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Abstract
Aims/hypothesis  Despite playing critical roles in the pathophysiology of type 2 diabetes and other metabolic disorders, the 
molecular mechanisms underlying circulating adipokine levels remain poorly understood. By identifying genomic regions 
involved in the regulation of adipokine levels and adipokine-mediated disease risk, we can improve our understanding of 
type 2 diabetes pathogenesis and inter-individual differences in metabolic risk.
Methods  We conducted an epigenome-wide meta-analysis of associations between serum adiponectin (n=2791) and leptin 
(n=3661) and leukocyte DNA methylation at over 400,000 CpG sites across five European cohorts. The resulting methylation 
signatures were followed up using functional genomics, integrative analyses and causal inference methods.
Results  Our findings revealed robust associations with adiponectin at 73 CpGs and leptin at 211 CpGs. Many of the identified 
sites were also associated with risk factors for the metabolic syndrome and located in enhancers close to relevant transcrip-
tion factor binding sites. Integrative analyses additionally linked 35 of the adiponectin-associated CpGs to the expression 
of 46 genes, and 100 of the leptin-associated CpGs to the expression of 151 genes, with implicated genes enriched for lipid 
transport (e.g. ABCG1), metabolism (e.g. CPT1A) and biosynthesis (e.g. DHCR24). Bidirectional two-sample Mendelian 
randomisation further identified two specific CpG sites as plausible drivers of both adiponectin levels and metabolic health: 
one annotated to ADIPOQ, the gene encoding adiponectin; and another linked to the expression of SREBF1, an established 
modifier of type 2 diabetes risk known to exert its effects via adiponectin.
Conclusions/interpretation  Taken together, these large-scale and integrative analyses uncovered links between adipokines 
and widespread, yet functionally specific, differences in regulation of genes with a central role in type 2 diabetes and its 
risk factors.

Keywords  Adiponectin · Causal inference · Epigenomics · Leptin · Lipid metabolism · Meta-analysis · Metabolic health · 
Type 2 diabetes
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Introduction

Adiponectin and leptin are key adipokines that play cen-
tral roles in regulating energy homeostasis and meta-
bolic processes, with influences on insulin sensitivity 
and inflammation. Circulating levels of these adipokines 
are directly implicated in the pathogenesis and progres-
sion of the metabolic syndrome and type 2 diabetes [1, 
2], and a clearer understanding of their regulation could 
uncover new avenues for predicting, preventing or treat-
ing metabolic disease.

Epigenetic modifications, such as DNA methyla-
tion (DNAm), are established as being both responsive 
to lifestyle changes and capable of modifying disease 
risk. Growing evidence supports epigenetic regulation of 
adiponectin and leptin as partly driving inter-individual 
differences in metabolic health [3, 4]. Blood-based epig-
enome-wide association studies (EWAS) have uncovered 
robust and biologically meaningful correlations between 
DNAm, metabolic diseases and their risk factors, even 
where investigated traits are non-haematopoietic in ori-
gin [5, 6]. Supported explanations for detected associa-
tions in leukocytes include shared upstream drivers such 
as diet [7], DNAm responses to circulating metabolic 
traits [8] and immune cell mediation of the inflammatory 
components of metabolic disease [9].

Despite substantial progress, however, research 
directly examining relationships between adiponectin 
and DNAm have been limited in sample size [10], and 
leptin has thus far not been investigated on a genome-
wide scale. A comprehensive EWAS of these adipokines 
is warranted in a sufficiently large sample size to detect 
subtle molecular effects, with thorough interpretation 
of the resulting methylation signatures for these critical 
metabolic markers.
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Methods

Cohort analyses

Main analysis  All contacted cohorts with sufficient data 
followed a common analysis plan (see Cohort Descrip-
tions in electronic supplementary material [ESM] Meth-
ods for details), and all samples analysed were taken from 
distinct individuals (i.e. there were no repeat measure-
ments included in the analysis). DNAm was measured 
either by the Illumina Infinium HumanMethylation450 
(in Leiden Longevity Study [LLS], Cooperative Health 
Research in the Region of Augsburg [KORA], TwinsUK 
and LifeLines DEEP [LLD] cohorts) or MethylationEPIC 
BeadChip array (in Study of Health in Pomerania [SHIP]-
TREND cohort). Adipokine measurements below the limit 
of detection and outlying values for DNAm, adiponectin 
and leptin (more than three IQRs from the nearest quar-
tile) were removed prior to analysis. Cell-type proportions 
were predicted from DNAm data using the IDOL algo-
rithm [11].

For each of j CpGs measured in i individuals, a linear 
regression model (see Equation 1 for general specification) 
was fitted of DNAm β values on natural log-transformed 
adiponectin (µg/ml) or leptin (ng/ml). All models were 
adjusted for age (in years), sex, cell-type proportions pre-
dicted from DNAm data (monocytes, CD8+ T cells, CD4+ 
T cells, natural killer [NK] cells and B cells) and techni-
cal covariates (left to the analyst’s discretion). Sex was 
considered in the study design and included as a covari-
ate in statistical models to address potential biological 
differences.

Analyses were not stratified by sex, and gender identity was 
not recorded.

Sensitivity analyses  Effects of adjustment for smoking 
on the relationship between adipokines and our iden-
tified CpGs was investigated in a sensitivity analysis, 
where each cohort added trichotomous smoking to the 
cohort-specific base models as a categorical fixed effect. 
In some cases, this resulted in a reduction of the sample 
size as there was missingness in the smoking data. To 
distinguish BMI-independent signals, cohorts also ran 
an additional analysis adjusting for BMI (measured in 
kg/m2).

Sensitivity analyses also investigated the effect of adjust-
ing for extended cell types, estimated using the epiDISH 
Bioconductor package release 3.20 [12], which became 

(1)

DNAm�ij
= β0 + β1 loge(adipokine)i + β2 agei + β3 sexFemalei

+ β4 CD8Ti + β5 CD4Ti + β6 NKi + β7 Monoi

+ β8 technical_factorsi

available in the timeframe of this project. Basophils, mem-
ory B cells, naive B cells, CD4+ memory T cells, CD4+ 
naive T cells, CD8+ memory T cells, CD8+ naive T cells, 
eosinophils, monocytes, NK cells and regulatory T cells 
were added to the base model for all cohorts. Neutrophils 
were excluded to avoid collinearity as proportions for all 
cells sum to 1.

Meta‑analysis

Results from each cohort were inspected and rows were 
removed if they were estimated from fewer than 50 obser-
vations. Probes located on sex chromosomes, in ENCODE 
Blacklist regions [13], or that contained known common 
genetic variants or were ambiguously mapped [14] were 
also removed. To ensure good quality data, we inspected 
QQ, volcano and Manhattan plots, alongside boxplots of 
the effect size and SE distributions across cohorts. Follow-
ing these steps, data were available on 412,224 CpGs from 
the base adiponectin model and 406,832 CpGs for the base 
leptin model.

The Bioconductor package bacon [15] estimated and 
adjusted for bias and inflation of the test statistics, using default 
priors (α=1.28, β=0.36). After running bacon, inflation and 
bias were estimated at ~1.00 and within ±0.00 for all models, 
respectively. Bacon-adjusted effect sizes and SEs were used as 
input in a fixed-effects meta-analysis in METAL version 2011-
03-25 [16]. Separate analyses were performed for each of the 
base models and each extended model (adjusted for smoking, 
BMI and extended cell counts). Any CpGs for which there 
was evidence of high heterogeneity in effect sizes between 
cohorts (I2 ≥ 80%) would have been removed but there were 
none. CpGs were regarded as significantly associated with the 
relevant adipokine if the false discovery rate (FDR)-adjusted 
p value was below 0.05, and only CpGs that still met this cri-
terion in the additional sensitivity analyses for smoking, cell-
type proportions and BMI were taken forward into downstream 
analyses.

Follow‑up analyses

Differentially methylated regions  To assess distinct genomic 
loci associated with circulating adipokine levels, differen-
tially methylated regions (DMRs) were identified using 
the DMRfinder algorithm [17], as implemented in the 
DNAmArray workflow version 2.1 [18]. DMRs were defined 
as regions with at least three differentially methylated posi-
tions (DMPs) and an inter-CpG distance of less than 1 kb, 
allowing a maximum of three non-DMPs across a DMR. The 
number of distinct loci was calculated as the total number 
of DMPs minus the number of DMPs in DMRs plus the 
number of DMRs called by DMRfinder.
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EWAS enrichment  Using summary data from the EWAS 
catalogue [19] and EWAS atlas [20], our CpGs were investi-
gated for previous associations with other phenotypes. Any 
EWAS meeting the following criteria was removed: without 
an associated PubMed ID; with a sample size under 500; that 
reported fewer than 100 CpGs in the respective database; 
missing nominal p values; not performed in adults; or not 
using whole blood or leukocyte samples. Traits were also 
recoded to ensure consistency between names, for example 
by combining EWAS of ‘BMI’ and ‘body mass index’. This 
resulted in a list of 57 traits, which were tested for enrichment 
of associations with our CpGs using logistic regression.

Chromatin state enrichment  Identified CpGs were anno-
tated to chromatin state using the peripheral blood mono-
nuclear cell (PBMC) Roadmap reference epigenomes [21]. 
Logistic regression models were fitted using the glm func-
tion in R to calculate and test ORs for each of the 15 chroma-
tin states. Nominal p values were adjusted for multiple test-
ing using FDR and enrichments or depletions were assessed 
at a 5% significance threshold.

Transcription factor binding site enrichment  A 50 bp win-
dow around FDR-significant CpGs was scanned using find-
MotifsGenome.pl from HOMER version 3.1 for enrichment 
of known motifs compared with a random genomic back-
ground matched for GC content [22]. ENCODE transcrip-
tion factor (TF) binding site (TFBS) annotation for 171 TFs 
and CpGs on the 450k array was used to further investigate 
the size of binding sites and distance from CpG to summit 
[14]. TFs associated with enriched TFBS were examined 
for links with adipokines and, specifically, adiponectin and 
leptin pathways and interactions.

Integrative analyses  Measurements of blood-based gene expres-
sion alongside DNAm from the same samples was available 
from the Biobank-based Integrative Omics Studies (BIOS) con-
sortium (n=3152). This dataset comprises six Dutch biobanks: 
the Cohort on Diabetes and Atherosclerosis Maastricht [23]; 
LifeLines [24]; LLS [25]; Netherlands Twin Register [26, 
27]; Rotterdam Study [28]; and the Prospective ALS Study 
Netherlands [29]. After filtering out non-autosomal and lowly 
expressed genes, count data were transformed into log2 counts 
per million (CPM) using edgeR, and values for each gene were 
rank inverse normal (RIN)-transformed prior to analysis [30].

Genomic locations of human transcripts, exons, cod-
ing sequences and genes were imported from the Ensembl 
database using makeTxDbFromEnsembl from the Genom-
icFeatures Bioconductor package [31]. These were used to 
identify the nearest gene to each adipokine-associated CpG 
and to save a list of all genes within 100 kb of each CpG. To 
examine links between DNAm and gene expression, linear 
regression models were fitted with RIN-transformed log2CPM 

values as the response variable and methylation β values as 
the independent variable, adjusting for the effects of age, sex, 
technical covariates (row, plate, and flowcell) and 12 blood-
cell counts predicted from DNAm using EpiDISH release 
3.20 [12].

For investigations into links between expression and 
DNAm in Simpson-Golabi-Behmel syndrome (SGBS) pre-
adipocytes, publicly available data were downloaded from 
Gene Expression Omnibus (GEO) using GEOquery in R 
release 3.20 (https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​
se/​bioc/​html/​GEOqu​ery.​html). Data were available for the 
same samples, with expression profiled using the Illumina 
HumanHT-12 V4.0 expression BeadChip microarray and 
DNAm profiled using the Illumina Infinium HumanMethyla-
tion450 BeadChip array [32]. Count data were normalised 
to log2CPM values and values from probes interrogating 
ADIPOQ (ILMN_1775045) and SREBF1 (ILMN_1663035, 
ILMN_1695378 and ILMN_2328986) were extracted. Addi-
tionally, β values from cg11851174 and cg02235049 were 
subset from the DNAm data. Complete information was avail-
able for 38 samples across five timepoints (days 0, 1, 2, 4, 8 
and 16). Expression and DNAm values were plotted against 
one another for the relevant comparisons, correlation coef-
ficients were calculated and linear regression models were 
used for analysis.

Over‑representation analysis  On the basis of the large-scale 
blood-based integrative analysis in BIOS, a list of CpGs for 
which there was evidence for epigenetic regulation of nearby 
gene expression in leukocytes was saved. The associated 
gene names were used as input for over-representation analy-
sis using 11 recent (updated in the last 6 years) databases 
relating to human health and disease downloaded from Enri-
chr (BioPlanet 2019, Elsevier Pathway Collection, GeDiP-
Net 2023, GO Biological Process 2023, KEGG Human 
2021, MSigDB Hallmark 2020, OMIM, PhenGenI Asso-
ciation 2021, PheWeb 2019, Reactome 2022 and WikiP-
athway Human 2021). These databases were imported into 
R and analyses were performed using the Enrichr function 
from clusterProfiler release 3.20 [33]. p values were FDR-
adjusted for multiple testing and significance was assessed 
at the 5% level.

Bidirectional two‑sample Mendelian randomisation  To 
assess the direction of effects between adipokines and DNAm 
at identified CpGs, the TwoSampleMR package was used to 
perform bidirectional two-sample Mendelian randomisation 
(2SMR) [34]. This instrumental variable (IV)-based method 
uses genome-wide association study (GWAS) summary sta-
tistics to infer whether a risk factor causally influences an 
outcome. 2SMR relies on several key assumptions, namely 
that instruments are relevant, independent and that there is no 
horizontal pleiotropy. To interrogate the effects of DNAm at 

https://www.bioconductor.org/packages/release/bioc/html/GEOquery.html
https://www.bioconductor.org/packages/release/bioc/html/GEOquery.html
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our CpGs on adiponectin and leptin, we extracted SNP-based 
cis-methylation quantitative trait locus (mQTL) data from the 
Genetics of DNA Methylation Consortium (GoDMC) [35] 
and combined these with summary statistics from recent, 
large-scale GWAS of both adiponectin [36] and leptin [37]. 
For some CpGs (42.5% for adiponectin and 38.4% for lep-
tin), there was insufficient data available to interrogate the 
effects of DNAm at that CpG. For the remaining CpGs, 
between one and four independent SNPs with data on both 
their cis-association with DNAm and association with the rel-
evant adipokine were used as instruments. These were com-
bined using the Wald ratio (for single mQTL instruments) 
or inverse variance weighted (IVW) methods (for multiple, 
independent mQTLs).

To interrogate the influence of adipokine levels on DNAm 
at identified CpGs, independent GWAS variants from recent, 
large-scale analyses [36, 37] were used. Of the 18 variants 
that could instrument adiponectin, there were trans-mQTL 
data in GoDMC available for four of them and, of the six 
variants that could instrument leptin, there were available 
data for one. Linkage disequilibrium (LD) proxies with 
R2>0.8 for the remaining SNPs were downloaded from 
the NIH’s LDlink tool version 5.6.7_20240620 [38], and 
GoDMC data [35] were extracted for these where avail-
able. This process identified two other instrumental SNPs 
that could instrument the adipokines, one for each, mean-
ing that leptin was instrumented by two independent SNPs 
(rs8043757 and rs4665972) and adiponectin was instru-
mented by five independent SNPs (rs11023332, rs1108842, 
rs12051272, rs998584 and rs113086489). The GWAS 
summary statistics and mQTL effects were then combined 
using the IVW method and the TwoSampleMR package in 
R version 0.6.6. For all analyses, p values were adjusted for 
multiple testing using the FDR method and potential causal 
effects were assessed at the 5% significance threshold.

The following cohorts were used to derive both mQTL 
effects in GoDMC and adiponectin and/or leptin GWAS 
effects and therefore had overlapping individuals in both the 
exposure and outcome datasets for the 2SMR analysis: Rot-
terdam Study (GoDMC 1472 samples, leptin GWAS 3932 
samples); and TwinsUK (GoDMC 843 samples, adiponectin 
GWAS 968 and 1229 samples, leptin GWAS 5654 samples). 
Therefore, overall, the overlap was low considering that all 
three meta-analyses incorporated data from over 16 cohorts.

The TwoSampleMR package version 0.6.6 was also used 
to interrogate causal links between DNAm at CpGs and 
metabolic traits. CpGs were instrumented with independ-
ent cis-mQTLs obtained from GoDMC, and ieugwasr was 
used to extract MR instruments for the metabolic traits. Ref-
erence numbers for the investigated traits were as follows: 
type 2 diabetes (ebi-a-GCST006967); fasting insulin (ebi-a-
GCST9002238); triglycerides (ieu-b-111); HDL-cholesterol 
(ieu-b-109); and BMI (ieu-b-40).

Triangulation analyses  To perform triangulation analyses, we 
interrogated the correlation between the observed effect of an 
IV on an outcome (i.e. mQTL–adipokine or polygenic score 
[PGS]–DNAm associations) and the predicted effect via the 
exposure. This analysis assumes that if the effect of an exposure 
on an outcome is causal, it would be possible to predict the IV’s 
effect on the outcome through a combination of its effect on the 
exposure and the exposure’s effect on the outcome.

In detail, when looking at the effect of DNAm on adi-
pokine levels (consequential analysis), the ‘observed effect’ 
is the association between the top mQTL and loge(adipokine), 
extracted from the full GWAS summary data. The ‘predicted 
effect’ combines mQTL and EWAS statistics to estimate the 
influence of an additional effect allele (EA) on the outcome 
(i.e. the adipokine). For each additional EA, the expected rise 
in DNAm at the CpG is equivalent to the mQTL effect size 
(βmQTL). As the EWAS effect size represents the DNAm effect 
associated with a one-unit increase in the adipokine level, the 
expected increase in the adipokine level for a βmQTL increase 
in DNAm can be calculated as the product of the mQTL and 
EWAS effects (i.e. βmQTL × βEWAS). SNP effects on DNAm 
(mQTL effects) were extracted from GoDMC data [35] and 
CpG-adipokine effects were extracted from the EWAS meta-
analysis presented here.

When looking in the reverse direction (i.e. adipokines as 
a cause of DNAm), the ‘observed effect’ is a PGS, where 
the influence of adipokine-associated SNPs on DNAm are 
weighted by their EA frequency (EAF). The ‘predicted effect’ 
here uses equivalent EAF weighting and is calculated as 
PGS~adipokine/adipokine~CpG. The observed and predicted 
effects in both directions were visualised using scatter plots and 
correlation was assessed with Pearson correlation coefficients.

Software

Unless stated otherwise, all calculations were performed using 
R version 4.2.2 (R Core Team, http://​www.r-​proje​ct.​org). For 
all meta-analyses, METAL, version 2011-03-25 was used 
(http://​csg.​sph.​umich.​edu/​abeca​sis/​Metal) [16]. TFBS enrich-
ment analyses were performed using HOMER version 3.1 
(http://​homer.​ucsd.​edu/​homer) [22].

Results

Circulating adipokines have distinct DNA 
methylation signatures in blood

We performed a meta-analysis of EWAS of circulating 
adiponectin (n=2791; 412,224 CpGs) and leptin (n=3661; 
406,390 CpGs) levels in blood samples from five Euro-
pean cohorts (Tables 1, 2). Mean age was 55.5 years in the 

http://www.r-project.org
http://csg.sph.umich.edu/abecasis/Metal
http://homer.ucsd.edu/homer
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leptin meta-analysis and 56.8 years for adiponectin, and 
the population was predominantly female (55.2% in the 
adiponectin meta-analysis, 54.4% in the leptin meta-analy-
sis). Cohorts represented a combination of fasted (KORA, 
TwinsUK, SHIP-TREND and LLD) and non-fasted (LLS) 
samples. Full summary statistics for all tested CpGs can be 
found in ESM Tables 1, 2. Circulating levels of adiponec-
tin and leptin were associated with blood-based DNAm at 
73 CpG sites and 621 CpG sites, respectively (pfdr≤0.05, 
nominal p value thresholds 8.8 × 10−6 for adiponectin, 
7.6 × 10−5 for leptin). These results were adjusted for age, 
sex, technical covariates and six blood-cell types predicted 
using DNAm data (granulocytes, monocytes, NK cells, 
CD4+ T cells, CD8+ T cells and B cells). No CpGs dis-
played high heterogeneity between cohorts (all I2<80%) 
and test statistics were corrected for bias and inflation.

To evaluate the stability of associations between 
DNAm and adipokines, sensitivity analyses assessed the 
impact of smoking, 12 distinct cell types and BMI (ESM 
Tables 3, 4). For the majority of adiponectin CpGs, asso-
ciations remained statistically significant after adjust-
ment for these additional variables (pfdr≤0.05), with very 
strong correlations between effect size (R>0.99, p<0.001; 
Fig. 1a–c). Effects at leptin CpGs also showed relative 
independence from smoking and cell-type proportions 
(Fig. 1d, e). Unsurprisingly however, since leptin has 
stronger and more direct links to obesity [39, 40], 401 
leptin CpGs were sensitive to BMI adjustment (pfdr>0.05; 

Fig. 1f). To ensure focus on adipokine-specific epigenetic 
links in downstream analyses, these were removed from 
the results.

The final set of CpGs included 73 adiponectin and 211 
leptin-associated sites (Fig. 2), representing 65 and 203 
distinct loci, respectively. Ten CpGs were associated with 
both adipokines, and adiponectin and leptin effect sizes were 
inversely correlated at the 274 uniquely identified CpGs 
(R=−0.81 p<0.001; Fig. 3a).

Adipokine‑associated methylation is also linked 
to metabolic health

To assess the relevance of the adipokine-associated 
CpGs, we conducted a search of previous EWAS (ESM 
Table 5). Notably, 65 of the 73 adiponectin CpGs (89.0%) 
and 145 of the 211 leptin CpGs (68.7%) were associated 
with at least one other trait. As anticipated a priori, adi-
pokines and adiposity were closely related and, despite 
the removal of CpGs sensitive to adjustment for BMI, 
and therefore evidence for BMI-independent associations 
with adipokines at the tested CpGs, the strongest enrich-
ments were observed with BMI (OR 571.7 and 151.3 
for adiponectin and leptin, respectively; pfdr<0.001). In 
total, 40 (54.8%) of the adiponectin and 51 (24.2%) of 
the leptin CpGs were associated with BMI in large-scale 
blood-based EWAS. In addition, enrichments existed 
for other metabolic risk factors (Fig.  3b), including 

Table 1   Characteristics 
of cohorts included in the 
adiponectin EWAS meta-
analysis

Data are presented as mean ± SD for age, as median (IQR) for adiponectin and BMI, and as n (%) for sex 
and smoking status

Characteristic KORA F4 LLS LLD TwinsUK SHIP-TREND

Sample size 807 718 701 124 441
Age, years 68.8±4.4 58.9±6.7 45.5±13.1 55.1±11.7 50.0±13.4
Female sex 396 (49.1) 370 (51.5) 411 (58.6) 124 (100.0) 241 (54.6)
BMI, kg/m2 26.4 (4.2) 25.1 (4.3) 24.7 (4.8) 25.0 (4.7) 27.2 (4.2)
Smoking, current 69 (8.6) 85 (11.8) 130 (18.5) 28 (22.6) 154 (34.9)
Smoking, never 388 (48.1) 199 (27.7) 332 (47.4) 65 (52.4) 173 (39.2)
Adiponectin, µg/ml 9.7 (8.0) 5.3 (3.8) 3.7 (2.7) 7.2 (5.0) 7.0 (5.0)

Table 2   Characteristics of 
cohorts included in the leptin 
EWAS meta-analysis

Data are presented as mean ± SD for age, as median (IQR) for leptin and BMI, and as n (%) for sex and 
smoking status

Characteristic KORA F4 LLS LLD TwinsUK SHIP-TREND

Sample size 1702 723 701 94 441
Age, years 60.9±8.9 58.9±6.7 45.5±13.1 55.1±11.9 50.0±13.4
Female sex 874 (51.4) 372 (51.4) 411 (58.6) 94 (100.0) 241 (54.6)
BMI, kg/m2 27.4 (4.6) 25.1 (4.3) 24.7 (4.8) 25.0 (4.3) 27.2 (4.2)
Smoking, current 247 (14.5) 85 (11.8) 130 (18.5) 12 (12.8) 154 (34.9)
Smoking, never 711 (41.8) 199 (27.5) 332 (47.4) 50 (53.2) 173 (39.2)
Leptin, ng/ml 13.3 (19.9) 12.1 (20.6) 10.0 (17.0) 15.1 (12.1) 10.1 (14.7)
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HDL-cholesterol (OR for adiponectin and leptin, respec-
tively, 465.8 and 102.8, pfdr<0.001), triglycerides (ORs 
1917.4 and 413.7, pfdr<0.001), systolic BP (ORs 215.2 
and 137.4, pfdr<0.001), fasting insulin (ORs 435.5 and 

147.5, pfdr<0.001) and glucose levels (ORs 121.4 and 
22.0, pfdr<0.001), as well as type 2 diabetes itself (ORs 
533.8 and 100.6, pfdr<0.001), highlighting the relevance 
of our CpGs to metabolic health as a whole.
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Fig. 1   Scatter plots of relationships between adipokine-associated 
DNAm effects before and after sensitivity analysis with Pearson 
correlation coefficients and associated p values. CpGs taken for-
ward to downstream analysis are shown in blue and removed CpGs 
are shown in red. A reference line (y=x) is shown by a grey dot-
ted line in all plots, indicating no change between models. (a) Adi-
ponectin-associated effects before and after adjustment for smoking. 

(b) Adiponectin-associated effects before and after adjusting for 12 
extended blood-cell-type proportions predicted from DNAm data 
using EpiDISH. (c) Adiponectin-associated effects before and after 
adjustment for BMI. (d) Leptin-associated effects before and after 
adjustment for smoking. (e) Leptin-associated effects before and after 
adjusting for 12 extended blood-cell-type proportions. (f) Leptin-
associated effects before and after adjustment for BMI
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a

b

Genomic position

Genomic position

Fig. 2   Bidirectional Manhattan plots of the signed log10(p values) 
for all tested CpGs against their cumulative genomic position. Chro-
mosomes are separated by a fixed amount and labelled. CpGs signifi-
cant at the 5% level after adjusting for multiple testing are shown in 

red (odd-numbered chromosomes) or blue (even-numbered chromo-
somes). Non-significant CpGs are shown in grey. (a) Results from the 
adiponectin EWAS meta-analysis. (b) Results from the leptin EWAS 
meta-analysis
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Fig. 3   Plots showing the relationships between EWAS of different 
traits. (a) Scatter plot of EWAS meta-analysis effect size for adi-
ponectin and leptin for all CpGs significant at the 5% level in one or 
both analyses. CpGs significantly associated with both adipokines are 
shown in red, those significant only in the adiponectin analysis are 
blue and those only significant in the leptin analysis are coloured yel-
low. A reference line (y=−x) is shown by a grey dotted line, indicat-
ing perfectly inverse effect sizes between the two adipokines. (b) For-

est plot of the enrichment of traits in the adipokine-associated CpGs 
showing loge-transformed ORs and their 95% CIs. Traits that are in 
the top ten (as determined by OR) for one or both adipokines are 
included, and they are ordered by maximum OR in descending order. 
Results obtained using the adiponectin-associated set of CpGs are 
shown in blue and those obtained from the leptin analysis are shown 
in yellow. All enrichments shown are significant at the 5% level after 
adjusting for multiple testing
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Functional genomics uncovers regulatory potential 
in adipokine CpGs

We annotated the genomic positions of the 73 adiponectin- 
and 211 leptin-associated CpGs to 15 chromatin states using 
Roadmap reference epigenomes [21]. These consist of eight 
active and seven repressed states showing distinct levels of 
DNAm, accessibility and regulator binding. By testing if adi-
pokine CpGs were enriched for any particular genomic fea-
ture in the PBMC reference (E062), we revealed that active 
chromatin states were over-represented and repressive states 
depleted in our results (Fig. 4a and ESM Table 6).

Both adipokines displayed enhancer enrichment, with 
18 adiponectin (24.7%, OR8.82) and 33 leptin CpGs 
(15.6%, OR4.87) annotated to enhancers, compared 
with only 3.6% of total tested CpGs in the adiponectin 
(n=14,706) and leptin (n=14,548) analyses. This indi-
cated high probability of co-localisation with markers of 
open chromatin, specifically H2K4me1. To investigate 
whether this pattern was cell-type-specific or tissue-spe-
cific, enrichment was analysed using reference epigenomes 
for 22 other immune cell types (Roadmap Epigenomes: 
E029–48, E050–51) and adipocytes (E063; ESM Table 7). 
In all tested epigenomes except one (Treg for adiponectin), 

PHGDH

0

50

100

150

−0.050 −0.025 0.000 0.025 0.050

eQTM effect size at adiponectin CpGs

KLF6 (Zf)

X-box (HTH)

SCL (bHLH)

BATF (bZIP)

Bach2 (bZIP)

AP-1 (bZIP)

Rfx1 (HTH)

JunB (bZIP)

Rfx2 (HTH)

Fosl2 (bZIP)

RFX (HTH)

0 2 4 6 8

−log10p

Zic3 (Zf)

Npas4 (bHLH)

MafA (bZIP)

0 2 4 6 8

−log10p

13:ReprPC

1:TssA

2:TssAFlnk

14:ReprPCWk

15:Quies

5:TxWk

4:Tx

3:TxFlnk

7:Enh

−5.0 −2.5 0.0 2.5 5.0

Loge-transformed OR

a b

TMEM204

0

50

100

150

200

250

−0.10 −0.05 0.00 0.05 0.10

c d

Adiponectin

Leptin

−
lo

g 1
0
p DHCR24

ABCG1

SYNGR1

ABCG1

SYNGR1

SREBF1

ABCG1
MPZL2

MPZL3
CPT1A

−
lo

g 1
0
p

eQTM effect size at leptin CpGs

PHGDH

RAB34

PHGDH

DHCR24

ABCG1

CHI3L2

ENC1

*
*

*

*

*



137Diabetologia (2026) 69:127–145	

CpG genomic locations were enriched for enhancers 
(pfdr≤0.05) demonstrating robust regulatory potential inde-
pendent of cell identity.

Since DNAm influences nearby expression predomi-
nantly by modulating TF binding [41], we tested regions 
within 50 bp of the adipokine-associated CpGs for TFBS 
enrichments (Fig. 4b and ESM Table 8), revealing links to 
14 distinct TFs. Several of these were central to immunity 
and inflammation (e.g. basic leucine zipper transcription 
factor, ATF-like [BATF], BTB domain and CNC homo-
logue 2 [Bach2] and activator protein 1 [AP-1]) [42–44], 
while others had specific adipokine relevance, includ-
ing Fos-related antigen 2 (Fosl2), which promotes leptin 
expression [45], and MAF bZIP transcription factor A 
(MafA), which downregulates adiponectin [46]. Taken 
together, these functional analyses support adipokine-
related DNAm as occurring at cis-regulatory regions with 
potential functional relevance.

Integrative analyses relate adipokine CpGs 
to metabolic gene expression

Associations between DNAm and expression of nearby 
genes (±100 kb) was tested using blood-based data from 

the BIOS consortium (n=3152; ESM Tables 9, 10). Out 
of 1069 tested CpG–gene pairs, 21.2% were linked in this 
analysis (n=227, pfdr<0.05), with the majority represent-
ing inverse relationships (71.5%) in line with previous 
reports [47]. Thirty-five (47.9%) adiponectin CpGs were 
associated with expression of 46 genes (Fig. 4c) and 100 
(47.4%) leptin CpGs were linked to 151 genes (Fig. 4d). Of 
the identified gene–CpG pairs, almost one in six involved 
the nearest gene in both the adiponectin (15.2%, n=7) and 
leptin (15.9%, n=24) analyses. Additionally, DNAm at two 
distinct CpGs (cg11851174 and cg20544516) was associ-
ated with SREBF1, a key regulator of lipid homeostasis 
[48]. In total, there were eight genes overlapping between 
leptin and adiponectin analyses, several of which are cen-
tral to lipid transport (e.g. ABCG1) [49], biosynthesis (e.g. 
DHCR24) [50] and metabolism (e.g. CPT1A) [51].

Biological roles for the implicated genes were interro-
gated using over-representation analysis. Of 16,037 gene 
sets tested, 79 were enriched in the 46 genes linked to adi-
ponectin DNAm (ESM Table 11) and 15 were enriched in 
the 151 leptin genes (ESM Table 12). Findings for both 
adipokines highlighted links with lipid metabolism (e.g. 
‘cholesterol metabolism’ and ‘metabolism of lipids’). 
Almost half (n=7, 46.7%) of the leptin gene sets contained 
the terms ‘metabolic’ or ‘metabolism’ but this pattern was 
reduced in the adiponectin-related terms (n=10, 12.7%). 
Adiponectin gene sets were more closely linked to cellu-
lar reprogramming, including via AMP-activated protein 
kinase (AMPK) (pfdr=3.4 × 10−3) and mammalian target of 
rapamycin complex 1 (mTORC1) (pfdr=9.7 × 10−3) signal-
ling. These pathway-level results highlight the importance 
of the identified genes in metabolic molecular processes 
and regulation.

Bidirectional Mendelian randomisation 
and triangulation analyses suggest DNAm may 
drive adiponectin levels

Ascertaining the directionality of relationships in EWAS is not 
straightforward. To shine light on the most plausible sequence 
of events, genetic variants can act as proxies for adipokine and 
DNAm exposures. In line with previous EWAS reporting [5, 
52], we performed bidirectional 2SMR followed by triangula-
tion analysis. 2SMR predicts the causal effect of an exposure 
on an outcome by combining genetically determined levels 
of both, using GWAS or quantitative trait loci (QTL) data-
bases. Triangulation expands upon these directional inferences 
and assumes that, if genetically determined outcome levels 
(‘observed effects’) are driven by the exposure, then they can 
be predicted by combining genetically determined exposure 
and exposure–outcome associations (the ‘predicted effect’). 
The correlation between observed and predicted effects then 
quantifies the combined support for a causal direction, even 

Fig. 4   Plots showing regulatory enrichment and integrative analysis 
results. (a) Forest plot of chromatin state enrichments in adiponec-
tin- (blue) and leptin- (yellow) associated CpGs, identified using the 
PBMC Roadmap reference epigenome (E062). Loge-transformed 
ORs and 95% CIs are shown in descending order, with the larg-
est OR at the top. Six states with very large CIs for one or both adi-
pokines are not shown (12_EnhBiv, 11_BivFlnk, 10_TssBiv, 9_Het, 
8_ZNF/Rpts and 6_EnhG). *pfdr<0.05. Chromatin states shown are 
referred to in line with the original Roadmap annotation and include 
enhancers (7:Enh), regions flanking active transcription (3:TxFlnk), 
transcribed regions (4:Tx), weakly transcribed regions (5:TxWk), 
quiescent regions (15:Quies), weakly polycomb-repressed regions 
(14:ReprPCWk), regions flanking active transcription start sites 
(2:TssAFlnk), active transcription start sites (1:TssA) and polycomb-
repressed regions (13:ReprPC). (b) Bar plot showing enriched TFBS 
motifs and −log10(p value) for adiponectin- (blue) and leptin- (yel-
low) associated CpGs. Regions within 50 base pairs of the CpG 
sites were scanned using HOMER and enrichment was quantified 
by comparing CpG regions with a random genomic background. All 
TFBS shown are significant at the 5% level. Transcription factors are 
referred to by their accepted abbreviation, as used within HOMER, 
and structural motifs are shown within parentheses. (c) Volcano plot 
of the relationships between expression quantitative trait methylation 
effect sizes and their significance, shown as −log10(p value). DNAm 
at the adiponectin-associated CpGs and normalised expression levels 
of genes within 100 kb of them was investigated in the BIOS consor-
tium. The 11 genes with the highest support are shown. (d) Volcano 
plot of the relationships between expression quantitative trait meth-
ylation effect sizes and their significance, shown as −log10(p value). 
DNAm at the leptin-associated CpGs and normalised expression lev-
els of genes within 100 kb of them was investigated in the BIOS con-
sortium. The eight genes with the highest support are shown. bHLH, 
basic helix-loop-helix; bZIP, basic leucine zipper; eQTM, expression 
quantitative trait methylation; HTH, helix-turn-helix; Zf, zinc finger

◂
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if there is insufficient power at the individual CpG level. By 
performing both analyses bidirectionally, we comparatively 
inferred which direction of effect is most strongly supported 
by the data.

In light of the conclusions from previous EWAS, where 
blood-based DNAm was a consequence rather than a 
cause of traits [5, 8, 52], we explored whether adipokine 
levels could be driving DNAm. 2SMR did not suggest 
that methylation was caused by either adiponectin (ESM 
Table 13) or leptin (ESM Table 14), and triangulation 
(ESM Tables 15, 16) consolidated this finding with mini-
mal correlations between observed (PGS–DNAm) and 
predicted (PGS–adipokine/adipokine–DNAm) effects 
(R<0.02; Fig. 5a, b).

In the reverse direction, 2SMR supported DNAm at two 
CpGs influencing adiponectin levels (ESM Tables 17, 18). 
The first, cg11851174 (chr17:17712609), was associated 
with incident type 2 diabetes [53] and annotated to active 
chromatin in both PBMCs (4:Tx) and adipocytes (7:Enh). 
In the blood-based integrative analyses, this site was linked 
to SREBF1 (β=−0.004, pfdr=8.3 × 10−5), which encodes a 
TF central to lipid homeostasis and biosynthesis and whose 
expression is decreased in obesity and type 2 diabetes [48].

The second CpG putatively driving adiponectin, 
cg02235049 (chr3:186559186), is a novel site not previously 
identified in EWAS but strikingly annotated to ADIPOQ, 
which encodes adiponectin. Integrative follow-up into its 
methylation and nearby ADIPOQ expression was hindered 
in the BIOS consortium data as adiponectin is not produced 
by immune cells. However, in publicly available DNAm 
and expression data from SGBS pre-adipocytes (n=38), this 
CpG was negatively correlated with ADIPOQ expression 
(R=−0.36, p=0.029). This inverse relationship aligned with 
2SMR results (β=−0.217, pfdr=2.1 × 10−12) and a function-
ally repressive effect of DNAm on expression at this adipo-
cyte-specific enhancer.

The 2SMR direction of effect at both CpGs, where 
DNAm influences adiponectin, was also supported by tri-
angulation analysis (Fig. 5c, d and ESM Tables 19, 20), 
with observed and predicted effects correlated for adi-
ponectin (R=0.335, p=0.030) but not for leptin (R=0.017, 
p=0.837). Taken together, these findings indicate a cell-
type-specific effect for the two CpGs identified as putative 
drivers of adiponectin, with evidence of links to expression 
for cg02235049 and cg11851174 in adipocytes and leuko-
cytes, respectively.

DNAm driving adiponectin is also upstream 
of metabolic risk and disease

Evidence that these two CpGs (cg11851174 and 
cg02235049) were more likely a cause than a consequence of 
adiponectin combined with their links to nearby expression 

in relevant cell types (SREBF1 in blood and ADIPOQ in adi-
pocytes, respectively; Fig. 6a), prompted deeper analysis of 
their clinical significance. In particular, for the SREBF1 CpG 
(cg11851174) there were multiple lines of evidence pointing 
towards functional regulation, including previous EWAS, 
genomic annotation, integrative links and causal inference 
(Fig. 6b). Using 2SMR, we evaluated causal links between 
these two CpGs, type 2 diabetes and several metabolic risk 
factors including fasting insulin and lipid levels.

Methylation of the SREBF1 CpG (cg11851174) plausibly 
decreased HDL-cholesterol levels (pfdr=4.11 × 10−3) and 
increased both fasting insulin (pfdr=3.84 × 10−3) and risk 
of type 2 diabetes (pfdr=2.39 × 10−5; ESM Table 21). Addi-
tionally, both the SREBF1 and ADIPOQ CpGs likely drove 
triglyceride level increases (pfdr=2.94 × 10−2 and pfdr=2.39 
× 10−5 for cg11851174 and cg02235049, respectively). In 
the reverse direction, there was insufficient evidence for 
DNAm at either CpG resulting from investigated metabolic 
traits or type 2 diabetes itself (ESM Table 22). These results 
showcase these specific loci as upstream epigenetic mark-
ers of type 2 diabetes pathogenesis. Coupled with evidence 
that SREBF1 expression decreases type 2 diabetes risk by 
increasing serum adiponectin [54, 55] and the clear rele-
vance of ADIPOQ to adiponectin production, there is now 
considerable support for their direct regulatory potential in 
metabolic risk (Fig. 6c, d).

Discussion

In this study, we performed an EWAS of associations 
between circulating adipokines and genome-wide DNAm 
in five blood-based cohorts (adiponectin n=2791; leptin 
n=3661). Through sensitivity analyses for cell-type pro-
portions, smoking and BMI, we derived two sets of CpGs 
robustly associated with adiponectin (n=73) and leptin 
(n=211). Methylation at these CpGs was associated with 
both type 2 diabetes and metabolic risk factors including 
BMI, fasting insulin and HDL-cholesterol. Additionally, 
integrative analyses linked adipokine-associated DNAm 
to expression of genes central to transport (e.g. ABCG1) 
[49], biosynthesis (e.g. DHCR24) [50] and metabolism (e.g. 
CPT1A) [51] of lipids.

Bidirectional 2SMR and triangulation did not indi-
cate a causal relationship between DNAm and leptin in 
either direction but did support methylation at two CpGs 
potentially regulating adiponectin, namely cg02235049 
and cg11851174. The first of these is a novel CpG not 
previously identified in blood-based EWAS. Annotated 
to ADIPOQ, the gene encoding adiponectin, this CpG 
lies in a repressed chromatin region in PBMCs, making 
functional relevance for its methylation in leukocytes 
unlikely. Indeed, ADIPOQ was not/lowly expressed in 
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blood according to the BIOS consortium data. However, 
functional genomics data revealed that this CpG was in 
an adipocyte-specific enhancer and, since adipocytes 

are the primary producers of adiponectin, this repre-
sented a biologically plausible cell-type-specific effect. 
Therefore, we investigated the relationship between this 
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Fig. 5   Scatter plots of the results from triangulation analysis showing 
correlations between predicted (through an exposure) and observed 
genetic effects on an outcome. Pearson correlation coefficients and 
their associated p values are shown in each plot. (a) Predicted (via 
adiponectin) and observed (PGS–CpG associations) effects for the 
influence of genetically determined adiponectin on DNAm at adi-
ponectin-associated CpGs. (b) Predicted (via leptin) and observed 
(PGS–CpG associations) effects for the influence of genetically deter-

mined leptin on DNAm at the leptin-associated CpGs. (c) Predicted 
(via DNAm) and observed (mQTL–adiponectin) effects for the influ-
ence of DNAm at the adiponectin-associated CpGs on serum adi-
ponectin. Two CpGs significant from the 2SMR analysis are shown 
labelled in red. (d) Predicted (via DNAm) and observed (mQTL–lep-
tin) effects for the influence of DNAm at the leptin-associated CpGs 
on serum leptin. A reference line (y=x) is shown by a grey dotted line 
in all plots
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Fig. 6   Combined evidence that DNAm at two loci influences meta-
bolic health. (a) Scatter plot of the relationship between DNAm at 
cg02235049 and normalised ADIPOQ expression levels in SGBS pre-
adipocytes (n=38) differentiating over the course of 16 days. Pearson 
correlation coefficients and their associated p values are shown and 
the line of best fit is shown by a grey dotted line. (b) Sankey diagram 
showing multiple downstream investigations into CpGs significant 
at the 5% level after adjusting for multiple testing in this adiponec-
tin and/or leptin EWAS meta-analysis. CpGs removed following sen-
sitivity analyses (Not specific) are shown and those kept in due to 
independent effects with adiponectin, leptin or both continue in the 
diagram. CpGs not linked to traits in previous EWAS are shown (No 
previous findings) and those that were linked continue in the diagram. 
CpGs not lying in regions of active chromatin in PBMCs are shown 
(Inactive chromatin in PBMCs). Finally, CpGs not linked to expres-
sion of genes within 100 kb in the BIOS consortium are shown (No 
eQTM or Not tested). cg11851174 is shown as having evidence sup-
porting its functional relevance in all of these investigations (high-

lighted in purple), and cg02235049 is shown as not having such col-
lective evidence (highlighted in orange). (c) Flowchart showing the 
body of evidence supporting DNAm at cg11851174 being linked to 
type 2 diabetes via SREBF1 and serum adiponectin: findings from 
the current study (yellow boxes); increases in traits (DNAm and type 
2 diabetes risk; orange boxes); decreased traits (SREBF1 expres-
sion and serum adiponectin; blue boxes); and evidence from previ-
ous work (white boxes). All mentioned links are significant at the 5% 
level after adjustment for multiple testing. (d) Flowchart showing the 
body of evidence supporting DNAm at cg02235049 being linked to 
triglyceride levels via ADIPOQ and serum adiponectin: findings from 
the current study (yellow boxes); increases in traits (DNAm triglycer-
ide levels; orange boxes); decreased traits (ADIPOQ expression and 
serum adiponectin; blue boxes); and evidence from previous work 
(white boxes). All mentioned links are significant at the 5% level after 
adjustment for multiple testing. eQTM, expression quantitative trait 
methylation
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CpG and ADIPOQ expression in publicly available adi-
pocyte data and observed a significant, inverse correla-
tion that aligned with our causal inference results.

This discovery underscores the potential for genome-wide 
epigenetic analyses in large-scale blood-based cohorts to iden-
tify biologically relevant sites, even where their functional 
roles may be in less accessible but more metabolically relevant 
tissues. Such associations could be driven by shared upstream 
factors, such as diet, causing DNAm in a tissue-agnostic man-
ner. Although these CpGs may only be functional in some tis-
sues (e.g. adipose), their ability to be detected in blood allows 
well-powered EWAS such as this one to identify biologically 
meaningful correlations. These sites, and others like them, 
will ideally serve as focal points for targeted hypothesis-driven 
investigations into adiponectin production by, for example, 
experimentally modifying methylation in adipocytes.

The second CpG plausibly driving serum adiponectin lev-
els (cg11851174) resides in active chromatin in both PBMCs 
and adipocytes close to the SREBF1 gene, which encodes a 
TF central to lipid homeostasis that binds to sterol regulatory 
elements in the promoters of genes including ADIPOQ [48, 
56]. Therefore, similar to the ADIPOQ CpG, this SREBF1 
site could represent a functional epigenetic effect in adipo-
cytes being mirrored in blood. However, since we also linked 
increased DNAm at this site to decreased SREBF1 expres-
sion in the large-scale blood-based BIOS consortium data, 
there is another plausible explanation for how DNAm could 
act upstream of adiponectin production. Previous experi-
mental evidence from macrophage-specific sterol regulatory 
element-binding protein (SREBP) cleavage-associating pro-
tein (SCAP) knockout mice has demonstrated that reduced 
SREBP-1a activity promotes macrophage polarisation to 
proinflammatory subtypes [57]. Therefore, circulating mono-
cytes epigenetically primed for lower SREBF1 expression 
could feasibly have proinflammatory cell fates as adipose-
tissue macrophages. Since local inflammation is an estab-
lished inhibitor of adiponectin production from adipocytes, 
this represents a sequence of events where immune cell 
DNAm could more directly influence adipokine production 
[58]. These two hypotheses would need to be tested in dif-
ferentiating monocytes or macrophage–adipocyte co-cultures 
but our findings offer an indication of plausible mechanisms 
to follow-up.

Considering the collective evidence at the ADIPOQ and 
SREBF1 loci, and since the SREBF1 CpG has also previ-
ously been associated with HbA1c [59] and incident type 2 
diabetes [53], we investigated the broader implications of 
these sites for metabolic disease using bidirectional 2SMR. 
This indicated that these CpGs may also act upstream of 
metabolic traits, including triglyceride levels and type 2 
diabetes. These directional associations, coupled with pre-
vious work implicating SREBF1 in type 2 diabetes risk via 
adiponectin [54, 55] and the plausible relevance of ADIPOQ 

as the gene encoding adiponectin, reinforce these CpGs as 
promising epigenetic markers.

There were limitations to our study. Notably, we explored 
relationships between leukocyte DNAm and serum adi-
ponectin with only minimal follow-up in adipocytes, the 
cells that predominantly produce adipokines. Future func-
tional experiments in relevant tissues will be needed to test 
the hypotheses generated here. Additionally, we could not 
adjust for smoking in our main analysis due to incomplete 
data and instead opted to ensure smoking-independent 
effects via a two-step sensitivity analysis restricted to the 
subset with complete data. While sex was included as a 
covariate to adjust for potential confounding, no sex-strat-
ified analyses were performed. This limited our ability to 
determine whether associations differed between sexes. Gen-
der identity was not assessed. Future research could explore 
whether these findings apply equally across sex and gender 
groups. This study was also conducted in European popula-
tions, and it remains to be tested whether our findings can 
be generalised to other ethnicities. Lastly, this study was not 
immune to the common weaknesses of molecular 2SMR. 
For the adipokine–DNAm 2SMR, data were not available to 
test all CpGs, meaning that only 57.5% of the adiponectin-
associated CpGs and 61.6% of the leptin-associated CpGs 
were followed up in this analysis, and not all independent 
SNPs were available in the mQTL and GWAS datasets. This 
limited, and could have biased, instruments used for these 
exposures. In addition, most mQTLs with strong effects lie 
in close proximity to each other and are highly correlated. 
Only between one and four independent mQTLs existed to 
instrument each CpG and this 2SMR approach was expected 
to have limited success in identifying directional effects with 
bias towards the null [60].

In summary, this study highlights the potential of integra-
tive, epigenome-wide studies to uncover biologically mean-
ingful epigenetic markers of molecular traits, and reveals 
novel insights into the regulatory mechanisms underlying 
adiponectin production. By highlighting critical loci, we 
offer focal points for future experimental research aiming 
to dissect the secretory profiles of adipocytes or identify 
therapeutic targets in metabolic disease.
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