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Abstract

Based on a general relativistic bivector formulation of source-free Maxwell equations, we
show that a four-dimensional theory can be developed, which describes the structure of
matter in the quantum range as well as in the macroscopic range up to cosmological scale.
Particles are represented as wave equations (energy density distributions) on cosmological
scale in Riemannian spacetime. Thus, concrete metrics for particles can be calculated.

1. Introduction

So far, attempts have been made to unify gravity and electromagnetism, for example,
based on non-symmetric metrics in modified theories of relativity, or on a higher-
dimensional base such as string theory on far more than 4 dimensions.

All these theories have one in common, they are mathematically complicated, and
precise solutions that would explain the structure of matter and a clear unification
of gravity and electromagnetism have not yet been found.

In contrast to that, we will develop a theory based on classical general relativity in
bi-vectors of source-free Maxwell equations in Riemannian spacetime, which will lead
to a simpler unification.

Why do we choose such an approach?

All particle decays finally end in stable (anti)electrons, (anti)protons, photons, and/or
(anti)neutrinos and matter-antimatter annihilations stabile particles (e*e~ and pp) end
finally in photons. Therefore, it seems to be plausible that all elementary particles are
somehow built of photons and/or neutrinos. Since photons are free particles with zero rest
mass, massive particles must consequently be self-bound energies out of photons from
this point of view.

An objective contemplation of Einstein's field equation (EFE) reveals that its obvious
mathematical form constitutes the spacetime structure G,;, equivalently to the energy
density structure T,,.

Gab ~ lap

This means that every particle, as well as every more extended material structure with
non-zero energy, must simultaneously have a spacetime structure.

We explicitly note here that the separation of matter and spacetime structure in classical
general relativity leads to singularities. See, for example, the Schwarzschild metric with
the vacuum approach outside the spherical mass with R,,,, = 0. This separation should
only be justified as an approximation or simplification for weak gravitational fields in the
macroscopic range as of our solar system.

According to the argument of classical quantum mechanics, meaning, due to an unsharp
probability density distribution of particles in space, a sharp spatial separation between
vacuum and matter is unjustified as well.
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We therefore assume in MST infinitely, or more precise, cosmologically extended,
continuously differentiable energy density distributions of matter, which should not
generate any singularities.

A spatially extended photon with an extremely high energy density, occurring in the
subatomic range, where it has the highest probability of being detected, can generate

a strong local spacetime distortion. Within this distortion, the photon may become trapped
through corresponding interactions and can structure into a particle by self-binding.
Furthermore, such a strong local spacetime distortion creating stable particles should
fundamentally explain the various types of interactions.

This is the fundamental model perception of particles in MST.

The Copenhagen interpretation of quantum mechanics describes particles as point-like
objects with intrinsic physical properties that may be located in space and time with a
certain indetermined probability. This interpretation is clearly based on object-oriented or
point-like thinking. By experience, we perceive all objects as spatially limited. Thus, we
encounter the wave-particle duality in physics, since it was discovered that particles in
subatomic range behave as waves. But, at the same time, we do not abandon a space
limited object-oriented thinking about particles and extended objects in the macroscopic
world.

The above considerations imply the necessity to regard all particles fundamentally as
waves, which represent energy density distributions extended throughout the cosmos,
with extreme energy density peaks in local subatomic range.

Based on this perspective, we construct the MST on the following three principles:

1) Matter-Spacetime Equivalence:

A) We understand matter as collective term for energy and mass, where mass is
self-bound, structured energy distribution. In the mathematical sense of the EFE,
spacetime is inseparable from the energy density distribution of matter. Matter can
therefore always be described by four-dimensional, continuously differentiable
spacetime manifolds of Riemannian geometry.

B) Particles are wave functions on cosmological scale, i.e. fundamental building
blocks of matter, with continuously, constantly differentiable energy density
distributions. Therefore, we abandon in MST the Copenhagen interpretation of
quantum mechanics, which is based on the probability density distribution of point-
like particles.

2) Basic building blocks of matter are photons and neutrinos.:
Photons are the fundamental building blocks of matter. As all decays and
annihilations finally end in photons and neutrinos, and thus, both must have the same
physical fundamental base.

3) Cosmological propagation of particles:

Particles have a cosmological extent as per the matter-spacetime equivalence
principle. According to the theory of relativity, their energy propagates at the speed
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of light throughout spacetime. Information or quantum states, that are not associated
with energy transport, propagate instantaneously within the particles (see quantum
entanglement).

2. Formulation of the MST

2.1 Einstein’s field equation for electromagnetic null-fields

Using the principles outlined above, we formulate fundamental equations of the MST based
on general relativity, specifically on Einstein's field equation (EFE), where the stress-energy
tensor represents the source-free electromagnetic null-field that must describe particles
(especially photons and fermions) with concrete metrics. Thus, we must be able to describe
the internal structure of such particles by pure Riemannian geometry.

We use the spacetime signature (+,+,+,-).
The EFE without the cosmological constant is:

Gap = XTap (2.1)
where we the Einstein tensor is

Gap = Rap — %gabR (2.2)
and the electromagnetic stress-energy tensor
Tab = £0¢29™ FamFon = 2= Ga FranF™ (2.3)
with
UoEoc? =1
and
_ 8nG
Y=

Here, G is Newton's gravitational constant, u, is the permeability constant, and ¢ is the
dielectric constant in vacuum. Using the EFE and the principle that matter is "built up" of
photons, we start with the source-free Maxwell equations in Riemannian space.

Fmt., =0 (2.4a)
and
Fmn = %smnabFabm =0 (2.4b)
with the fully anti-symmetric 4-rank epsilon tensor in all indices, i.e.
gmnab _ \/__g_lAmnab
and the Levi-Civita symbol
A1234-= +1

changing its sign by each index exchange.
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The invariants of the electromagnetic field tensor and its dual field tensor in the case of
zero fields (i.e. the tensors are equal to zero) are

Fpn F™ = (2.5a)
and
E,F™ =0 (2.5b)
which reduce the EFE to
Ry = K?FimFing™" (2.6)
with
k?:= yeoc? = 8716280

2.2 Fundamental equations of the MST:

With the MST, we aim to establish the connection to quantum mechanics by expressing
the field strength tensor in bivectors u® and £¢, where u® may be interpreted as a kind of
metric vector and £¢ as the wave vector of the particle, as we will see later.

The bivector formulation of the electromagnetic field tensor is
kFmMn. = ’umfn — ‘unfm (27)

with the bivector conditions for the metric vector u%, which a a null vector, and the wave
vector £, which is orthogonal to the metric vector

pipg =0 =28, (2.8a)
and
%, =1 (2.8b)
Thus, the scalar product of the wave vector ¢é¢ is normalized to 1.

The Maxwell equations take the following form in Riemannian spacetime then.
0 = kF™,) = (WmEm = unE™) = pm &N+ R — it EM - (2.9a)
0 = KFmn = Zgmnabp,, = emnab (0 &y + pafym) = £ (UE)  (2.9D)
With the covariant derivatives
F™Mt = FMt 4 LRF* 4 [0 Fmk
Fapn = Fapn — FaI;leb - Fb’quak
§m o, =&ML+ Ld”
$am = San — landk
(2.10)

The invariants of the electromagnetic field tensor are consequently
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0 = E,, F™ = uop, (2.11a)
0= anﬁmn = ngnab:uafb#mfn (2.11b)

where the first invariant corresponds to the bivector condition for the metric vector. The
second invariant always leads to zero, since it is symmetric in the indices of the bivectors
and antisymmetric in the indices of the epsilon tensor.

For the EFE in covariant representation, the bivector formulation implies

1 2
Ry — EgmnR = XgoczgabFaman - X%gmnFabFab (212)
with the Ricci-Tensor
Rpp = rnlffn,k - rnlffk,n + I;‘;(F,:l(n - rrflk[;’r(l

And the Christoffel symbols

k 1 ks
In = Eg (gms,n + Gnsm — gmn,s)

The last term of (2.12) is zero as it is the invariant (2.11a) of the electromagnetic null-field,
i.e.

F, F? =0
When we overwrite the resulting EFE (2.1-2.3) with g™", we receive
gmann - %gmngmnR = XgoczgmngabFaman (2.13)

Where the right side becomes zero as it corresponds to one of the invariants of the
electromagnetic null-field. Thus,

R—-2R=0

R=0 (2.14)
The EFE in bivectors becomes then
Rin = X€0€? 9 FamFon = 9% (a§m — Hma) Upén — Hnép)
= 9% WaSmttpén — HaSmbnSs = HmSalpén + tméaktnip)

= gab.ua.ubfmfn - gab.uafbfm.un - gabfa.ub.umfn + gabfafb'um'un
(2.15)

Because of the bivector conditions, the first three terms are equal to zero, and only the last
term remains non-zero, which means that

gab‘fafbﬂmfn = Umén (2.16)

The EFE simplify to the pure Ricci tensor being equal to the product of two metric vector
components only

Riyn = Umlin (covariant Form) (2.17a)

R™ = y™u™  (contravariant Form) (2.17b)
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This simple form of (2.12) leads to the following relationship between the diagonal and
non-diagonal elements of the Ricci-Tensor.

R™M = (u™)? (2.18a)
and

(R™™)2 = gmmpRnn (2.18b)
The divergence free Ricci tensor in the EFE leads to

0 — Rmn;n — XTmTl;n - ‘um'un;n + 'um;n‘un

pout =t (2.19)

The MST in the bivector formalism is consequently to be summarized by the following
three equations, where the first is the EFE and the last two are the source-free Maxwell
equations:

R™Mn — ”m”n

WmE"—&mu")., =0

gmnab (ﬂaEb);n =0
(2.20)

These are the fundamental equations of MST and are especially remarkable due to the
fact that they do not contain any natural constants, i.e. they are independent of any system
of units.

The two Maxwell equations (2.4), 0 = F™., and 0 = F™*, may be summarized in one
complex equation

Fmro + iF'm”;n =0 (2.21a)
which result in the bivector formalism in the form
(u™E™ — &mu™)., + ie™ P (uép)., = 0 (2.21b)

The bivector u™ has as null-vector (u*u, = 0) the character of a metric vector, as it
describes the Ricci tensor purely (see (2.17b): R™" = y™u™) and the Ricci-Tensor is
constructed by the metric tensor and its derivatives only.

The bivector & has the character of a wave vector, as it is a no null-vector with the scalar
value normed to 1 (see (2.8b): £%¢, = 1).

In accordance with the fundamental principles of MST, the MST equations in bivectors
must be the generalization of quantum mechanics (especially electrodynamics) in
Riemannian space, where the metric vector u™ describes the Riemannian spacetime
structure and the wave vector &£° the wavefunction of a particle.

However, due to the curved structure of Riemannian spacetime, the partial derivatives in
MST are replaced by covariant derivatives.
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We can express the complex Maxwell equations in bivector formulation as a function of the
wave vector ¢° and its first derivatives £° , as we will show in the following section.

3. Conclusions of the MST

3.1 Maxwell equations in bivectors:

We start here with the Maxwell equations in complex form and bivector formalism (2.21b)
0= (™" =&MU + 1™ (Ugép)in
Distributing the covariant derivative on all vectors
0=p™ &"+pumet  —ut &M — e+ 1™ (Uanp + Hadpin)
where the vectors are used in their contravariant form
0= p™ & +umen = u" &M — WM e g gns (W80 + 1)
and linked to the wave vector and its covariant derivative

0= (U™ 8% — U™ 8™ + €™ gy gy’ )E° + (WM™ — unE™s + €™ gy st NS,

(3.1a)
we obtain
0= (8™ 8" — 6™ 8™ s + g™ gy gps)U* 5 + (848" — 8™ 8™ s + 1™ gar Gus) 1 E°,,
(3.1b)
When we define
ket = 8T8 — 8™ 8™ + €™ gy G (3.2a)

fre=[+8™ 8" — 6™ 6™ + 1™ g gpslu® = PRgtuE (3.2b)
with the covariant constant term ¢y" (i.e. ¢y, = 0), which leads to
0= rs"u’ & + i 1 s, = (PR 1) im = D" (€% ) m (3.3a)
resp.
0=f"kl* + 758, = (FM58)m (3.3b)

Thus, the Maxwell equations in Riemannian spacetime can be expressed in bivectors in a
covariant linear form with respect to the wave vector &°.

We can extend the above equations (3.3) by a gauge tensor E™", as we can multiply the
bivector condition (2.8a) with zero value

0=pé = gks.ukfs
by an arbitrary gauge tensor E™" as follows

0= (E™ st %) = E™" Grsht* 1, §° + E™" gslt8° (3.4)
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and add it to the Maxwell equation (3.18).
0= (5" — E™ gues )", &° + (Pl — E™ gues) 1 E° ., (3.5)

We have chosen the above form of the gauge term in correlation with the Maxwell
equation indexation.

In a further paper we show that the above Maxwell equations with the gauge term contain
the Dirac equation as a special case.

3.2 The concept of mass in MST:

The MST is based on null-fields in Riemannian spacetime, resulting in equations which,
unlike in quantum mechanics, do not explicitly include scalar mass values.

The concept of mass in MST is far more profound than in any classical theory such as
classical relativity or quantum mechanics. It is not simply a given point or extended region
to which a scalar mass quantity is linked.

In the MST, mass arises from the fundamental principle of matter-spacetime equivalence
within the EFE, explicitly from the energy-momentum tensor of a cosmologically extended
energy density distribution. As the T,, component of the stress-energy tensor is the energy
density of a matter distribution with the volume element

dv = [—g dx* dx? dx3 dx* (3.6)

the mass calculation of any particle or matter distribution comes out of the following
integral over the whole cosmological space volume

m===—[[[ TasdV == [[f =g Tas dx* dx? dx®  (3.7a)
Due to (2.2) and (2.3)
Rap = Gam9ankt™ 1" = XTap
we have
Tab =~ GamJank™ "

and thus, the mass integral is

1 e 1
B )Fﬂf —9 Gam Gan W 1" dx* dx? dx® = )Fﬂf V=9 (ug)? dxt dx? dx3
(3.7b)

The mass resp. energy of a particle or extended object depends solely on the metric
tensor and the metric vector u™, which has the dimension 1/length, and is therefore a pure
function of spacetime. We thus conclude:

m

Mass resp. Energy = Scalar of spacetime structure

From the above consideration of the energy/mass concept within the framework of the
MST fundamental principles, it further becomes clear that a strict distinction between mass
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and energy is not necessary, since every mass possesses relative to its energy a self-
bound (with rest mass) or free energy structure and differs from its mass by the factor 1/c2.

The difference between mass and energy is therefore that mass is a self-bound state of
energy in the Riemannian spacetime structure. Energy, on the other hand, is a free state
of matter, which propagates at the speed of light along zero geodesics in the Riemannian
spacetime structure.

According to the logic of the mass integral in MST, particles can thus be stable if they do
not have just a structure (metric), but if the mass integral converges over their metric as
well, meaning that the mass integral results in a finite value on the full cosmic range.

3.3 Inhomogeneous Maxwell equations and electric charge:

Since we base MST on null-fields, i.e. on source-free Maxwell's equations in a vacuum, we
will now discuss the inhomogeneous Maxwell's equations within the framework of MST.

Just as we formulated the second principle of MST, which states that all matter must be
composed of null-fields in Riemannian spacetime (RS), we show that the inhomogeneous
Maxwell's equations in flat Minkowski spacetime (MS) result from the source-free
Maxwell's equations (null-fields) of RS.

The inhomogeneous and homogeneous Maxwell's equations in a vacuum in MS are as
follows:

F™ . =u/™  (3.8a)
Fmn o =0 (3.8b)
with the four-current density J™.

In comparison, let us consider the source-free Maxwell equations in the curved RS (2.4),
where we have covariant derivatives instead of the partial derivatives of the flat MS.

an;n =0
ﬁmn;n =0

When writing out the covariant derivatives (2.10) in partial ones with the covariant
correction terms, we obtain

0 = F™", + LRF' + LLF™ = ™, + [Iny/—g] F™
(3.9a)

0=Fm, =05e™PFy 0 = 0,5 ™ (Fappn = I Fip = TypFar) = 0,5 €™ Fyp
(3.9b)

where the gray marked terms become zero, specifically, in the first equation (3.9a)

due to the anti-symmetry of F with respect to the symmetric Christoffel symbols, and

in the second equation (3.9b) due to the anti-symmetry of the epsilon tensor with respect
to the symmetric Christoffel symbols.
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If the solutions in RS satisfy the above equations (3.9), for example, for electrons,
which must have a very sharp energy density distribution in the subatomic region with
most probable detection, then the solutions in MS appear "from a distance" as if the
strong spacetime deformation within the extreme energy density distribution would
not be a deformation, but a massive source.

Therefore, the Christoffel term of the first equation (3.9a) in RS must correspond to the
four-current density in MS, i.e.

wo)™ = —[iny/=g] F™ =[in,[-g] F"™ (3.10)
with
m

J™=pv

where p is the charge density of the particle or any extended object and v™ the four-
velocity with

p = p(xt, x?,x3, ct)
v™ = (v, v2,v3,0)
v™ = v™(x1,x2,x3, ct)
(3.11)

The fact that the second equation (3.9b) does not have any inhomogeneous terms,
corresponds exactly to the homogeneous Maxwell equation without any massive resp.
charged terms.

We write out (3.10) in its components
uoJ* = popv?® = +[Inyf=g] F** + [in/=g] ,F?* +[in/=g] F** + [In/=g] F*
Hol? = nopv? = +[In/=g] F*2 + [In/=g] F? + [In/=g] ,F? + [In,/=g] F**
HoJ* = nopv® = +|iny/=g| [F** + [In/=g] ,F** + [In/=g] F** + [In=g] F**
HoJ* = mope = +[Iny/=g| F'* +[In/=g]| F** +[in/=g]| F?* +[in/=g] F**

When setting all velocity components to zero (v™ = 0) apart from m=4 (here is v* = ), the
m=4 equation in (3.10) leads to an inconsistency, as may be shown easily. The charge
density, at least on a subatomic range, can never be static therefore. Nevertheless, an
extended charge distribution may reveal as static on a macroscopic scale in total
superposition of all single particles.

With the above resulting charge density
p = goc [In/—g] nF”4 (3.12)

we obtain the charge Q of a particle or a charged, extended matter distribution from the
following integral (compare it with the mass integral (3.7))
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Q = fff [—g pdx!dx?dx3® = gy fff,/—g [an—g]’nF"4 dx! dx? dx3
(3.13a)
and further simplified

Q = ¢gyc .f.ﬂ(\/—_g)n F™ dx! dx? dx® = ¢, fﬂ.(\/—_g)n E™dx' dx? dx3
(3.13b)

where E™ is the electric field vector of a particle or a charged, extended matter distribution
concerned.

4. Summary and outlook

The fundamental equations of MST, which do not contain any natural constants, primarily
represent a general formulation of the unification of gravitation and electromagnetism. This
unification applies both in the subatomic range (quantum range) and in the macroscopic
range (classical and cosmological range).

MST eliminates the problem of wave-particle duality, since every particle is a wave extended
across the entire universe (i.e. we have cosmological functions in RS) with an extremely
sharp energy density distribution in the subatomic range at the location with the highest
probability. Therefore, in the sense of MST, there are only particle waves and no "point-like"
particles. Nevertheless, the probability of measurements or indeterminism in the sense of
quantum mechanics is not questioned by that, as we always measure waves with waves,
which do not change the fact of uncertainty of any measurement.

In the further following paper, we will discuss the Dirac equation in RS, which represents a
special solution of MST in the quantum range.

We will further present simple solutions for the macroscopic range of MST, which describe
the generation of gravitational fields due to electromagnetic sources. Thus, MST provides
approaches to solutions for gravitational compensators, electro-gravitational propulsions,
etc.

Furthermore, the question arises whether the MST could explain all four fundamental
forces of nature. It is conceivable that the combination of electromagnetic fields within
extremely deformed Riemannian spacetime (RS) in the subatomic range could lead to all
four fundamental forces. For example, strong interaction could result from an extreme
spacetime curvature in a subatomic range, in which high-energy photons are trapped, i.e.
self-bound, and interact electro-gravitationally with each other within such a range.

In particular, concrete metrics of elementary particles should be derivable from the
fundamental equations of MST. That is why we have chosen the term Matter Structure
Theory, since the fundamental equations of MST must describe the metric and field
structure of particles and extended matter structures.

In the cosmological range, for example, the rotational speeds of galaxies could be
investigated, since, unlike classical physics, MST postulates energy density distributions
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for matter that is extended across the entire cosmos and continuously differentiable.
Classical physics, including classical general relativity, always assumes spatially limited
matter distributions, i.e., mass or energy density distributions with central sources, which
consequently lead to the geometric 1/r? dependence of all fields. MST, on the other hand,
could generate stronger action at a distance due to the cosmologically extended energy
density distributions of matter, which could explain higher rotational speeds in the outer
regions of galaxies without the postulated and as-yet-undiscovered dark matter and
energy.

Since the solutions to the EFE and the source-free Maxwell equations must be
simultaneously satisfied in the bi-vector formalism, all solutions must be derived
from very elaborate and difficult mathematical derivations.
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