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ABSTRACT
Comparison studies in methodological research are intended to compare methods in an evidence-based manner to help data ana-
lysts select a suitable method for their application. To provide trustworthy evidence, they must be carefully designed, implemented,
and reported, especially given the many decisions made in planning and running. A common challenge in comparison studies is
to handle the “failure” of one or more methods to produce a result for some (real or simulated) data sets, such that their per-
formances cannot be measured in those instances. Despite an increasing emphasis on this topic in recent literature (focusing on
non-convergence as a common manifestation), there is little guidance on proper handling and interpretation, and reporting of the
chosen approach is often neglected. This paper aims to fill this gap and offers practical guidance on handling method failure in
comparison studies. After exploring common handlings across various published comparison studies from classical statistics and
predictive modeling, we show that the popular approaches of discarding data sets yielding failure (either for all or the failing meth-
ods only) and imputing are inappropriate in most cases. We then recommend a different perspective on method failure—viewing
it as the result of a complex interplay of several factors rather than just its manifestation. Building on this, we provide recommen-
dations on more adequate handling of method failure derived from realistic considerations. In particular, we propose considering
fallback strategies that directly reflect the behavior of real-world users. Finally, we illustrate our recommendations and the dangers
of inadequate handling of method failure through two exemplary comparison studies.

1 | Introduction

In methodological research, comparison studies aim to compare
the performance of methods to provide empirical evidence on
their behavior and help data analysts choose appropriate meth-
ods for their setting. To be reliable, they require careful plan-
ning of the design, execution, and reporting of the results. These
issues have gained increasing attention in recent years, both
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in the context of simulation studies based on artificially gener-
ated data [1–3] and in the context of real data-based benchmark
studies [4, 5].

In this work, we focus on a particular aspect of the design
of comparison studies that affects both simulation and bench-
mark studies, namely “method failure.” Method failure occurs
when a method under investigation fails to produce an output
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for a (real or simulated) data set considered in the compari-
son study. The issue of method failure in comparison studies
has begun to attract attention in recent years [1–3], often focus-
ing on non-convergence. However, there is little guidance on
how to handle method failure appropriately, whether it occurs
as non-convergence or in another form. In particular, published
reviews have shown that method failure goes unreported in the
majority of cases. For instance, in a systematic review of 42 pub-
lished simulation studies on the analysis of complex longitudi-
nal patient-reported outcomes data, less than half “acknowledge
that model non-convergence might occur” [6]. Even more notably,
only 12 of 85 applicable research articles reviewed by Morris
et al. [1] report convergence as a performance measure. This con-
trasts with our perception—both through our own experiences
and informal discussions with colleagues—that the problem of
method failure is highly prevalent. In particular, signs of method
failure are often traceable in the code provided for reproducibil-
ity, even when not reported in the manuscript. This is often
clear through the use of explicit error-handling mechanisms (e.g.,
functions try() or tryCatch() in R or try-except con-
structs in Python).

To illustrate the difficulty of handling method failure adequately,
imagine a researcher conducting a comparison study in statis-
tics or predictive modeling to compare the performance of three
methods based on four simulation/benchmark data sets. In the
context of classical statistics, they likely focus on comparing the
methods’ performances (e.g., bias) in “estimating one or more pop-
ulation quantities” [1], sometimes called “estimand(s),” and base
the analysis on data simulated using a certain data-generating
mechanism (DGM). In predictive modeling, they are likely to
compare the methods’ predictive performances (e.g., accuracy),
that is, their ability to make predictions on a new set of observa-
tions. Here, the analysis is typically performed on real benchmark
data sets. For simplicity, we refer to both settings as “simulation
studies” and “benchmark studies,” respectively (though admit-
ting that there may be intermediate situations, e.g., simulation
studies investigating predictive performance on artificial data).

During the experiments, the researcher encounters the failure
of some methods in one or more of the following ways: (i) they
receive an error message or output of NA (“not applicable”)
or NaN (“not a number”), implying that a certain calculation
could not be completed (e.g., non-convergence), (ii) their system
crashes, or (iii) the experiment runs for an excessively long time,
forcing the researcher to abort.

While the majority of real published comparison studies do not
report method failure, there are positive examples from classi-
cal statistics and predictive modeling in which the occurrence
(and oftentimes also the applied handling) of method failure is
described. For instance, van Smeden et al. [7] investigate why
different simulation studies offer conflicting minimal “events
per variable (EPV)” recommendations for logistic regression. All
three studies featured, exploring the effect of EPV on perfor-
mance measures such as bias and coverage, encounter separated
data sets (i.e., outcome variable is perfectly predicted by one or
a combination of multiple covariates), which lead to convergence
issues of the maximum likelihood process. That is, convergence is
not achieved within the pre-specified number of iterations, or the
process converges to a point that is not the maximum likelihood

estimate [7]. In a study from the statistical learning field, Gijsbers
et al. [8] conduct a comparison study of nine automated machine
learning methods (“AutoML frameworks”). They encounter and
report method failure in the forms of (i) exceeding available mem-
ory (or other memory-related issues), (ii) exceeding time limits,
(iii) failure related to data set characteristics (such as highly imbal-
anced data), and (iv) failure caused by errors in the implementa-
tion of the AutoML method [8].

Regardless of the form in which a researcher encounters method
failure, it leads to NA for the associated method-data set com-
bination, where otherwise an estimate (for simulation studies)
or a performance value (for benchmark studies) is expected.
Table 1 depicts a corresponding summary of the results of
the hypothetical researcher’s study across all simulation repeti-
tions/benchmark data sets and methods. In simulation studies,
the NAs complicate the derivation of performance (e.g., bias as
the mean deviation of the estimates from the true value across
all repetitions). In benchmark studies, on the other hand, they
hinder the aggregation of performance values into an average per-
formance (e.g., average estimated accuracy as the mean fraction
of correct predictions across all benchmark data sets). In both
cases, method failure complicates the assessment and especially

TABLE 1 | Overview table of (a) a fictive simulation study across four
repetitions (rows) and (b) a fictive benchmark study across four bench-
mark data sets (rows) for three methods (columns). Method failure results
in undefined values for the affected combination of data set and method,
marked by “NA.”

(a) Fictive simulation study: Overview of estimates, with
the true value being equal to 4. Method failure first leads
to an undefined estimate value for the given method—
data set combination, complicating the derivation of bias
for that method.

Repetition Method 1 Method 2 Method 3

1 3.89 4.23 4.08
2 3.78 4.13 4.11
3 NA 3.69 4.23
4 3.75 4.24 NA

Bias ? 0.07 ?

(b) Fictive benchmark study: Overview of estimated
accuracies across all method—data set combinations.
Method failure directly leads to an undefined
performance (i.e., accuracy) value for the given
method—data set combination.

Benchmark
data set Method 1 Method 2 Method 3

1 0.85 0.88 0.87
2 0.9 0.91 0.86
3 NA 0.80 0.82
4 0.78 0.76 NA

Average accuracy ? 0.84 ?
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the comparison of performance of the methods under investiga-
tion, such that the researcher finds themself wondering how to
proceed adequately.

The above-shown examples of published comparison studies
alone already illustrate different viewpoints on method failure
and correspondingly different ways in which it is handled in prac-
tice. Van Smeden et al. [7] observe that separated data sets are
commonly removed from the analysis. This, however, affects bias,
mean squared error (MSE), and confidence interval width, even if
the frequency of separated data sets is small [7]. Gijsbers et al. [8]
argue against discarding data by describing that method failure
is typically correlated with data set characteristics. Instead, they
impute by the performance of a constant predictor.

Examining additional published studies, which we do through-
out this paper, shows that imputation and discarding data sets
associated with failure are among the most common practices.
However, it also becomes clear that they are only two of many
handlings applied in practice and that others, such as modify-
ing the affected methods’ implementations and changing soft-
ware, are common as well—an indicator that proper guidance
is commonly lacking. Our paper aims to fill this gap and pro-
vides detailed instructions on how to handle method failure. In
particular, we illustrate why usual handlings of method failure
derived from treating the resulting NAs as regular “missing data,”
and especially imputation and discarding data, are inappropri-
ate in most settings (leading us to refer to “undefined” rather
than “missing” performance values in instances of method fail-
ure). As an alternative, we promote considering method failure
from a different viewpoint, namely as the result of a complex and
individual interplay of multiple factors—which we use to derive
alternative and more appropriate measures that can be applied
when encountering method failure.

Our paper targets both the planning and the execution stages of
a comparison study. While many instances of method failure can
only be directly observed—and therefore investigated—after the
study is executed, certain considerations should be made while
planning to anticipate and ideally reduce the potential for failure.

The rest of this paper is structured as follows. In Section 2, we
give an overview of the status quo by reviewing and summariz-
ing the different manifestations and handlings of method failure
reported in published comparison studies, followed by a detailed
discussion of why discarding data or imputing values is usually
inadequate when encountering method failure. Building on this,
Section 3 is a compilation of alternative recommendations for
handling method failure, which differentiates between different
scopes of the study and research stages in which it may take place.
In particular, we promote using fallback strategies when encoun-
tering method failure, which enables the aggregation of perfor-
mance across data sets even when method failure occurs, and
on top of that, reflects the behavior of real method users across
many settings. Considering possible time constraints, we also dis-
cuss “slimmed-down” ways in which authors can implement part
of our recommendations if unable to follow them completely.
Finally, in Section 4, we demonstrate our recommendations using
two fictive comparison studies that illustrate the complexity of
the discussed issues.

2 | Method Failure in Published Comparison
Studies

In Section 2.1, we summarize common manifestations and han-
dlings of method failure reported in the literature. Since some
authors focus on how method failure is handled rather than
explaining how it occurred, the corresponding studies are dis-
cussed only in Section 2.1.2. An overview of all study contexts,
manifestations, and handlings of method failure is provided in
Table 2.

2.1 | Status Quo: Occurrence and Handling of
Method Failure

2.1.1 | Common Manifestations of Method Failure

Non-convergence and other calculation issues Authors often
encounter the inability of a method to perform a calculation nec-
essary for prediction or estimation, either implied through an
error, a warning, or a meaningless output. For methods employ-
ing an iterative procedure (e.g., an iterative maximum-likelihood
procedure), this is called “non-convergence,” that is, the method
fails to produce a valid output within the pre-specified number of
iterations.

Examples Zapf et al. [9] encounter non-convergence for two of
the three methods under investigation. One returns an error,
while the other outputs the current, non-converged estimate
in these instances [9]. Masaoud and Stryhn [12] encounter
instances of “non-convergence or non-sensible estimates” [12] for
some method-data set combinations. In the study by Crowther
et al. [13], the methods are based on numerical integration and
encounter estimation difficulties (non-convergence) with “chal-
lenging data sets” [13]. Hornung et al. [11] report instances of
method failure when methods are “not applicable” [11] to certain
differences between training and test sets regarding the patterns
of block-wise missingness. Additionally, they report calculation
issues for one method, explicitly disallowing certain structures in
the training data set, resulting in failure. Calculation issues are
also reported in the study by Ruxton and Neuhäuser [10], where
some odds ratio estimation methods fail due to division by 0 when
the 2 × 2 contingency table contains one or more zero entries.
Fernández-Delgado et al. [15] report several data set character-
istics associated with issues in required calculations, including
“collinearity of data, singular covariance matrices, and equal [pre-
dictor values] for all the training [observations], [ . . . ] discrete pre-
dictor variables, classes with low populations, or too few classes”
[15]. Additionally, a group of methods in their study requires a
certain minimum number of observations per outcome class and
is therefore not applicable to particularly small data sets. Another
case of calculation issues can be found in the simulation study
conducted by Dunias et al. [14]. For some data sets, the statistical
learning method LASSO does not select any predictor variable,
leading to a constant predictor and preventing the assessment of
performance regarding calibration slope.

Memory issues Even before exceeding possible time budgets,
some methods crash due to memory issues. That is, the given
method consumes more memory than is available.
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Examples Gijsbers et al. [8] report memory constraint viola-
tions, segmentation faults, and Java server crashes as instances
of method failure related to memory. Hornung et al. [11] also
encounter memory issues, which they attribute to a specific
missingness pattern induced into the training data. Fernández-
Delgado et al. [15] encounter memory issues in combination with
large data sets.

Runtime issues Another form of method failure often reported
in comparison studies is excessive runtime. Some studies set
fixed time budgets, so exceeding them is considered method
failure. Others without fixed budgets encounter method fail-
ure when experiments for single methods run for an excessive
amount of time (e.g., days), forcing the researcher to abort. Unlike
non-convergence and memory issues, method failure is actively
declared by the researchers when runtime issues occur, as with-
out these (naturally necessary) limitations, a method might even-
tually generate an output at some point. Resulting implications
are discussed in Section 3.1.6.

Examples While Gijsbers et al. [8] encounter the excess of prede-
fined time budgets for model training, Herrmann et al. [16] face
runtime issues without fixed budgets. They encounter “computa-
tions lasting several days for one single model fit for large data sets”
[16] for one method.

2.1.2 | Common Approaches to Handling Method
Failure

Based on the published comparison studies, the handling of
method failure can be commonly divided into two general
approaches. Note that a literature review by Pawel et al. [19],
yielding a structured investigation of the frequencies of han-
dling approaches from published simulation studies, results in
four main handlings, which are among those we have commonly
observed.

Resolving method failure Some authors resolve method failure
completely so that no instances remain. A straightforward way
observable in the literature is to completely remove the affected
method from the analysis. For instance, Ruxton and Neuhäuser
[10] exclude all methods that fail with zeros in the 2 × 2 con-
tingency table. Masaoud and Stryhn [12] use method removal
as a last resort in their sequence of handlings when previous
measures (see below) have been unsuccessful. This illustrates
well that oftentimes, different handlings are applied within the
same study, sometimes switching between approaches or apply-
ing them sequentially until successful. Note that a more moderate
form of method removal can be observed in the benchmark study
by Herrmann et al. [16] For the method encountering runtime
issues, they restrict the analysis to the subset of smaller bench-
mark data sets and report the corresponding results separately
from the remaining methods.

An alternative to removing methods is to modify their implemen-
tation such that an output can be successfully produced. For
instance, in the study by Masaoud et Stryhn [12], “different opti-
mization techniques were tried” [12] for one method when the
default procedure resulted in failure. Crowther et al. [13] react to

method failure by successively increasing the number of quadra-
ture points until convergence is reached.

Lastly, changing software for the method affected by method fail-
ure can also be observed in the literature. Switching the oper-
ating system can be observed in the study by Herrmann et al.
[16], who, for one method, encountered “a fatal error in R under
Windows, but not using the Linux distribution Ubuntu 14.04” [16].
Masaoud et al. [12], while remaining in the same operating sys-
tem, generate the required output for one method in SAS when
it fails in R.

Summarizing performance despite method failure Instead
of resolving method failure, some authors summarize the
methods’ performances despite existing failures. A widespread
approach is to discard data sets associated with failure. The first
version of this approach, consisting of discarding data sets for the
failing methods only, is followed by Zapf et al. [9] for the method
affected by errors due to non-convergence. Fernández-Delgado
et al. [15], comparing the methods’ performances based on two
performance measures, discard the associated data sets for the
methods affected by method failure in the comparison based on
average accuracy. The second version of discarding data, namely
discarding the corresponding data sets for all methods, is applied
by Hornung et al. [11]. Particularly, they argue against discard-
ing the data sets for the failing methods only by saying that it
would not yield a fair comparison since predictive performance is
generally associated with the induced pattern of block-wise miss-
ingness [11].

Instead of discarding data, it is also common to impute perfor-
mance values for the instances of method failure. Note that impu-
tation yields a variety of options. Fernández-Delgado et al. [15],
for instance, impute by the mean accuracy of all remaining meth-
ods on the given data set for their second performance measure
(Friedman ranking) when a method fails, as it requires the same
number of performance values across all methods. On the other
hand, recall Gijsbers et al. [8] and their comparison study of
AutoML methods in which they impute with a constant predictor
when a method fails. They choose this “very penalizing imputa-
tion strategy” [8], which can be viewed as a form of imputation
by the worst possible value, with a similar reasoning to Hornung
et al. [11]. That is, failure may be correlated with data set charac-
teristics such that discarding data sets for the failing methods or
imputing by the average performance of the given method on the
remaining data sets may unfairly favor the failing methods [8].
Note that Dunias et al. [14] also impute by a constant predictor
when a statistical learning method fails.

An alternative way of imputing is employed by Bischl et al. [17],
who impute performance values based on the proportion of rep-
etitions in which the affected method fails. Below 20%, they
impute by sampling from a normal distribution estimated from
the remaining performance values of that model. Above 20%, on
the other hand, they impute by the worst possible value with the
reasoning that the method’s behavior is “too unreliable for the cur-
rent data set” [17]. A similar imputation strategy is employed by
Herrmann et al. [16]. While using the same imputation rule when
a method fails on more than 20% of data sets, they otherwise
impute by the mean performance of the method in the remain-
ing “successful” data sets. In a subsequent project, Nießl et al.
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[18] consider alternative procedures, including imputation by the
worst possible value and by a value that weights the method’s
overall proportion of method failure against its performance in
the remaining folds. They show that the approach to imputing
the undefined performance values has a notable effect on the per-
formance ranking between the methods.

When summarizing performance despite the failure of an
existing method, some authors report the proportion of (real or
simulated) data sets for which each method fails. For instance,
Hornung et al. [11] list “the frequency of data sets with miss-
ing results” [11] for the methods affected by method failure.
Gijsbers et al. [8] provide multiple failure plots, consisting
of the number of failures per method with differentiation of
the different failure types, the number of failures by size of
the associated data set, and boxplots of the training durations
for each method with indicators of excessive runtimes. Zapf
et al. [9] even include convergence as a performance measure,
supported by a table of the number of converged simulation
runs for each simulation scenario across the methods in the
supplement.

2.2 | Why Popular Handlings are Often
Inadequate

2.2.1 | Why Discarding Data is Inadequate

Currently, there is no one-size-fits-all solution to handling
method failure, exemplified by the examples in Section 2. This
section discusses some principles to guide decisions. To illus-
trate ideas, we begin with two simple examples and some use-
ful terminology. Suppose a simulation study aims to compare
the performance of method A with method B in terms of bias.
Method A fails in 20% of repetitions while method B does not
fail in any. Alternatively, suppose a benchmark study aims to
compare the average accuracy of two methods. Again, method
A fails in 20% of benchmark data sets while method B does not
fail in any. The hypothetical results for the two cases are given in
Table 3a,b.

TABLE 3 | Overview table of an illustrative comparison study com-
paring the performance of (a) two estimation methods regarding bias and
(b) two prediction methods regarding average accuracy. Method A fails in
20% of (a) simulation repetitions and (b) benchmark data sets.

(a) Hypothetical simulation study

Bias
Unconditional

(all repetitions)
Conditional (repetitions

where A does not fail)

Method A — 0.09
Method B 0.14 0.09

(b) Hypothetical benchmark study
Average
accuracy

Unconditional
(all data sets)

Conditional (data sets
where A does not fail)

Method A — 0.85
Method B 0.72 0.85

We contrast the terms unconditional versus conditional perfor-
mance and absolute versus relative performance. Unconditional
performance simply means “in all data sets,” while conditional
means “in data sets where this method did not fail.” The uncon-
ditional bias of method B is 0.14, while the unconditional bias of
method A is not defined. The conditional bias of both methods is
0.09. Parallel descriptions apply to the hypothetical benchmark
study in Table 3b. Absolute performance means “considered on
its own” and relative performance means “when compared with
another method.”

These terms help to distill the problems with method failure
in comparison studies. Clearly, we want to compare the meth-
ods’ unconditional performances. However, in both Table 3a,b,
the relative unconditional performance of methods cannot be
compared because the unconditional performance of method A
is undefined. In contrast, the relative conditional performance
can be quantified and compared (“discarding data sets associ-
ated with failure for all methods”): In Table 3a, the two methods
have the same bias conditional on non-failure of method A; in
Table 3b, the two methods have the same accuracy conditional on
non-failure of method A. However, the conditional performance
of method B should be of little interest. Why should a method’s
performance depend on the behavior of another method regard-
ing failure? In Table 3, method B’s performance improves when
assessed based on only those data sets where A does not fail.
This becomes even more complex as additional methods are
included in the comparison, since discarding the corresponding
data sets for all methods requires conditioning on the non-failure
of each one.

Alternatively, one could intuitively proceed to compare the
unconditional performance of method B with the conditional per-
formance of method A (“discard data sets for the failing methods
only”). However, comparisons should be performed vertically, or
we are not comparing like with like: In the context of Table 3,
this would reflect poorly on method B, even though both per-
form equally well for the data sets without failure. This is all the
more problematic since method B, in this case, is actually prefer-
able to method A, as it outputs a result for all data sets! Again,
this becomes even more pronounced as additional methods are
added to the comparison, since different methods typically fail
on different datasets (see Section 3.1.1).

2.2.2 | Why Imputation is Inadequate

Another superficial solution often proposed when looking at
results such as those in Table 3 is to interpret method failure as
causing missing values and use missing data methods, such as
imputation, to infer the unconditional performance of method
A. After all, results given by different methods tend to be posi-
tively correlated, so results given by method B could inform the
imputation (analogously, it may be intuitive to impute with the
results of method A on the remaining data sets, as results tend to
be correlated).

We view it as mistaken to regard method failure as a form of
missing data and have been careful to refer to “undefined” rather
than “missing” values. The missing data literature defines miss-
ing values as those that exist and were intended to be recorded,
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but for one reason or another are “not observed” [20, 21]. Method
failure is far closer to what is called a truncating event in the esti-
mands literature [22, 23], which denotes a value that does not
exist. That is, when a method fails, the result we wished to record
simply does not exist for that data set. Method failure should,
therefore, not be viewed as obscuring the method’s results on a
given data set. Instead, failure is the result we get! For this reason,
we should be cautious about applying missing data approaches,
and particularly imputation, to method failure. Note that this also
includes measures of “weighted performance,” which weight the
performance of a method according to the proportion of data sets
with failure for that method. Using the correspondence between
weighting and imputation approaches, this implies that weight-
ing implicitly assigns some performance value in instances of
method failure. The consequence of our dissuasion from “miss-
ing data-inspired” approaches is that our work focuses inten-
sively on alternative ways to deal with method failure.

Note that there is an exception to method failure not leading to
“missing” data. This is when a “failure” is recorded, but a result
could have been obtained; for example, if failure occurs due to
excessive runtime, but the definition of excessive in the compar-
ison study can safely be judged as shorter than in practice. We
refer to this case in Section 3.1.6.

3 | Principles and Recommendations
for Handling Method Failure

The following section presents guidelines for handling method
failure that are more appropriate than discarding data or impu-
tation. Since, as previously mentioned, method failure can only
be directly observed after the execution stage, the order of our
recommendations aligns with the natural process of investigat-
ing these failures post-execution. However, we also highlight key
considerations that can be addressed during the planning stage
to help reduce both the potential for and unpredictability of fail-
ure in the first place. An overview of the recommendations can
be found in Table 4.

Using the terminology of Heinze et al. [24], we distinguish
between comparison studies in “early” and “late” research
phases. Early phase studies investigate if a given method can
be “used with caution” in settings similar or only slightly differ-
ent from its original target setting, possibly refining or extending
it while also making limited comparisons. Late phase studies,
however, focus on realistic comparisons across diverse scenarios
to guide real-world users. We make differentiated recommenda-
tions when necessary.

3.1 | Practical Recommendations for the
Handling of Method Failure

3.1.1 | Consider Method Failure as the Result of a
Complex Interplay

When looking beyond the manifestations of method failure sum-
marized in Section 2.1.1, it becomes evident that these are just the

tip of the iceberg. In the end, regardless of how method failure
manifests, it is rooted in an individual and complex interplay of
interconnected factors, that is,

Certain data set characteristics cause the method
to fail in its current implementation (and on the
given hardware and software).

Besides influencing runtime and memory consumption [25], data
set characteristics contributing to method failure are highlighted
by the observation that a method usually fails for specific data
sets, not all of them. Certain data set characteristics can com-
plicate or completely prevent required calculations of a method
within the maximum number of iterations (non-convergence),
time, or memory budgets. Note that this association is addressed
in several comparison studies listed in Section 2.1.1. For instance,
the study by van Smeden et al. [7] addresses perfect separa-
tion of the outcome variable by one or more predictor vari-
ables as a cause of non-convergence of logistic regression algo-
rithms. Recall also the data set characteristics associated with
failure that are reported by Fernández-Delgado et al. [15], includ-
ing “collinearity of data, singular covariance matrices, and equal
[predictor values] for all the training [observations], [ . . . ] dis-
crete predictor variables, classes with low populations, or too few
classes” [15].

Conversely, the association of method failure with the (imple-
mentation of) a given method becomes clear from the usual
observation that not all methods fail for the same data sets.
That is, methods often vary in their ability to handle specific
data set characteristics. For instance, in our illustrative study in
Section 4.1, some odds ratio estimation methods are equipped
with a way around “zeros,” while others fail.

In addition to the interplay of method and data set characteristics,
however, software can also affect the (non-)failure of a method
such that results are obtained in one software but not another.
Consider, for instance, that Herrmann et al. [16] report that one
of the methods under investigation is completely unusable due
to an error in R that occurred using Windows as an operating
system, while it did not occur under Ubuntu. The dependency
on hardware, on the other hand, becomes clear in how working
memory, besides being directly associated with possible memory
issues, can also considerably affect runtimes.

Ultimately, the core of method failure—stemming from the inter-
play of data set, method, software, and hardware—is consider-
ably more informative for addressing method failure than the
manifestation of failure itself. We, therefore, recommend that
authors of comparison studies investigate and understand the
interplay underlying failure for each instance after the execution
phase. Ideally, they should identify if particular (and if different)
data set characteristics cause the failures, leading to evaluations
such as “method A fails when a predictor variable is constant
across all observations and when a binary predictor has highly
imbalanced classes.” As a preparatory measure in the planning
stage, authors should check user manuals and help pages for any
described problems related to certain data structures for all meth-
ods under investigation.
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TABLE 4 | Checklist of recommendations for handling method failure.

Recommended error handling workflow Section

1. Investigate and understand the interplay underlying each instance of method failure. Interplay may
consist of data set characteristics, the method’s implementation, the given hardware, and software.

3.1.1

2. Check for the correct use of the method. Distinguish between “use beyond original scope” and “method
misuse” when detecting that a failing method is used differently than intended by its developers.

3.1.2

3. Check if data matches the scope of the study. Check if the characteristics of the data associated with failure
(and the failure itself) are realistic for the targeted users.

3.1.3

4. Be realistic when modifying method implementations (for early-stage research). Restrict yourself to
parameter adjustments that are realistic for future targeted users.

3.1.4

5. Consider a fallback strategy (for late-stage research). Evaluate the performance of method pipelines of the
type “use method A when it successfully produces an output, use method B otherwise.” Define the pipelines
based on preliminary considerations and avoid selectively reporting the “best” pipelines.

3.1.5

6. Special case: Runtime issues. When real users running the affected method only on a single data set can be
assumed to successfully obtain a model output, run the method on a preselected random subset of all data sets
(selection best made in the planning stage).

3.1.6

7. Report failure proportions, underlying interplays, applied approaches, and share code. Provide
valuable insights to real users into the methods’ usability and enhance a deeper understanding of method failure
in general.

3.1.7

8. Think ahead and pre-register, but remain flexible. Conduct a pilot study before pre-registering the
handling of method failure. Be aware that unforeseen failures may still occur; therefore, include error-handling
mechanisms in your code from the start.

3.1.8

Slimmed-down error handling workflow when time constraints prevent recommendations 1–8
Report (i) performance results after discarding the data sets for all methods, (ii) performance results after
discarding the data sets for failing methods only, and (iii) failure proportions for all methods. Note that this
approach does not provide a comparison of unconditional performance.

3.2

3.1.2 | Check for the Correct Use of the Method

When encountering method failure in the execution stage,
authors should first check whether the method was truly devel-
oped for the given estimation or prediction task and the type of
data (based on the investigations from the previous Section 3.1.1),
and if it is used as intended by the developers. If this is not the
case, a distinction should be made between two scenarios. First,
a method in the study is used in a slightly different (but not
contraindicated) context than originally intended by its develop-
ers. We call this “use beyond the original scope.” Including this
method in the study may be justified when real users commonly
use this method “beyond its original scope,” however, authors
should make a corresponding remark in their manuscript. Sec-
ond, if using the method in the given context is explicitly con-
traindicated by the method developers, including it in the study
would correspond to method misuse. A method should not be
penalized for failing on a data set or a task it was explicitly
not intended for. Even if commonly (but probably unknowingly)
“misused” by real users, this method should be excluded from
the study, and the contraindication should be stated clearly in the
manuscript. If none of the scenarios apply, authors should resort
to Section 3.1.3.

All assessments regarding the use of a given method should be
based on the familiarization with all methods from the exper-
iment, which should already take place in the planning stage.
This underlines the importance of carefully reading correspond-
ing user manuals and checking for publications from real-world

applications in which these methods are commonly used. This
aspect should also be checked when planning the data generation
in simulation studies and selecting benchmark data for bench-
mark studies. When in doubt, authors may also consult the devel-
opers of the individual methods (and possibly involve them in the
study).

3.1.3 | Check if Data Matches Scope of Study

If method failure persists after ruling out an incorrect use in the
execution stage, authors should assess whether real-world users
are likely to encounter such data (and, therefore, this method
failure). This assessment is shaped by the study’s scope and is
naturally not purely objective. Importantly, associated consider-
ations should be reported in the study since they carry valuable
information and affect the interpretation of the study’s results.

Consider the case of method failure caused by the method’s
inability to make required calculations due to an “extreme” struc-
ture of the given simulated data set. For instance, White et al. [26]
conduct an illustrative simulation study that examines methods
for handling missing values in confounders in epidemiological
data. They observe failure of an imputation method, and inves-
tigation of the corresponding data reveals that it occurs when
outcome or exposure is highly imbalanced for individuals with
an observed confounding variable. From this information, they
conclude that “the data-generating mechanism is too extreme and
should be changed to generate more outcome events” [26].
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If, given the scope of the study, certain data set characteristics
are deemed unrealistic for the targeted readers, authors may con-
sider making sensible parameter changes in the DGM to gen-
erate data that is more realistic, in line with White et al. [26].
Similarly, “too extreme” data may also affect real data-based
studies. If one of the (real) benchmark data sets is considered
to be irrelevant to the scope of the study after careful exami-
nation, authors may consider removing the data set from the
study completely. See Section 4.2 for an illustration. However,
if the data sets causing failure are deemed relevant to the (sim-
ulation or benchmark) study’s scope, the researchers conduct-
ing the comparison study should—more appropriately than
discarding or imputing in most cases—proceed by consider-
ing how real-world users are likely to behave in this situation.
In particular, they may modify certain parameters of the con-
cerned method(s) (see Section 3.1.4) or resort to a fallback (see
Section 3.1.5).

To be able to assess whether data structures associated with fail-
ure are too extreme, certain considerations should already be
made in the planning stage. Researchers should be aware of the
scope and goal of their study: Is it the goal to examine the gen-
eral behavior of the method(s) (i.e., earlier stages of research) or
to provide concrete recommendations for real-world practition-
ers (later stages of research)? Is the focus on testing the meth-
ods under regular or more extreme circumstances? If aiming to
provide recommendations to real-world users, what degree of
extremity in the data remains realistic for them?

3.1.4 | Be Realistic when Modifying Method
Implementations

In earlier stages of research, it may make sense to modify a
method’s implementation entirely (i.e., for all simulation repe-
titions/benchmark data sets) when encountering method failure
during execution. For instance, authors may conclude after exe-
cution that the default number of maximum likelihood iterations
is generally too low, or that the given optimization algorithm may
fail frequently, and that an alternative optimizer is more reliable.
This way, authors may modify a greater variety of parameters to
see when the method is successful and when it fails. Although
this early-stage research is not yet directly aimed at real-world
users, authors should remember that it will be used by them later.
Therefore, certain practical limitations on parameter modifica-
tions should apply to ensure that the method remains feasible for
future users.

Also, authors should be careful about increasing the runtimes
of affected method(s). Especially, raising the number of itera-
tions in optimization algorithms can increase runtime or mem-
ory consumption, potentially shifting method failure rather than
solving it. A special case of modifying a method’s implemen-
tation often only arises after the execution stage of the study:
Investigations following the failure of a method reveal code
bugs in the implementation of a method. Especially when
their programming experience is high, authors may fix this
bug and notify the method developers. Ultimately, the perfor-
mance assessment of the given method is only meaningful if the
authors stress and justify their parameter choices when reporting
the study.

3.1.5 | Consider a Fallback Strategy

When a comparison study aims to provide guidance to real-world
users (i.e., in later phases of research), it makes sense to mimic
their behavior when encountering method failure in the exe-
cution stage. How would they proceed when their method of
choice failed on their data set? Morris et al. [1] argue that they
would usually not give up but naturally resort to an alternative
method, a fallback, that successfully provides an output. There-
fore, it can make sense to transfer this fallback strategy into the
context of method comparison studies and evaluate the perfor-
mance of method pipelines of the type

Use method A if it successfully produces an output,
use method B otherwise.

Incorporating fallbacks indirectly yields automatic handling of
method failure in case they affect method A but not method B,
allowing for the comparison of (absolute and relative) uncondi-
tional performance when chosen carefully and in a way that there
is a suitable fallback for each instance of method failure. Note that
when using fallback strategies, we no longer evaluate the “pure”
performance of method A. However, it is clear from Section 2.2.1
that this is unattainable in the first place.

The choice of a suitable fallback, again, depends on the scope
of the study and the targeted users. Should it serve as a guide
for experienced or rather inexperienced users? When target-
ing inexperienced real-world users, authors may choose a com-
pletely different method as a fallback. For instance, Zapf et al.
[9] suggest from the results of their study that “the approach by
Frömke et al. (2022) could be used as a fallback strategy in case of
non-convergence [of the overall best-performing method] because it
always yields results” [9], where the approach by Frömke et al.
[27] is a non-iterative procedure, therefore never affected by
non-convergence by design. When addressing experienced users,
an alternative implementation of the given method (in variation
of Section 3.1.4) may make a suitable fallback.

Many considerations and decisions regarding fallback strategies
should already be made in the planning stage of a study. This
includes, first and foremost, whether using fallbacks is suitable
for the given study, and based on this decision and the scope of
the study, whether a completely new method or a modified imple-
mentation should be used as a fallback. Authors should further
be aware that the neutrality principle of late phase comparison
studies should always apply; that is, authors should avoid putting
considerably more effort into only a few methods when choosing
fallbacks for them. This becomes clear, for instance, when modi-
fying the implementation of a method, as, for example, parame-
ter modifications can strongly influence performance [28]. In the
same context, it is important to avoid selective reporting as it can
lead to over-optimistic results; that is, authors should disclose
all tested pipelines, not just the best ones. It is therefore advis-
able to reduce the data-driven construction and the complexity
of pipelines, which can be achieved by the following considera-
tions. First, authors should decide on a maximum number of fall-
backs that can be considered to realistically reflect the behavior of
real users (as they are unlikely to try out an indefinite number of
methods). Suitable combinations of methods and fallbacks may
be preliminarily constructed based on the similarity of ease of use
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(e.g., a user is unlikely to resort to a fallback that is considerably
more difficult to apply than the original method). Alternatively,
inspired by Zapf et al. [9], it may make sense to define a default
fallback to all instances of method failure if a method has proven
to be particularly computationally robust in previous comparison
studies.

Finally, authors should be aware that instances of all fallbacks
failing on a given data set cannot always be avoided, even when
using a computationally robust “default” fallback. Many fallbacks
(and generally many methods) failing on the same data set may
indicate that it is particularly “challenging.” Authors should then
investigate the data set closely to check whether it suits the scope
of the study (see Section 3.1.3) and consider removing it if it is
deemed unrealistic for real users. Otherwise, reporting the cor-
responding characteristics of the data set alongside the meth-
ods that successfully produce an output may provide valuable
insights to real users.

3.1.6 | Special Case: Runtime Issues

In contrast to non-convergence and memory issues, method fail-
ure is actively declared by the authors when runtime issues occur
in the execution stage. That is, running the methods under inves-
tigation on hundreds or thousands of data sets requires time
restrictions, which are set by the authors arbitrarily, and with-
out which the method would likely produce a valid output. On
the other hand, it can sometimes be safely said that real (tar-
geted) users, running the method on a single data set only, are
likely to obtain an output. In these cases, when method failure
leads to missing rather than undefined performance values, it may
make sense to run the experiment on a randomly selected subset
of all simulation repetitions/benchmark data sets for the method
affected by runtime issues (“failure by design”). To ensure that
this “failure” is independent of data characteristics, it is impor-
tant to select the subset of data independently of the data sets for
which the method has particularly long runtimes. Researchers
should therefore think about possible runtime problems and
carry out the corresponding random selection of data sets already
in the planning stage.

3.1.7 | Report Failure Proportions, Underlying
Interplays, Applied Approaches, and Share Code

Authors of comparison studies should report any occurrences and
proportions of method failure. This can serve as an important
criterion for real-world users selecting a suitable method. Even
the “best performing” method is of limited use if the number
of settings in which it can be applied without frequent failures
is limited. Ideally, the proportion of method failure should be
included as an additional performance measure for all considered
methods (see Morris et al. [1]); see Zapf et al. [9] for an example.

Additionally, the interplay of method and data causing failure
should be reported. Adding to the previous paragraph, a corre-
sponding reporting for each method can look like “method A,
with a failure proportion of 𝑋%, fails when a predictor variable
is constant across all observations and when a binary predic-
tor has highly imbalanced classes.” In addition to reporting the

corresponding failure proportions, readers can learn in which
settings a method is applicable, and no less importantly, in which
it is not. Additionally, these insights serve as justification for the
chosen handling of method failure. An example of a correspond-
ing reporting can be found in Hornung et al. [11], who provide
detailed descriptions in the supplement of their paper.

Authors of comparison studies should additionally report their
applied handlings with sufficient detail, that is, any actions result-
ing from the above-described in-depth investigations and recom-
mendations regarding method failure. This includes removing
any misused methods, removing data (or modifying DGMs) that
do not match the scope of the study, any changes in implementa-
tions, and incorporating fallback strategies. Additionally, authors
should justify their choices given the scope of the study (i.e.,
which users it is aimed at) and the research stage in which it takes
place.

The complexity of the occurrence and handling of method failure,
which becomes clear from the previous sections, emphasizes all
the more the value of sharing code, data, and intermediate results.
Allowing authors of other, “new” comparison studies to conduct
in-depth investigations of the specific instances of method fail-
ure in the given study may help them gain a greater understand-
ing of this topic—and enhance fruitful discussions on suitable
handlings.

3.1.8 | Finally: Think Ahead and Pre-Register, but
Remain Flexible

The previous examples and those that will be outlined in Section 4
make clear that method failure and its cause(s), related to com-
plex dynamics between factors such as method and data set,
are often difficult to anticipate. While pre-specifying the han-
dling of undefined values has the advantage of reducing analyt-
ical uncertainty and its dangers in terms of selective reporting
[3], pre-specifying a standard procedure before conducting the
study may sometimes be delicate. Making method failure less
unexpected (and pre-specifying a procedure for handling method
failure less hazardous) can be achieved through pilot experi-
ments. They test whether an experimental design is appropriate
for the specific context in which it is applied, and are recom-
mended in several textbooks on Design and Analysis of Experi-
ments [29–31]. For example, a pilot experiment might use a frac-
tion of the available data sets (e.g., 20%) in the comparison study
to test whether the specified method implementations produce
reasonable results. The remaining 80% is used for the main exper-
iment, which may be refined based on what is learned in the pilot.
Pilot studies can also help authors anticipate possible method
failures for which they can then pre-specify adequate handlings.
Note that it is important to clearly report the results of the pilot
study.

Despite pre-registration, researchers should be aware that
unforeseen issues may appear and require adaptations of the
pre-specified strategy (see Lakens [32] for a discussion of the con-
sequences of deviations from pre-registration on the severity and
validity of inferences). As a result, error-handling mechanisms
should be included in the code right from the beginning, includ-
ing the storage of error messages [26].
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3.2 | Slimmed-Down Recommendations for the
Busy Researcher (Looking to Do Just Enough)

For some authors, there may be time constraints that do not
allow for any (in-depth) implementations of our recommenda-
tions from the previous Section 3.1; however, authors neverthe-
less wish to aggregate results over data sets despite the existence
of undefined values caused by method failure. While we recom-
mend implementing our in-depth recommendations as compre-
hensively as possible, we suggest the following slimmed-down
analysis and reporting strategy when time and resources are lim-
ited. Authors may present performance results after (i) discarding
the corresponding data sets for the failing methods, (ii) discarding
these data sets for all methods, and (iii) report the failure propor-
tions for all methods, ideally as an additional performance mea-
sure. This three-fold analysis and reporting enables more differ-
entiated assessments of the methods’ performances and avoid the
preference of methods based solely on how data sets associated
with method failure are discarded. It also reveals how successful
methods perform on data sets for which others fail (and how this
influences the method comparison). When the graphical compar-
ison involves boxplots of performance values, authors could indi-
cate method failure (and the corresponding frequency) as scatters
of contrasting color above or below the box. For instance, for bias,
they could be indicated above the plot (as a value higher than all
biases observed in the study), whereas for accuracy, it could be
indicated below the plot.

However, following Section 2.2.1, authors should be aware and
clearly state in their manuscript that any form of aggregating
performance results despite existing undefined values does not
allow an assessment of unconditional performance of all methods
under investigation.

4 | Illustrations

In the following, we illustrate the guidelines presented in
Section 3 through two fictive comparison studies featuring
method failure: A statistical simulation study and a benchmark
study at the interface between statistics and predictive modeling.

Note that our focus is exclusively on the handling of method fail-
ure and its consequences on the method comparison rather than
the method comparison itself. This means that both illustrations
represent only a small excerpt (e.g., a few or a single scenario)
of what would be a typical publishable study, exclusively focus-
ing on those aspects of the studies that are relevant to the issue
of method failure. Importantly, our goal is not to provide insights
into the actual performance of the compared methods.

4.1 | Example 1: Comparing Methods for the
Estimation of Odds Ratios

4.1.1 | General

This fictive statistical simulation study deals with the comparison
of odds ratio (OR) estimation methods. Outcome and exposure
are binary (𝑋, 𝑌 ∈ {0, 1}) and the observed number of subjects
with 𝑋 = 𝑖 and 𝑌 = 𝑗 is denoted as 𝑛𝑖𝑗 . The simulation scenarios

are defined by the sample size 𝑛.𝑜𝑏𝑠, the underlying true OR, and
the probability of exposure 𝑝𝑥. Especially when the sample size is
low, the underlying true OR is far from 1, or 𝑝𝑥 is close to 0 or 1,
some simulated data sets may not contain any subjects for one
or more of the four outcome-exposure combinations (𝑛𝑖𝑗 = 0).
These “sampling zeros” cause calculation issues (e.g., division by
0) for many OR estimation methods, leading to either returning
an error or, depending on the position of the sampling zero in
the contingency table, non-meaningful OR estimations of 0 or
“∞” for the corresponding data sets. In practice, users often apply
the “Haldane–Anscombe correction” [33, 34] to handle sampling
zeros in the OR estimation. This correction consists of adding an
offset of +0.5 to all four cells in the contingency table to avoid
issues in computation.

4.1.2 | Design of the Fictive Study

We vary the underlying true OR (𝑂𝑅 ∈ {2, 5}) and exposure
probability 𝑝𝑥 (𝑝𝑥 ∈ {0.25, 0.5}) while keeping the sample size
fixed at the relatively low value of 𝑛.𝑜𝑏𝑠 = 50. This results in
four distinct simulation scenarios (see Table 5 for an overview).
For each scenario, we simulate 100 000 outcome-exposure data
sets. Five OR estimation methods are applied to the simulated
data to obtain a point estimate for the true OR. “Manual” cor-
responds to the manual and straightforward computation 𝑂𝑅 =
𝑛11⋅𝑛00
𝑛01⋅𝑛10

. The remaining four methods, namely “Fisher,” “Midp,”
“Small” (all three implemented in R package epitools [35]),
and “Woolf” [36] (implemented in R package pairwiseCI
[37]) employ more complex modeling strategies. From the five
estimators under investigation, only Small and Woolf can han-
dle sampling zeros internally. For each simulation scenario,
the estimators are compared regarding bias on the log-scale
(log-transformation ensuring symmetry around the value of “no
association”).

Our analysis consists of two parts. First, we compare the perfor-
mance of the OR estimation methods when discarding data sets
with sampling zeros for all methods versus only for the failing
methods (“ad hoc approaches”; Section 4.1.3). Though real users
often apply the Haldane–Anscombe correction when encounter-
ing sampling zeros, this first part illustrates how the preference
of some methods may mainly be driven by the way data sets with
sampling zeros are discarded.

Second, we repeat the analysis implementing the principle of fall-
back strategies suggested in Section 3.1.5. This includes impor-
tant considerations that must be made when choosing suitable

TABLE 5 | Overview of the proportion of the 100 000 simulated data
sets (fixed sample size 𝑛.𝑜𝑏𝑠 = 50) with sampling zeros across the simula-
tion scenarios. 𝑝𝑥: Exposure probability.

Simulation
scenario true OR 𝒑𝒙

Sampling zero
proportion

1 2 0.25 1.28%
2 5 0.25 12.0%
3 2 0.5 0.01%
4 5 0.5 1.27%
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fallbacks. For instance, for the manual estimation of the OR
(method “Manual”), only the Haldane–Anscombe correction is
applied as a fallback, assuming that a user applying the manual
computation in the first place, which is very easy to implement, is
unlikely to resort to a method that requires notably more effort.
On the other hand, for methods Midp and Fisher for data sets
with sampling zeros, we either (i) apply the Haldane–Anscombe
correction, (ii) use method Small, or (iii) use method Woolf,
assuming that corresponding users may also employ fallbacks
that are slightly more difficult to apply. Together with Woolf
and Small, this leads to nine “methods” (“pure” methods or
pipelines) being compared in total. The results are presented in
Section 4.1.4.

4.1.3 | Occurrence of Method Failure and Ad Hoc
Handlings

Table 5 displays the proportion of the 100 000 simulated data
sets containing at least one sampling zero across the four simu-
lation scenarios. As expected, this proportion increases with an
increasing true OR > 1, while decreasing when exposure 𝑋 is
more balanced.

Ad hoc approaches In the first analysis, Figure 1A demonstrates
that the way of discarding data sets with sampling zeros can sub-
stantially affect the results of the method comparison, with dis-
crepancies regarding performance ranks already observable at a

sampling zero proportion of just over 1%. This impact becomes
more pronounced as the proportion of sampling zeros increases,
making a difference in the observed performance by up to three
ranks. In particular, it can affect which method is perceived
as best-performing. Note that a more detailed investigation of
Woolf’s performance shows that for the data sets without sam-
pling zeros, Woolf slightly underestimates the true OR, while for
the few data sets with sampling zeros, Woolf notably overesti-
mates it. This leads to top performance when all data sets are
included in its performance assessment (while discarding data
sets with sampling zeros for the failing methods).

4.1.4 | Recommended Handling: Using Fallbacks

Woolf’s overall good performance across all scenarios is under-
pinned when using fallbacks for all methods affected by method
failure (see Figure 1B). Furthermore, the comparison between
Woolf and Midp, another method performing well in most sce-
narios, becomes clearer through the use of fallbacks. While they
often alternate in rank (and especially between rank 1 and 2)
when removing data sets (Figure 1A), their performance compar-
ison is constant across all scenarios when a fallback is applied
to Midp (Figure 1B). Since this applies to both fallbacks, the
Haldane–Anscombe correction and Small, it is debatable which
fallback is preferable. Both fallbacks for Midp frequently switch
ranking positions across the performance measures and simula-
tion scenarios; however, fallback Small might be even easier to

Fis

Mid

Sma

Woo

Man

Fis

Mid

Sma

Woo

Man

Fis

Mid

Sma

Woo

Man Fis

Mid

Sma

Woo

Man

Fis

Mid

Sma

Woo

Man

Fis

Mid

Sma

Woo

Man

Fis

Mid

Sma

Woo

Man

Fis

Mid

Sma

Woo

Man

Scenario  1 Scenario  2 Scenario  3 Scenario  4

5

4

3

2

1

Sing
le All

Sing
le All

Sing
le All

Sing
le All

Simulation scenario

R
an

k 
(b

ia
s)

Fails with sampling zeros FALSE TRUE

A

Fis/+0.5

Mid/+0.5

Sma

Woo

Man/+0.5

Mid/Sma

Mid/Woo

Fis/Sma

Fis/Woo

Fis/+0.5

Mid/+0.5

Sma

Woo

Man/+0.5

Mid/Sma

Mid/Woo

Fis/Sma

Fis/Woo

Fis/+0.5

Mid/+0.5

Sma

Woo

Man/+0.5

Mid/Sma

Mid/Woo

Fis/Sma

Fis/Woo

Fis/+0.5

Mid/+0.5

Sma

Woo

Man/+0.5

Mid/Sma

Mid/Woo

Fis/Sma

Fis/Woo

9

8

7

6

5

4

3

2

1

Sce
na

rio
 1

Sce
na

rio
 2

Sce
na

rio
 3

Sce
na

rio
 4

Simulation scenario

R
an

k 
(b

ia
s)

B

FIGURE 1 | Performance ranks of the OR estimation methods across the eight simulation scenarios based on empirical bias on the log-scale, where
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implement than the Haldane–Anscombe correction, requiring
only a simple code modification from Midp.

4.2 | Example 2: Comparing Methods for
Computing Confidence Intervals for the
Generalization Error

4.2.1 | General

The fictive study aims to compare the performance of two
methods for constructing confidence intervals (CIs) for the
generalization performance of a prediction model based on
resampling-based estimates, such as cross-validation. The
“naive” method “𝑁” for constructing the CIs ignores the
dependence between the generalization performances in the
resampling repetitions, while method “𝐶” corrects for it. The
performance of both methods is assessed in terms of coverage.
Note that a comprehensive benchmark study of methods for
constructing CIs for the generalization error is performed by
Schulz-Kümpel et al. [38].

4.2.2 | Design of the Fictive Study

Classification trees [39] are considered as models for predictive
modeling, and the data set provided by the SAPA project [40],
further processed according to Klau et al. [41], is used as the
benchmark data set. The response variable is binary. The general-
ization performance is quantified using the Area Under the Curve
(AUC). The AUC is estimated using 15 repetitions of repeated
subsampling (𝑖 = 1, . . . , 15) with a 4:1 ratio (i.e., the data is ran-
domly split 15 times into 80% on which the model is trained and
20% on which the AUC is obtained [42]).

Method 𝐶 suggested by Nadeau and Bengio [43] computes the CI
for the generalization AUC as[

𝐴𝑈𝐶 − 𝑡0.975,14 ⋅

√( 1
15

+ 𝑐
)
⋅ 𝑆2

𝐴𝑈𝐶𝑖

,

𝐴𝑈𝐶 + 𝑡0.975,14 ⋅

√( 1
15

+ 𝑐
)
⋅ 𝑆2

𝐴𝑈𝐶𝑖

]
(1)

where 𝐴𝑈𝐶 represents the mean AUC estimate and 𝑆2
𝐴𝑈𝐶𝑖

the
sample variance over the 15 subsampling repetitions. 𝑡0.975,14 is
the corresponding quantile of the 𝑡-distribution. A fixed correc-
tion term 𝑐 > 0 incorporates the correlation structure between
the subsampling repetitions for method 𝐶 (see Nadeau and Ben-
gio [43] for the construction of c). Method 𝑁 , on the other hand,
sets 𝑐 = 0 in the above formula.

To estimate the coverages of methods 𝑁 and 𝐶 , the following
procedure is repeated for 1000 iterations (see Figure 2). The
SAPA data set is randomly split into a large test set 𝐷𝑡𝑒𝑠𝑡 (80%
of observations) and a training set 𝐷𝑡𝑟𝑎𝑖𝑛 (20% of observations).
The true AUC is approximated by applying the trained model to
𝐷𝑡𝑒𝑠𝑡. The corresponding estimated AUC, on the other hand, is
obtained via repeated subsampling on 𝐷𝑡𝑟𝑎𝑖𝑛. Confidence inter-
vals for the true AUC are constructed according to Equation (1)

with corresponding values of 𝑐 for methods 𝑁 and 𝐶 . Finally,
the estimated coverages of methods 𝑁 and 𝐶 are the proportions
of the 1000 iterations where the respective confidence intervals
cover the approximated true AUC.

The study is conducted in R using package mlr3, method 𝑁

is implemented using function t.test() from package base
and for method 𝐶 , 𝐴𝑈𝐶 and 𝑆2

𝐴𝑈𝐶𝑖

are obtained using functions
mean() and sd() (from the same package).

4.2.3 | Occurrence of Method Failure and Ad Hoc
Handlings

For method 𝑁 , the implementation of the above-described pro-
cedure returns the following error message for 300 of the 1000
iterations in R:

Error in t.test.default: Data are

essentially constant.

Hence, the confidence intervals cannot be constructed for
method 𝑁 in these iterations, making it impossible to assess
whether they cover the true AUC. Method 𝐶 is not affected by
these errors. At first glance, the error message gives little indi-
cation of how to resolve it. In the following, we first apply three
ad hoc approaches to handle these errors. Then, by following our
in-depth guidelines from Section 3, we demonstrate how these
ad hoc approaches prove to be inadequate, and illustrate more
suitable ways to handle method failure in this example.

Ad hoc approaches One could be inclined to apply one of the
following ad hoc approaches:

1. For method 𝑁 , ignore all data sets in which it fails (method
𝐶 is unaffected).

2. For both methods, ignore those iterations in which 𝑁 fails.

3. For method 𝑁 , set “undefined” confidence intervals to “not
covering the true AUC.”

Note that the intuition to approach 3, which can be viewed as a
form of imputation, is that a CI that does not exist cannot cover
any value. It thus induces a negative correlation between the pro-
portion of undefined confidence intervals and the coverage of
method 𝑁 .

The coverages resulting from the ad hoc approaches are displayed
in Table 6a. While the coverage of method 𝐶 is constant across
all three ad hoc approaches, method 𝑁 , while too liberal across
all approaches, is even more liberal using the ad hoc imputation
approach.

4.2.4 | Recommended Handling

We now closely inspect the modeling processes underlying the
study to find the root cause of the error message and to adapt
the handling of method failure accordingly. Investigations show
that the errors in method 𝑁 occur when the estimated AUCs are
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FIGURE 2 | Design of the fictive study to obtain the empirical coverage of methods 𝐶 and 𝑁 . An approximation of the “true AUC” is obtained
based on the very large 𝐷𝑡𝑒𝑠𝑡.

TABLE 6 | Empirical coverages of methods 𝑁 and 𝐶 resulting for (a) the three “ad hoc” approaches and (b) setting undefined CIs to zero-width
CIs.

(a) Ad hoc approaches: NA-CIs are (b) NA-CIs are

discarded for
method 𝑵 only

discarded for
methods 𝑵 and 𝑪

set to “not covering
true AUC”

set to zero-width
interval

Method 𝑁 0.54 0.54 0.38 0.68
Method 𝐶 1 1 1 1

equal across all 15 subsampling repetitions, resulting in a sample
variance 𝑆2

𝐴𝑈𝐶𝑖
of 0. This zero variance in the denominator of the

𝑡-statistic causes an error in the functiont.test(). Focusing on
the confidence interval, however, a sample variance of 0 simply
implies a zero-width CI {𝐴𝑈𝐶}. Therefore, method 𝑁 not yield-
ing a CI (and returning an error) is a technical artifact of its imple-
mentation. A straightforward solution would be to modify the
implementation of method 𝑁 , using mean() and sd() instead
of t.test(), so that it computes the zero-width CI, which can
enter the calculation of coverage as any other CI (see Table 6b for
the resulting coverage).

However, upon further investigations, it becomes clear that a
sample variance𝑆2

𝐴𝑈𝐶𝑖
= 0 always coincides with all 15 estimated

(and the approximate true) AUC being 0.5. Ultimately, this worst
possible performance of the classification tree (“random predic-
tion”) occurs when the classification tree does not perform any
splitting. This is related to the characteristics of the data set. For
example, the problem disappears if we include additional predic-
tors: Splitting then occurs, leading to an AUC higher than 0.5.

This illustrates well that the further the investigations are taken,
the apparent adequate handling of method failure can change
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notably. In this case, based on the information gained, adequate
handling depends on the aim of the study and requires fur-
ther considerations, such as the following. A prediction problem
where splitting often does not occur can be viewed as an edge
case. If the study’s scope includes such edge cases, one could
attempt to suitably modify the parameters of the classification
tree to favor splitting. If, however, the study aims to compare both
methods in regular scenarios, one may add additional predictors
to favor splitting more strongly, resort to an alternative predic-
tion model (e.g., logistic regression) or an alternative measure
of generalization performance (e.g., accuracy), or use a different
benchmark data set.

5 | Discussion

Method failure in comparison studies, often manifesting as issues
regarding calculation (e.g., non-convergence), runtime, or mem-
ory issues, complicates the desired comparison of unconditional
performance between the methods under investigation, that is,
across all simulated or benchmark data sets. Our informal litera-
ture review and illustrations both make clear that authors should
not blindly rely on the initially perceived manifestation of failure,
but rather make extensive investigations of the underlying factors
causing the failure, which often guides the choice of handling the
resulting undefined values.

Even if we argue for decisions on a case-by-case basis after care-
ful inspection of the failures, we show and illustrate that some
general principles hold in most situations. In particular, method
failure usually leads to non-existing values instead of just “miss-
ing,” that is, existent but unobserved values. This means impu-
tation, a common but missing-data-inspired approach to han-
dling method failure, is usually inadequate. The same applies to
the popular and seemingly logical approach of discarding data
associated with failure (either for all or the failing methods),
which almost never enables the comparison of unconditional per-
formance. In this work, we provide alternative approaches that
might be more appropriate to most occurrences of method failure.

An approach that in our view deserves more attention than it
receives currently in the literature consists of evaluating whole
“pipelines” of methods, including one or several fallbacks in case
of method failure. This approach reflects the typical behavior
of most users of methods in practice, while enabling the com-
parison of unconditional performance if constructed carefully:
If one method does not work, they resort to an alternative one.
Future work is required to collect experiences and define stan-
dards regarding such pipelines and their evaluation. Above all,
transparent reporting of the frequency of failure and of the corre-
sponding handling is always recommended.

A limitation of our recommendations is that, beyond obvi-
ous cases, they typically require both high time resources and
thorough expertise in the underlying modeling processes and
methods. Researchers conducting comparison studies may not
always have these resources to the full extent. This particularly
applies to a nuanced examination of the interactions between
methods and data sets, leading to method failure in different
instances. We understand that this bottleneck may impair the full

implementation of our recommendations in practice, hence our
attempt to provide a slimmed-down version of the recommenda-
tions. When time, resources, and expertise are restricted, trans-
parent reporting is all the more important. Furthermore, this
underlines the necessity for openly sharing code, data, and ideally
intermediate results, as this allows other researchers to explore
the observed instances of method failure in greater detail. Also,
our viewpoint on method failure as leading to “undefined” per-
formance values does not always hold unrestrictedly, which can
complicate the implementation of our recommendations. How-
ever, with method failure being a complex matter in and of itself,
this underscores the importance of a case-by-case evaluation, as
described above.

In this article, method failure has been treated as black-or-white.
However, in practice, whether or not a method has failed is itself
a value of judgment. One such example is near-separation [7],
which does not necessarily make itself obvious, hence the exis-
tence of dedicated methods to detect it [44]. Such gray-area fail-
ures add further complexities to benchmark and simulation stud-
ies: Overall performance may depend on the specific criteria used
to judge failure.

Partial failure of a method is also possible. For example, in a sim-
ulation study, a method might return a valid point estimate but
not its standard error, or a point estimate for one estimand but
not another. Many of the principles discussed in this article apply
in such situations, for example, the principle to avoid imputing
estimates where a method has failed, and the notion of a pipeline
(when the standard error estimator fails, revert to a backup esti-
mator if available). There are, however, further subtleties. For
example, it may be inadvisable for the fallback approach to keep
the point estimate from method A and fallback on the standard
error estimated from method B.

To sum up, we believe there is not “one” right way to handle
method failure in all situations. Instead, it is important to care-
fully choose an approach depending on the context, and then
report, explain (and ideally discuss) the decisions made. With our
work, we hope to contribute meaningful ideas on how to think
about method failure. They lead to helpful strategies for dealing
with it, as outlined as part of our recommendations. However, we
also believe that method failure is only one of many issues related
to comparison studies that deserve much more time, effort, and
methodological strength towards more reliable evidence on the
behavior of methods in the context of a “replication crisis in
methodological research” [45]. We need more well-designed neu-
tral comparison studies [4]—late phase studies according to the
terminology of Heinze et al. [24]. In such studies, no time is
spent on the development of new methods. This leaves time for
implementing our recommendations and diving into the techni-
cal details of the methods under investigation.
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