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BACKGROUND: We sought to investigate the association between circulating inflammatory and cardiovascular proteomics bio-
markers and cardiac autonomic nervous dysfunction—sensitive heart rate variability indices.

METHODS: Using the population-based KORA (Cooperative Health Research in the Region of Augsburg) cohort, 233 proteom-
ics biomarkers were quantified in baseline plasma samples of 1389 individuals using proximity extension assay technology.
Five heart rate variability indices (Rényi entropy of the histogram with order [o] 4, total power of the density spectra, SD of word
sequence, SD of the short-term normal-to-normal interval variability, compression entropy) were assessed at baseline in 982
individuals and in 407 individuals at baseline and at 14-year follow-up. Three unbiased multivariable selection models followed
by linear or linear mixed-effects models with multiple testing correction were used to determine the association between pro-
teomics biomarkers and heart rate variability indices.

RESULTS: C-C motif chemokine 23 was positively associated, while peptidoglycan recognition protein nd fibroblast growth
factor 21 were negatively associated with Rényi entropy of the histogram with order (&) 4 cross-sectionally. Tumor necrosis
factor-related activation-induced cytokine and growth/differentiation factor 15 were negatively associated with compression
entropy cross-sectionally. Over time, interleukin-6 receptor subunit « and macrophage colony-stimulating factor were positively
and negatively associated with total power of the density spectra, respectively. Additionally, myoglobin and agouti-related
protein were positively and negatively associated with SD of the short-term normal-to-normal interval variability, respectively.
Gastrotropin and agouti-related protein were positively and negatively associated with compression entropy, respectively.

CONCLUSIONS: This study identified novel circulating proteins associated with heart rate variability indices. These proteins could
improve our understanding of the pathophysiology underlying cardiac autonomic nervous dysfunction.
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RESEARCH PERSPECTIVE

What Is New?

e This epidemiological study observed that 10
novel circulating proteins are associated with
cardiac autonomic nervous dysfunction—-sensi-
tive heart rate variability indices.

What Question Should Be Addressed

Next?

e Future studies using larger study samples
should profile these novel proteins and their as-
sociated cardiac autonomic nervous dysfunc-
tion—-sensitive heart rate variability indices at
multiple time points to investigate the temporal
variation of these proteins and indices, the im-
pact of intraindividual variation on the associa-
tion between the proteins and the indices and
the relationship between their trajectories.

Nonstandard Abbreviations and Acronyms

AGRP agouti-related protein

CAND cardiac autonomic nervous
dysfunction

CCL23 C-C motif chemokine 23

CE compression entropy

CSF1 macrophage colony-stimulating factor 1

DDA direction dependence analysis

FGF21 fibroblast growth factor 21
GDF15 growth/differentiation factor 15

HbA, hemoglobin Alc
HRV heart rate variability
IL6RA interleukin-6 receptor subunit a

KORA Cooperative Health Research in the
Region of Augsburg

MUVR multivariable modeling with unbiased
variable selection methodsNGTnormal
glucose tolerance

PGLYRP1 peptidoglycan recognition protein 1

PLS partial least squares regression

Rényi4 Rényi entropy of the histogram with
order (o) 4

RF random forest regression

RMSE root mean square error

SDSA SD of the short-term normal-to-

normal interval variability
SDWS SD of word sequence
T2D type 2 diabetes
TP total power of the density spectra

TRANCE tumor necrosis factor-related
activation-induced cytokine
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diabetes globally.! Cardiac autonomic nervous

dysfunction (CAND), a dysfunction of sympa-
thetic or parasympathetic activity or regulation, is a
prevalent, serious, and often overlooked diabetes-
related complication.?® Important sequelae of CAND
are increased risk of major cardiovascular events and
death.?® Heart rate variability (HRV) alterations are the
hallmark of CAND.? Consequently, HRV indices have
become the most popular and widely used tool for
the identification of CAND.®-8 In the population-based
KORA (Cooperative Health Research in the Region of
Augsburg) study, we previously reported that a com-
bination of 4 short-term HRV indices selected from
multiple classes of linear and nonlinear HRV dynam-
ics (ie, Rényi entropy of the histogram with order [a] 4
[Rényid], total power of the density spectra [TP], SD
of word sequence [SDWS], and SD of the short-term
normal-to-normal interval variability [SDSA]) resulted in
the most sensitive estimate of CAND prevalence in the
general population.? These CAND-sensitive HRV indi-
ces (henceforth HRV indices) could provide a deeper
understanding of CAND.

Risk factors for CAND include age,*® obesity,3%10
physical inactivity,> smoking,® dyslipidemia,®=® and hy-
pertension.2510 Interestingly, dysglycemia,®%% known
diabetes duration,” impaired kidney function,® reti-
nopathy,? other neuropathies,>' medications,”® but
also genetic predisposition.® Indeed, a multifactorial
intervention of lifestyle changes and targeting glu-
cose and cardiovascular disease (CVD) risk factors is
recommended for the prevention of CAND.” Of note,
CAND is more than a diabetes-related complication
as it is also prevalent in individuals with prediabetes
and in advanced age.>"'° This underscores the press-
ing need to further explore the risk factors and bio-
markers of CAND. Population-based epidemiological
studies with glucose tolerance status of individuals in
advanced age could be an excellent resource to ad-
dress this need.

The pathophysiological underpinnings of CAND are
complex." Nonetheless, its integral molecular mecha-
nisms involve insulin resistance,® dysregulated inflam-
mation,>™? and oxidative stress.'” Indeed, targeting
some biomarkers of inflammation and endothelial func-
tion has been suggested to be promising for the treat-
ment of CAND." Expectedly, some cardiovascular and
inflammatory biomarkers, CRP (C-reactive protein)'®
and adiponectin,” were found to be associated with
CAND in clinic-based epidemiological studies, while
CRP/® interleukin-6,'® interleukin-18,'® interleukin-1 re-
ceptor antagonist,'® and adiponectin'® have been linked
to CAND in population-based cohorts. However, only
a few of these associations remained when classical
cardiometabolic risk factors were taken into account,
suggesting that most are not independent biomarkers

Type 2 diabetes (T2D) accounts for >90% of all
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of CAND and its HRV-related indices. Additionally, the
selected biomarkers of previous studies might be un-
able to capture important aspects of the apparently
broad and complex pathophysiological underpinnings
of CAND. Indeed, population-based studies with op-
timized targeted quantification of an array of well-
defined set of proteomics biomarkers could advance
this investigation. Furthermore, it is unknown whether
these proteomics biomarkers would be relevant for
CAND beyond the commonly assessed inflammatory
biomarkers. While it seems intuitive that alterations in
proteomics biomarkers influence these indices, the
potential bidirectional relationship between inflamma-
tion and CAND'"" suggests that the relationship be-
tween these biomarkers and HRV indices needs to be
properly disentangled.

Hence, this large population-based epidemiological
study sought to investigate the independent associa-
tions between plasma circulating proteomics biomark-
ers and HRV indices cross-sectionally and over time.

METHODS

The data are subject to national data protection laws.
Therefore, data cannot be made freely available in
a public repository. However, data can be requested
through an individual project agreement with KORA. To
obtain permission to use KORA data under the terms of
a project agreement, please use the digital tool KORA.
PASST (https:/epi.helmholtz-muenchen.de/).

Study Population and Design

The current study is based on data from the population-
based KORA S4 cohort (1999-2001) and its 14-year
follow-up, KORA FF4 (2013-2014). In 1999, study par-
ticipants were recruited from the region of Augsburg
(Germany) using random sampling and random se-
lection of 16 towns and villages from 70 communi-
ties. Sex- and age-stratified sampling was done for
each community. Four of the strata comprised men
and women aged 55 to 74years. Participants pro-
vided biosamples that included fasting blood samples.
Venipuncture was performed on participants in a sit-
ting position. The blood samples were stored at —196
°C in liquid nitrogen until plasma proteomics analysis in
2019 to 2020. Medical history was obtained through a
structured interview, and various medical assessments
such as ECGs were also performed. Details of the de-
sign of the KORA S4/F4/FF4 cohort and assessments
have been previously described.'81° All investigations
were conducted in accordance with the Declaration
of Helsinki, and all participants provided written in-
formed consent. The ethics committee of the Bavarian
Chamber of Physicians, Munich approved all study
protocols.
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This present analysis is based on KORA study partic-
ipants at baseline (S4) comprising 1653 individuals, aged
55 to 74years. We sequentially excluded 88 individuals
who had missing data on any of the exposure variables
(previously analyzed 233 proteomics biomarkers?) at S4,
49 individuals with missing data on any of the outcome
variables (5 selected HRV indices) at S4, and 127 individ-
uals with unclear glucose tolerance status due to missing
oral glucose tolerance test data. This resulted in 1389 el-
igible S4 individuals. There were no individuals with type
1 diabetes. Of this study population, there were 407 with
complete data on the 5 HRV indices at follow-up (FF4).
Hence, the overall 1389 study population comprised 982
nonoverlapping individuals with 1-time assessed out-
come variables (HRV indices) at S4 and 407 individuals
with 2 repeatedly assessed HRV indices at baseline and
follow-up (FF4). These nonoverlapping analytical study
samples (henceforth referred to as S4 and S4-FF4 study
samples, respectively) were used to determine the as-
sociations of proteomics biomarkers with HRV indices
cross-sectionally and over time, respectively. Findings
from both study samples are complementary, providing
internal generalization to the overall study population.
Figure 1 shows the flowchart of the study population.

Measurement of the Exposure:
Proteomics Biomarkers

CVD- and inflammation-related protein biomarkers
were measured in baseline plasma samples using the
targeted proximity extension assay technology devel-
oped by Olink (Olink Proteomics, Uppsala, Sweden)
with the 3 panels Olink Multiplex CVDII, CVDIll, and
Inflammation. These panels were designed for broad
inflammation- and CVD-related research questions.
While they are not specific to HRV- or CAND-related
hypotheses, inflammation is generally considered as
an important driver of CAND. To avoid batch effects,
samples were randomized across plates. Each plate
included interplate controls, which were used to adjust
for any plate difference.?! The Olink platform provides
protein abundances as protein expression values,
which are similar to log,-normalized concentrations.
Details of the proximity extension assay method are
reported elsewhere.?%?" For this cohort’s exposure
variable, we considered 233 previously analyzed pro-
teomics biomarkers.?® These 233 biomarkers com-
prised 85, 81, and 67 biomarkers from the CVDII,
CVDIll, and Inflammation panels, respectively.

Assessment of Covariates:
Sociodemographic, Anthropometric, and
Lifestyle Factors and Other Biomarkers

Information on age, sex, education, smoking habits, al-
cohol consumption, physical activity, and medical his-
tory were collected by personal interviews conducted
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Cooperative Health Research in the Region of Augsburg (KORA)
baseline, S4 study participants, aged 55 to 74 years, n = 1653

............................................

i Missing data on exposure variables,

» 233 proteomics biomarkers,
..............................................

Missing data on the outcome
variables, five selected cardiac

»: autonomic nervous dysfunction-heart
i rate variability (HRV) indices at S4,
n=49

! Unclear glucose tolerance status due

Yes
No
A
n=1565
Yes
No
A
n=1516
Yes
No
v

»: fomissing oral glucose tolerance test
: data,n =127

---------------------------------------------------------

Yes

S4 study sample, n =982

S4-FF4 study sample, n =407

Figure 1. Flowchart of the study population.

by experienced medical staff. Educational attainment
was recorded as completed years of schooling. Height,
weight, waist circumference, and systolic and diastolic
blood pressure were measured at the study visit on
the basis of standard protocols, as described else-
where.?'®19 Body mass index (BMI [kg/m?]) was cal-
culated from weight and height. Smoking habits and
alcohol consumption were self-reported. Smoking sta-
tus was categorized as nonsmokers, former smokers,
and current (regular and irregular) smokers. Alcohol
consumption was based on reported intake of beer,
wine, and liquor on 1 weekday and the weekend. It was
expressed in g/d. Participants estimated the duration
and frequency of their weekly exercise across summer
or winter. They were categorized as either physically
active (>1hour sports/wk) or inactive. Blood pressure
was measured 3 times at the right arm after a 5-minute
resting period. The mean of the second and third
measurements was used for analyses. Medication use
was defined using Anatomical Therapeutic Chemical
Classification System codes. From baseline plasma
samples, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, and triglycerides were
measured by enzymatic methods.?? Hemoglobin A,
(HbA,) was measured by immune turbidimetric as-
says.?® An oral glucose tolerance test was performed
using standard procedure on those without previously
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known T2D. Individuals were categorized into six glu-
cose tolerance groups of normal glucose tolerance
(NGT), isolated impaired fasting glucose, isolated im-
paired glucose tolerance, combined isolated impaired
fasting glucose—isolated impaired glucose tolerance,
newly detected T2D and previously known T2D as pre-
viously described by Ziegler et al.®

In addition to commonly assessed biomarkers, leu-
kocyte count was quantified with the Coulter STKS
Hematology Analyzer (Block Scientific, New York, NY),
and CRP was quantified using a high-sensitivity latex-
enhanced nephelometric assay on a BN Il System an-
alyzer (Dade Behring, Marburg, Germany), while serum
amyloid A and fibrinogen were determined by immu-
nonephelometry.?* Adiponectin was determined with
the human adiponectin RIA from Linco Research (St.
Charles, MO).?®

Assessment of Outcomes: HRV Indices

The assessment of HRV indices has been previously
described.® Briefly, ECGs (lead Il and lead V2 simul-
taneously) were recorded in the supine resting posi-
tion over a period of 5minutes (sample frequency,
500Hz). Time series of heart rate (tachograms) con-
sisting of beat-to-beat intervals were extracted from
the 5-minute ECG recordings. Individuals with atrial
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fibrillation or flutter, left and right bundle-branch block,
second- and third-degree atrioventricular block or
sinoatrial block, multiple supraventricular or ventricular
extrasystoles, pacemaker therapy, and treatment with
class | antiarrhythmics were excluded. A total of 120
HRV variables (time domain [statistical and geomet-
ric analysis], 15 indices; frequency domain [spectral
analysis], 15 indices; nonlinear dynamics, 90 indices
using 8 different methods) were determined by apply-
ing linear and nonlinear HRV analysis methods to the
filtered tachograms. Calculations of the indices were
performed using in-house software.

The present analysis considered the 4 indices from
4 different HRV domains: Rényi4 (bit), TP (ms?), SDWS,
and SDSA (ms), which were previously reported to be
optimal for estimating the prevalence of CAND.® We
included 1 additional HRV index, compression entropy
(CE), that showed promising association with CAND.®
Overall, we analyzed 5 HRV indices (Rényi4, TP, SDWS,
SDSA, and CE) for both study samples. The clinical rel-
evance of these indices is provided in Data S1.

Statistical Analysis
Descriptive Analysis

Continuous and categorical basic characteristics
(covariates) of the overall study population and each
study sample, were summarized as median (inter-
quartile range), and count (percentage), respectively.
Comparison of the continuous and categorical covari-
ates between the S4 (n=982) and S4-FF4 (n=407) study
samples were tested with the Kruskal-Wallis rank-sum
test and Pearson’s x? test, respectively. Kruskal-Wallis
rank-sum test was done to compare the 2 groups, S4,
and S4-FF4 study samples. Therefore, no post hoc
test was needed.

Multivariable Modeling of the Association
Between Proteomics Biomarkers and
HRYV Indices

Figure 2 displays the statistical analytical plan. We par-
titioned the S4 into 3 (training, validation, and testing)
nonoverlapping data sets using 50:25:25% split®® and
S4-FF4 into 2 (training and testing) nonoverlapping
data sets, using 80:20% split.>” These partitions were
stratified on 6 glucose tolerance groups (NGT, isolated
impaired fasting glucose, isolated impaired glucose tol-
erance, combined isolated impaired fasting glucose—
isolated impaired glucose tolerance, newly detected
T2D and previously known T2D), which were previ-
ously used to estimate CAND prevalence in this study
population.® Thus, the S4 comprised 490 training, 246
validation and 246 testing data sets, while the S4-FF4
comprised 325 training and 82 testing data sets. The S4
and S4-FF4 training data sets were used for predictor
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variable selection. The S4 validation data set was used
for inferential analysis, and the S4 testing data set was
used for prediction modeling. The S4-FF4 testing data
set was used for inferential analysis and prediction.

S4 Study Sample

The S4 training (variable selection) data set was used
to identify important predictor variables (exposure
variables and covariates) of each of the 5 HRV indi-
ces (Rényi4, TP, SDWS, SDSA, and CE). We used 3
multivariable modeling with unbiased variable selection
methods (MUVR), partial least squares (MUVR-PLS),
random forest (MUVR-RF) and elastic net (MUVR-EN)
regression.?®2° Further details are provided in Data S1.
The MUVR algorithm returns 3 different consensus
models, minimal-optimal (strongest predictors), “mid”
and all-relevant (strongest and entirely redundant pre-
dictors). We chose predictor variables from the “mid”
consensus model, which is a trade-off between the
minimal-optimal and the all-relevant models. Predictor
variables shared by all the 3 methods, MUVR-PLS,
MUVR-RF, and MUVR-EN were considered as robust
predictor variables. Since glucose tolerance status is
central to this investigation, the inclusion of any glucose
tolerance group in the robust predictor variables has a
relaxed criterion of selection by only MUVR-RF, owing
to the ability of RF to uncover complex and important
interactions between variables®® (details in Figure 2).
Each HRV index assessed at baseline was sepa-
rately regressed on the predictor variables, measured
at baseline. The exposure variables were the protein
expression values of 233 proteomics biomarkers. We
performed a priori selection of covariates, and the final
covariates were the minimal sufficient adjustment set of
confounders estimating the direct effect of the proteom-
ics biomarkers on the HRV from the directed acyclic
graph (Figure S1). The general direction of proteomics
biomarkers—confounder association was based on
prior knowledge or literature on the well-known proteins
within the 233 proteomics biomarkers. The directed
acyclic graph-selected covariates were age, sex (men;
reference: women), BMI, waist circumference, smoking
status (smokers, ex-smokers; reference: nonsmokers),
alcohol intake, educational attainment, physical activ-
ity (active; reference: inactive), high-density lipoprotein
cholesterol, low-density lipoprotein cholesterol choles-
terol, triglycerides, systolic and diastolic blood pressure,
medications (selected medications with possible influ-
ence on HRV by Ziegler et al®: g blockers, angiotensin-
converting enzyme inhibitors, angiotensin antagonists,
calcium antagonists, and others: glucose-lowering
drugs, diuretics, statins, NSAIDs; reference: nonusers),
uric acid, creatinine, CRP, leukocyte, adiponectin, albu-
min, fibrinogen, and serum amyloid A, HbA,,, glucose
tolerance groups (isolated impaired fasting glucose,
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Overall study population (n = 1389)*
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Figure 2. Statistical analytical plan.

*Nonmissing on exposure variables (233 proteomics biomarkers), outcome variables (5 CAND-HRYV indices), and glucose tolerance
status. TNormal glucose tolerance, (i-IFG, i-IGT, combined IFG-IGT, newly detected T2D, and known T2D. fPredictor variables: 233
proteomics biomarkers and directed acyclic graph-selected covariates. §Relaxed inclusion of glucose tolerance status: selection by
only RF. #Predictor variables shared by all three methods. ADependent on the set of robust predictor variables. ¢Compares putatively
correct and reverse causal order; training data sets: variable selection data sets. Validation and testing data sets: model fitting data
sets. CAND, cardiac autonomic nervous dysfunction; HRV, heart rate variability; IFG, impaired fasting glucose; IGT, impaired glucose
tolerance; i-IFG, isolated impaired fasting glucose; i-IGT, isolated impaired glucose tolerance; RF, random forest regression; RMSE,

root mean square error; and T2D, type 2 diabetes.

isolated impaired glucose tolerance, combined isolated
impaired fasting glucose—isolated impaired glucose tol-
erance, newly detected T2D and previously known T2D;
reference: NGT) and known T2D duration. Plausible
values of missing covariates were single-value imputed
using the nonparametric multivariate imputation by the
chained RF. All continuous predictor variables were fur-
ther Z score standardized (mean, 0+1).

Using linear models, the robust predictor variables
were validated on the S4 validation (first model fitting)
data set. Depending on the set of robust predictor vari-
ables, we compared basic (covariates only: reference),
full (robust predictor variables) and complex-full mod-
els. The complex-full model would be the full model
with 2-way multiplicative interaction of each proteomics
biomarker with any glucose tolerance group recovered
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as a robust predictor variable. Models with the highest
overall performance scores (mean of normalized per-
formance metrics comprising the coefficient of deter-
mination, root mean squared error [RMSE], residual SD,
Akaike information criterion, and Bayesian information
criterion) were chosen as the “best”-performing mod-
els. In case of equal performance scores, models with
fewer predictor variables were selected as the best-
performing model. No model comparison was per-
formed for HRV indices in which the robust predictor
variables were only proteomics biomarkers. These pro-
teomics biomarkers-only models were considered as
the best-performing models. We estimated 8 and 95%
Cl of the best-performing models. To further account
for the multiple testing of the correlated HRV indices,
the highly statistical powered permutated P values®
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were computed using 5000 permutations (Data S1). We
considered significant proteomics biomarkers as those
with permutated P<0.05. Furthermore, we performed
bias analysis of the § by determining the robustness
of inference to replacement and impact threshold of a
confounding variable®? (Data S1). The best-performing
models’ predictive ability with the RMSE was evaluated
on the S4 testing (second model fitting) data set.
Finally, considering the cross-sectional nature of the
S4, we used directional dependency analysis (DDA)33
to empirically confirm whether the a priori (putatively
correct) causal order (proteomics biomarkers—HRV
indices) is more likely to reflect the correct causal flow
over the alternative (reverse) causal order (HRV indi-
ces—proteomics biomarkers). We tested only the
statistically significant proteomic biomarkers using the
S4 testing (second model fitting) data set. The decision
of explanatory superiority was based on the standard
and studentized (robust) Breusch—-Pagan homosce-
dasticity tests and bootstrap Hilbert—-Schmidt inde-
pendence criterion test with 1000 resamples (Figure 2).

S4-FF4 Study Sample

To recover the robust predictor variables of the S4-FF4,
the aforementioned multivariable selection steps were
performed on the training (variable selection) data set.
The repeatedly measured HRV indices were regressed
on the predictor variables measured at baseline, using
MUVR-PLS, MUVR-RF, and MUVR-EN (Figure 2).

Next, we fitted the robust predictor variables, per-
formed model comparison, and model inference on
the testing (model fitting) data set using linear mixed-
effects (random-effects) models. The outcome vari-
ables were the repeatedly measured HRV indices. All
robust predictor variables were modeled as fixed ef-
fects and a random effect (intercept) was specified for
every individual. The § indicates the effect of the robust
predictor variables on the average HRV indices over
time. Bias analysis was performed on the significant
proteomics biomarkers of the best-performing mod-
els. The predictive ability of the best-performing mod-
els were evaluated on the same testing (model fitting)
data set as leave-one-out cross-validated RMSE (test
RMSE) (Figure 2). No DDA was performed in the S4-
FF4 because its longitudinal design with subsequently
measured HRV indices at follow-up (temporality) in-
dicates an established causal order (proteomics bio-
markers—HRYV indices).

Independence of Proteomics Biomarkers,
Bivariable Associations, Statistical Power, and
Individual Power Components

Before the multivariable regression modeling, we
checked the dependency among the 3 panels of
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proteomics biomarkers as well as bivariable associa-
tions of predictor variables. The association between
continuous variables was tested with Spearman cor-
relation test, while difference across the groups of cat-
egorical variables was tested with the Kruskal-Wallis
test. Furthermore, we estimated the statistical power
of the generalized linear model of the partitioned data
sets. Details are provided in Data S1. In secondary
analysis, we examined the association of the proteom-
ics biomarkers with individual power components,
in the very-low-frequency, low-frequency, and high-
frequency range, using the same analytical steps as in
the main analysis.

All statistical analyses were performed using R
version 4.3.3. The R packages were “MUVR2” for
multivariable selection, “performance” for model com-
parison, “ImPerm” for permutation of linear models,
“dHSIC” for DDA, “permutes” for permutation of lin-
ear mixed models, and “konfound” for bias analysis;
“caret” for predictive ability (RMSE); and “pwr” for a
priori statistical power analysis. We considered P<0.05
as statistically significant.

RESULTS

Descriptive Analysis

Table 1 summarizes the basic characteristics of the
overall study population (n=1389) and the S4 (n=982)
and S4-FF4 (n=407). The overall study population had
52% men, a median age of 64years, and a median
BMI of 28 kg/m?; 42% were physically active, 14%
were current smokers, and 60% had NGT. The S4 had
54% men, age 65years, and BMI of 28 kg/m?; 40%
were physically active, 15% were current smokers, and
56% had NGT, while the S4-FF4 had 48% men, age
61years, and BMI of 27 kg/m?; 48% were physically
active, 12% were current smokers, and 68% had NGT.
The median follow-up time of the S4-FF4 was 14 years.
Basic characteristics such as age, BMI, and smok-
ing status were significantly different between the S4
and S4-FF4. Tables S1 and S2 provide the data for all
proteomics biomarkers and HRYV indices, respectively,
for the overall study sample and the S4 and S4-FF4
populations.

Multivariable Modeling of the Association
Between Proteomics Biomarkers and HRV
Indices

Association Between Proteomics Biomarkers
and HRYV Indices in S4 Study Sample

There were 16 (12 proteomics biomarkers and 4 covar-
iates), 6 (all proteomics biomarkers), 10 (9 proteomics
biomarkers and 1 covariate), 7 (all proteomics biomark-
ers)and 10 (9 proteomics biomarkers and one covariate)
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Table 1. Basic Characteristics of the Study Population

Proteomics Biomarkers and HRV

S4 study sample S4-FF4 study sample

Overall (n=1389) (n=982) (n=407) P value*
Age, y 64 (59-69) 65 (61-70) 61 (58-65) <0.001
Sex, male 725 (52.2) 528 (53.8) 197 (48.4) 0.068
Body mass index, kg/m? 28.2 (25.7-30.9) 28.5 (25.9-31.3) 27.4 (25.4-30.0) <0.001
Waist circumference, cm 96.1 (88.6-103.2) 97.1 (90-104.5) 93.7 (85.9-101.0) <0.001
Educational attainment, y 10 (10-12) 10 (10-12) 10 (9-12) 0. 100
Alcohol consumption, g/d 7 (0-22.9) 6.6 (0-22.9) 8.6 (0.9-22.7) 0.626
Smoking status, smokers 192 (13.8) 144 (14.7) 48 (11.8) 0.020
Physical activity, inactive 796 (57.6) 586 (60) 210 (51.7) 0.005
Systolic blood pressure, mmHg 135 (122.5-148) 137 (123.5-149.5) 131 (119-145) <0.001
Diastolic blood pressure, mmHg 79.5 (73-86.5) 79.5 (73.0-87.0) 80 (73.5-86.0) 0.853
Hemoglobin A,,, mmol/mol 38 (36-41) 39 (36-41) 38 (36-41) 0.237
High-density lipoprotein cholesterol, mmol/L 1.4 (1.2-1.7) 1.4 (1.2-1.7) 1.5(1.2-1.8) 0.037
Low-density lipoprotein cholesterol, mmol/L 3.9 (3.3-4.6) 3.9 (3.3-4.6) 3.9 (3.2-4.6) 0.616
Triglycerides, mmol/L 1.4 (1.0-1.9) 1.4 (1.0-2.0) 1.3 (0.9-1.8) 0.003
Albumin, g/L 38.2 (35.8-40.7) 38.1 (35.7-40.6) 38.5 (36.2-40.9) 0.049
Fibrinogen, g/L 2.8 (2.5-3.9) 2.9 (2.5-3.9) 2.7 (2.4-3.2) 0.005
High sensitivity C-reactive protein, mg/L 1.7 (0.9-3.5) 1.9 (0.9-3.8) 1.5(0.8-2.9) 0.001
Serum amyloid A, mg/L 3.6 (2.4-6.1) 3.7 (2.4-6.4) 3.4 (2.3-5.5) 0.113
Leukocyte count, /nL 5.9 (6.1-7.0) 8.8 (6.2-12.2) 8.4 (5.6-1.8) 0.058
Serum adiponectin, ug/mL 8.7 (6.0, 12.2) 6 (5.0-7.0) 5.7 (5.0, 6.7) 0.001
Uric acid, umol/L 329.2 (278.6-391.7) 334.3 (281.6-397.6) 318.5 (270.2-373.5) <0.001
Creatinine, umol/L 75.2 (66.3-85.8) 75.2 (66.3-85.8) 74.3 (65.4-84.0) 0.305
Use of angiotensin antagonists 46 (3.9) 36 (3.7) 10 (2.5) 0.249
Use of angiotensin-converting enzyme 178 (12.8) 150 (156.9) 28 (6.9) <0.001
inhibitors
Use of calcium antagonists 149 (10.7) 124 (12.7) 25 (6.1) <0.001
Use of 8 blockers 294 (21.2) 232 (23.7) 62 (15.2) <0.001
Use of diuretics 230 (16.6) 202 (20.6) 28 (6.9) <0.001
Use of glucose-lowering drugs 91 (6.6) 75 (7.7) 16 (3.9) 0.011
Use of statins 138 (9.9) 103 (10.5) 35 (8.6) 0.279
Use of NSAIDs 97 (7.0) 64 (6.5) 33(8.1) 0.294
Glucose tolerance status
NGT 827 (59.5) 552 (56.2) 275 (67.6) 0.002
i-IFG 99 (7.1) 70 (7.1) 29 (7.1)
i-IGT 160 (1.5 121 (12.3) 39 (9.6)
IFG-IGT 75 (5.4%) 58 (5.9) 17 (4.2)
Newly detected T2D 117 (8.4) 89 (9.1) 28 (6.9)
Previously known T2D 111 (8) 92 (9.4) 19 (4.7)
Duration of known T2D, y 8 (4-14) 8 (4-14) 7 (6-12) 0.005

Continuous and categorical basic characteristics (covariates) were summarized as median (interquartile range), and counts (percentage), respectively. IFG
indicates impaired fasting glucose; i-IFG, isolated impaired fasting glucose; IGT impaired glucose tolerance; i-IGT, isolated impaired glucose tolerance; NGT,

normal glucose tolerance; and T2D, type 2 diabetes.

*Difference in continuous and categorical covariates between S4 and S4-FF4 study samples were tested with Kruskal-Wallis rank-sum and Pearson’s x?

tests, respectively.

robust predictor variables for Rényi4, TP, SDWS, SDSA
and CE, respectively (Table 2). The robust proteom-
ics biomarkers include N-terminal pro-B-type natriu-
retic peptide for Rényi4, tumor necrosis factor—related
activation-induced cytokine (TRANCE) for TP, tumor

J Am Heart Assoc. 2025;14:e042144. DOI: 10.1161/JAHA.125.042144

necrosis factor receptor superfamily member 10A for
SDWS, N-terminal pro-B-type natriuretic peptide for
SDSA and N-terminal pro-B-type natriuretic peptide
for CE. The robust covariates were CRP, HbA,, waist
circumference and leukocyte count for Rényi4, waist
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Table 2. Robust Predictor Variables of S4 Study Sample
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Table 2. Continued
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Rényi4 Abbreviations Rényi4 Abbreviations
1 N-terminal pro-B-type natriuretic peptide NT-proBNP 6 TNF-related activation-induced cytokine TRANCE
2 Tumor necrosis factor receptor TNFRSF10A 7 Vascular endothelial growth factor D VEGFD
superfamily member 10A CE
3 C-C motif chemokine 23 CCL23
4 Interleukin-6 L6 1 N-terminal pro-B-type natriuretic peptide NT-proBNP
- 2 Tumor necrosis factor receptor TNFRSF10A
5 Thrombospondin-2 THBS2 superfamily member 10A
6 Insulin-like growth factor-binding protein 1 IGFBP1 3 Interleukin-6 L6
! C-reacitive protein CRP 4 C-reactive protein CRP
8 Tumor necrosis factor-related activation- TRANCE 5 Thrombospondin-2 THBS?
induced cytokine -
9 Neurotrophin-3 NT3 6 Contactin-1 CNTNT
- — - 7 C-C motif chemokine 23 CCL23
10 Peptidoglycan recognition protein 1 PGLYRP1
11 | oukin-1 ke 2 IL1RL2 8 Tumor necrosis factor-related activation- TRANCE
nterleukin-1 receptor-like induced cytokine
12 Hemoglobin Ay, HbA;, 9 Receptor for advanced glycosylation end RAGE
13 Waist circumference products
14 Leukocyte count 10 Growth/differentiation factor 15 GDF15
15 Protein o,-microglobulin/bikunin AMBP CE indicates compression entropy; ényi4, Rényi entropy of the histogram
precursor with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval
16 Fibroblast growth factor 21 FGF21 variability; SDWS, SD of word sequence; and TP, total power of the density
spectra.
TP
1 Tumor necrosis factor-related activation- TRANCE .
induced cytokine circumference for SDWS, and CRP for CE. The MUVR-
2 Low affinity immunoglobulin y Fc region IGGFC PLS, MUVR-RF, and MUVR-EN regression—speoific
receptor II-b predictor variables for each CAND—HRYV index are pro-
3 Lipoprotein lipase LPL vided in Table S3.
4 Vascular endothelial growth factor D VEGFD No gluoose tolerance group was selected by the RF
5 Interleukin-2 receptor subunit « IL2RA for the 5 HRV indices; as such, there was no complex-
6 Tyrosine-protein kinase receptor UFO AXL full model in model comparison. The comparison of
SO the full and basic models for Rényi4, SDWS, and CE
. indicated that the full models of Rényi4 (0.83) and CE
1 Tumor necrosis factor receptor TNFRSF10A .
superfamily member 10A (0.83) had overall higher performance scores than the
5 Interleukin-1 receptor-fike 2 ILRL2 basic models of Rényi4 (0.17) and CE (0.17), while the
3 -G motif chemoking 23 ooL23 full and basic models of SDWS had equal performaqce
. . P—— TRANGE scores of 0.5 (Table S4). Hence, the best-performing
umaor necrosis 1actor—related activation- s .
induced oytokine models for Rényi4, SDWS, and CE were the full,
5 Thrombospondin-2 THBS2 basic, and full models, respectively. The proteomics
5 Spondin-2 SPONG blomarkers—only (full) models of TP and SDSA were
= F—— S— —— their best-performing models.
ranstormins row actor al a .
. N ‘ ggB P I Erv— Table 3 summarizes the $ and 95% CI of the best-
~termi -B-t triuretic pepti - . .
STIne, pror=rype naTiretle peptee pro performing models. Key model assumptions, homo-
9 | Interleukin-10 receptor subunit beta IL10RB geneity of variance (homoscedasticity), normality of
10 | Waist circumference residuals, and acceptable multicollinearity (all variance
SDSA inflation factors were <10) were generally satisfied. Five
1 N-terminal pro-B-type natriuretic peptide | NT-proBNP proteins remained independently associated with 2 indi-
5 Thrombospondin2 THBS2 ces, Crosg—sectlonallly. Specifically, 1—SD hlgher CCL23
5 Low affinity immunogiobulin garmma Fo GGFG (C-C motif chemokine 23) was associated with 0.10-
region receptor II-b bit higher Rényi4, while 1-SD higher PGLYRP1 (pepti-
4| Receptor for advanced glycosylation end | RAGE doglycan recognition protein 1) and FGF21 (fibroblast
products growth factor 21) were both associated with 0.15-bit
5 Interleukin-10 receptor subunit g IL1TORB |OW€r Rény|4. Furthel’, 1_SD hlghel’ TRANCE and GDF15
(growth/differentiation factor 15) were associated with
(Continued) 0.02-AU lower and 0.03-AU lower CE, respectively.
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Table 3. Effect Estimates of the “Best”-Performing Models of S4 Study Sample
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N-terminal pro-B-type NT-proBNP 0.01 (-0.09 to 0.10); 1.86 (-0.32 to 0.01 (-0.01 to 0.02);
natriuretic peptide 0.926 to 0.980 4.05); 0.094 to 0.256 t0 0.295
0.059
Tumor necrosis factor TNFRSF10A 0.044 (-0.05 to 0.001 (-0.01 to
receptor superfamily 0.14); 0.375 to 0.527 0.02); 0.885t0 0.98
member 10A
C-C motif chemokine 23 CCL23 0.10* (0.01 to 0.20); 0.0001 (-0.01 to
0.039 to 0.047 0.02); 0.976to 1
Interleukin-6 IL-6 -0.05 (-0.15 to -0.002 (-0.017 to
0.05); 0.295 to 0.014); 0.828 to 1
0.085
Thrombospondin-2 THBS2 —-0.05 (-0.14 to -1.26 (-3.41 to 0.0001 (-0.01 to
0.05); 0.342 to 0.474 0.89), 0.251 to 0.01), 0.980 to 0.961
0.51
Insulin-like growth factor- IGFBP1 0.01 (-0.09 to 0.11);
binding protein 1 0.848 t0 0.882
Tumor necrosis factor— TRANCE -0.02 (-0.11 to -28.5 (-202.8 to -1.04 (-3.06 to -0.02"* (-0.03 to
related activation-induced 0.08); 0.739 to 1 145.8); 0.748 to 1 0.99); 0.317 to -0.002); 0.024 to
cytokine 0.097 0.039*
Neurotrophin-3 NT3 -0.04 (-0.13 to
0.05); 0.400 to
0.423
Peptidoglycan recognition PGLYRP1 -0.15(-0.25to0
protein 1 —-0.05); 0,004 to
0.002*
Interleukin-1 receptor-like 2 IL1RL2 -0.04 (-0.14 to
0.05); 0.343to 1
Protein a,-microglobulin/ AMBP 0.01 (-0.10 to 0.11);
bikunin precursor 0.920to 1
Fibroblast growth factor 21 FGF21 -0.15* (-0.25 to
—0.06); <0.001 to
<0.001*
Low-affinity immunoglobulin | IGGFC -87.0 (-262.5t0 0.49 (-1.53 to
v Fc region receptor II-b 88.5); 0.331 to 2.51); 0.637 to
0.403 0.563
Lipoprotein lipase LPL 20.9 (-154.9to
196.7); 0.816 to 1
Vascular endothelial growth VEGFD -35.5 (-212.6 to 1.38 (-0.98 to
factor D 141.6); 0.694 to 1 3.73); 0.251 to
0.941
Interleukin-2 receptor IL2RA 38.5 (-159.6 to
subunit o 236.6); 0.703 to
0.941
Tyrosine-protein kinase AXL -160.3 (-357.4 to
receptor UFO 36.7); 0.111 t0 0.227
Interleukin-10 receptor IL1ORB -0.33 (-2.59 to
subunit g 1.93); 0.773 to 1
Receptor for advanced RAGE -0.81(-3.37 to 0.01 (-0.01 to 0.02);
glycosylation end products 1.75); 0.537 to 0.329 t0 0.223
0.941
Contactin-1 CNTN1 -0.01 (-0.08 to
0.002); 0.086 to
0.062
Growth/differentiation factor | GDF15 -0.03 (-0.05 to
15 —-0.02); <0.001 to
<0.001*
(Continued)
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Table 3. Continued
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Regression coefficients
(B) (95% ClI); P value,
permutated P value Abbreviations | Rényi4, bit TP, ms? SDWS, AU SDSA, ms CE, AU
C-reactive protein CRP -0.06 (-0.17 to -0.01 (-0.03 to
0.04); 0.223to 1 0.003); 0.128 to
0.066
Hemoglobin A, HbA, -0.02 (-0.11 to
0.08), 0.709 to
0.592
Waist circumference 0.07 (-0.08 to 0.17); 0.001 (-0.06
0.192 t0 0.189 to 0.07); 0.786
to 0.51
Leukocyte count 0.06 (-0.05 to 0.16);
0.308to 1

All continuous predictor variables are Z score standardized (mean of 0 and SD of 1). Outcome variables are in their original units. CE indicates compression
entropy; ényi4, Rényi entropy of the histogram with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval variability; SDWS, SD of word

sequence; and TP, total power of the density spectra.
*Statistically significant estimates.

In addition, the robustness of inference to replace-
ment and impact threshold of a confounding variable
estimates of the bias analysis indicated that the as-
sociation between CCL23 and Rényi4 was the least
robust to bias, while the association between GDF15
and CE was the most robust to bias. Details are pro-
vided in Data S1. Furthermore, test RMSE indicated
that, on average, predictions were off by 0.69 bit for
Rényi4, 81718 ms? for TP, 0.49 AU for SDWS, 18.4ms
for SDSA, and 0.11 AU for CE.

The DDA's homoscedasticity and independence
tests indicated that for all associations, the putatively
correct causal order did not convincingly outperform
the reverse causal order (Table S5). These results sug-
gest that the reverse causal order, that is, the influence
of these HRV indices on their associated proteomics
biomarkers cannot be excluded with certainty.

Association Between Proteomics
Biomarkers and HRYV Indices in S4-FF4
Study Sample

There were 5 (4 proteomics biomarkers and 1 co-
variate), 4 (all proteomics biomarkers), 1 (proteomics
biomarker), 5 (all proteomics biomarkers) and 8 (all
proteomics biomarkers) robust predictor variables
for Rényi4, TP, SDWS, SDSA and CE, respectively
(Table 4). The robust proteomics biomarkers include
adrenomedullin for Rényi4, myoglobin for TP, myo-
globin for SDWS, AGRP (agouti-related protein) for
SDSA, and CUB domain-containing protein 1 for CE.
Triglycerides was the only robust covariate, observed
for Rényi4. The MUVR-PLS, MUVR-RF, and MUVR-EN
regression-specific predictor variables are provided in
Table S6.

No glucose tolerance group was selected by
the RF for the five HRV indices hence there was no
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complex-full model in model comparison. The com-
parison of Rényid’s robust predictor variables (full)
model with its covariates-only (basic) model indicated
that the models have equal performance scores of
0.5 (Table S7). Hence, the basic model with only tri-
glycerides was considered as the best-performing
model of Rényi4. The proteomics biomarkers-only (full)
models of TP, SDWS, SDSA, and CE were their best-
performing models.

Table 5 summarizes the g and 95% CI of the
best-performing models. Five proteins remained in-
dependently associated with 3 indices over time.
Specifically, 1-SD higher interleukin-6 receptor subunit
a (IL6RA) was associated with 63 ms? higher TP, while
1-SD higher macrophage CSF1 (colony-stimulating
factor 1) was associated with 57 ms? lower TP. Further,
1-SD higher myoglobin was associated with 2.04-ms
higher SDSA, while 1-SD higher AGRP was associated
with 1.92-ms lower SDSA. Finally, 1-SD higher gastro-
tropin was associated with 0.04-AU higher CE, while
one-SD higher AGRP was associated with 0.03-AU
lower CE.

Moreover, the robustness of inference to replace-
ment and impact threshold of a confounding variable
estimates of the bias analysis suggested that associ-
ation between CSF1 and TP was the least robust to
bias, while the association between gastrotropin and
CE was the most robust to bias. Details are provided
in Data S1. Besides, the test RMSE indicated that on
average, predictions were off by 0.49 bit, 172 ms?, 0.43
AU, 6.4 ms, and 0.09 AU for Rényi4, TP, SDWS, SDSA,
and CE, respectively.

Collectively, in both study samples, 10 proteomics
biomarkers—CCL23, PGLYRP1, FGF21, TRANCE,
GDF15, CSF1, IL6RA, AGRP, myoglobin, and gastro-
tropin—were associated with 4 HRV indices, Rényi4,
TP, SDSA, and CE (Table 6).

11
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Table 4. Robust Predictor Variables of S4-FF4 Study
Sample

Rényi4 Abbreviations

1 Adrenomedullin ADM

2 Myoglobin MB

3 Triglycerides

4 C-C motif chemokine 16 CCL16

5 Stem cell factor SCF
TP

1 Myoglobin MB

2 Protein a,-microglobulin/bikunin AMBP
precursor

3 Macrophage colony-stimulating factor 1 CSH

4 Interleukin-6 receptor subunit o ILBRA
SDWS

1 Myoglobin
SDSA

1 Agouti-related protein AGRP

2 Myoglobin MB

3 Interleukin-10 receptor subunit g IL1ORB

4 Kidney injury molecule KIMA1

5 Fatty acid-binding protein, intestinal FABP2
CE

1 CUB domain-containing protein 1 CDCPA

2 Angiopoietin-1 receptor TIE2

3 Gastrotropin GT

4 Tumor necrosis factor receptor TNFRSF9
superfamily member 9

5 Tumor necrosis factor-related apoptosis- TRAIL
inducing ligand

6 Agouti-related protein AGRP

7 Serpin A12 SERPINA12

8 Decorin DCN

CE indicates compression entropy; ényi4, Rényi entropy of the histogram
with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval
variability; SDWS, SD of word sequence; and TP, total power of the density
spectra.

Independence of Sets of Proteomics
Biomarkers, Bivariable Associations of
Predictor Variables, and Statistical Power
There was dependency between all 3 sets of prot-
eomics biomarkers (Table S8). Additionally, there were
several strong (|r|=0.7, P<0.05) pairwise correlations
between individual proteomics biomarkers as well as
between HRV indices of S4 (Table S9). Covariates were
moderately associated with the proteomics biomark-
ers (Tables S9 and S10), while continuous covariates
showed fewer associations (Table S9) as compared
with categorical covariates (Table S11) with HRV indi-
ces of S4. For S4-FF4, individual proteomics biomark-
ers and HRV indices showed similar magnitude of

J Am Heart Assoc. 2025;14:e042144. DOI: 10.1161/JAHA.125.042144

Proteomics Biomarkers and HRV

pairwise correlations as the S4 (Table S12), but fewer
covariates were associated with the proteomics bio-
markers (Tables S12 and S13) and with HRV indices
(Tables S12 and S14). All these results confirm the ap-
propriateness of the a priori multivariable modeling
approach with variable selection that adequately ac-
counts for multicollinearity and dependency. Moreover,
the statistical power of the generalized linear model of
each of training, validation, and testing data sets of S4
was ~100%. The S4-FF4 training and testing data sets
had 63% and 35% power, respectively.

The robust predictor variables of individual power
components, ultra-low frequency, very low frequency,
low frequency, and high frequency were proteomics
biomarkers, except for high frequency in the S4-FF4
(Table S15). No proteomics biomarker was significantly
associated with their respective power components in
the holdout data sets (Table S16). There is a consistent
absence of association of proteomics biomarkers with
individual power and TP cross-sectionally in S4, while
2 proteomics biomarkers were significantly associated
with TP and none with individual power in S4-FF4. All
Supplemental Materials are accessible at https://figsh
are.com/s/12c7ae9arbd27a85f8a2.

DISCUSSION

In this population-based epidemiological study of
German older adults, we uncovered 10 novel proteom-
ics biomarkers—CCL23, PGLYRP1, FGF21, TRANCE,
GDF15, CSF1, IL6RA, AGRP, myoglobin, and gas-
trotropin—that were associated with 4 HRV indices:
Rényi4, TP, SDSA, and CE. Our findings are intrigu-
ing in the light of the dual roles of several inflammatory
biomarkers,3* the antagonistic but dynamic balance of
sympathetic and parasympathetic activities on HRV,3°
higher HRV generally deemed to be health preserv-
ing,®® and severely diminished HRV reflecting CAND.*"

Association of CCL23, PGLYRP1, and
FGF21 With Rényi4

CCL23 was positively associated with Rényi4, while
PGLYRP1 and FGF21 were negatively associated
with Rényi4. Rényi4 is a measure of the complexity,
diversity, uncertainty, or randomness of the beat-to-
beat intervals®3® and evenly captures linear and non-
linear variability.® Rényi4 is generally higher in healthy
individuals as compared with those with cardiac ab-
normalities.®® CCL23, a chemokine expressed by
macrophages in the lungs, liver, and pancreas stim-
ulates the production of proinflammatory cytokines
and adhesion molecules.®® It is associated with neu-
roinflammation®® and related to chronic diseases with
inflammatory components such as rheumatoid arthri-
tis,*° systemic sclerosis,*! ischemic stroke,*? coronary
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Table 5. Effect Estimates of the “Best”-Performing Models of S4-FF4 Study Sample

Proteomics Biomarkers and HRV

Regression coefficients
(B) (95% ClI); P value,
permutated P value Abbreviations | Rényi4, bit TP, ms? SDWS, AU SDSA, ms CE, AU
Myoglobin MB 42.9 (-3.210 89.0); |0.05(-0.03to |2.04 (0.55 to 3.53);
0.068 to 0.068 0.14); 0.222 to | 0.008 to <0.001*
0.065
Protein o,-microglobulin/ AMBP -34.2 (-86.0 to
bikunin precursor 17.6); 0.194 to 0.194
Macrophage colony- CSFH -57.0 (-107.0 to
stimulating factor 1 -6.9); 0.026 to
<0.001
Interleukin-6 receptor ILBRA 63.0 (20.0 to 105.9);
subunit o 0.004 to <0.001*
Agouti-related protein AGRP -1.92 (-3.45t0 -0.39); | -0.03 (-0.05to
0.014 to <0.001* —0.01); 0.008 to
<0.001*
Interleukin-10 receptor IL1ORB -1.40 (-3.01 t0 0.22);
subunit g 0.089 to 0.089
Kidney injury molecule KIM1 —-1.01 (-2.57 to 0.41);
0.153 t0 0.153
Fatty acid-binding protein, FABP2 1.50 (-0.03 to 3.04);
intestinal 0.055 to 0.055
CUB domain-containing CDCP1 0.008 (-0.02 to
protein 1 0.02); 0.772 to 0.603
Angiopoietin-1 receptor TIE2 —-0.01 (-0.03 to
0.01); 0.337 to 0.064
Gastrotropin GT 0.04 (0.02 to 0.06);
<0.001 to <0.001*
Tumor necrosis factor TNFRSF9 —-0.01 (-0.04 to
receptor superfamily 0.01); 0.192 to 0.192
member 9
Tumor necrosis factor— TRAIL -0.002 (-0.02 to
related apoptosis-inducing 0.02); 0.818 t0 0.818
ligand
Serpin A12 SERPINA12 0.01 (-0.01 t0 0.03);
0.470 t0 0.470
Decorin DCN -0.01 (-0.03 to
0.02); 0.672 to 0.672
Triglycerides -0.13 (-0.28 to
-0.02); 0.020
to <0.001

CE indicates compression entropy; ényi4, Rényi entropy of the histogram with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval
variability; SDWS, SD of word sequence; and TP, total power of the density spectra.
*Statistically significant estimates. All continuous predictor variables are Z score standardized (mean of 0 and SD of 1. Outcome variables are in their original units.

artery calcium,*3 atherosclerosis,** and Alzheimer dis-
ease.®® CCL23 plays a role in angiogenesis,*® which
is part of vascular remodeling. This is a potential ex-
planation for its association with Rényi4. PGLYRP1 is
primarily expressed in leukocytes, providing antimicro-
bial and proinflammatory functions.*® Its higher blood
level is linked to increased CVD risk.*” FGF2 is synthe-
sized in the liver, pancreas, adipose tissue, and skeletal
muscle,*® as well as in cardiomyocytes.*® It is involved
in the regulation of metabolism and anti-inflammatory
processes.? It plays a protective role in diabetic car-
diomyopathy and prevents cardiac damage.®’ The
mechanisms underlying its cardioprotective role are
regulation of adipocyte adiponectin production and
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suppression of hepatic expression of the transcription
factor sterol regulatory element-binding protein-2.52
However, FGF21 is also associated with increased risk
of secondary CVD,% which suggests that its negative
association with Rényi4 is plausible. The association
between FGF21 and Rényi4 may also be a reflection of
the potential link between hepatic steatosis and early
development of CAND.®

Association of TRANCE, GDF15, AGRP,
and Gastrotropin With CE

TRANCE and GDF15 were negatively associated with
CE, while higher baseline AGRP and gastrotropin
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Table 6. Overall Results of the Proteomics Biomarkers Significantly Associated With Cardiac Autonomic Nervous

Dysfunction-Heart Rate Variability Indices

Proteomics biomarkers Abbreviations S4 study sample S4-FF4 study sample CAND-HRV indices
1 C-C motif chemokine 23 CCL23 + Rényi4
2 Peptidoglycan recognition protein 1 PGLYRP1 - Rényi4
3 Fibroblast growth factor 21 FGF21 - Rényi4
4 Tumor necrosis factor-related activation- TRANCE - CE
induced cytokine
5 Growth/differentiation factor 15 GDF15 - CE
6 Interleukin-6 receptor subunit alpha ILBRA + TP
7 Macrophage colony-stimulating factor 1 CSH - TP
8 Myoglobin MB + SDSA
9 Agouti-related protein AGRP - SDSA
9 Agouti-related protein AGRP - CE
10 Gastrotropin GT + CE

CAND-HRYV indicates cardiac autonomic nervous dysfunction-heart rate variability; CE, compression entropy. Rényi4, Rényi entropy of the histogram with
order (a) 4; SDSA, SD of the short-term normal-to-normal interval variability; and TP, total power of the density spectra. +=Positive association; —=Negative

association.

were associated with decrease and increase in CE
over time, respectively. CE is also a marker of com-
plexity, but more sensitive to nonlinear than linear
variability.? It generally indicates parasympathetic
(vagal) modulation.®® This suggests that TRANCE,
GDF15, and AGRP may be linked with decreased
vagal activity, while gastrotropin may be linked with
increased vagal activity. TRANCE is expressed by
osteoblasts and fibroblasts, activated T cells, sub-
capsular sinus macrophages, metallophilic mac-
rophages, and certain myeloma.®* It plays a role in
endothelial cell activation, which is pivotal to angio-
genesis and proinflammatory processes.®® Higher
serum TRANCE is associated with the Charcot foot,
a neuropathic arthropathy,®® closely linked to pre-
ceding neuropathy.5” Similarly, GDF15 exhibits pro-
inflammatory and anti-inflammatory properties.®® It
is associated with diabetic neuropathy, specifically
showing direct and inverse associations with longer
sensory and motor nerve latencies and slower nerve
conduction velocity, respectively.®® AGRP is a neu-
ropeptide synthesized by the brain’s AGRP/neuro-
peptide Y neurons, regulating glucose sensing and
metabolism.®%6' AGRP neurons are highly active
during hunger, promoting robust feeding behavior.5?
Besides, they mediate the effects of leptin on auto-
nomic nerve activity®® and the mechanistic relation-
ship between the vagal afferent pathway and the
central nervous system.®* Gastrotropin is one of the
fatty acid—binding proteins.®® It is most abundant in
the ileum and transports bile acids,®® regulating lipid
and glucose metabolism.®® Recent epidemiological
investigations reported that gastrotropin is directly
associated with CAD®” but inversely associated with
the risk of CVD.®®
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Association of CSF1 and IL6RA With TP

Higher baseline CSF1 and IL6RA were associated with
decrease and increase in TP over time, respectively.
Sympathetic activation and its resulting tachycardia
are usually accompanied by a marked reduction in
TP, while the reverse occurs during vagal activation.®
These findings suggest that CSF1 and IL6RA are as-
sociated with higher and lower sympathetic activity,
respectively. CSF-1, expressed in the brain’® and en-
teric neurons,”" is one of the most common proin-
flammatory cytokines involved in somatosensory and
autonomic neuronal regulatory processes.”! It medi-
ates microglial and macrophage signaling in the gen-
eration of neuropathic pain, which occurs after nerve
injury.”? It is responsible for various inflammatory
disorders.” In fact, its genetically predicted higher
levels are linked to higher risk of coronary artery dis-
ease.” IL6RA is a transmembrane protein expressed
on hepatocytes,” leukocytes,”® adipocytes,”® myo-
cytes,”” and right atrium.”® Most of the proinflamma-
tory roles of interleukin-6 are attributed to its binding
to soluble ILBRA.™ CSF-1 and some interleukins have
overlapping binding sites.”® Hence, our observed as-
sociation of CSF-1 and IL6RA with TP may suggest
their concerted cardiac autonomic regulatory action.
Surprisingly, these proteins were not associated with
individual power components, suggesting that these
indices may be less reflective of the cardiac impact of
these proteins.

Association of Myoglobin and AGRP With
SDSA

Higher baseline myoglobin and AGRP were associated
with an increase and a decrease in SDSA over time,
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respectively. SDSA is a measure of both parasympa-
thetic and sympathetic activity.”® These findings sug-
gest that myoglobin and AGRP may be necessary for
maintaining a dynamic balance between cardiac para-
sympathetic and sympathetic modulations. Myoglobin
is primarily expressed in skeletal and cardiac mus-
cles.”® It protects the cardiovascular system through
storage and facilitation of dioxygen diffusion.t® The
production and role of AGRP has been discussed with
respect to CE.

Influence of Glucose Tolerance Status
on the Relationship of Proteomics
Biomarkers With HRV Indices

Contrary to our expectations, none of the glucose
tolerance groups relative to NGT seemed to have an
important influence on the relationship between any
of these biomarkers and their respective HRV indi-
ces. This is in spite of the glucose tolerance status
having bivariable associations with FGF21 and GDF15
(Table S8) and with CSF1, myoglobin, and AGRP in
the S4-FF4 (Table S11). Moreover, as compared with
NGT, isolated impaired fasting glucose, known T2D,
or newly detected T2D were associated with indices
in 1 or 2 variable selection models of S4 (Table S1)
and S4-FF4 (Table S4). However, none was a robust
predictor for any index. These findings suggest that in
the presence of other proteomics biomarkers and risk
factors, glucose tolerance status is unlikely to exert
a substantial influence on the association between
these 10 proteomics biomarkers and HRV indices.
This underscores the need for a nuanced under-
standing of role of glucose tolerance status, espe-
cially T2D, in the relationship between these current
biomarkers and CAND.

Previously Reported Biomarkers and Risk
Factors for CAND

CRP,'3% interleukin-6," interleukin-18,'¢ interleukin-1
receptor antagonist,'® and adiponectin''® are linked
to CAND. Additionally, a review predating these stud-
ies indicated that parasympathetic nervous system
tone as inferred from HRYV is inversely related to CRP
and interleukin-6.8' Reassuringly, across the variable
selection models of both study samples, we observed
the association of these biomarkers with atleast 1 HRV
index. However, in the S4, only CRP and interleukin-6
were robust, as both were associated with Rényi4 and
CE cross-sectionally. However, none was validated. In
contrast, none of these previously reported biomark-
ers were robust in the longitudinal S4-FF4 analysis.
This suggests that, despite their widespread impor-
tance in pathophysiological processes, CRP and in-
terleukin-6 are unlikely to provide added value beyond
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these 10 novel proteomics biomarkers for Rényi4, TP,
SDWS, SDSA, and CE.

Similarly, we observed previously reported risk
factors of CAND such as age, sex, obesity, smoking,
blood pressure, dyslipidemia, and dysglycemia in at
least 1 variable selection model. However, they were
simply not robust as compared with HbA,,, waist cir-
cumference, or triglycerides. The associations between
HbA,, and Rényi4 and between waist circumference
and SDWS were not validated. HbA,, was associ-
ated with some HRYV indices in a study that did not
include Rényi4 and SDWS.8 Interestingly, triglycerides
were validated in our S4-FF4 study sample, showing a
negative association with Rényi4. This is in support of
inverse association of triglycerides with prevalent car-
diac autonomic neuropathy.®?

Strengths and Limitations

One of the strengths of this study is that it is the larg-
est study exploring proteomic biomarkers of CAND.
Additionally, this targeted profiling of proteomics bio-
markers includes known proteins with documented
biological roles. This helps place our findings in proper
context. The multivariable selection models with re-
peated cross-validation ensures the precision and
reliability of predictor variable selection. Further, the
selection of variables across 3 methods reduces bias
inherent in any method. The adequate inclusion of the
glucose tolerance group, as a stratifying variable for
data splitting and in the multivariable selection helps
avoid omitted variable bias. Given the complicated na-
ture of statistical power analysis in mixed models,? all
our power estimates assumed single measurement,
but as repeated measurements typically have higher
power than single measurement,® the S4-FF4 data
sets are unlikely to be underpowered. Hence, we ef-
ficiently tested our hypotheses and obtained reliable
B. Moreover, the inferential estimates of the predic-
tor variables, which were obtained from distinct data
sets help to reduce the risk of erroneous results and
inflated performance metrics. Rather than merely ac-
knowledging the limitations of the cross-sectional S4,
our DDA ensures that we are not overly confident in
the findings of the a priori causal flow. Further, the bias
analyses reinforced the reliability of our inferences.
The longitudinal S4-FF4 helps control for unobserved
time-specific heterogeneity. Although the S4-FF4 has
the temporal ordering advantage over the S4, the fact
that our final protein—indices associations are distinct
suggests that these proteins are likely to have clinical
translational relevance. Therefore, joint investigation of
both study samples is also a merit of this work. Finally,
our study accounted for several cardiometabolic risk
factors as well as commonly assessed inflammatory
biomarkers. This suggests that the impact of these
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novel biomarkers on HRV indices is likely independent
of these factors.

The limitations of our study include its observational
nature, hence we cannot draw a definite conclusion on
causal relationships. Overall, we found small to mod-
erate effect estimates in all associations so that the
clinical relevance of our findings remains to be deter-
mined. Although the most efficient method to ensure
the reliability and predictive ability of these identified
proteomics biomarkers would have been through ex-
ternal replication in a purely independent cohort, the
reliability of our findings was achieved using the widely
accepted holdout approach. Although within-study
validation indicates the reliability of proteomics bio-
markers—HRYV indices association, nonetheless it was
surprising that no proteomics biomarkers—HRYV indices
association overlapped between studies in the final S4
validation and S4-FF4 testing data sets. However, 1 as-
sociation, interleukin-10 receptor subunit § with SDSA,
overlapped between the S4 and S4-FF4 training data
sets. This association was not validated in both S4 val-
idation and S4-FF4 testing data sets, suggesting con-
sistency. It is possible that bivariable selection models
and a single multivariable selection model, which are
likely more prone to bias as compared with the current
rigorous and robust multivariable selection approach,
might have provided more overlapping associations to
be subsequently validated. Despite combinations of
our covariates being likely reasonable surrogates for
uncontrolled and residual confounding, these issues
might still have an impact on our findings. These con-
founders may include HRV-influencing health condi-
tions such as depression.®® Residual confounding may
also arise from lack of flexible modeling of covariates.
Besides, we cannot completely exclude untoward con-
sequences of excluding some individuals on the basis
of the absence of the exposure, outcome, and glu-
cose tolerance status. However, the low proportion of
the excluded suggests that its impact on our findings
is likely trivial. As expected in most cohorts of older
adults, the S4-FF4 study sample was comparatively
smaller than the S4 study sample due to the attrition
of the study participants at follow-up who were already
older adults at baseline. Additionally, these current
HRV indices were obtained from short-term, 5-minute
measurement. Findings for indices from long-term
measurements such as 24-hour might be different. The
binary outcome (CAND or no CAND) could have been
of added value to the individual HRV indices. However,
this was not possible for logistic reasons. Actually, the
biological interpretation of biomarkers associated with
binary outcome would still be heavily hinged on the
clinical relevance of the individual HRV indices. Another
limitation is that prospectively linking baseline proteins
to indices assessed at baseline and at 14 years later
in S4-FF4 assumes that circulating levels of proteins
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are stable over this period. This assumption may not
hold for all proteins. Multiple targeted proteomics pro-
filing as well as additional assessments of HRV indi-
ces will increase the validity of these findings. While
the complexity of untargeted proteomics profiling may
be daunting, this approach has merits that warrant its
consideration in future studies with larger sample size.
Although our held-out data sets are well powered, it is
possible that causal direction did not adequately mani-
fest itself in the association between proteins and HRV
indices, which the current DDA tests rely on. Future
studies should consider pathway enrichment analysis
of these proteins and integrate them into a broader
pathophysiological model as well as in risk stratification
framework for CAND. Validation of these novel proteins
using highly sensitive and specific methods such as
ELISA will ensure the robustness of our findings.

In conclusion, this population-based epidemiologi-
cal study adds to the emerging knowledge on inflam-
matory and cardiovascular biomarkers of CAND. We
observed that independent of glucose tolerance sta-
tus and other risk factors, plasma levels of 10 novel
proteomics biomarkers, CCL23, PGLYRP1, FGF21,
TRANCE, GDF15, CSF1, IL6RA, AGRP, myoglobin,
and gastrotropin, are related to 4 HRV indices. These
biomarkers reflect aspects of the pathophysiology
of CAND, which have not been previously reported.
Certainly, the clinical manifestation of CAND is likely
a consequence of multiple risk factors and biomark-
ers intricately interacting together. Nonetheless, these
novel biomarkers may be valuable in understand-
ing and dissecting some aspects of manifestation of
CAND. A deeper understanding of the roles of these
proteins under various conditions could advance the
therapeutic strategies for CAND.
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