses also investigated the effect of adjust-
ing for extended cell types, estimated using the epiDISH
Bioconductor package release 3.20 [12], which became

available in the timeframe of this project. Basophils, mem-
ory B cells, naive B cells, CD4" memory T cells, CD4*
naive T cells, CD8* memory T cells, CD8" naive T cells,
eosinophils, monocytes, NK cells and regulatory T cells
were added to the base model for all cohorts. Neutrophils
were excluded to avoid collinearity as proportions for all
cells sum to 1.

Meta-analysis

Results from each cohort were inspected and rows were
removed if they were estimated from fewer than 50 obser-
vations. Probes located on sex chromosomes, in ENCODE
Blacklist regions [13], or that contained known common
genetic variants or were ambiguously mapped [14] were
also removed. To ensure good quality data, we inspected
QQ, volcano and Manhattan plots, alongside boxplots of
the effect size and SE distributions across cohorts. Follow-
ing these steps, data were available on 412,224 CpGs from
the base adiponectin model and 406,832 CpGs for the base
leptin model.

The Bioconductor package bacon [15] estimated and
adjusted for bias and inflation of the test statistics, using default
priors (x=1.28, p=0.36). After running bacon, inflation and
bias were estimated at ~1.00 and within +0.00 for all models,
respectively. Bacon-adjusted effect sizes and SEs were used as
input in a fixed-effects meta-analysis in METAL version 2011-
03-25 [16]. Separate analyses were performed for each of the
base models and each extended model (adjusted for smoking,
BMI and extended cell counts). Any CpGs for which there
was evidence of high heterogeneity in effect sizes between
cohorts (I2 > 80%) would have been removed but there were
none. CpGs were regarded as significantly associated with the
relevant adipokine if the false discovery rate (FDR)-adjusted
p value was below 0.05, and only CpGs that still met this cri-
terion in the additional sensitivity analyses for smoking, cell-
type proportions and BMI were taken forward into downstream
analyses.

Follow-up analyses

Differentially methylated regions To assess distinct genomic
loci associated with circulating adipokine levels, differen-
tially methylated regions (DMRs) were identified using
the DMRfinder algorithm [17], as implemented in the
DNAmArray workflow version 2.1 [18]. DMRs were defined
as regions with at least three differentially methylated posi-
tions (DMPs) and an inter-CpG distance of less than 1 kb,
allowing a maximum of three non-DMPs across a DMR. The
number of distinct loci was calculated as the total number
of DMPs minus the number of DMPs in DMRs plus the
number of DMRs called by DMRfinder.

@ Springer
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EWAS enrichment Using summary data from the EWAS
catalogue [19] and EWAS atlas [20], our CpGs were investi-
gated for previous associations with other phenotypes. Any
EWAS meeting the following criteria was removed: without
an associated PubMed ID; with a sample size under 500; that
reported fewer than 100 CpGs in the respective database;
missing nominal p values; not performed in adults; or not
using whole blood or leukocyte samples. Traits were also
recoded to ensure consistency between names, for example
by combining EWAS of ‘BMI’ and ‘body mass index’. This
resulted in a list of 57 traits, which were tested for enrichment
of associations with our CpGs using logistic regression.

Chromatin state enrichment Identified CpGs were anno-
tated to chromatin state using the peripheral blood mono-
nuclear cell (PBMC) Roadmap reference epigenomes [21].
Logistic regression models were fitted using the glm func-
tion in R to calculate and test ORs for each of the 15 chroma-
tin states. Nominal p values were adjusted for multiple test-
ing using FDR and enrichments or depletions were assessed
at a 5% significance threshold.

Transcription factor binding site enrichment A 50 bp win-
dow around FDR-significant CpGs was scanned using find-
MotifsGenome.pl from HOMER version 3.1 for enrichment
of known motifs compared with a random genomic back-
ground matched for GC content [22]. ENCODE transcrip-
tion factor (TF) binding site (TFBS) annotation for 171 TFs
and CpGs on the 450k array was used to further investigate
the size of binding sites and distance from CpG to summit
[14]. TFs associated with enriched TFBS were examined
for links with adipokines and, specifically, adiponectin and
leptin pathways and interactions.

Integrative analyses Measurements of blood-based gene expres-
sion alongside DNAm from the same samples was available
from the Biobank-based Integrative Omics Studies (BIOS) con-
sortium (n=3152). This dataset comprises six Dutch biobanks:
the Cohort on Diabetes and Atherosclerosis Maastricht [23];
LifeLines [24]; LLS [25]; Netherlands Twin Register [26,
27]; Rotterdam Study [28]; and the Prospective ALS Study
Netherlands [29]. After filtering out non-autosomal and lowly
expressed genes, count data were transformed into log, counts
per million (CPM) using edgeR, and values for each gene were
rank inverse normal (RIN)-transformed prior to analysis [30].
Genomic locations of human transcripts, exons, cod-
ing sequences and genes were imported from the Ensembl
database using makeTxDbFromEnsembl from the Genom-
icFeatures Bioconductor package [31]. These were used to
identify the nearest gene to each adipokine-associated CpG
and to save a list of all genes within 100 kb of each CpG. To
examine links between DNAm and gene expression, linear
regression models were fitted with RIN-transformed log,CPM

@ Springer

values as the response variable and methylation  values as
the independent variable, adjusting for the effects of age, sex,
technical covariates (row, plate, and flowcell) and 12 blood-
cell counts predicted from DNAm using EpiDISH release
3.20[12].

For investigations into links between expression and
DNAm in Simpson-Golabi-Behmel syndrome (SGBS) pre-
adipocytes, publicly available data were downloaded from
Gene Expression Omnibus (GEO) using GEOquery in R
release 3.20 (https://www.bioconductor.org/packages/relea
se/bioc/html/GEOquery.html). Data were available for the
same samples, with expression profiled using the Illumina
HumanHT-12 V4.0 expression BeadChip microarray and
DNAm profiled using the Illumina Infinium HumanMethyla-
tion450 BeadChip array [32]. Count data were normalised
to log,CPM values and values from probes interrogating
ADIPOQ (ILMN_1775045) and SREBF1 (ILMN_1663035,
ILMN_1695378 and ILMN_2328986) were extracted. Addi-
tionally, p values from cgl11851174 and cg02235049 were
subset from the DNAm data. Complete information was avail-
able for 38 samples across five timepoints (days O, 1, 2, 4, 8
and 16). Expression and DNAm values were plotted against
one another for the relevant comparisons, correlation coef-
ficients were calculated and linear regression models were
used for analysis.

Over-representation analysis On the basis of the large-scale
blood-based integrative analysis in BIOS, a list of CpGs for
which there was evidence for epigenetic regulation of nearby
gene expression in leukocytes was saved. The associated
gene names were used as input for over-representation analy-
sis using 11 recent (updated in the last 6 years) databases
relating to human health and disease downloaded from Enri-
chr (BioPlanet 2019, Elsevier Pathway Collection, GeDiP-
Net 2023, GO Biological Process 2023, KEGG Human
2021, MSigDB Hallmark 2020, OMIM, PhenGenl Asso-
ciation 2021, PheWeb 2019, Reactome 2022 and WikiP-
athway Human 2021). These databases were imported into
R and analyses were performed using the Enrichr function
from clusterProfiler release 3.20 [33]. p values were FDR-
adjusted for multiple testing and significance was assessed
at the 5% level.

Bidirectional two-sample Mendelian randomisation To
assess the direction of effects between adipokines and DNAm
at identified CpGs, the TwoSampleMR package was used to
perform bidirectional two-sample Mendelian randomisation
(2SMR) [34]. This instrumental variable (IV)-based method
uses genome-wide association study (GWAS) summary sta-
tistics to infer whether a risk factor causally influences an
outcome. 2SMR relies on several key assumptions, namely
that instruments are relevant, independent and that there is no
horizontal pleiotropy. To interrogate the effects of DNAm at
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our CpGs on adiponectin and leptin, we extracted SNP-based
cis-methylation quantitative trait locus (mQTL) data from the
Genetics of DNA Methylation Consortium (GoDMC) [35]
and combined these with summary statistics from recent,
large-scale GWAS of both adiponectin [36] and leptin [37].
For some CpGs (42.5% for adiponectin and 38.4% for lep-
tin), there was insufficient data available to interrogate the
effects of DNAm at that CpG. For the remaining CpGs,
between one and four independent SNPs with data on both
their cis-association with DNAm and association with the rel-
evant adipokine were used as instruments. These were com-
bined using the Wald ratio (for single mQTL instruments)
or inverse variance weighted (IVW) methods (for multiple,
independent mQTLs).

To interrogate the influence of adipokine levels on DNAm
at identified CpGs, independent GWAS variants from recent,
large-scale analyses [36, 37] were used. Of the 18 variants
that could instrument adiponectin, there were trans-mQTL
data in GoDMC available for four of them and, of the six
variants that could instrument leptin, there were available
data for one. Linkage disequilibrium (LD) proxies with
R*>0.8 for the remaining SNPs were downloaded from
the NIH’s LDlink tool version 5.6.7_20240620 [38], and
GoDMC data [35] were extracted for these where avail-
able. This process identified two other instrumental SNPs
that could instrument the adipokines, one for each, mean-
ing that leptin was instrumented by two independent SNPs
(rs8043757 and rs4665972) and adiponectin was instru-
mented by five independent SNPs (rs11023332, rs1108842,
rs12051272, rs998584 and rs113086489). The GWAS
summary statistics and mQTL effects were then combined
using the IVW method and the TwoSampleMR package in
R version 0.6.6. For all analyses, p values were adjusted for
multiple testing using the FDR method and potential causal
effects were assessed at the 5% significance threshold.

The following cohorts were used to derive both mQTL
effects in GoDMC and adiponectin and/or leptin GWAS
effects and therefore had overlapping individuals in both the
exposure and outcome datasets for the 2SMR analysis: Rot-
terdam Study (GoDMC 1472 samples, leptin GWAS 3932
samples); and TwinsUK (GoDMC 843 samples, adiponectin
GWAS 968 and 1229 samples, leptin GWAS 5654 samples).
Therefore, overall, the overlap was low considering that all
three meta-analyses incorporated data from over 16 cohorts.

The TwoSampleMR package version 0.6.6 was also used
to interrogate causal links between DNAm at CpGs and
metabolic traits. CpGs were instrumented with independ-
ent cis-mQTLs obtained from GoDMC, and ieugwasr was
used to extract MR instruments for the metabolic traits. Ref-
erence numbers for the investigated traits were as follows:
type 2 diabetes (ebi-a-GCST006967); fasting insulin (ebi-a-
GCST9002238); triglycerides (ieu-b-111); HDL-cholesterol
(ieu-b-109); and BMI (ieu-b-40).

Triangulation analyses To perform triangulation analyses, we
interrogated the correlation between the observed effect of an
IV on an outcome (i.e. mQTL-adipokine or polygenic score
[PGS]-DNAm associations) and the predicted effect via the
exposure. This analysis assumes that if the effect of an exposure
on an outcome is causal, it would be possible to predict the [V’s
effect on the outcome through a combination of its effect on the
exposure and the exposure’s effect on the outcome.

In detail, when looking at the effect of DNAm on adi-
pokine levels (consequential analysis), the ‘observed effect’
is the association between the top mQTL and log (adipokine),
extracted from the full GWAS summary data. The ‘predicted
effect” combines mQTL and EWAS statistics to estimate the
influence of an additional effect allele (EA) on the outcome
(i.e. the adipokine). For each additional EA, the expected rise
in DNAm at the CpG is equivalent to the mQTL effect size
(Bmor)- As the EWAS effect size represents the DNAm effect
associated with a one-unit increase in the adipokine level, the
expected increase in the adipokine level for a p,,qyy, increase
in DNAm can be calculated as the product of the mQTL and
EWAS effects (i.e. PgorL X Bewas)- SNP effects on DNAm
(mQTL effects) were extracted from GoDMC data [35] and
CpG-adipokine effects were extracted from the EWAS meta-
analysis presented here.

When looking in the reverse direction (i.e. adipokines as
a cause of DNAm), the ‘observed effect’ is a PGS, where
the influence of adipokine-associated SNPs on DNAm are
weighted by their EA frequency (EAF). The ‘predicted effect’
here uses equivalent EAF weighting and is calculated as
PGS~adipokine/adipokine~CpG. The observed and predicted
effects in both directions were visualised using scatter plots and
correlation was assessed with Pearson correlation coefficients.

Software

Unless stated otherwise, all calculations were performed using
R version 4.2.2 (R Core Team, http://www.r-project.org). For
all meta-analyses, METAL, version 2011-03-25 was used
(http://csg.sph.umich.edu/abecasis/Metal) [16]. TFBS enrich-
ment analyses were performed using HOMER version 3.1
(http://homer.ucsd.edu/homer) [22].

Results

Circulating adipokines have distinct DNA
methylation signatures in blood

We performed a meta-analysis of EWAS of circulating
adiponectin (n=2791; 412,224 CpGs) and leptin (n=3661;
406,390 CpGs) levels in blood samples from five Euro-
pean cohorts (Tables 1, 2). Mean age was 55.5 years in the
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leptin meta-analysis and 56.8 years for adiponectin, and
the population was predominantly female (55.2% in the
adiponectin meta-analysis, 54.4% in the leptin meta-analy-
sis). Cohorts represented a combination of fasted (KORA,
TwinsUK, SHIP-TREND and LLD) and non-fasted (LLS)
samples. Full summary statistics for all tested CpGs can be
found in ESM Tables 1, 2. Circulating levels of adiponec-
tin and leptin were associated with blood-based DNAm at
73 CpG sites and 621 CpG sites, respectively (pg,<0.05,
nominal p value thresholds 8.8 x 107° for adiponectin,
7.6 x 107> for leptin). These results were adjusted for age,
sex, technical covariates and six blood-cell types predicted
using DNAm data (granulocytes, monocytes, NK cells,
CD4* T cells, CD8* T cells and B cells). No CpGs dis-
played high heterogeneity between cohorts (all I*<80%)
and test statistics were corrected for bias and inflation.
To evaluate the stability of associations between
DNAm and adipokines, sensitivity analyses assessed the
impact of smoking, 12 distinct cell types and BMI (ESM
Tables 3, 4). For the majority of adiponectin CpGs, asso-
ciations remained statistically significant after adjust-
ment for these additional variables (pg,,<0.05), with very
strong correlations between effect size (R>0.99, p<0.001;
Fig. la—c). Effects at leptin CpGs also showed relative
independence from smoking and cell-type proportions
(Fig. 1d, e). Unsurprisingly however, since leptin has
stronger and more direct links to obesity [39, 40], 401
leptin CpGs were sensitive to BMI adjustment (pg,,>0.05;

Fig. 1f). To ensure focus on adipokine-specific epigenetic
links in downstream analyses, these were removed from
the results.

The final set of CpGs included 73 adiponectin and 211
leptin-associated sites (Fig. 2), representing 65 and 203
distinct loci, respectively. Ten CpGs were associated with
both adipokines, and adiponectin and leptin effect sizes were
inversely correlated at the 274 uniquely identified CpGs
(R=-0.81 p<0.001; Fig. 3a).

Adipokine-associated methylation is also linked
to metabolic health

To assess the relevance of the adipokine-associated
CpGs, we conducted a search of previous EWAS (ESM
Table 5). Notably, 65 of the 73 adiponectin CpGs (89.0%)
and 145 of the 211 leptin CpGs (68.7%) were associated
with at least one other trait. As anticipated a priori, adi-
pokines and adiposity were closely related and, despite
the removal of CpGs sensitive to adjustment for BMI,
and therefore evidence for BMI-independent associations
with adipokines at the tested CpGs, the strongest enrich-
ments were observed with BMI (OR 571.7 and 151.3
for adiponectin and leptin, respectively; p;,<0.001). In
total, 40 (54.8%) of the adiponectin and 51 (24.2%) of
the leptin CpGs were associated with BMI in large-scale
blood-based EWAS. In addition, enrichments existed
for other metabolic risk factors (Fig. 3b), including

Table 1 Characteristics

N . . Characteristic KORA F4 LLS LLD TwinsUK SHIP-TREND

of cohorts included in the

adiponectin EWAS meta- Sample size 807 718 701 124 441

analysis Age, years 68.8+4.4 58967  455+13.1 55.1+11.7  50.0+13.4
Female sex 396 (49.1)  370(51.5) 411 (58.6) 124 (100.0) 241 (54.6)
BMI, kg/m” 264 (42)  25.1(43) 247 (4.8) 25.0 (4.7) 272 (4.2)
Smoking, current 69 (8.6) 85 (11.8) 130 (18.5) 28 (22.6) 154 (34.9)
Smoking, never 388 (48.1) 199 (27.7)  332(47.4) 65 (52.4) 173 (39.2)
Adiponectin, ug/ml 9.7 (8.0) 53(3.8) 37Q27) 7.2(5.0) 7.0 (5.0)

Data are presented as mean + SD for age, as median (IQR) for adiponectin and BMI, and as n (%) for sex

and smoking status

Table 2 Characteristics of

. . . Characteristic KORA F4 LLS LLD TwinsUK SHIP-TREND

cohorts included in the leptin

EWAS meta-analysis Sample size 1702 723 701 94 441
Age, years 60.9+8.9 58.9+6.7 45.5+13.1 55.1+11.9 50.0+13.4
Female sex 874 (51.4) 372 (51.4) 411 (58.6) 94 (100.0) 241 (54.6)
BMI, kg/m? 27.4 (4.6) 25.1 (4.3) 24.7 (4.8) 25.0 (4.3) 272 (4.2)
Smoking, current 247 (14.5) 85 (11.8) 130 (18.5) 12 (12.8) 154 (34.9)
Smoking, never 711 (41.8) 199 (27.5) 332 (47.4) 50 (53.2) 173 (39.2)
Leptin, ng/ml 13.3 (19.9) 12.1 (20.6) 10.0 (17.0) 15.1 (12.1) 10.1 (14.7)

Data are presented as mean + SD for age, as median (IQR) for leptin and BMI, and as n (%) for sex and

smoking status
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Fig. 1 Scatter plots of relationships between adipokine-associated
DNAm effects before and after sensitivity analysis with Pearson
correlation coefficients and associated p values. CpGs taken for-
ward to downstream analysis are shown in blue and removed CpGs
are shown in red. A reference line (y=x) is shown by a grey dot-
ted line in all plots, indicating no change between models. (a) Adi-
ponectin-associated effects before and after adjustment for smoking.

HDL-cholesterol (OR for adiponectin and leptin, respec-
tively, 465.8 and 102.8, p;,<0.001), triglycerides (ORs
1917.4 and 413.7, ps,,<0.001), systolic BP (ORs 215.2
and 137.4, p;,<0.001), fasting insulin (ORs 435.5 and

Leptin base model

(b) Adiponectin-associated effects before and after adjusting for 12
extended blood-cell-type proportions predicted from DNAm data
using EpiDISH. (c) Adiponectin-associated effects before and after
adjustment for BMI. (d) Leptin-associated effects before and after
adjustment for smoking. (e) Leptin-associated effects before and after
adjusting for 12 extended blood-cell-type proportions. (f) Leptin-
associated effects before and after adjustment for BMI

147.5, p;4,<0.001) and glucose levels (ORs 121.4 and
22.0, p¢,<0.001), as well as type 2 diabetes itself (ORs
533.8 and 100.6, p;4,<0.001), highlighting the relevance
of our CpGs to metabolic health as a whole.
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Fig.2 Bidirectional Manhattan plots of the signed loglO(p values)
for all tested CpGs against their cumulative genomic position. Chro-
mosomes are separated by a fixed amount and labelled. CpGs signifi-
cant at the 5% level after adjusting for multiple testing are shown in

@ Springer

Genomic position

red (odd-numbered chromosomes) or blue (even-numbered chromo-
somes). Non-significant CpGs are shown in grey. (a) Results from the
adiponectin EWAS meta-analysis. (b) Results from the leptin EWAS
meta-analysis
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Fig.3 Plots showing the relationships between EWAS of different
traits. (a) Scatter plot of EWAS meta-analysis effect size for adi-
ponectin and leptin for all CpGs significant at the 5% level in one or
both analyses. CpGs significantly associated with both adipokines are
shown in red, those significant only in the adiponectin analysis are
blue and those only significant in the leptin analysis are coloured yel-
low. A reference line (y=—x) is shown by a grey dotted line, indicat-
ing perfectly inverse effect sizes between the two adipokines. (b) For-

est plot of the enrichment of traits in the adipokine-associated CpGs
showing log,-transformed ORs and their 95% Cls. Traits that are in
the top ten (as determined by OR) for one or both adipokines are
included, and they are ordered by maximum OR in descending order.
Results obtained using the adiponectin-associated set of CpGs are
shown in blue and those obtained from the leptin analysis are shown
in yellow. All enrichments shown are significant at the 5% level after
adjusting for multiple testing
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eQTM effect size at adiponectin CpGs

Functional genomics uncovers regulatory potential
in adipokine CpGs

We annotated the genomic positions of the 73 adiponectin-
and 211 leptin-associated CpGs to 15 chromatin states using
Roadmap reference epigenomes [21]. These consist of eight
active and seven repressed states showing distinct levels of
DNAm, accessibility and regulator binding. By testing if adi-
pokine CpGs were enriched for any particular genomic fea-
ture in the PBMC reference (E062), we revealed that active
chromatin states were over-represented and repressive states
depleted in our results (Fig. 4a and ESM Table 6).
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eQTM effect size at leptin CpGs

Both adipokines displayed enhancer enrichment, with
18 adiponectin (24.7%, OR8.82) and 33 leptin CpGs
(15.6%, OR4.87) annotated to enhancers, compared
with only 3.6% of total tested CpGs in the adiponectin
(n=14,706) and leptin (n=14,548) analyses. This indi-
cated high probability of co-localisation with markers of
open chromatin, specifically H2K4mel. To investigate
whether this pattern was cell-type-specific or tissue-spe-
cific, enrichment was analysed using reference epigenomes
for 22 other immune cell types (Roadmap Epigenomes:
E029-48, E050-51) and adipocytes (E063; ESM Table 7).
In all tested epigenomes except one (T, for adiponectin),
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«Fig. 4 Plots showing regulatory enrichment and integrative analysis
results. (a) Forest plot of chromatin state enrichments in adiponec-
tin- (blue) and leptin- (yellow) associated CpGs, identified using the
PBMC Roadmap reference epigenome (E062). Log,-transformed
ORs and 95% CIs are shown in descending order, with the larg-
est OR at the top. Six states with very large Cls for one or both adi-
pokines are not shown (12_EnhBiv, 11_BivFInk, 10_TssBiv, 9_Het,
8_7ZNF/Rpts and 6_EnhG). *p;;,<0.05. Chromatin states shown are
referred to in line with the original Roadmap annotation and include
enhancers (7:Enh), regions flanking active transcription (3:TxFInk),
transcribed regions (4:Tx), weakly transcribed regions (5:TxWk),
quiescent regions (15:Quies), weakly polycomb-repressed regions
(14:ReprPCWK), regions flanking active transcription start sites
(2:TssAFInk), active transcription start sites (1:TssA) and polycomb-
repressed regions (13:ReprPC). (b) Bar plot showing enriched TFBS
motifs and —log,,(p value) for adiponectin- (blue) and leptin- (yel-
low) associated CpGs. Regions within 50 base pairs of the CpG
sites were scanned using HOMER and enrichment was quantified
by comparing CpG regions with a random genomic background. All
TFBS shown are significant at the 5% level. Transcription factors are
referred to by their accepted abbreviation, as used within HOMER,
and structural motifs are shown within parentheses. (¢) Volcano plot
of the relationships between expression quantitative trait methylation
effect sizes and their significance, shown as —log,,(p value). DNAm
at the adiponectin-associated CpGs and normalised expression levels
of genes within 100 kb of them was investigated in the BIOS consor-
tium. The 11 genes with the highest support are shown. (d) Volcano
plot of the relationships between expression quantitative trait meth-
ylation effect sizes and their significance, shown as —log,,(p value).
DNAm at the leptin-associated CpGs and normalised expression lev-
els of genes within 100 kb of them was investigated in the BIOS con-
sortium. The eight genes with the highest support are shown. bHLH,
basic helix-loop-helix; bZIP, basic leucine zipper; eQTM, expression
quantitative trait methylation; HTH, helix-turn-helix; Zf, zinc finger

CpG genomic locations were enriched for enhancers
(£4:<0.05) demonstrating robust regulatory potential inde-
pendent of cell identity.

Since DNAm influences nearby expression predomi-
nantly by modulating TF binding [41], we tested regions
within 50 bp of the adipokine-associated CpGs for TFBS
enrichments (Fig. 4b and ESM Table 8), revealing links to
14 distinct TFs. Several of these were central to immunity
and inflammation (e.g. basic leucine zipper transcription
factor, ATF-like [BATF], BTB domain and CNC homo-
logue 2 [Bach2] and activator protein 1 [AP-1]) [42-44],
while others had specific adipokine relevance, includ-
ing Fos-related antigen 2 (Fosl2), which promotes leptin
expression [45], and MAF bZIP transcription factor A
(MafA), which downregulates adiponectin [46]. Taken
together, these functional analyses support adipokine-
related DNAm as occurring at cis-regulatory regions with
potential functional relevance.

Integrative analyses relate adipokine CpGs
to metabolic gene expression

Associations between DNAm and expression of nearby
genes (100 kb) was tested using blood-based data from

the BIOS consortium (n=3152; ESM Tables 9, 10). Out
of 1069 tested CpG—gene pairs, 21.2% were linked in this
analysis (n=227, p;4,<0.05), with the majority represent-
ing inverse relationships (71.5%) in line with previous
reports [47]. Thirty-five (47.9%) adiponectin CpGs were
associated with expression of 46 genes (Fig. 4c) and 100
(47.4%) leptin CpGs were linked to 151 genes (Fig. 4d). Of
the identified gene—CpG pairs, almost one in six involved
the nearest gene in both the adiponectin (15.2%, n=7) and
leptin (15.9%, n=24) analyses. Additionally, DNAm at two
distinct CpGs (cg11851174 and cg20544516) was associ-
ated with SREBF 1, a key regulator of lipid homeostasis
[48]. In total, there were eight genes overlapping between
leptin and adiponectin analyses, several of which are cen-
tral to lipid transport (e.g. ABCG]I) [49], biosynthesis (e.g.
DHCR24) [50] and metabolism (e.g. CPTIA) [51].

Biological roles for the implicated genes were interro-
gated using over-representation analysis. Of 16,037 gene
sets tested, 79 were enriched in the 46 genes linked to adi-
ponectin DNAm (ESM Table 11) and 15 were enriched in
the 151 leptin genes (ESM Table 12). Findings for both
adipokines highlighted links with lipid metabolism (e.g.
‘cholesterol metabolism’ and ‘metabolism of lipids’).
Almost half (n=7, 46.7%) of the leptin gene sets contained
the terms ‘metabolic’ or ‘metabolism’ but this pattern was
reduced in the adiponectin-related terms (n=10, 12.7%).
Adiponectin gene sets were more closely linked to cellu-
lar reprogramming, including via AMP-activated protein
kinase (AMPK) (py,=3.4 X 107%) and mammalian target of
rapamycin complex 1 (mTORC1) (p;,=9.7 x 1073) signal-
ling. These pathway-level results highlight the importance
of the identified genes in metabolic molecular processes
and regulation.

Bidirectional Mendelian randomisation
and triangulation analyses suggest DNAm may
drive adiponectin levels

Ascertaining the directionality of relationships in EWAS is not
straightforward. To shine light on the most plausible sequence
of events, genetic variants can act as proxies for adipokine and
DNAm exposures. In line with previous EWAS reporting [5,
52], we performed bidirectional 2SMR followed by triangula-
tion analysis. 2SMR predicts the causal effect of an exposure
on an outcome by combining genetically determined levels
of both, using GWAS or quantitative trait loci (QTL) data-
bases. Triangulation expands upon these directional inferences
and assumes that, if genetically determined outcome levels
(‘observed effects’) are driven by the exposure, then they can
be predicted by combining genetically determined exposure
and exposure—outcome associations (the ‘predicted effect’).
The correlation between observed and predicted effects then
quantifies the combined support for a causal direction, even
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if there is insufficient power at the individual CpG level. By
performing both analyses bidirectionally, we comparatively
inferred which direction of effect is most strongly supported
by the data.

In light of the conclusions from previous EWAS, where
blood-based DNAm was a consequence rather than a
cause of traits [5, 8, 52], we explored whether adipokine
levels could be driving DNAm. 2SMR did not suggest
that methylation was caused by either adiponectin (ESM
Table 13) or leptin (ESM Table 14), and triangulation
(ESM Tables 15, 16) consolidated this finding with mini-
mal correlations between observed (PGS—-DNAm) and
predicted (PGS-adipokine/adipokine-DNAm) effects
(R<0.02; Fig. 5a, b).

In the reverse direction, 2SMR supported DNAm at two
CpGs influencing adiponectin levels (ESM Tables 17, 18).
The first, cg11851174 (chr17:17712609), was associated
with incident type 2 diabetes [53] and annotated to active
chromatin in both PBMCs (4:Tx) and adipocytes (7:Enh).
In the blood-based integrative analyses, this site was linked
to SREBF1 (B=—0.004, ps;,=8.3 X 10_5), which encodes a
TF central to lipid homeostasis and biosynthesis and whose
expression is decreased in obesity and type 2 diabetes [48].

The second CpG putatively driving adiponectin,
cg02235049 (chr3:186559186), is a novel site not previously
identified in EWAS but strikingly annotated to ADIPOQ,
which encodes adiponectin. Integrative follow-up into its
methylation and nearby ADIPOQ expression was hindered
in the BIOS consortium data as adiponectin is not produced
by immune cells. However, in publicly available DNAm
and expression data from SGBS pre-adipocytes (n=38), this
CpG was negatively correlated with ADIPOQ expression
(R=—0.36, p=0.029). This inverse relationship aligned with
2SMR results (B=—0.217, pgy,=2.1 x 107'?) and a function-
ally repressive effect of DNAm on expression at this adipo-
cyte-specific enhancer.

The 2SMR direction of effect at both CpGs, where
DNAm influences adiponectin, was also supported by tri-
angulation analysis (Fig. 5c, d and ESM Tables 19, 20),
with observed and predicted effects correlated for adi-
ponectin (R=0.335, p=0.030) but not for leptin (R=0.017,
p=0.837). Taken together, these findings indicate a cell-
type-specific effect for the two CpGs identified as putative
drivers of adiponectin, with evidence of links to expression
for cg02235049 and cg11851174 in adipocytes and leuko-
cytes, respectively.

DNAm driving adiponectin is also upstream
of metabolic risk and disease

Evidence that these two CpGs (cgl1851174 and

cg02235049) were more likely a cause than a consequence of
adiponectin combined with their links to nearby expression
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in relevant cell types (SREBFI in blood and ADIPOQ in adi-
pocytes, respectively; Fig. 6a), prompted deeper analysis of
their clinical significance. In particular, for the SREBF1 CpG
(cg11851174) there were multiple lines of evidence pointing
towards functional regulation, including previous EWAS,
genomic annotation, integrative links and causal inference
(Fig. 6b). Using 2SMR, we evaluated causal links between
these two CpGs, type 2 diabetes and several metabolic risk
factors including fasting insulin and lipid levels.

Methylation of the SREBF1 CpG (cgl11851174) plausibly
decreased HDL-cholesterol levels (pgy,=4.11 x 107%) and
increased both fasting insulin (pg,=3.84 X 107°) and risk
of type 2 diabetes (p;y,=2.39 X 107>; ESM Table 21). Addi-
tionally, both the SREBF1 and ADIPOQ CpGs likely drove
triglyceride level increases (p;,=2.94 X 1072 and pj,,=2.39
% 107 for cg11851174 and cg02235049, respectively). In
the reverse direction, there was insufficient evidence for
DNAm at either CpG resulting from investigated metabolic
traits or type 2 diabetes itself (ESM Table 22). These results
showcase these specific loci as upstream epigenetic mark-
ers of type 2 diabetes pathogenesis. Coupled with evidence
that SREBF1 expression decreases type 2 diabetes risk by
increasing serum adiponectin [54, 55] and the clear rele-
vance of ADIPOQ to adiponectin production, there is now
considerable support for their direct regulatory potential in
metabolic risk (Fig. 6¢, d).

Discussion

In this study, we performed an EWAS of associations
between circulating adipokines and genome-wide DNAm
in five blood-based cohorts (adiponectin n=2791; leptin
n=3661). Through sensitivity analyses for cell-type pro-
portions, smoking and BMI, we derived two sets of CpGs
robustly associated with adiponectin (n=73) and leptin
(n=211). Methylation at these CpGs was associated with
both type 2 diabetes and metabolic risk factors including
BMI, fasting insulin and HDL-cholesterol. Additionally,
integrative analyses linked adipokine-associated DNAm
to expression of genes central to transport (e.g. ABCGI)
[49], biosynthesis (e.g. DHCR24) [50] and metabolism (e.g.
CPTIA) [51] of lipids.

Bidirectional 2SMR and triangulation did not indi-
cate a causal relationship between DNAm and leptin in
either direction but did support methylation at two CpGs
potentially regulating adiponectin, namely cg02235049
and cgl11851174. The first of these is a novel CpG not
previously identified in blood-based EWAS. Annotated
to ADIPOQ, the gene encoding adiponectin, this CpG
lies in a repressed chromatin region in PBMCs, making
functional relevance for its methylation in leukocytes
unlikely. Indeed, ADIPOQ was not/lowly expressed in
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Fig.5 Scatter plots of the results from triangulation analysis showing
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ponectin-associated CpGs. (b) Predicted (via leptin) and observed
(PGS—CpG associations) effects for the influence of genetically deter-

blood according to the BIOS consortium data. However,
functional genomics data revealed that this CpG was in
an adipocyte-specific enhancer and, since adipocytes
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mined leptin on DNAm at the leptin-associated CpGs. (c¢) Predicted
(via DNAm) and observed (mQTL-adiponectin) effects for the influ-
ence of DNAm at the adiponectin-associated CpGs on serum adi-
ponectin. Two CpGs significant from the 2SMR analysis are shown
labelled in red. (d) Predicted (via DNAm) and observed (mQTL-lep-
tin) effects for the influence of DNAm at the leptin-associated CpGs
on serum leptin. A reference line (y=x) is shown by a grey dotted line
in all plots

are the primary producers of adiponectin, this repre-
sented a biologically plausible cell-type-specific effect.
Therefore, we investigated the relationship between this
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Fig.6 Combined evidence that DNAm at two loci influences meta-
bolic health. (a) Scatter plot of the relationship between DNAm at
¢g02235049 and normalised ADIPOQ expression levels in SGBS pre-
adipocytes (n=38) differentiating over the course of 16 days. Pearson
correlation coefficients and their associated p values are shown and
the line of best fit is shown by a grey dotted line. (b) Sankey diagram
showing multiple downstream investigations into CpGs significant
at the 5% level after adjusting for multiple testing in this adiponec-
tin and/or leptin EWAS meta-analysis. CpGs removed following sen-
sitivity analyses (Not specific) are shown and those kept in due to
independent effects with adiponectin, leptin or both continue in the
diagram. CpGs not linked to traits in previous EWAS are shown (No
previous findings) and those that were linked continue in the diagram.
CpGs not lying in regions of active chromatin in PBMCs are shown
(Inactive chromatin in PBMCs). Finally, CpGs not linked to expres-
sion of genes within 100 kb in the BIOS consortium are shown (No
eQTM or Not tested). cg11851174 is shown as having evidence sup-
porting its functional relevance in all of these investigations (high-
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lighted in purple), and c¢g02235049 is shown as not having such col-
lective evidence (highlighted in orange). (¢) Flowchart showing the
body of evidence supporting DNAm at cg11851174 being linked to
type 2 diabetes via SREBFI and serum adiponectin: findings from
the current study (yellow boxes); increases in traits (DNAm and type
2 diabetes risk; orange boxes); decreased traits (SREBFI expres-
sion and serum adiponectin; blue boxes); and evidence from previ-
ous work (white boxes). All mentioned links are significant at the 5%
level after adjustment for multiple testing. (d) Flowchart showing the
body of evidence supporting DNAm at ¢g02235049 being linked to
triglyceride levels via ADIPOQ and serum adiponectin: findings from
the current study (yellow boxes); increases in traits (DNAm triglycer-
ide levels; orange boxes); decreased traits (ADIPOQ expression and
serum adiponectin; blue boxes); and evidence from previous work
(white boxes). All mentioned links are significant at the 5% level after
adjustment for multiple testing. e€QTM, expression quantitative trait
methylation
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CpG and ADIPOQ expression in publicly available adi-
pocyte data and observed a significant, inverse correla-
tion that aligned with our causal inference results.

This discovery underscores the potential for genome-wide
epigenetic analyses in large-scale blood-based cohorts to iden-
tify biologically relevant sites, even where their functional
roles may be in less accessible but more metabolically relevant
tissues. Such associations could be driven by shared upstream
factors, such as diet, causing DNAm in a tissue-agnostic man-
ner. Although these CpGs may only be functional in some tis-
sues (e.g. adipose), their ability to be detected in blood allows
well-powered EWAS such as this one to identify biologically
meaningful correlations. These sites, and others like them,
will ideally serve as focal points for targeted hypothesis-driven
investigations into adiponectin production by, for example,
experimentally modifying methylation in adipocytes.

The second CpG plausibly driving serum adiponectin lev-
els (cg11851174) resides in active chromatin in both PBMCs
and adipocytes close to the SREBFI gene, which encodes a
TF central to lipid homeostasis that binds to sterol regulatory
elements in the promoters of genes including ADIPOQ [48,
56]. Therefore, similar to the ADIPOQ CpG, this SREBF]
site could represent a functional epigenetic effect in adipo-
cytes being mirrored in blood. However, since we also linked
increased DNAm at this site to decreased SREBFI expres-
sion in the large-scale blood-based BIOS consortium data,
there is another plausible explanation for how DNAm could
act upstream of adiponectin production. Previous experi-
mental evidence from macrophage-specific sterol regulatory
element-binding protein (SREBP) cleavage-associating pro-
tein (SCAP) knockout mice has demonstrated that reduced
SREBP-1a activity promotes macrophage polarisation to
proinflammatory subtypes [57]. Therefore, circulating mono-
cytes epigenetically primed for lower SREBFI expression
could feasibly have proinflammatory cell fates as adipose-
tissue macrophages. Since local inflammation is an estab-
lished inhibitor of adiponectin production from adipocytes,
this represents a sequence of events where immune cell
DNAm could more directly influence adipokine production
[58]. These two hypotheses would need to be tested in dif-
ferentiating monocytes or macrophage—adipocyte co-cultures
but our findings offer an indication of plausible mechanisms
to follow-up.

Considering the collective evidence at the ADIPOQ and
SREBFI loci, and since the SREBF1 CpG has also previ-
ously been associated with HbA . [59] and incident type 2
diabetes [53], we investigated the broader implications of
these sites for metabolic disease using bidirectional 2SMR.
This indicated that these CpGs may also act upstream of
metabolic traits, including triglyceride levels and type 2
diabetes. These directional associations, coupled with pre-
vious work implicating SREBFI in type 2 diabetes risk via
adiponectin [54, 55] and the plausible relevance of ADIPOQ

as the gene encoding adiponectin, reinforce these CpGs as
promising epigenetic markers.

There were limitations to our study. Notably, we explored
relationships between leukocyte DNAm and serum adi-
ponectin with only minimal follow-up in adipocytes, the
cells that predominantly produce adipokines. Future func-
tional experiments in relevant tissues will be needed to test
the hypotheses generated here. Additionally, we could not
adjust for smoking in our main analysis due to incomplete
data and instead opted to ensure smoking-independent
effects via a two-step sensitivity analysis restricted to the
subset with complete data. While sex was included as a
covariate to adjust for potential confounding, no sex-strat-
ified analyses were performed. This limited our ability to
determine whether associations differed between sexes. Gen-
der identity was not assessed. Future research could explore
whether these findings apply equally across sex and gender
groups. This study was also conducted in European popula-
tions, and it remains to be tested whether our findings can
be generalised to other ethnicities. Lastly, this study was not
immune to the common weaknesses of molecular 2SMR.
For the adipokine-DNAm 2SMR, data were not available to
test all CpGs, meaning that only 57.5% of the adiponectin-
associated CpGs and 61.6% of the leptin-associated CpGs
were followed up in this analysis, and not all independent
SNPs were available in the mQTL and GWAS datasets. This
limited, and could have biased, instruments used for these
exposures. In addition, most mQTLs with strong effects lie
in close proximity to each other and are highly correlated.
Only between one and four independent mQTLs existed to
instrument each CpG and this 2SMR approach was expected
to have limited success in identifying directional effects with
bias towards the null [60].

In summary, this study highlights the potential of integra-
tive, epigenome-wide studies to uncover biologically mean-
ingful epigenetic markers of molecular traits, and reveals
novel insights into the regulatory mechanisms underlying
adiponectin production. By highlighting critical loci, we
offer focal points for future experimental research aiming
to dissect the secretory profiles of adipocytes or identify
therapeutic targets in metabolic disease.
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