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Abstract
Despite extensive research, open questions about the biological underpinnings of Alzheimer’s disease (AD) remain. 
Neuroimaging biomarkers based on positron emission tomography (PET) and magnetic resonance imaging (MRI) 
offer in vivo insights into these complex biological changes and interactions. However, most evidence to date 
comes from cross-sectional studies, limiting our understanding of disease progression. Longitudinal studies enable 
the investigation of biological changes within individuals, revealing how pathology evolves over time. With this 
review, we provide an overview of how longitudinal imaging biomarker studies have advanced the field and how 
they can contribute to future research. We highlight longitudinal biomarker studies that have provided critical 
insights into disease trajectories, staging, and individual variability. We further assess longitudinal multimodal 
studies which have elucidated interactions between AD-specific pathology, amyloid-β and tau, and broader 
biological changes like neurodegeneration, neuronal dysfunction, vascular disease, and inflammation. Further, we 
discuss associations of brain changes with symptomatology and clinical outcomes and conclude with challenges 
and future directions.
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Introduction
Alzheimer's disease (AD) is characterized by a cascade 
of biological changes, particularly the accumulation of 
amyloid-β (Aβ) and tau pathology, which progressively 
affect neuronal functioning and integrity. Pathology 
impairs cognitive abilities and eventually leads to AD 
dementia. Insights into the pathophysiology of AD have 
been gained from a variety of biomarkers, with human 
postmortem histopathological studies as the gold stan-
dard. A biomarker is “a characteristic that is objectively 
measured and evaluated as an indicator of normal biolog-
ical processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention” [1]. In recent 
decades, neuroimaging biomarkers have been developed 
using positron emission tomography (PET) to assess Aβ 
and tau burden, as well as PET and magnetic resonance 
imaging (MRI) to evaluate nonspecific pathophysiologi-
cal changes such as neurodegeneration, network dys-
function, vascular disease, and inflammation [2, 3].

Human neuroimaging has the important benefit of 
providing region-specific insights into changes of the 
underlying biology in an in vivo setting, but the field has 
been largely dominated by cross-sectional studies. Con-
sequently, most of the evidence for the proposed model 
of AD pathophysiological sequences has relied on cross-
sectional imaging or histology studies. However, as the 
field has grown, information from longitudinal and mul-
timodal imaging studies is becoming increasingly avail-
able. With repeated imaging over time, those studies can 
provide a more detailed understanding of the temporo-
spatial development of AD, uncover mechanisms con-
tributing to individual variability in disease trajectories, 
and can further help to narrow down clinically relevant 
biomarkers. These studies not only allow inferences 
about the dynamics of disease progression, but also help 
to identify potential underlying mechanisms affecting 
the disease process and outcomes. When incorporating 
interventions, these studies are further uniquely poised 
to identify causal relationships and can provide insights 
into how the brain reacts to novel therapies.

The purpose of this review is to assess the utility of 
longitudinal neuroimaging studies in capturing the bio-
logical changes along the AD continuum and their inter-
actions with each other. First, we will assess what aspects 
of the underlying pathology are captured by human neu-
roimaging. We will then examine what longitudinal imag-
ing biomarkers can tell us about (1) the disease trajectory 
and pathological staging in AD, (2) relationships between 
AD-specific pathology and other nonspecific biological 
changes observed in AD (neurodegeneration, neuronal 
dysfunction, vascular disease, and inflammation), and 
(3) how these interrelated biological changes are linked 
to symptomatology and clinical outcomes. Finally, we 
conclude by discussing potential imaging biomarkers 

that currently lack longitudinal support, highlighting 
challenges and possible insights from future studies. By 
focusing on the advances and challenges in longitudinal 
imaging biomarkers of AD, this review ultimately aims to 
provide insights into the biological underpinnings of AD 
that could contribute to improved tools for diagnosis and 
disease monitoring, as well as determining suitable treat-
ment targets to attenuate AD progression.

Disease trajectory and pathological staging
First, we provide a brief overview of AD pathology and 
imaging biomarkers before discussing longitudinal tra-
jectories and staging. AD is associated with diverse 
pathological changes that can be captured with neuro-
imaging methods in humans, each reflecting distinct 
yet interacting biological processes. The core AD fea-
tures, discovered in postmortem histological research, 
are extracellular Aβ plaques and intraneuronal tau neu-
rofibrillary tangles [4–7]. Both can be measured in vivo 
using PET imaging, which captures the buildup of these 
protein aggregates in the brain [8, 9]. Further, nonspecific 
pathological changes related to AD encompass neurode-
generation and neuronal dysfunction, including changes 
in brain metabolism and networks, and changes related 
to vascular disease and inflammation. An overview is 
provided in Table 1.

Amyloid pathology
Neuritic Aβ plaques have long been recognized as a his-
topathological hallmark of AD, with early diffuse neo-
cortical plaques depositing in the posteromedial cortex 
(PMC) and frontal regions. Characteristic hierarchical 
stages (“Thal phases”) were established by postmortem 
histology [6]. This staging has been largely recapitulated 
with Aβ-PET imaging [25], which has enabled investi-
gating early emerging amyloidosis in cognitively normal 
individuals and accumulation over time. There is a spa-
tiotemporal hierarchy of Aβ accumulation [8, 26, 27] 
and longitudinal Aβ progression patterns closely match 
cross-sectional staging [28–30]. Rates of Aβ deposition 
show very little variability across anatomically distant 
brain regions [31] and resemble sigmoid-shaped trajec-
tories, with higher global Aβ burden at baseline predict-
ing higher rates of neocortical Aβ accumulation in both 
cognitively unimpaired and impaired individuals and 
with accumulation slowing down at higher levels of Aβ 
accumulation [32, 33]. While soluble Aβ oligomers may 
spread across neighboring regions, plaque formation 
could rather depend on local factors like intense neuronal 
activity [34, 35].

Tau pathology
Tau tangles are closely related to cognition [36], first 
deposit in the (trans)entorhinal cortex, and accumulate 
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throughout the medial temporal lobe (MTL). In the 
presence of elevated Aβ, tau subsequently progresses 
to temporoparietal regions and finally across the neo-
cortex. This pattern was first characterized in postmor-
tem tissue samples [4] but has been confirmed in vivo 
in cross-sectional PET studies [37–39]. A priori region-
based studies also suggest that tau generally accumu-
lates in these patterns longitudinally [40, 41] but show 
considerable individual variability in tau deposition and 
spread [39, 42–45]. Tau spread along structural [46] and 
functional [42] connections has also been observed lon-
gitudinally. Further, higher rates of tau deposition in the 
MTL are predicted by locally higher baseline tau burden 
in cognitively unimpaired older adults and may further 
be driven by local activity [47]. While rates of tau accu-
mulation were similar across brain regions in one study 
[48], another study reported higher rates of accumulation 
for temporal regions [49] in cognitively unimpaired and 
impaired adults. Additionally, data-driven profiling has 
identified fast accumulators with increased accumulation 
in temporal cortex and PMC [45].

Neurodegeneration and neuronal dysfunction
Structural MRI (sMRI) has played an integral role in 
investigating AD progression and diagnosis. Whole-brain 
and hippocampal atrophy are sensitive markers of neu-
rodegeneration and disease progression [50, 51]. At the 
whole-brain level, a classical "cortical signature" of AD-
related atrophy is well-established and associated with 
symptom severity [52]. Longitudinal sMRI studies have 
further demonstrated that rates of gray matter loss in 
AD compared to elderly controls generally mirror pat-
terns of tau accumulation [53–55] and precede symp-
tomatic onset in both familial [56, 57] and sporadic AD 
[58]. However, despite these associations, atrophy is not 
specific for AD pathology; for example, hippocampal 
atrophy is associated with cognitive decline indepen-
dent of Aβ and tau pathology, suggesting contributions 
from other pathological factors [59]. Further, studies 
showing increased gray matter volume or cortical thick-
ness with early Aβ, possibly related to glia response 
[60], and “pseudoatrophy” in anti-amyloid trials [61, 62] 
call sMRI into question as being a universal marker of 
neurodegeneration.

FDG-PET is a widely used imaging modality for assess-
ing region-specific aberrant brain glucose metabolism 

Table 1  Imaging of biological changes related to Alzheimer’s disease
Pathological change How can we measure this change with 

imaging?
What underlying biological feature or process is targeted?

Amyloid-β (Aβ) 
accumulation

Positron emission tomography (PET) imaging 
using, for example, the tracers [11C]Pittsburgh 
compound B (PiB), [18F]florbetaben (FBB), [18F]
florbetapir (FBP), and [18F]flutemetamol [8–10]

Insoluble Aβ plaque accumulation surrounding neurons is a specific 
feature of Alzheimer’s disease (AD) and can be assessed by specific trac-
ers binding to these proteins [6, 7]

Tau accumulation PET imaging using, for example, the tracers [18F]
flortaucipir (FTP), [18F]PM-PBB3/florzolotau, [18F]
MK-6240, and [18F]PI-2620 [11, 12]

Tau neurofibrillary tangle accumulation within neurons is a specific 
feature of AD and can be assessed by specific tracers binding to tau 
aggregates [4, 5]

Neurodegeneration T1- and T2-weighted structural MRI (sMRI) focus-
ing on the gray matter volume of brain struc-
tures, FLAIR sequences, and diffusion-weighted 
imaging (DWI) focusing on white matter micro-
structural connectivity

Brain atrophy, white matter hyperintensities (WMH), and white matter 
impairment are disruptions commonly found over the course of AD. 
Hippocampal atrophy assessed with sMRI is a key prognostic feature of 
AD [13]. Widespread abnormalities in white matter microstructure have 
been consistently reported in DWI studies of patients with AD [14]

Neuronal dysfunction Fluorodeoxyglucose (FDG) and synaptic vesicle 
protein 2 A (SV2A) PET using the [11C]UCB-J or 
[18F]SynVesT-1 tracer, fMRI studies using the 
blood oxygenation level dependent (BOLD) 
method, perfusion PET, SPECT, and MRI using e.g. 
the arterial spin labeling (ASL) MRI sequence

Changes in glucose brain metabolism measured via FDG-PET is an 
indicator of neuronal activity [15]. SV2A-PET imaging tracers binding to 
the SV2A protein aims at investigating synaptic integrity [16]. Functional 
imaging using BOLD fMRI is an indirect measure of network dysfunction 
using the magnetic properties of oxygenated blood [17]. Perfusion MRI 
using labeling of arterial blood water as an endogenous tracer for blood 
flow and perfusion PET and SPECT using radiotracers [18]

Vascular disease T1-weighted sMRI and FLAIR sequences
Perfusion MRI to investigate cerebral perfusion 
abnormalities using dynamic contrast enhanced 
(DCE) MRI

WMH and enlarged perivascular spaces (PVS) are biomarkers for small 
vessel disease (SVD) and used to investigate the separate and joint influ-
ence of SVD and AD pathology on the disease course [19]. WMH might 
be of vascular or non-vascular origin [20]. Blood–brain-barrier (BBB) 
integrity might be reflected in cerebral perfusion abnormalities [21]

Inflammation PET tracers 18 kDa translocator protein (TSPO) 
and Deuterium-L-deprenyl (DED)

TSPO-PET signal most likely reflects microglia density [22, 23], [11C]
DED-PET aims to visualize activated astrocytes [24]

Aβ Amyloid-beta, AD Alzheimer’s Disease, ASL Arterial Spin Labeling, BOLD Blood Oxygenation Level Dependent, DCE Dynamic Contrast Enhanced, DED Deuterium-
L-deprenyl, DWI Diffusion Weighted Imaging, FBB [18F]florbetaben, FBP [18F]florbetapir, FDG Fluorodeoxyglucose, fMRI functional Magnetic Resonance Imaging, 
FTP [18F]flortaucipir, PET Positron Emission Tomography, PiB Pittsburgh Compound B, PVS Perivascular Spaces, sMRI Structural Magnetic Resonance Imaging, SPECT 
Single Photon Emission Computed Tomography, SV2A Synaptic Vesicle Protein 2 A, SVD = Small Vessel Disease, TSPO 18 kDa Translocator Protein, WMH White Matter 
Hyperintensities
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related to AD pathology. Its prognostic utility lies in its 
ability to detect early region-specific hypometabolism 
that correlates with cognitive decline before clinical 
symptoms become apparent [63–65]. While FDG-PET 
and sMRI are often used interchangeably as imaging 
biomarkers in AD [2], evidence from multimodal stud-
ies suggests that FDG-PET is more sensitive to early 
neurodegenerative processes compared to sMRI [66–
68]. Moreover, the extent and pattern of hypometabo-
lism correlate with advancing AD pathology, providing 
a means to track disease severity over time [69, 70] and 
conduct clinical classification [71, 72]. ​​Interestingly, there 
are differential FDG-PET patterns related to different 
underlying pathologies, which can provide clinically use-
ful information for differential diagnosis [73, 74].

Modalities that target neuronal integrity, namely 
SV2A-PET and diffusion weighted imaging (DWI), seem 
to be more closely associated with tau than Aβ pathol-
ogy. Longitudinal SV2A-PET studies remain scarce, but 
synaptic loss over time has been shown to follow tau 
rather than Aβ accumulation patterns [75, 76] and dif-
fusion tensor imaging (DTI) studies have been linked to 
axonal integrity and show that it is particularly impacted 
by tau pathology, preceding both neuronal loss and clini-
cal manifestation [77–80]. More recent advances in DWI, 
such as multi-shell acquisitions, allow a more detailed 
investigation of region-specific subtle microstructural 
dysfunction, providing the potential for early detection 
of AD [81]. Overall, however, regional onsets and spatio-
temporal progression of AD-specific patterns using these 
modalities are still incompletely understood.

Longitudinal BOLD fMRI studies in AD typically focus 
on resting-state functional connectivity (FC), while lon-
gitudinal studies on task-based FC and activity are rare 
[17]. Using fMRI, early functional changes like “hyperac-
tivation” and "hyperconnectivity" linked to AD pathology 
and cognition have been identified and are interpreted as 
markers of dysfunctional brain networks [82]. FMRI stud-
ies can bridge molecular and clinical research by shed-
ding light on network mechanisms of risk and resilience 
to AD pathology [83–85]. However, most fMRI studies 
use a group approach rather than precision imaging as 
they were designed to contribute to cognitive neurosci-
ence research rather than to explain between-subject 
variance [86, 87]. Moreover, BOLD signal changes are 
not specific to AD and occur in normal aging and various 
neurodegenerative diseases [88–90].

To summarize, MRI and FDG-PET approaches 
add valuable information to understand altered brain 
responses related to AD pathology and its progression 
and relationship with cognitive symptoms. However, 
while FDG-PET is an established marker of neurode-
generation and can be used to stage disease progression, 
it does not directly measure Aβ or tau pathology and 

therefore cannot alone determine neuropathological 
stage. Similarly, structural and functional MRI provide 
Important but indirect measures of underlying pathol-
ogy. Combining these modalities with molecular imaging 
or other biomarkers offers a more complete and biologi-
cally specific picture of disease progression.

Pathological interactions and potential causality
Longitudinal characterization of the pathological cascade 
of Alzheimer’s disease
The classic model of AD biomarker change from nor-
mal aging along the AD continuum influenced research 
over the last decade greatly. It suggests that Aβ and tau 
accumulate up to 20  years before clinical manifestation 
[32, 91]. In this model, Aβ accumulation is seen as a very 
early, potentially initiating factor in the cascade of AD [7, 
92], enabling tau spread, which in turn leads to synaptic 
and neuronal loss [93]. The cascading network failure 
model of AD [94, 95] further incorporates higher local 
activity of the default mode network (DMN) and higher 
between-network connectivity. It is debated whether 
these functional changes initially serve as compensa-
tory processes for decreasing network function related 
to early AD pathology. However, they could also reflect 
oversaturation of brain networks which, in turn, leads 
to accelerated network failure. These complex theoreti-
cal models are largely based on cross-sectional data, and 
it is difficult to empirically address causality. Extensive 
longitudinal multimodal studies with participants from 
healthy adults to severe stages of AD including interven-
tions would be critical to address the issue. Longitudinal 
multimodal studies have, however, contributed insights 
into parts of the temporal dynamics of AD.

An established finding is that Aβ drives tau accumula-
tion and spread. Tau accumulation rates are elevated with 
higher Aβ burden in diverse brain areas [48]. Recent lon-
gitudinal studies showed that Aβ facilitates tau spread 
from medial to lateral temporal lobe and neocortical 
regions [47, 96, 97]. Conversely, higher baseline tau in 
temporal and parietal cortex was associated with faster 
Aβ accumulation [31].

Regarding neurodegeneration, higher superior-tem-
poral but not global Aβ burden predicted greater corti-
cal thinning in patients with mild cognitive impairment 
(MCI) but not in cognitively unimpaired adults [98]. In 
another study of cognitively unimpaired adults, however, 
higher Aβ burden at baseline predicted a steeper decline 
in hippocampal volume [99] and in white matter integ-
rity of the parahippocampal cingulum, while there was 
no association between baseline measures [100]. Criti-
cally, longitudinal studies suggest that tau drives neu-
rodegeneration more strongly than Aβ. Baseline global 
tau- but not Aβ-PET signal predicted the rate and topog-
raphy of prospective atrophy in dementia patients [55]. 
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In cognitively unimpaired older adults, the steepest rate 
of tau accumulation and atrophy has been reported in 
temporal and retrosplenial cortex, in dementia patients, 
however, regions differed, with the steepest rate of tau 
accumulation in frontal cortex and atrophy in PMC 
[101]. Frontotemporal cortical thinning has been found 
to be predicted by higher baseline tau burden, but not by 
change in tau-PET signal, in cognitively unimpaired and 
impaired individuals [102].

Baseline tau pathology also predicts faster synaptic 
loss as measured by SV2A-PET [75], and synaptic loss 
regionally follows tau-accumulation patterns over time 
[76], indicating that tau is implicated in synaptic loss. 
Tau pathology may also drive unfavorable functional 
changes. A recent study using longitudinal fMRI during 
encoding and cerebrospinal fluid (CSF)-markers of AD 
pathology proposed that MTL atrophy and tau accumu-
lation are independently linked to reduced deactivations 
in the DMN, which includes the PMC [103]. Further, 
tau might mediate the association of Aβ and neurode-
generation [104], and conversely, Aβ might mediate the 
association of tau and neurodegeneration. Studies report 
that abnormal hippocampal cingulum bundle diffusivity 
at baseline predicts tau accumulation in the PMC only 
in Aβ-positive individuals [99]. In Aβ-positive individu-
als, increase in cortical tau has been further found to be 
related to a diffuse increase in atrophy in frontotempo-
roparietal areas, while increase in Aβ itself is not [49]. 
While the complex causal relationships along the AD 
cascade are still not fully understood, multimodal stud-
ies combining longitudinal biomarkers can advance our 

understanding of temporal dynamics beyond the current 
simplified models (see Fig. 1B).

Role of network dysfunction
Network dysfunction may play a central role regard-
ing the spatiotemporal dynamics of AD pathology. MTL 
and PMC hyperactivation could predispose those brain 
regions to pathology accumulation (i.e. tau in MTL and 
Aβ in PMC) and contribute to accelerated spread of 
pathology [17] (see Fig.  2). Further, transneuronal tau 
spread from the MTL to neocortical regions might be 
accelerated via aberrant functional connectivity [105, 
106]. However, these models are largely based on animal 
or human cross-sectional studies, and the interplay with 
microstructural changes is unclear [107]. Recent longitu-
dinal multimodal studies have begun to reveal how net-
work changes in AD relate to pathology accumulation 
and spread.

Longitudinal studies in cognitively unimpaired older 
adults using memory task-fMRI suggest that higher and 
increasing BOLD signal, especially of the hippocampus, 
predicts the accumulation of Aβ and tau. More spe-
cifically, higher hippocampal but not frontal or occipi-
tal fMRI activation during successful encoding predicts 
increased accumulation of global Aβ [108] and local 
fMRI activity predicts increased accumulation of MTL 
tau [47]. Regarding the PMC, increasing precuneus 
activation over time during episodic retrieval relates to 
higher subsequent global Aβ-PET burden in APOE4 car-
riers [109]. Further, increase [110] as well as decrease 
[111] in DMN resting-state FC (rsFC) has been related 
to faster Aβ accumulation, indicating failure of the DMN 

Fig. 1  Conceptual illustration of longitudinal biomarker dynamics in Alzheimer’s disease. A The influential model of Jack and colleagues [2] depicts ar-
chetypical sigmoidal curves representing isolated changes in Alzheimer’s disease biomarkers over time, based on the revised AT(N) framework. Adapted 
from [2]. B We propose that moving from isolated biomarker studies to longitudinal multimodal investigations can uncover more complex interactions 
and causal relationships between biomarkers. The curves shown in B are adapted from a longitudinal modeling study by Lattmann-Greve and colleagues 
[103], illustrating how multimodal longitudinal data can reveal intricate and interacting dynamics over time. In their study, the authors utilized longitudi-
nal CSF, MRI, and cognitive scores in a multivariate probabilistic disease progression model to generate empirical biomarker disease progression curves. 
The resulting curves uncovered differential hypothetically implicated biomarker trajectories with cognition being preceded by morphometry and CSF-
based Alzheimer’s disease biomarkers, respectively, and different timepoints of fastest change. The authors further assessed the relationship to change 
in fMRI encoding task activation. These changes in activation were nonlinear and independently associated with tau positivity and neurodegeneration. 
Adapted from [103]
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system as a critical precursor of spatiotemporal Aβ pro-
gression. Moreover, aberrant FC could drive tau spread. 
Baseline hippocampal tau predicts precuneus tau accu-
mulation, particularly when higher rsFC between those 
regions and higher baseline Aβ burden are present [112]. 
Pathology-related higher bidirectional effective connec-
tivity of the DMN and MTL during repetition of stimuli 
predicts entorhinal tau accumulation [113] and increas-
ing within-hippocampus rsFC has been associated with 
plasma p-tau increase in APOE4 carriers [114]. More 
specifically, tau seems to spread along functional con-
nections. Findings from animal models show that tau 
spreads transneuronally from the MTL to neocortical 
regions [115]. Longitudinal human fMRI studies suggest 
the same process in humans, with aberrantly higher FC 
patterns accelerating tau spread [40, 105, 106, 116].

Role of vascular disease
Although vascular dysregulation has long been acknowl-
edged as an important contributor to AD pathology [117, 

118], it is often overlooked in prevailing AD models [32]. 
However, longitudinal studies suggest that vascular dys-
regulation may be among the earliest pathological events 
in AD, highlighting its importance for early intervention 
and therapeutic development [119, 120].

Often considered a surrogate marker of small ves-
sel disease (SVD), white matter hyperintensity (WMH) 
volumes have been linked to vascular dysfunction and 
dysregulation early in the process of AD [121]. How-
ever, emerging evidence highlights the heterogeneity of 
WMH pathophysiology, suggesting that WMH might 
also be caused by AD-related neurodegeneration and 
inflammation [20]. Longitudinal studies showed that 
WMH volume increase is associated with increase in 
Aβ-PET signal, hippocampal atrophy, and cortical thin-
ning in elderly controls [122] and that WMH burden pre-
dicts increased hippocampal atrophy in elderly controls 
and MCI patients [123]. WMH progression and cortical 
atrophy may be mutually reinforcing processes, as indi-
viduals with higher baseline WMH volumes experience 

Fig. 2  Proposed model of hyper- and hypoactivation in the Alzheimer’s disease pathological cascade. In Phase 0, non-pathological aging is characterized 
by functional changes (baseline, grey) in comparison with younger adults. Genetic predisposition to Alzheimer’s disease (AD) (i.e. APOE4 genotype) may 
cause a prolonged state of increased activation across mid- to late life (red dotted line). In Phase I, age- and/or genetic-related functional changes predis-
pose certain regions to pathology accumulation (i.e. hyperphosphorylated tau in medial temporal lobe (MTL) and Aβ in posteromedial cortex (PMC)). This 
pathology accumulation coincides with the emergence of task-based hyperactivation (red), defined as increased activation contrasted against healthy 
older adults, which is evident when probed with episodic memory tasks. Hyperactivation first occurs in the hippocampus, particularly within dentate 
gyrus/CA3, due to tau-related perforant path degeneration (see inset box) and in PMC regions due to Aβ-related effects. Overt memory impairment is not 
yet evident at this stage. In Phase II, disconnection between the MTL and PMC results in exaggerated hyperactivation, as well as accelerated expansion 
of pathology in a vicious cycle. This peak of hyperactivation is associated with SCD and early MCI. In Phase III, a tipping point of high levels of tau pathol-
ogy ultimately leads to neuronal silencing and neurodegeneration, resulting in hypoactivation (blue) which first emerges in the hippocampus and PMC. 
Simultaneously, a shift in hyperactivation to other regions (e.g. frontal cortex) occurs. Finally, in Phase IV, widespread pathology and neurodegeneration 
leads to further hypoactivation that encompasses large-scale cortical regions and networks, resulting in overt cognitive impairment characteristic of AD 
dementia. Adapted from [17]
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faster cortical thinning in temporal, cingulate and insular 
regions, and individuals with lower initial cortical thick-
ness experience more rapid WMH progression in these 
regions [124]. The interplay between Aβ and WMH is 
complex. While Aβ deposition can exacerbate WMH 
burden through mechanisms like neuroinflammation and 
oxidative stress [125], WMH themselves may accelerate 
Aβ pathology by impairing clearance mechanisms [126], 
creating a vicious cycle amplifying pathology. A longitu-
dinal study over eight years showed that higher WMH 
burden is associated with an increase in Aβ accumula-
tion in cognitively unimpaired individuals [127]. This 
bidirectional relationship underscores the potential for 
WMH to mediate the impact of Aβ on clinical outcome, 
independent of traditional vascular risk factors such as 
hypertension.

A further biomarker for vascular contributions to AD 
is perivascular space (PVS) enlargement. Longitudinal 
studies are still rare, but recently, higher burden of cere-
bral microvascular lesions predicted faster progression 
of PVS enlargement [128]. While CSF Aβ-positivity is 
linked to PVS volume increase in the centrum semiovale, 
combined Aβ- and tau-positivity is associated with basal 
ganglia PVS volume increase [129].

Role of inflammation
Aβ plaques are surrounded by activated microglia, indi-
cating a strong relationship between the pathological 
progression of AD and inflammation [130–133]. Microg-
lia migrate to Aβ lesions and are related to the degrada-
tion of Aβ peptides and the clearance of Aβ [133]. The 
role of microglia in causing or responding to AD pathol-
ogy is still being debated [134] due to microglial cells 
having both protective as well as neurotoxic phenotypes 
[135].

To date the only confirmed visualization method of 
activated microglia and inflammation is PET, with cross-
sectional studies using the 18kD translocator protein 
(TSPO) tracer [23] dominating the field. Alternative trac-
ers are under development, such as [11C]DED-PET to 
assess reactive astrogliosis, which demonstrates higher 
binding at early stages of AD [24]. Neuroinflammation 
increases in AD, demonstrated by higher TSPO levels 
throughout the cortex, particularly in fronto-tempo-
ral regions [136]. Microglial activation is related to tau 
pathology and cognitive decline in symptomatic patients 
[137–139] but might be more closely related to Aβ bur-
den in the absence of cognitive symptoms [140], an effect 
that could be modulated by the APOE4 genotype [141]. 
Thus, an early peak in cortical TSPO binding might be 
a response to Aβ deposition, whereas a second peak in 
temporal regions could reflect tau propagation.

Longitudinal TSPO-PET studies have shown that neu-
roinflammation increases over time in AD [130, 142], 

correlating with cognitive impairment [142]. Increas-
ing microglial activation over time appears to be directly 
related to Aβ and inversely related to glucose metabolism 
in AD [130]. However, neuroinflammation is a dynamic 
process and there might be different profiles of microglial 
activation that cannot be differentiated with TSPO-PET 
and may have a distinct impact on disease progression.

Relationships between biomarker changes and 
cognition
Longitudinal Aβ-PET imaging studies have demonstrated 
that faster Aβ accumulation is modestly correlated with 
global cognitive decline over short follow-up times [143] 
and is linked to progression from being cognitively unim-
paired to MCI over eight to ten years [110]. Recent stud-
ies also suggest that longitudinal Aβ accumulation is 
more closely related to changes in non-memory domains 
rather than episodic memory, particularly in Aβ-positive 
cognitively unimpaired individuals and MCI patients 
[143–146]. This association could be related to the ten-
dency of Aβ to accumulate multifocally across the cortex 
and affect functional circuits responsible for coordinating 
multiple cognitive functions. Furthermore, these studies 
suggest that the rate of Aβ accumulation is more influ-
ential on cognitive changes at earlier clinical stages along 
the AD continuum. Additionally, the spatial extent of Aβ 
could be a more sensitive measure for cognition than 
Aβ levels [147]. In contrast, longitudinal tau-PET stud-
ies show that MTL and early neocortical tau accumula-
tion are more strongly associated with episodic memory 
change [144] and clinical outcomes [36] than Aβ. Though 
this relationship is significant in adults with low Aβ bur-
den, the association is enhanced in Aβ-positive individu-
als and significant regardless of concurrent atrophy. This 
suggests that early tau accumulation, especially when 
influenced by elevated Aβ, may affect cognition through 
mechanisms other than atrophy, such as inflammation, 
microstructural or metabolic changes [148–150]. Longi-
tudinal sMRI and DWI studies have, however, shown that 
atrophy and microstructural changes are linked to cogni-
tion and clinical outcomes in AD [151–153]. Increases 
particularly in hippocampal atrophy are associated with 
faster decline in episodic memory in cognitively unim-
paired individuals [154] and in symptomatic AD [56]. 
Clinical impairment is related to widespread decreases 
in fractional anisotropy and increases in mean diffusiv-
ity, reflecting microstructural white matter degeneration 
[14].

Further, metabolic and functional changes are related to 
cognitive decline. Longitudinal decreases in metabolism 
measured using FDG-PET are linked to global cognitive 
decline and predict cognitive instability [69, 155, 156] 
and decreases in ASL-measured whole-brain perfusion 
are related to decline in processing speed in cognitively 
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unimpaired individuals [157]. Longitudinal fMRI stud-
ies have played a crucial role in identifying functional 
changes, such as specific regional activation and network 
connectivity patterns, that are related to early cognitive 
changes in AD. For example, in cognitively unimpaired 
individuals and Aβ-positive MCI patients, higher hip-
pocampal activity during encoding predicts decline in 
global cognition [158, 159]. Similarly, the absence of 
hyperactivation in the precuneus during a recognition 
task is associated with better episodic memory perfor-
mance in APOE4 non-carriers [109]. Resting-state stud-
ies suggest early increases in connectivity between the 
MTL and cortical regions and the default mode network 
with AD pathology, which is also associated with decline 
in global cognition and episodic memory [88, 160, 161].

Notably, there is a more pronounced cognitive decline 
with vascular co-pathology. Longitudinal increase in 
WMH volume is steeper over the age of 60 and associ-
ated with a more rapid cognitive decline [121, 122]. High-
lighting the dynamic nature of WMH, progression of 
WMH is related to decline, while regression and stability 
of WMH is related to improvement in cognition [162].

Taken together, tau accumulation is closely related to 
domain-specific memory decline, as well as functional 

changes involving the MTL-PMC episodic memory net-
work measured with fMRI. Aβ-PET, FDG-PET, sMRI, 
and DWI provide valuable biomarkers to predict global 
cognition and clinical outcomes. However, many longitu-
dinal cohort studies that focus on biomarkers only have a 
limited range of cognitive tests in their assessment, often 
only a coarse measure of global cognition (e.g. MMSE, 
MoCA) and it remains open which biomarkers can cap-
ture (future) change in more fine-grained cognitive 
functions.

Biomarkers lacking current longitudinal 
investigation: challenges and potential future 
insights
While there is robust longitudinal data for Aβ and tau 
pathology that has been contributing to a better under-
standing of the mechanisms behind AD, other biological 
features, such as neuroinflammation, vascular changes, 
and synaptic integrity, remain underexplored, despite 
recent efforts and advances (see Fig.  3 for a schematic 
overview). These processes may present significant fac-
tors in disease progression, but it is not yet fully under-
stood how they evolve over time. Although longitudinal 
studies remain the gold standard for establishing the 

Fig. 3  Conceptual illustration of the insights gained from longitudinal multimodal imaging biomarker studies on temporal, spatial, and causal aspects 
of Alzheimer’s disease pathology. This figure is not meant to be exhaustive but serves to illustrate the complex interplay of Alzheimer’s disease imaging 
biomarkers over time. A Temporal trajectories and relationships of imaging biomarkers across the disease continuum, derived from longitudinal studies 
discussed in this review paper. Curves depict the estimated onset, rate of change, and plateau phases for biomarkers. Dotted lines indicate biomarkers 
where limited longitudinal data is available. B Arrows depict shifts in biomarker trajectories influenced by inflammation and vascular disease, emphasizing 
how these additional factors alter disease trajectory. C Spatial correspondence of pathological processes across brain regions, illustrating patterns of co-
localization and divergence as assessed by La Joie and colleagues [55] using multimodal longitudinal imaging biomarkers, can provide valuable insight 
into disease dynamics. Adapted from [55]. Brain plots from [55]. Reprinted with permission from AAAS. D Graph of causal relationships between imaging 
biomarkers based on studies reviewed above. Nodes represent distinct pathological processes implicated in Alzheimer’s disease. Directed edges indicate 
putative causal influences between processes, as estimated from longitudinal observational and experimental data to date as discussed in this review
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temporal sequence of disease-related changes, emerg-
ing data-driven approaches such as SuStaIn (Subtype 
and Stage Inference)[163] can help infer likely progres-
sion patterns from cross-sectional datasets, providing 
valuable insights when longitudinal data are lacking (see 
[164] for a review).

A major challenge is the lack of suitable PET tracers. 
Sufficiently specific PET tracers for alpha-synuclein co-
pathology [165, 166] are lacking, tracers such as [18F]
flortaucipir bind well to 3R/4R but do not bind equally 
well to other tauopathies [167], and SV2A-PET assess-
ment needs to be further validated. 11C-UCB-J is an 
effective PET tracer for SV2A and provides insights into 
synaptic density, however, it is important to recognize 
that it is an indirect measure of synaptic density [168, 
169]. The tracer binds specifically to SV2A, a protein 
found in pre-synaptic vesicles, but this binding reflects 
the presence of synaptic vesicles rather than a direct 
count of synapses themselves. Longitudinal studies com-
bining SV2A-PET with FDG-PET, fMRI and sMRI mea-
sures could generate joint topographical maps of change, 
contributing to a better understanding of the underlying 
biological processes. Advancements in tracer develop-
ment can thus open up exciting new avenues for multi-
modal imaging research.

A second major challenge is the limited understand-
ing of factors that accelerate AD progression and mech-
anisms underlying resilience and resistance. A key 
question regarding disease acceleration is whether vas-
cular pathology represents an independent process or 
whether it is pathophysiologically connected to Aβ and 
tau [129, 170, 171]. Longitudinal alterations in WMH and 
PVS need further exploration to understand how their 
rate of change relates to core AD markers and cogni-
tion. Future longitudinal studies should therefore inves-
tigate the regional relationship between rate of change in 
WMH, Aβ and tau deposition to elucidate interactions. 
Further, some older adults harboring AD-pathology can 
stay cognitively unimpaired for longer than expected 
given the severity of pathology [172, 173]. Longitudinal 
imaging and cognitive assessment combined with post-
mortem histology can shed light on mechanisms of resil-
ience and resistance across scales [174].

A third major challenge is the lack of longitudinal data 
from diverse cohorts [175]. Cohorts that better reflect 
societal heterogeneity are crucial to better understand 
the complex role of socio-economic, ethno-racial and 
demographic factors that influence the trajectory of 
AD [176–178]. Further, they can pave the way to better 
address interindividual differences in modifiable risk fac-
tors for AD [179]. Collecting longitudinal data of diverse 
cohorts could therefore be a valuable aim in clinical tri-
als for novel treatments [180]. Vice-versa, investigating 
these rich longitudinal datasets from clinical intervention 

studies can offer opportunities to infer causal relation-
ships of disease mechanisms.

Thus, developing and validating imaging biomarkers, 
disentangling the contribution of co-pathologies to the 
trajectory of AD, and using rich datasets are central goals 
for future studies to better understand disease mecha-
nisms and foster clinical advancement [181, 182].

Conclusion
To conclude, the unique insights into AD gained from 
longitudinal imaging studies highlight their impor-
tance as a key direction for future research. Longitudi-
nal human neuroimaging biomarker studies are suited 
to capture the temporospatial dynamics of biological 
changes along the Alzheimer’s continuum. By track-
ing changes over time, they can offer a deeper under-
standing of complex interacting processes like disease 
acceleration by co-pathology. Particularly longitudinal 
multimodal imaging can reveal joint evolving patterns 
of e.g. tau accumulation, synaptic loss and metabolic 
changes that cross-sectional studies cannot detect, help-
ing to refine our understanding of disease progression 
and offering more accurate predictions of symptom 
development. Particularly when focusing on refined PET 
tracers and diverse cohorts, the gained insights allow for 
a more comprehensive perspective on the development 
and interplay of different pathologies, which is crucial 
for both early diagnosis and the evaluation of therapeutic 
interventions.
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