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Abstract 

Based on a general relativistic bivector formulation of source-free Maxwell equations, we 

show that a four-dimensional theory can be developed, which describes the structure of 

matter in the quantum range as well as in the macroscopic range up to cosmological scale. 

Particles are represented as wave equations (energy density distributions) on cosmological 

scale in Riemannian spacetime. Thus, concrete metrics for particles can be calculated. 

 

1. Introduction 

So far, attempts have been made to unify gravity and electromagnetism, for example,  

based on non-symmetric metrics in modified theories of relativity, or on a higher-

dimensional base such as string theory on far more than 4 dimensions. 

All these theories have one in common, they are mathematically complicated, and  

precise solutions that would explain the structure of matter and a clear unification  

of gravity and electromagnetism have not yet been found. 

In contrast to that, we will develop a theory based on classical general relativity in  

bi-vectors of source-free Maxwell equations in Riemannian spacetime, which will lead  

to a simpler unification. 

Why do we choose such an approach? 

All particle decays finally end in stable (anti)electrons, (anti)protons, photons, and/or 

(anti)neutrinos and matter-antimatter annihilations stabile particles (𝑒+𝑒− and 𝑝𝑝̅) end 

finally in photons. Therefore, it seems to be plausible that all elementary particles are 

somehow built of photons and/or neutrinos. Since photons are free particles with zero rest 

mass, massive particles must consequently be self-bound energies out of photons from 

this point of view. 

An objective contemplation of Einstein's field equation (EFE) reveals that its obvious 

mathematical form constitutes the spacetime structure 𝐺𝑎𝑏 equivalently to the energy 

density structure 𝑇𝑎𝑏. 

𝐺𝑎𝑏  ~ 𝑇𝑎𝑏 

This means that every particle, as well as every more extended material structure with  

non-zero energy, must simultaneously have a spacetime structure. 

We explicitly note here that the separation of matter and spacetime structure in classical 

general relativity leads to singularities. See, for example, the Schwarzschild metric with  

the vacuum approach outside the spherical mass with 𝑅𝑚𝑛 = 0. This separation should 

only be justified as an approximation or simplification for weak gravitational fields in the 

macroscopic range as of our solar system. 

According to the argument of classical quantum mechanics, meaning, due to an unsharp 

probability density distribution of particles in space, a sharp spatial separation between 

vacuum and matter is unjustified as well. 
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We therefore assume in MST infinitely, or more precise, cosmologically extended, 

continuously differentiable energy density distributions of matter, which should not 

generate any singularities. 

A spatially extended photon with an extremely high energy density, occurring in the 

subatomic range, where it has the highest probability of being detected, can generate  

a strong local spacetime distortion. Within this distortion, the photon may become trapped 

through corresponding interactions and can structure into a particle by self-binding. 

Furthermore, such a strong local spacetime distortion creating stable particles should 

fundamentally explain the various types of interactions. 

This is the fundamental model perception of particles in MST. 

The Copenhagen interpretation of quantum mechanics describes particles as point-like 

objects with intrinsic physical properties that may be located in space and time with a 

certain indetermined probability. This interpretation is clearly based on object-oriented or 

point-like thinking. By experience, we perceive all objects as spatially limited. Thus, we 

encounter the wave-particle duality in physics, since it was discovered that particles in 

subatomic range behave as waves. But, at the same time, we do not abandon a space 

limited object-oriented thinking about particles and extended objects in the macroscopic 

world. 

The above considerations imply the necessity to regard all particles fundamentally as 
waves, which represent energy density distributions extended throughout the cosmos,  
with extreme energy density peaks in local subatomic range. 

Based on this perspective, we construct the MST on the following three principles: 

1) Matter-Spacetime Equivalence:  
 
A) We understand matter as collective term for energy and mass, where mass is  
self-bound, structured energy distribution. In the mathematical sense of the EFE, 
spacetime is inseparable from the energy density distribution of matter. Matter can 
therefore always be described by four-dimensional, continuously differentiable 
spacetime manifolds of Riemannian geometry. 
 
B) Particles are wave functions on cosmological scale, i.e. fundamental building 
blocks of matter, with continuously, constantly differentiable energy density 
distributions. Therefore, we abandon in MST the Copenhagen interpretation of 
quantum mechanics, which is based on the probability density distribution of point-
like particles. 
 

2) Basic building blocks of matter are photons and neutrinos.:  
 
Photons are the fundamental building blocks of matter. As all decays and 
annihilations finally end in photons and neutrinos, and thus, both must have the same  
physical fundamental base. 
 

3) Cosmological propagation of particles:  
 
Particles have a cosmological extent as per the matter-spacetime equivalence 
principle. According to the theory of relativity, their energy propagates at the speed  
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of light throughout spacetime. Information or quantum states, that are not associated 
with energy transport, propagate instantaneously within the particles (see quantum 
entanglement). 

 

2. Formulation of the MST 

2.1 Einstein´s field equation for electromagnetic null-fields 

Using the principles outlined above, we formulate fundamental equations of the MST based 
on general relativity, specifically on Einstein's field equation (EFE), where the stress-energy 
tensor represents the source-free electromagnetic null-field that must describe particles 
(especially photons and fermions) with concrete metrics. Thus, we must be able to describe 
the internal structure of such particles by pure Riemannian geometry. 

We use the spacetime signature (+,+,+,-). 

The EFE without the cosmological constant is: 

𝐺𝑎𝑏 = 𝜒𝑇𝑎𝑏   (2.1) 

where we the Einstein tensor is 

𝐺𝑎𝑏 = 𝑅𝑎𝑏 −
1

2
𝑔𝑎𝑏𝑅   (2.2) 

and the electromagnetic stress-energy tensor 

𝑇𝑎𝑏 = 𝜀0𝑐2𝑔𝑚𝑛𝐹𝑎𝑚𝐹𝑏𝑛 −
𝜀0𝑐2

4
𝑔𝑎𝑏𝐹𝑚𝑛𝐹𝑚𝑛  (2.3) 

with 

𝜇0𝜀0𝑐2 = 1 

and 

𝜒 =
8𝜋𝐺

𝑐4
 

Here, G is Newton's gravitational constant, 𝜇0 is the permeability constant, and 𝜀0 is the 

dielectric constant in vacuum. Using the EFE and the principle that matter is "built up" of 

photons, we start with the source-free Maxwell equations in Riemannian space. 

𝐹𝑚𝑛
;𝑛 = 0    (2.4a) 

and 

𝐹̃𝑚𝑛
;𝑛 =

1

2
𝜀𝑚𝑛𝑎𝑏𝐹𝑎𝑏;𝑛 = 0  (2.4b) 

with the fully anti-symmetric 4-rank epsilon tensor in all indices, i.e.  

𝜀𝑚𝑛𝑎𝑏 = √−𝑔
 −1

∆𝑚𝑛𝑎𝑏 

and the Levi-Civita symbol 

∆1234= +1 

changing its sign by each index exchange. 
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The invariants of the electromagnetic field tensor and its dual field tensor in the case of 
zero fields (i.e. the tensors are equal to zero) are 

𝐹𝑚𝑛𝐹𝑚𝑛 = 0  (2.5a) 

and 

𝐹𝑚𝑛𝐹̃𝑚𝑛 = 0  (2.5b) 

which reduce the EFE to 

𝑅𝑖𝑘 = 𝑘2𝐹𝑖𝑚𝐹𝑘𝑛𝑔𝑚𝑛  (2.6) 

with 

𝑘2: = 𝜒𝜀0𝑐2 =
8𝜋𝐺𝜀0

𝑐2
 

 

2.2 Fundamental equations of the MST: 

With the MST, we aim to establish the connection to quantum mechanics by expressing 
the field strength tensor in bivectors 𝜇𝑎 and 𝜉𝑎, where 𝜇𝑎 may be interpreted as a kind of 
metric vector and 𝜉𝑎 as the wave vector of the particle, as we will see later.  

The bivector formulation of the electromagnetic field tensor is 

𝑘𝐹𝑚𝑛: = 𝜇𝑚𝜉𝑛 − 𝜇𝑛𝜉𝑚  (2.7) 

with the bivector conditions for the metric vector 𝜇𝑎, which a a null vector, and the wave 

vector 𝜉𝑎, which is orthogonal to the metric vector 

𝜇𝑎𝜇𝑎 = 0 = 𝜉𝑎𝜇𝑎  (2.8a) 

and 

𝜉𝑎𝜉𝑎 = 1  (2.8b) 

Thus, the scalar product of the wave vector 𝜉𝑎 is normalized to 1. 

The Maxwell equations take the following form in Riemannian spacetime then. 

0 = 𝑘𝐹𝑚𝑛
;𝑛 = (𝜇𝑚𝜉𝑛 − 𝜇𝑛𝜉𝑚);𝑛 = 𝜇𝑚

;𝑛𝜉𝑛 + 𝜇𝑚𝜉𝑛
;𝑛

− 𝜇𝑛
;𝑛𝜉𝑚 − 𝜇𝑛𝜉𝑚

;𝑛
 (2.9a) 

0 = 𝑘𝐹̃𝑚𝑛
;𝑛 =

𝑘

2
𝜀𝑚𝑛𝑎𝑏𝐹𝑎𝑏;𝑛 = 𝜀𝑚𝑛𝑎𝑏(𝜇𝑎;𝑛𝜉𝑏 + 𝜇𝑎𝜉𝑏;𝑛) = 𝜀𝑚𝑛𝑎𝑏(𝜇𝑎𝜉𝑏);𝑛 (2.9b) 

With the covariant derivatives 

𝐹𝑚𝑛
;𝑛 = 𝐹𝑚𝑛

,𝑛 + 𝛤𝑛𝑘
𝑚𝐹𝑘𝑛 + 𝛤𝑛𝑘

𝑛 𝐹𝑚𝑘 

𝐹𝑎𝑏;𝑛 = 𝐹𝑎𝑏,𝑛 − 𝛤𝑎𝑛
𝑘 𝐹𝑘𝑏 − 𝛤𝑏𝑛

𝑘 𝐹𝑎𝑘 

𝜉𝑚
;𝑛

= 𝜉𝑚
,𝑛

+ 𝛤𝑛𝑘
𝑚𝜉𝑘 

𝜉𝑎;𝑛 = 𝜉𝑎,𝑛 − 𝛤𝑎𝑛
𝑘 𝜉𝑘 

(2.10) 

The invariants of the electromagnetic field tensor are consequently 
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0 = 𝐹𝑚𝑛𝐹𝑚𝑛 = 𝜇𝑎𝜇𝑎    (2.11a) 

0 = 𝐹𝑚𝑛𝐹̃𝑚𝑛 = 2𝜀𝑚𝑛𝑎𝑏𝜇𝑎𝜉𝑏𝜇𝑚𝜉𝑛  (2.11b) 

where the first invariant corresponds to the bivector condition for the metric vector. The 
second invariant always leads to zero, since it is symmetric in the indices of the bivectors 
and antisymmetric in the indices of the epsilon tensor. 

For the EFE in covariant representation, the bivector formulation implies 

𝑅𝑚𝑛 −
1

2
𝑔𝑚𝑛𝑅 = 𝜒𝜀0𝑐2𝑔𝑎𝑏𝐹𝑎𝑚𝐹𝑏𝑛 − 𝜒

𝜀0𝑐2

4
𝑔𝑚𝑛𝐹𝑎𝑏𝐹𝑎𝑏  (2.12) 

with the Ricci-Tensor 

𝑅𝑚𝑛 = 𝛤𝑚𝑛,𝑘
𝑘 − 𝛤𝑚𝑘,𝑛

𝑘 + 𝛤𝑠𝑘
𝑠 𝛤𝑚𝑛

𝑘 − 𝛤𝑚𝑘
𝑠 𝛤𝑠𝑛

𝑘  

And the Christoffel symbols 

𝛤𝑚𝑛
𝑘 =

1

2
𝑔𝑘𝑠(𝑔𝑚𝑠,𝑛 + 𝑔𝑛𝑠,𝑚 − 𝑔𝑚𝑛,𝑠) 

The last term of (2.12) is zero as it is the invariant (2.11a) of the electromagnetic null-field, 
i.e.  

𝐹𝑎𝑏𝐹𝑎𝑏 = 0 

When we overwrite the resulting EFE (2.1-2.3) with 𝑔𝑚𝑛, we receive 

𝑔𝑚𝑛𝑅𝑚𝑛 −
1

2
𝑔𝑚𝑛𝑔𝑚𝑛𝑅 = 𝜒𝜀0𝑐2𝑔𝑚𝑛𝑔𝑎𝑏𝐹𝑎𝑚𝐹𝑏𝑛  (2.13) 

Where the right side becomes zero as it corresponds to one of the invariants of the 
electromagnetic null-field. Thus, 

𝑅 − 2𝑅 = 0 

i.e. 

𝑅 = 0  (2.14) 

The EFE in bivectors becomes then 

𝑅𝑚𝑛 = 𝜒𝜀0𝑐2𝑔𝑎𝑏𝐹𝑎𝑚𝐹𝑏𝑛 = 𝑔𝑎𝑏(𝜇𝑎𝜉𝑚 − 𝜇𝑚𝜉𝑎)(𝜇𝑏𝜉𝑛 − 𝜇𝑛𝜉𝑏)                              

= 𝑔𝑎𝑏(𝜇𝑎𝜉𝑚𝜇𝑏𝜉𝑛 − 𝜇𝑎𝜉𝑚𝜇𝑛𝜉𝑏 − 𝜇𝑚𝜉𝑎𝜇𝑏𝜉𝑛 + 𝜇𝑚𝜉𝑎𝜇𝑛𝜉𝑏)                  

= 𝑔𝑎𝑏𝜇𝑎𝜇𝑏𝜉𝑚𝜉𝑛 − 𝑔𝑎𝑏𝜇𝑎𝜉𝑏𝜉𝑚𝜇𝑛 − 𝑔𝑎𝑏𝜉𝑎𝜇𝑏𝜇𝑚𝜉𝑛 + 𝑔𝑎𝑏𝜉𝑎𝜉𝑏𝜇𝑚𝜇𝑛 

(2.15) 

Because of the bivector conditions, the first three terms are equal to zero, and only the last 
term remains non-zero, which means that 

𝑔𝑎𝑏𝜉𝑎𝜉𝑏𝜇𝑚𝜉𝑛 = 𝜇𝑚𝜉𝑛  (2.16) 

The EFE simplify to the pure Ricci tensor being equal to the product of two metric vector 
components only 

   𝑅𝑚𝑛 = 𝜇𝑚𝜇𝑛   (covariant Form)  (2.17a) 

  𝑅𝑚𝑛 = 𝜇𝑚𝜇𝑛      (contravariant Form)            (2.17b) 
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This simple form of (2.12) leads to the following relationship between the diagonal and 
non-diagonal elements of the Ricci-Tensor. 

𝑅𝑚𝑚 = (𝜇𝑚)2  (2.18a) 

and 

(𝑅𝑚𝑛)2 = 𝑅𝑚𝑚𝑅𝑛𝑛  (2.18b) 

The divergence free Ricci tensor in the EFE leads to 

0 = 𝑅𝑚𝑛
;𝑛 = 𝜒𝑇𝑚𝑛

;𝑛 = 𝜇𝑚𝜇𝑛
;𝑛 + 𝜇𝑚

;𝑛𝜇𝑛 

i.e. 

𝜇𝑚
;𝑛𝜇𝑛 = −𝜇𝑚𝜇𝑛

;𝑛  (2.19) 

The MST in the bivector formalism is consequently to be summarized by the following 
three equations, where the first is the EFE and the last two are the source-free Maxwell 
equations: 

𝑹𝒎𝒏 = 𝝁𝒎𝝁𝒏                  

(𝝁𝒎𝝃𝒏 − 𝝃𝒎𝝁𝒏);𝒏 = 𝟎 

𝜺𝒎𝒏𝒂𝒃(𝝁𝒂𝝃𝒃);𝒏 = 𝟎       

(2.20) 

These are the fundamental equations of MST and are especially remarkable due to the 
fact that they do not contain any natural constants, i.e. they are independent of any system 
of units. 

The two Maxwell equations (2.4),  0 = 𝐹𝑚𝑛
;𝑛   and  0 = 𝐹̃𝑚𝑛

;𝑛 may be summarized in one 

complex equation  

𝐹𝑚𝑛
;𝑛 + 𝑖𝐹̃𝑚𝑛

;𝑛 = 0     (2.21a) 

which result in the bivector formalism in the form 

(𝝁𝒎𝝃𝒏 − 𝝃𝒎𝝁𝒏);𝒏 + 𝒊𝜺𝒎𝒏𝒂𝒃(𝝁𝒂𝝃𝒃);𝒏 = 𝟎  (2.21b) 

The bivector 𝝁𝒎 has as null-vector (𝜇𝑎𝜇𝑎 = 0) the character of a metric vector, as it 

describes the Ricci tensor purely (see (2.17b): 𝑅𝑚𝑛 = 𝜇𝑚𝜇𝑛) and the Ricci-Tensor is 

constructed by the metric tensor and its derivatives only. 

The bivector 𝝃𝒔 has the character of a wave vector, as it is a no null-vector with the scalar 

value normed to 1 (see (2.8b): 𝜉𝑎𝜉𝑎 = 1). 

In accordance with the fundamental principles of MST, the MST equations in bivectors 

must be the generalization of quantum mechanics (especially electrodynamics) in 

Riemannian space, where the metric vector 𝜇𝑚 describes the Riemannian spacetime 

structure and the wave vector 𝜉𝑠 the wavefunction of a particle.  

However, due to the curved structure of Riemannian spacetime, the partial derivatives in 

MST are replaced by covariant derivatives. 



Tomas Dolak: A General Relativistic Matter Structure Theory (MST)  8 

We can express the complex Maxwell equations in bivector formulation as a function of the 

wave vector 𝜉𝑠 and its first derivatives 𝜉𝑠
;𝑛

 , as we will show in the following section. 

 

3. Conclusions of the MST 

3.1 Maxwell equations in bivectors: 

We start here with the Maxwell equations in complex form and bivector formalism (2.21b) 

0 = (𝜇𝑚𝜉𝑛 − 𝜉𝑚𝜇𝑛);𝑛 + 𝑖𝜀𝑚𝑛𝑎𝑏(𝜇𝑎𝜉𝑏);𝑛 

Distributing the covariant derivative on all vectors 

0 = 𝜇𝑚
;𝑛𝜉𝑛 + 𝜇𝑚𝜉𝑛

;𝑛
− 𝜇𝑛

;𝑛𝜉𝑚 − 𝜇𝑛𝜉𝑚
;𝑛

+ 𝑖𝜀𝑚𝑛𝑎𝑏(𝜇𝑎;𝑛𝜉𝑏 + 𝜇𝑎𝜉𝑏;𝑛) 

where the vectors are used in their contravariant form 

0 = 𝜇𝑚
;𝑛𝜉𝑛 + 𝜇𝑚𝜉𝑛

;𝑛
− 𝜇𝑛

;𝑛𝜉𝑚 − 𝜇𝑛𝜉𝑚
;𝑛

+ 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠(𝜇𝑘
;𝑛𝜉𝑠 + 𝜇𝑘𝜉𝑠

;𝑛
) 

and linked to the wave vector and its covariant derivative 

0 = (𝜇𝑚
;𝑛𝛿𝑛

𝑠 − 𝜇𝑛
;𝑛𝛿𝑚

𝑠 + 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠𝜇𝑘
;𝑛)𝜉𝑠 + (𝜇𝑚𝛿𝑛

𝑠 − 𝜇𝑛𝛿𝑚
𝑠 + 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠𝜇𝑘)𝜉𝑠

;𝑛
 

(3.1a) 

we obtain 

0 = (𝛿𝑚
𝑘𝛿𝑛

𝑠 − 𝛿𝑛
𝑘𝛿𝑚

𝑠 + 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠)𝜇𝑘
;𝑛𝜉𝑠 + (𝛿𝑚

𝑘𝛿𝑛
𝑠 − 𝛿𝑛

𝑘𝛿𝑚
𝑠 + 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠)𝜇𝑘𝜉𝑠

;𝑛
 

(3.1b) 

When we define 

𝜙𝑘𝑠
𝑚𝑛: = +𝛿𝑚

𝑘𝛿𝑛
𝑠 − 𝛿𝑛

𝑘𝛿𝑚
𝑠 + 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠                                 (3.2a) 

𝑓      𝑠
𝑚𝑛: = [+𝛿𝑚

𝑘𝛿𝑛
𝑠 − 𝛿𝑛

𝑘𝛿𝑚
𝑠 + 𝑖𝜀𝑚𝑛𝑎𝑏𝑔𝑎𝑘𝑔𝑏𝑠]𝜇𝑘 =  𝜙𝑘𝑠

𝑚𝑛𝜇𝑘 (3.2b) 

with the covariant constant term 𝜙𝑘𝑠
𝑚𝑛 (i.e. 𝜙𝑘𝑠;𝑤

𝑚𝑛 = 0), which leads to 

0 = 𝜙𝑘𝑠
𝑚𝑛𝜇𝑘

;𝑛𝜉𝑠 + 𝜙𝑘𝑠
𝑚𝑛𝜇𝑘𝜉𝑠

;𝑛
= (𝜙𝑘𝑠

𝑚𝑛𝜇𝑘𝜉𝑠);𝑛 = 𝜙𝑘𝑠
𝑚𝑛(𝜇𝑘𝜉𝑠);𝑛  (3.3a) 

resp. 

0 = 𝑓      𝑠;𝑘
𝑚𝑛 𝜉𝑠 + 𝑓      𝑠

𝑚𝑛𝜉𝑠
;𝑛

= (𝑓      𝑠
𝑚𝑛𝜉𝑠);𝑛  (3.3b) 

Thus, the Maxwell equations in Riemannian spacetime can be expressed in bivectors in a 
covariant linear form with respect to the wave vector 𝜉𝑠. 

We can extend the above equations (3.3) by a gauge tensor 𝐸𝑚𝑛, as we can multiply the 
bivector condition (2.8a) with zero value 

0 = 𝜇𝑠𝜉𝑠 = 𝑔𝑘𝑠𝜇𝑘𝜉𝑠 

by an arbitrary gauge tensor 𝐸𝑚𝑛 as follows 

0 = (𝐸𝑚𝑛𝑔𝑘𝑠𝜇𝑘𝜉𝑠);𝑛 = 𝐸𝑚𝑛𝑔𝑘𝑠𝜇𝑘
;𝑛𝜉𝑠 + 𝐸𝑚𝑛𝑔𝑘𝑠𝜇𝑘𝜉𝑠

;𝑛
  (3.4) 
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and add it to the Maxwell equation (3.18).  

0 = (𝜙𝑘𝑠
𝑚𝑛 − 𝐸𝑚𝑛𝑔𝑘𝑠)𝜇𝑘

;𝑛𝜉𝑠 + (𝜙𝑘𝑠
𝑚𝑛 − 𝐸𝑚𝑛𝑔𝑘𝑠)𝜇𝑘𝜉𝑠

;𝑛
  (3.5) 

We have chosen the above form of the gauge term in correlation with the Maxwell 
equation indexation.  

In a further paper we show that the above Maxwell equations with the gauge term contain 
the Dirac equation as a special case. 

 

3.2 The concept of mass in MST: 

The MST is based on null-fields in Riemannian spacetime, resulting in equations which, 

unlike in quantum mechanics, do not explicitly include scalar mass values. 

The concept of mass in MST is far more profound than in any classical theory such as 

classical relativity or quantum mechanics. It is not simply a given point or extended region 

to which a scalar mass quantity is linked. 

In the MST, mass arises from the fundamental principle of matter-spacetime equivalence 

within the EFE, explicitly from the energy-momentum tensor of a cosmologically extended 

energy density distribution. As the 𝑇44 component of the stress-energy tensor is the energy 

density of a matter distribution with the volume element 

𝑑𝑉 = √−𝑔 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 𝑑𝑥4  (3.6) 

the mass calculation of any particle or matter distribution comes out of the following 

integral over the whole cosmological space volume  

𝑚 =
𝐸

𝑐2 =
1

𝑐2 ∭ 𝑇44 𝑑𝑉 =
1

𝑐2 ∭ √−𝑔 𝑇44 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 (3.7a) 

Due to (2.2) and (2.3) 

𝑅𝑎𝑏 = 𝑔𝑎𝑚𝑔𝑎𝑛𝜇𝑚𝜇𝑛 = 𝜒𝑇𝑎𝑏 

we have 

𝑇𝑎𝑏 =
1

𝜒
 𝑔𝑎𝑚𝑔𝑎𝑛𝜇𝑚𝜇𝑛 

and thus, the mass integral is 

𝑚 =
1

𝜒𝑐2
∭ √−𝑔 𝑔4𝑚 𝑔4𝑛 𝜇𝑚 𝜇𝑛 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 =

1

𝜒𝑐2
∭ √−𝑔 (𝜇4)2 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 

(3.7b) 

The mass resp. energy of a particle or extended object depends solely on the metric 

tensor and the metric vector 𝜇𝑚, which has the dimension 1/length, and is therefore a pure 

function of spacetime. We thus conclude: 

Mass resp. Energy = Scalar of spacetime structure 

From the above consideration of the energy/mass concept within the framework of the 

MST fundamental principles, it further becomes clear that a strict distinction between mass 
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and energy is not necessary, since every mass possesses relative to its energy a self-

bound (with rest mass) or free energy structure and differs from its mass by the factor 1/𝑐2. 

The difference between mass and energy is therefore that mass is a self-bound state of 

energy in the Riemannian spacetime structure. Energy, on the other hand, is a free state 

of matter, which propagates at the speed of light along zero geodesics in the Riemannian 

spacetime structure.  

According to the logic of the mass integral in MST, particles can thus be stable if they do 

not have just a structure (metric), but if the mass integral converges over their metric as 

well, meaning that the mass integral results in a finite value on the full cosmic range. 

 

3.3 Inhomogeneous Maxwell equations and electric charge: 

Since we base MST on null-fields, i.e. on source-free Maxwell's equations in a vacuum, we 

will now discuss the inhomogeneous Maxwell's equations within the framework of MST. 

Just as we formulated the second principle of MST, which states that all matter must be 

composed of null-fields in Riemannian spacetime (RS), we show that the inhomogeneous 

Maxwell's equations in flat Minkowski spacetime (MS) result from the source-free 

Maxwell's equations (null-fields) of RS. 

The inhomogeneous and homogeneous Maxwell's equations in a vacuum in MS are as 

follows: 

𝐹𝑚𝑛
,𝑛 = 𝜇0𝐽𝑚  (3.8a) 

𝐹̃𝑚𝑛
,𝑛 = 0         (3.8b) 

with the four-current density 𝐽𝑚. 

In comparison, let us consider the source-free Maxwell equations in the curved RS (2.4), 

where we have covariant derivatives instead of the partial derivatives of the flat MS. 

𝐹𝑚𝑛
;𝑛 = 0 

𝐹̃𝑚𝑛
;𝑛 = 0 

When writing out the covariant derivatives (2.10) in partial ones with the covariant 

correction terms, we obtain 

0 = 𝐹𝑚𝑛
,𝑛 + 𝛤𝑛𝑘

𝑚𝐹𝑘𝑛 + 𝛤𝑛𝑘
𝑛 𝐹𝑚𝑘 = 𝐹𝑚𝑛

,𝑛 + [𝑙𝑛√−𝑔]
,𝑛

𝐹𝑚𝑛                                                     

(3.9a) 

0 = 𝐹̃𝑚𝑛
;𝑛 = 0,5 𝜀𝑚𝑛𝑎𝑏𝐹𝑎𝑏;𝑛 = 0,5 𝜀𝑚𝑛𝑎𝑏(𝐹𝑎𝑏,𝑛 − 𝛤𝑎𝑛

𝑘 𝐹𝑘𝑏 − 𝛤𝑏𝑛
𝑘 𝐹𝑎𝑘) = 0,5 𝜀𝑚𝑛𝑎𝑏𝐹𝑎𝑏,𝑛 

(3.9b) 

where the gray marked terms become zero, specifically, in the first equation (3.9a)  

due to the anti-symmetry of F with respect to the symmetric Christoffel symbols, and  

in the second equation (3.9b) due to the anti-symmetry of the epsilon tensor with respect 

to the symmetric Christoffel symbols. 
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If the solutions in RS satisfy the above equations (3.9), for example, for electrons,  

which must have a very sharp energy density distribution in the subatomic region with 

most probable detection, then the solutions in MS appear "from a distance" as if the  

strong spacetime deformation within the extreme energy density distribution would  

not be a deformation, but a massive source. 

Therefore, the Christoffel term of the first equation (3.9a) in RS must correspond to the 

four-current density in MS, i.e. 

𝜇0𝐽𝑚 = −[𝑙𝑛√−𝑔]
,𝑛

𝐹𝑚𝑛 = [𝑙𝑛√−𝑔]
,𝑛

𝐹𝑛𝑚  (3.10) 

with 

𝐽𝑚 = 𝜌𝑣𝑚 

where 𝜌 is the charge density of the particle or any extended object and 𝑣𝑚 the four-

velocity with 

𝜌 = 𝜌(𝑥1, 𝑥2, 𝑥3, 𝑐𝑡) 

𝑣𝑚 = (𝑣1, 𝑣2, 𝑣3, 𝑐) 

𝑣𝑚 = 𝑣𝑚(𝑥1, 𝑥2, 𝑥3, 𝑐𝑡) 

(3.11) 

The fact that the second equation (3.9b) does not have any inhomogeneous terms, 

corresponds exactly to the homogeneous Maxwell equation without any massive resp. 

charged terms.  

We write out (3.10) in its components 

𝜇0𝐽1 = 𝜇0𝜌𝑣2 = +[𝑙𝑛√−𝑔]
,1

𝐹11 + [𝑙𝑛√−𝑔]
,2

𝐹21 + [𝑙𝑛√−𝑔]
,3

𝐹31 + [𝑙𝑛√−𝑔]
,4

𝐹41 

𝜇0𝐽2 = 𝜇0𝜌𝑣2 = +[𝑙𝑛√−𝑔]
,1

𝐹12 + [𝑙𝑛√−𝑔]
,2

𝐹22 + [𝑙𝑛√−𝑔]
,3

𝐹32 + [𝑙𝑛√−𝑔]
,4

𝐹42 

𝜇0𝐽3 = 𝜇0𝜌𝑣3 = +[𝑙𝑛√−𝑔]
,1

𝐹13 + [𝑙𝑛√−𝑔]
,2

𝐹23 + [𝑙𝑛√−𝑔]
,3

𝐹33 + [𝑙𝑛√−𝑔]
,4

𝐹43 

𝜇0𝐽4 = 𝜇0𝜌𝑐   = +[𝑙𝑛√−𝑔]
,1

𝐹14 + [𝑙𝑛√−𝑔]
,2

𝐹24 + [𝑙𝑛√−𝑔]
,3

𝐹34 + [𝑙𝑛√−𝑔]
,4

𝐹44 

When setting all velocity components to zero (𝑣𝑚 = 0) apart from m=4 (here is 𝑣4 = 𝑐), the 

m=4 equation in (3.10) leads to an inconsistency, as may be shown easily. The charge 

density, at least on a subatomic range, can never be static therefore. Nevertheless, an 

extended charge distribution may reveal as static on a macroscopic scale in total 

superposition of all single particles. 

With the above resulting charge density 

𝜌 = 𝜀0𝑐 [𝑙𝑛√−𝑔]
,𝑛

𝐹𝑛4  (3.12) 

we obtain the charge Q of a particle or a charged, extended matter distribution from the 

following integral (compare it with the mass integral (3.7)) 
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𝑄 = ∭ √−𝑔 𝜌 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 = 𝜀0𝑐 ∭ √−𝑔 [𝑙𝑛√−𝑔]
,𝑛

𝐹𝑛4 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 

(3.13a) 

and further simplified 

𝑄 = 𝜀0𝑐 ∭(√−𝑔)
,𝑛

 𝐹𝑛4 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 = 𝜀0 ∭(√−𝑔)
,𝑛

 𝐸𝑛 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 

(3.13b) 

where 𝐸𝑛 is the electric field vector of a particle or a charged, extended matter distribution 

concerned. 

 

4. Summary and outlook 

The fundamental equations of MST, which do not contain any natural constants, primarily 
represent a general formulation of the unification of gravitation and electromagnetism. This 
unification applies both in the subatomic range (quantum range) and in the macroscopic 
range (classical and cosmological range). 

MST eliminates the problem of wave-particle duality, since every particle is a wave extended 
across the entire universe (i.e. we have cosmological functions in RS) with an extremely 
sharp energy density distribution in the subatomic range at the location with the highest 
probability. Therefore, in the sense of MST, there are only particle waves and no "point-like" 
particles. Nevertheless, the probability of measurements or indeterminism in the sense of 
quantum mechanics is not questioned by that, as we always measure waves with waves, 
which do not change the fact of uncertainty of any measurement. 

In the further following paper, we will discuss the Dirac equation in RS, which represents a 

special solution of MST in the quantum range. 

We will further present simple solutions for the macroscopic range of MST, which describe 

the generation of gravitational fields due to electromagnetic sources. Thus, MST provides 

approaches to solutions for gravitational compensators, electro-gravitational propulsions, 

etc. 

Furthermore, the question arises whether the MST could explain all four fundamental 

forces of nature. It is conceivable that the combination of electromagnetic fields within 

extremely deformed Riemannian spacetime (RS) in the subatomic range could lead to all 

four fundamental forces. For example, strong interaction could result from an extreme 

spacetime curvature in a subatomic range, in which high-energy photons are trapped, i.e. 

self-bound, and interact electro-gravitationally with each other within such a range. 

In particular, concrete metrics of elementary particles should be derivable from the 

fundamental equations of MST. That is why we have chosen the term Matter Structure 

Theory, since the fundamental equations of MST must describe the metric and field 

structure of particles and extended matter structures. 

In the cosmological range, for example, the rotational speeds of galaxies could be 

investigated, since, unlike classical physics, MST postulates energy density distributions 
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for matter that is extended across the entire cosmos and continuously differentiable. 

Classical physics, including classical general relativity, always assumes spatially limited 

matter distributions, i.e., mass or energy density distributions with central sources, which 

consequently lead to the geometric 1/r² dependence of all fields. MST, on the other hand, 

could generate stronger action at a distance due to the cosmologically extended energy 

density distributions of matter, which could explain higher rotational speeds in the outer 

regions of galaxies without the postulated and as-yet-undiscovered dark matter and 

energy. 

Since the solutions to the EFE and the source-free Maxwell equations must be 

simultaneously satisfied in the bi-vector formalism, all solutions must be derived  

from very elaborate and difficult mathematical derivations. 


