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BACKGROUND: We sought to investigate the association between circulating inflammatory and cardiovascular proteomics bio-
markers and cardiac autonomic nervous dysfunction–sensitive heart rate variability indices.

METHODS: Using the population-based KORA (Cooperative Health Research in the Region of Augsburg) cohort, 233 proteom-
ics biomarkers were quantified in baseline plasma samples of 1389 individuals using proximity extension assay technology. 
Five heart rate variability indices (Rényi entropy of the histogram with order [α] 4, total power of the density spectra, SD of word 
sequence, SD of the short-term normal-to-normal interval variability, compression entropy) were assessed at baseline in 982 
individuals and in 407 individuals at baseline and at 14-year follow-up. Three unbiased multivariable selection models followed 
by linear or linear mixed-effects models with multiple testing correction were used to determine the association between pro-
teomics biomarkers and heart rate variability indices.

RESULTS: C-C motif chemokine 23 was positively associated, while peptidoglycan recognition protein nd fibroblast growth 
factor 21 were negatively associated with Rényi entropy of the histogram with order (α) 4 cross-sectionally. Tumor necrosis 
factor–related activation-induced cytokine and growth/differentiation factor 15 were negatively associated with compression 
entropy cross-sectionally. Over time, interleukin-6 receptor subunit α and macrophage colony-stimulating factor were positively 
and negatively associated with total power of the density spectra, respectively. Additionally, myoglobin and agouti-related 
protein were positively and negatively associated with SD of the short-term normal-to-normal interval variability, respectively. 
Gastrotropin and agouti-related protein were positively and negatively associated with compression entropy, respectively.

CONCLUSIONS: This study identified novel circulating proteins associated with heart rate variability indices. These proteins could 
improve our understanding of the pathophysiology underlying cardiac autonomic nervous dysfunction.
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Type 2 diabetes (T2D) accounts for >90% of all 
diabetes globally.1 Cardiac autonomic nervous 
dysfunction (CAND), a dysfunction of sympa-

thetic or parasympathetic activity or regulation, is a 
prevalent, serious, and often overlooked diabetes-
related complication.2–6 Important sequelae of CAND 
are increased risk of major cardiovascular events and 
death.2,6 Heart rate variability (HRV) alterations are the 
hallmark of CAND.2 Consequently, HRV indices have 
become the most popular and widely used tool for 
the identification of CAND.6–8 In the population-based 
KORA (Cooperative Health Research in the Region of 
Augsburg) study, we previously reported that a com-
bination of 4 short-term HRV indices selected from 
multiple classes of linear and nonlinear HRV dynam-
ics (ie, Rényi entropy of the histogram with order [α] 4 
[Rényi4], total power of the density spectra [TP], SD 
of word sequence [SDWS], and SD of the short-term 
normal-to-normal interval variability [SDSA]) resulted in 
the most sensitive estimate of CAND prevalence in the 
general population.9 These CAND-sensitive HRV indi-
ces (henceforth HRV indices) could provide a deeper 
understanding of CAND.

Risk factors for CAND include age,4,5 obesity,3–5,10 
physical inactivity,5 smoking,5 dyslipidemia,3–5 and hy-
pertension.2–5,10 Interestingly, dysglycemia,3,5,10 known 
diabetes duration,7 impaired kidney function,5 reti-
nopathy,2 other neuropathies,2,11 medications,7,9 but 
also genetic predisposition.5 Indeed, a multifactorial 
intervention of lifestyle changes and targeting glu-
cose and cardiovascular disease (CVD) risk factors is 
recommended for the prevention of CAND.7 Of note, 
CAND is more than a diabetes-related complication 
as it is also prevalent in individuals with prediabetes 
and in advanced age.5,7,10 This underscores the press-
ing need to further explore the risk factors and bio-
markers of CAND. Population-based epidemiological 
studies with glucose tolerance status of individuals in 
advanced age could be an excellent resource to ad-
dress this need.

The pathophysiological underpinnings of CAND are 
complex.11 Nonetheless, its integral molecular mecha-
nisms involve insulin resistance,5 dysregulated inflam-
mation,5,12 and oxidative stress.12 Indeed, targeting 
some biomarkers of inflammation and endothelial func-
tion has been suggested to be promising for the treat-
ment of CAND.12 Expectedly, some cardiovascular and 
inflammatory biomarkers, CRP (C-reactive protein)13 
and adiponectin,14 were found to be associated with 
CAND in clinic-based epidemiological studies, while 
CRP,15 interleukin-6,15 interleukin-18,16 interleukin-1 re-
ceptor antagonist,15 and adiponectin16 have been linked 
to CAND in population-based cohorts. However, only 
a few of these associations remained when classical 
cardiometabolic risk factors were taken into account, 
suggesting that most are not independent biomarkers 
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What Is New?
•	 This epidemiological study observed that 10 

novel circulating proteins are associated with 
cardiac autonomic nervous dysfunction–sensi-
tive heart rate variability indices.

What Question Should Be Addressed 
Next?
•	 Future studies using larger study samples 

should profile these novel proteins and their as-
sociated cardiac autonomic nervous dysfunc-
tion–sensitive heart rate variability indices at 
multiple time points to investigate the temporal 
variation of these proteins and indices, the im-
pact of intraindividual variation on the associa-
tion between the proteins and the indices and 
the relationship between their trajectories.

Nonstandard Abbreviations and Acronyms

AGRP	 agouti-related protein
CAND	 cardiac autonomic nervous 

dysfunction
CCL23	 C-C motif chemokine 23
CE	 compression entropy
CSF1	 macrophage colony-stimulating factor 1
DDA	 direction dependence analysis
FGF21	 fibroblast growth factor 21
GDF15	 growth/differentiation factor 15
HbA1c	 hemoglobin A1c
HRV	 heart rate variability
IL6RA	 interleukin-6 receptor subunit α
KORA	 Cooperative Health Research in the 

Region of Augsburg
MUVR	 multivariable modeling with unbiased 

variable selection methodsNGTnormal 
glucose tolerance

PGLYRP1	 peptidoglycan recognition protein 1
PLS	 partial least squares regression
Rényi4	 Rényi entropy of the histogram with 

order (α) 4
RF	 random forest regression
RMSE	 root mean square error
SDSA	 SD of the short-term normal-to-

normal interval variability
SDWS	 SD of word sequence
T2D	 type 2 diabetes
TP	 total power of the density spectra
TRANCE	 tumor necrosis factor–related 

activation-induced cytokine
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of CAND and its HRV-related indices. Additionally, the 
selected biomarkers of previous studies might be un-
able to capture important aspects of the apparently 
broad and complex pathophysiological underpinnings 
of CAND. Indeed, population-based studies with op-
timized targeted quantification of an array of well-
defined set of proteomics biomarkers could advance 
this investigation. Furthermore, it is unknown whether 
these proteomics biomarkers would be relevant for 
CAND beyond the commonly assessed inflammatory 
biomarkers. While it seems intuitive that alterations in 
proteomics biomarkers influence these indices, the 
potential bidirectional relationship between inflamma-
tion and CAND17 suggests that the relationship be-
tween these biomarkers and HRV indices needs to be 
properly disentangled.

Hence, this large population-based epidemiological 
study sought to investigate the independent associa-
tions between plasma circulating proteomics biomark-
ers and HRV indices cross-sectionally and over time.

METHODS
The data are subject to national data protection laws. 
Therefore, data cannot be made freely available in 
a public repository. However, data can be requested 
through an individual project agreement with KORA. To 
obtain permission to use KORA data under the terms of 
a project agreement, please use the digital tool KORA.
PASST (https://​epi.​helmh​oltz-​muenc​hen.​de/​).

Study Population and Design
The current study is based on data from the population-
based KORA S4 cohort (1999–2001) and its 14-year 
follow-up, KORA FF4 (2013–2014). In 1999, study par-
ticipants were recruited from the region of Augsburg 
(Germany) using random sampling and random se-
lection of 16 towns and villages from 70 communi-
ties. Sex- and age-stratified sampling was done for 
each community. Four of the strata comprised men 
and women aged 55 to 74 years. Participants pro-
vided biosamples that included fasting blood samples. 
Venipuncture was performed on participants in a sit-
ting position. The blood samples were stored at −196 
°C in liquid nitrogen until plasma proteomics analysis in 
2019 to 2020. Medical history was obtained through a 
structured interview, and various medical assessments 
such as ECGs were also performed. Details of the de-
sign of the KORA S4/F4/FF4 cohort and assessments 
have been previously described.9,18,19 All investigations 
were conducted in accordance with the Declaration 
of Helsinki, and all participants provided written in-
formed consent. The ethics committee of the Bavarian 
Chamber of Physicians, Munich approved all study 
protocols.

This present analysis is based on KORA study partic-
ipants at baseline (S4) comprising 1653 individuals, aged 
55 to 74 years. We sequentially excluded 88 individuals 
who had missing data on any of the exposure variables 
(previously analyzed 233 proteomics biomarkers20) at S4, 
49 individuals with missing data on any of the outcome 
variables (5 selected HRV indices) at S4, and 127 individ-
uals with unclear glucose tolerance status due to missing 
oral glucose tolerance test data. This resulted in 1389 el-
igible S4 individuals. There were no individuals with type 
1 diabetes. Of this study population, there were 407 with 
complete data on the 5 HRV indices at follow-up (FF4). 
Hence, the overall 1389 study population comprised 982 
nonoverlapping individuals with 1-time assessed out-
come variables (HRV indices) at S4 and 407 individuals 
with 2 repeatedly assessed HRV indices at baseline and 
follow-up (FF4). These nonoverlapping analytical study 
samples (henceforth referred to as S4 and S4-FF4 study 
samples, respectively) were used to determine the as-
sociations of proteomics biomarkers with HRV indices 
cross-sectionally and over time, respectively. Findings 
from both study samples are complementary, providing 
internal generalization to the overall study population. 
Figure 1 shows the flowchart of the study population.

Measurement of the Exposure: 
Proteomics Biomarkers
CVD- and inflammation-related protein biomarkers 
were measured in baseline plasma samples using the 
targeted proximity extension assay technology devel-
oped by Olink (Olink Proteomics, Uppsala, Sweden) 
with the 3 panels Olink Multiplex CVDII, CVDIII, and 
Inflammation. These panels were designed for broad 
inflammation- and CVD-related research questions. 
While they are not specific to HRV- or CAND-related 
hypotheses, inflammation is generally considered as 
an important driver of CAND. To avoid batch effects, 
samples were randomized across plates. Each plate 
included interplate controls, which were used to adjust 
for any plate difference.21 The Olink platform provides 
protein abundances as protein expression values, 
which are similar to log2-normalized concentrations. 
Details of the proximity extension assay method are 
reported elsewhere.20,21 For this cohort’s exposure 
variable, we considered 233 previously analyzed pro-
teomics biomarkers.20 These 233 biomarkers com-
prised 85, 81, and 67 biomarkers from the CVDII, 
CVDIII, and Inflammation panels, respectively.

Assessment of Covariates: 
Sociodemographic, Anthropometric, and 
Lifestyle Factors and Other Biomarkers
Information on age, sex, education, smoking habits, al-
cohol consumption, physical activity, and medical his-
tory were collected by personal interviews conducted 
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by experienced medical staff. Educational attainment 
was recorded as completed years of schooling. Height, 
weight, waist circumference, and systolic and diastolic 
blood pressure were measured at the study visit on 
the basis of standard protocols, as described else-
where.9,18,19 Body mass index (BMI [kg/m2]) was cal-
culated from weight and height. Smoking habits and 
alcohol consumption were self-reported. Smoking sta-
tus was categorized as nonsmokers, former smokers, 
and current (regular and irregular) smokers. Alcohol 
consumption was based on reported intake of beer, 
wine, and liquor on 1 weekday and the weekend. It was 
expressed in g/d. Participants estimated the duration 
and frequency of their weekly exercise across summer 
or winter. They were categorized as either physically 
active (≥1 hour sports/wk) or inactive. Blood pressure 
was measured 3 times at the right arm after a 5-minute 
resting period. The mean of the second and third 
measurements was used for analyses. Medication use 
was defined using Anatomical Therapeutic Chemical 
Classification System codes. From baseline plasma 
samples, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, and triglycerides were 
measured by enzymatic methods.22 Hemoglobin A1c 
(HbA1c) was measured by immune turbidimetric as-
says.23 An oral glucose tolerance test was performed 
using standard procedure on those without previously 

known T2D. Individuals were categorized into six glu-
cose tolerance groups of normal glucose tolerance 
(NGT), isolated impaired fasting glucose, isolated im-
paired glucose tolerance, combined isolated impaired 
fasting glucose–isolated impaired glucose tolerance, 
newly detected T2D and previously known T2D as pre-
viously described by Ziegler et al.9

In addition to commonly assessed biomarkers, leu-
kocyte count was quantified with the Coulter STKS 
Hematology Analyzer (Block Scientific, New York, NY), 
and CRP was quantified using a high-sensitivity latex-
enhanced nephelometric assay on a BN II System an-
alyzer (Dade Behring, Marburg, Germany), while serum 
amyloid A and fibrinogen were determined by immu-
nonephelometry.24 Adiponectin was determined with 
the human adiponectin RIA from Linco Research (St. 
Charles, MO).25

Assessment of Outcomes: HRV Indices
The assessment of HRV indices has been previously 
described.9 Briefly, ECGs (lead II and lead V2 simul-
taneously) were recorded in the supine resting posi-
tion over a period of 5 minutes (sample frequency, 
500 Hz). Time series of heart rate (tachograms) con-
sisting of beat-to-beat intervals were extracted from 
the 5-minute ECG recordings. Individuals with atrial 

Figure 1.  Flowchart of the study population.
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fibrillation or flutter, left and right bundle-branch block, 
second- and third-degree atrioventricular block or 
sinoatrial block, multiple supraventricular or ventricular 
extrasystoles, pacemaker therapy, and treatment with 
class I antiarrhythmics were excluded. A total of 120 
HRV variables (time domain [statistical and geomet-
ric analysis], 15 indices; frequency domain [spectral 
analysis], 15 indices; nonlinear dynamics, 90 indices 
using 8 different methods) were determined by apply-
ing linear and nonlinear HRV analysis methods to the 
filtered tachograms. Calculations of the indices were 
performed using in-house software.

The present analysis considered the 4 indices from 
4 different HRV domains: Rényi4 (bit), TP (ms2), SDWS, 
and SDSA (ms), which were previously reported to be 
optimal for estimating the prevalence of CAND.9 We 
included 1 additional HRV index, compression entropy 
(CE), that showed promising association with CAND.9 
Overall, we analyzed 5 HRV indices (Rényi4, TP, SDWS, 
SDSA, and CE) for both study samples. The clinical rel-
evance of these indices is provided in Data S1.

Statistical Analysis
Descriptive Analysis

Continuous and categorical basic characteristics 
(covariates) of the overall study population and each 
study sample, were summarized as median (inter-
quartile range), and count (percentage), respectively. 
Comparison of the continuous and categorical covari-
ates between the S4 (n=982) and S4-FF4 (n=407) study 
samples were tested with the Kruskal–Wallis rank-sum 
test and Pearson’s χ2 test, respectively. Kruskal–Wallis 
rank-sum test was done to compare the 2 groups, S4, 
and S4-FF4 study samples. Therefore, no post hoc 
test was needed.

Multivariable Modeling of the Association 
Between Proteomics Biomarkers and 
HRV Indices

Figure 2 displays the statistical analytical plan. We par-
titioned the S4 into 3 (training, validation, and testing) 
nonoverlapping data sets using 50:25:25% split26 and 
S4-FF4 into 2 (training and testing) nonoverlapping 
data sets, using 80:20% split.27 These partitions were 
stratified on 6 glucose tolerance groups (NGT, isolated 
impaired fasting glucose, isolated impaired glucose tol-
erance, combined isolated impaired fasting glucose–
isolated impaired glucose tolerance, newly detected 
T2D and previously known T2D), which were previ-
ously used to estimate CAND prevalence in this study 
population.9 Thus, the S4 comprised 490 training, 246 
validation and 246 testing data sets, while the S4-FF4 
comprised 325 training and 82 testing data sets. The S4 
and S4-FF4 training data sets were used for predictor 

variable selection. The S4 validation data set was used 
for inferential analysis, and the S4 testing data set was 
used for prediction modeling. The S4-FF4 testing data 
set was used for inferential analysis and prediction.

S4 Study Sample

The S4 training (variable selection) data set was used 
to identify important predictor variables (exposure 
variables and covariates) of each of the 5 HRV indi-
ces (Rényi4, TP, SDWS, SDSA, and CE). We used 3 
multivariable modeling with unbiased variable selection 
methods (MUVR), partial least squares (MUVR-PLS), 
random forest (MUVR-RF) and elastic net (MUVR-EN) 
regression.28,29 Further details are provided in Data S1. 
The MUVR algorithm returns 3 different consensus 
models, minimal-optimal (strongest predictors), “mid” 
and all-relevant (strongest and entirely redundant pre-
dictors). We chose predictor variables from the “mid” 
consensus model, which is a trade-off between the 
minimal-optimal and the all-relevant models. Predictor 
variables shared by all the 3 methods, MUVR-PLS, 
MUVR-RF, and MUVR-EN were considered as robust 
predictor variables. Since glucose tolerance status is 
central to this investigation, the inclusion of any glucose 
tolerance group in the robust predictor variables has a 
relaxed criterion of selection by only MUVR-RF, owing 
to the ability of RF to uncover complex and important 
interactions between variables30 (details in Figure 2).

Each HRV index assessed at baseline was sepa-
rately regressed on the predictor variables, measured 
at baseline. The exposure variables were the protein 
expression values of 233 proteomics biomarkers. We 
performed a priori selection of covariates, and the final 
covariates were the minimal sufficient adjustment set of 
confounders estimating the direct effect of the proteom-
ics biomarkers on the HRV from the directed acyclic 
graph (Figure S1). The general direction of proteomics 
biomarkers–confounder association was based on 
prior knowledge or literature on the well-known proteins 
within the 233 proteomics biomarkers. The directed 
acyclic graph–selected covariates were age, sex (men; 
reference: women), BMI, waist circumference, smoking 
status (smokers, ex-smokers; reference: nonsmokers), 
alcohol intake, educational attainment, physical activ-
ity (active; reference: inactive), high-density lipoprotein 
cholesterol, low-density lipoprotein cholesterol choles-
terol, triglycerides, systolic and diastolic blood pressure, 
medications (selected medications with possible influ-
ence on HRV by Ziegler et al9: β blockers, angiotensin-
converting enzyme inhibitors, angiotensin antagonists, 
calcium antagonists, and others: glucose-lowering 
drugs, diuretics, statins, NSAIDs; reference: nonusers), 
uric acid, creatinine, CRP, leukocyte, adiponectin, albu-
min, fibrinogen, and serum amyloid A, HbA1c, glucose 
tolerance groups (isolated impaired fasting glucose, 
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isolated impaired glucose tolerance, combined isolated 
impaired fasting glucose–isolated impaired glucose tol-
erance, newly detected T2D and previously known T2D; 
reference: NGT) and known T2D duration. Plausible 
values of missing covariates were single-value imputed 
using the nonparametric multivariate imputation by the 
chained RF. All continuous predictor variables were fur-
ther Z score standardized (mean, 0±1).

Using linear models, the robust predictor variables 
were validated on the S4 validation (first model fitting) 
data set. Depending on the set of robust predictor vari-
ables, we compared basic (covariates only: reference), 
full (robust predictor variables) and complex-full mod-
els. The complex-full model would be the full model 
with 2-way multiplicative interaction of each proteomics 
biomarker with any glucose tolerance group recovered 

as a robust predictor variable. Models with the highest 
overall performance scores (mean of normalized per-
formance metrics comprising the coefficient of deter-
mination, root mean squared error [RMSE], residual SD, 
Akaike information criterion, and Bayesian information 
criterion) were chosen as the “best”-performing mod-
els. In case of equal performance scores, models with 
fewer predictor variables were selected as the best-
performing model. No model comparison was per-
formed for HRV indices in which the robust predictor 
variables were only proteomics biomarkers. These pro-
teomics biomarkers-only models were considered as 
the best-performing models. We estimated β and 95% 
CI of the best-performing models. To further account 
for the multiple testing of the correlated HRV indices, 
the highly statistical powered permutated P values31 

Figure 2.  Statistical analytical plan.
*Nonmissing on exposure variables (233 proteomics biomarkers), outcome variables (5 CAND–HRV indices), and glucose tolerance 
status. †Normal glucose tolerance, (i-IFG, i-IGT, combined IFG–IGT, newly detected T2D, and known T2D. ‡Predictor variables: 233 
proteomics biomarkers and directed acyclic graph-selected covariates. §Relaxed inclusion of glucose tolerance status: selection by 
only RF. #Predictor variables shared by all three methods. ΔDependent on the set of robust predictor variables. ◊Compares putatively 
correct and reverse causal order; training data sets: variable selection data sets. Validation and testing data sets: model fitting data 
sets. CAND, cardiac autonomic nervous dysfunction; HRV, heart rate variability; IFG, impaired fasting glucose; IGT, impaired glucose 
tolerance; i-IFG, isolated impaired fasting glucose; i-IGT, isolated impaired glucose tolerance; RF, random forest regression; RMSE, 
root mean square error; and T2D, type 2 diabetes.
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were computed using 5000 permutations (Data S1). We 
considered significant proteomics biomarkers as those 
with permutated P<0.05. Furthermore, we performed 
bias analysis of the β by determining the robustness 
of inference to replacement and impact threshold of a 
confounding variable32 (Data S1). The best-performing 
models’ predictive ability with the RMSE was evaluated 
on the S4 testing (second model fitting) data set.

Finally, considering the cross-sectional nature of the 
S4, we used directional dependency analysis (DDA)33 
to empirically confirm whether the a priori (putatively 
correct) causal order (proteomics biomarkers⟶HRV 
indices) is more likely to reflect the correct causal flow 
over the alternative (reverse) causal order (HRV indi-
ces⟶proteomics biomarkers). We tested only the 
statistically significant proteomic biomarkers using the 
S4 testing (second model fitting) data set. The decision 
of explanatory superiority was based on the standard 
and studentized (robust) Breusch–Pagan homosce-
dasticity tests and bootstrap Hilbert–Schmidt inde-
pendence criterion test with 1000 resamples (Figure 2).

S4-FF4 Study Sample

To recover the robust predictor variables of the S4-FF4, 
the aforementioned multivariable selection steps were 
performed on the training (variable selection) data set. 
The repeatedly measured HRV indices were regressed 
on the predictor variables measured at baseline, using 
MUVR-PLS, MUVR-RF, and MUVR-EN (Figure 2).

Next, we fitted the robust predictor variables, per-
formed model comparison, and model inference on 
the testing (model fitting) data set using linear mixed-
effects (random-effects) models. The outcome vari-
ables were the repeatedly measured HRV indices. All 
robust predictor variables were modeled as fixed ef-
fects and a random effect (intercept) was specified for 
every individual. The β indicates the effect of the robust 
predictor variables on the average HRV indices over 
time. Bias analysis was performed on the significant 
proteomics biomarkers of the best-performing mod-
els. The predictive ability of the best-performing mod-
els were evaluated on the same testing (model fitting) 
data set as leave-one-out cross-validated RMSE (test 
RMSE) (Figure 2). No DDA was performed in the S4-
FF4 because its longitudinal design with subsequently 
measured HRV indices at follow-up (temporality) in-
dicates an established causal order (proteomics bio-
markers⟶HRV indices).

Independence of Proteomics Biomarkers, 
Bivariable Associations, Statistical Power, and 
Individual Power Components

Before the multivariable regression modeling, we 
checked the dependency among the 3 panels of 

proteomics biomarkers as well as bivariable associa-
tions of predictor variables. The association between 
continuous variables was tested with Spearman cor-
relation test, while difference across the groups of cat-
egorical variables was tested with the Kruskal–Wallis 
test. Furthermore, we estimated the statistical power 
of the generalized linear model of the partitioned data 
sets. Details are provided in Data  S1. In secondary 
analysis, we examined the association of the proteom-
ics biomarkers with individual power components, 
in the very-low-frequency, low-frequency, and high-
frequency range, using the same analytical steps as in 
the main analysis.

All statistical analyses were performed using R 
version 4.3.3. The R packages were “MUVR2” for 
multivariable selection, “performance” for model com-
parison, “lmPerm” for permutation of linear models, 
“dHSIC” for DDA, “permutes” for permutation of lin-
ear mixed models, and “konfound” for bias analysis; 
“caret” for predictive ability (RMSE); and “pwr” for a 
priori statistical power analysis. We considered P<0.05 
as statistically significant.

RESULTS
Descriptive Analysis
Table  1 summarizes the basic characteristics of the 
overall study population (n=1389) and the S4 (n=982) 
and S4-FF4 (n=407). The overall study population had 
52% men, a median age of 64 years, and a median 
BMI of 28 kg/m2; 42% were physically active, 14% 
were current smokers, and 60% had NGT. The S4 had 
54% men, age 65 years, and BMI of 28 kg/m2; 40% 
were physically active, 15% were current smokers, and 
56% had NGT, while the S4-FF4 had 48% men, age 
61 years, and BMI of 27 kg/m2; 48% were physically 
active, 12% were current smokers, and 68% had NGT. 
The median follow-up time of the S4-FF4 was 14 years. 
Basic characteristics such as age, BMI, and smok-
ing status were significantly different between the S4 
and S4-FF4. Tables S1 and S2 provide the data for all 
proteomics biomarkers and HRV indices, respectively, 
for the overall study sample and the S4 and S4-FF4 
populations.

Multivariable Modeling of the Association 
Between Proteomics Biomarkers and HRV 
Indices
Association Between Proteomics Biomarkers 
and HRV Indices in S4 Study Sample

There were 16 (12 proteomics biomarkers and 4 covar-
iates), 6 (all proteomics biomarkers), 10 (9 proteomics 
biomarkers and 1 covariate), 7 (all proteomics biomark-
ers) and 10 (9 proteomics biomarkers and one covariate) 
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robust predictor variables for Rényi4, TP, SDWS, SDSA 
and CE, respectively (Table  2). The robust proteom-
ics biomarkers include N-terminal pro-B-type natriu-
retic peptide for Rényi4, tumor necrosis factor–related 
activation-induced cytokine (TRANCE) for TP, tumor 

necrosis factor receptor superfamily member 10A for 
SDWS, N-terminal pro-B-type natriuretic peptide for 
SDSA and N-terminal pro-B-type natriuretic peptide 
for CE. The robust covariates were CRP, HbA1c, waist 
circumference and leukocyte count for Rényi4, waist 

Table 1.  Basic Characteristics of the Study Population

Overall (n=1389)
S4 study sample
(n = 982)

S4-FF4 study sample
(n = 407) P value*

Age, y 64 (59–69) 65 (61–70) 61 (58–65) <0.001

Sex, male 725 (52.2) 528 (53.8) 197 (48.4) 0.068

Body mass index, kg/m2 28.2 (25.7–30.9) 28.5 (25.9–31.3) 27.4 (25.4–30.0) <0.001

Waist circumference, cm 96.1 (88.6–103.2) 97.1 (90–104.5) 93.7 (85.9–101.0) <0.001

Educational attainment, y 10 (10–12) 10 (10–12) 10 (9–12) 0. 100

Alcohol consumption, g/d 7 (0–22.9) 6.6 (0– 22.9) 8.6 (0.9–22.7) 0.626

Smoking status, smokers 192 (13.8) 144 (14.7) 48 (11.8) 0.020

Physical activity, inactive 796 (57.6) 586 (60) 210 (51.7) 0.005

Systolic blood pressure, mm Hg 135 (122.5–148) 137 (123.5–149.5) 131 (119–145) <0.001

Diastolic blood pressure, mm Hg 79.5 (73–86.5) 79.5 (73.0–87.0) 80 (73.5–86.0) 0.853

Hemoglobin A1c, mmol/mol 38 (36–41) 39 (36–41) 38 (36–41) 0.237

High-density lipoprotein cholesterol, mmol/L 1.4 (1.2–1.7) 1.4 (1.2–1.7) 1.5 (1.2–1.8) 0.037

Low-density lipoprotein cholesterol, mmol/L 3.9 (3.3–4.6) 3.9 (3.3–4.6) 3.9 (3.2–4.6) 0.616

Triglycerides, mmol/L 1.4 (1.0–1.9) 1.4 (1.0–2.0) 1.3 (0.9–1.8) 0.003

Albumin, g/L 38.2 (35.8–40.7) 38.1 (35.7–40.6) 38.5 (36.2–40.9) 0.049

Fibrinogen, g/L 2.8 (2.5–3.3) 2.9 (2.5–3.3) 2.7 (2.4–3.2) 0.005

High sensitivity C-reactive protein, mg/L 1.7 (0.9–3.5) 1.9 (0.9–3.8) 1.5 (0.8–2.9) 0.001

Serum amyloid A, mg/L 3.6 (2.4–6.1) 3.7 (2.4–6.4) 3.4 (2.3–5.5) 0.113

Leukocyte count, /nL 5.9 (5.1–7.0) 8.8 (6.2–12.2) 8.4 (5.6–1.8) 0.058

Serum adiponectin, μg/mL 8.7 (6.0, 12.2) 6 (5.0–7.0) 5.7 (5.0, 6.7) 0.001

Uric acid, μmol/L 329.2 (278.6–391.7) 334.3 (281.6–397.6) 318.5 (270.2–373.5) <0.001

Creatinine, μmol/L 75.2 (66.3–85.8) 75.2 (66.3–85.8) 74.3 (65.4–84.0) 0.305

Use of angiotensin antagonists 46 (3.3) 36 (3.7) 10 (2.5) 0.249

Use of angiotensin-converting enzyme 
inhibitors

178 (12.8) 150 (15.3) 28 (6.9) <0.001

Use of calcium antagonists 149 (10.7) 124 (12.7) 25 (6.1) <0.001

Use of β blockers 294 (21.2) 232 (23.7) 62 (15.2) <0.001

Use of diuretics 230 (16.6) 202 (20.6) 28 (6.9) <0.001

Use of glucose-lowering drugs 91 (6.6) 75 (7.7) 16 (3.9) 0.011

Use of statins 138 (9.9) 103 (10.5) 35 (8.6) 0.279

Use of NSAIDs 97 (7.0) 64 (6.5) 33 (8.1) 0.294

Glucose tolerance status

NGT 827 (59.5) 552 (56.2) 275 (67.6) 0.002

i-IFG 99 (7.1) 70 (7.1) 29 (7.1)

i-IGT 160 (11.5 121 (12.3) 39 (9.6)

IFG–IGT 75 (5.4%) 58 (5.9) 17 (4.2)

Newly detected T2D 117 (8.4) 89 (9.1) 28 (6.9)

Previously known T2D 111 (8) 92 (9.4) 19 (4.7)

Duration of known T2D, y 8 (4–14) 8 (4–14) 7 (5–12) 0.005

Continuous and categorical basic characteristics (covariates) were summarized as median (interquartile range), and counts (percentage), respectively. IFG 
indicates impaired fasting glucose; i-IFG, isolated impaired fasting glucose; IGT impaired glucose tolerance; i-IGT, isolated impaired glucose tolerance; NGT, 
normal glucose tolerance; and T2D, type 2 diabetes.

*Difference in continuous and categorical covariates between S4 and S4-FF4 study samples were tested with Kruskal–Wallis rank-sum and Pearson’s χ2 
tests, respectively.
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circumference for SDWS, and CRP for CE. The MUVR-
PLS, MUVR-RF, and MUVR-EN regression-specific 
predictor variables for each CAND–HRV index are pro-
vided in Table S3.

No glucose tolerance group was selected by the RF 
for the 5 HRV indices; as such, there was no complex-
full model in model comparison. The comparison of 
the full and basic models for Rényi4, SDWS, and CE 
indicated that the full models of Rényi4 (0.83) and CE 
(0.83) had overall higher performance scores than the 
basic models of Rényi4 (0.17) and CE (0.17), while the 
full and basic models of SDWS had equal performance 
scores of 0.5 (Table S4). Hence, the best-performing 
models for Rényi4, SDWS, and CE were the full, 
basic, and full models, respectively. The proteomics 
biomarkers-only (full) models of TP and SDSA were 
their best-performing models.

Table 3 summarizes the β and 95% CI of the best-
performing models. Key model assumptions, homo-
geneity of variance (homoscedasticity), normality of 
residuals, and acceptable multicollinearity (all variance 
inflation factors were <10) were generally satisfied. Five 
proteins remained independently associated with 2 indi-
ces, cross-sectionally. Specifically, 1-SD higher CCL23 
(C-C motif chemokine 23) was associated with 0.10-
bit higher Rényi4, while 1-SD higher PGLYRP1 (pepti-
doglycan recognition protein 1) and FGF21 (fibroblast 
growth factor 21) were both associated with 0.15-bit 
lower Rényi4. Further, 1-SD higher TRANCE and GDF15 
(growth/differentiation factor 15) were associated with 
0.02-AU lower and 0.03-AU lower CE, respectively.

Table 2.  Robust Predictor Variables of S4 Study Sample

Rényi4 Abbreviations

1 N-terminal pro-B-type natriuretic peptide NT-proBNP

2 Tumor necrosis factor receptor 
superfamily member 10A

TNFRSF10A

3 C-C motif chemokine 23 CCL23

4 Interleukin-6 IL-6

5 Thrombospondin-2 THBS2

6 Insulin-like growth factor-binding protein 1 IGFBP1

7 C-reactive protein CRP

8 Tumor necrosis factor–related activation-
induced cytokine

TRANCE

9 Neurotrophin-3 NT3

10 Peptidoglycan recognition protein 1 PGLYRP1

11 Interleukin-1 receptor-like 2 IL1RL2

12 Hemoglobin A1c HbA1c

13 Waist circumference

14 Leukocyte count

15 Protein α1-microglobulin/bikunin 
precursor

AMBP

16 Fibroblast growth factor 21 FGF21

TP

1 Tumor necrosis factor–related activation-
induced cytokine

TRANCE

2 Low affinity immunoglobulin γ Fc region 
receptor II-b

IGGFC

3 Lipoprotein lipase LPL

4 Vascular endothelial growth factor D VEGFD

5 Interleukin-2 receptor subunit α IL2RA

6 Tyrosine-protein kinase receptor UFO AXL

SDWS

1 Tumor necrosis factor receptor 
superfamily member 10A

TNFRSF10A

2 Interleukin-1 receptor-like 2 IL1RL2

3 C-C motif chemokine 23 CCL23

4 Tumor necrosis factor–related activation-
induced cytokine

TRANCE

5 Thrombospondin-2 THBS2

6 Spondin-2 SPON2

7 Transforming growth factor alpha TGFA

8 N-terminal pro-B-type natriuretic peptide NT-proBNP

9 Interleukin-10 receptor subunit beta IL10RB

10 Waist circumference

SDSA

1 N-terminal pro-B-type natriuretic peptide NT-proBNP

2 Thrombospondin-2 THBS2

3 Low affinity immunoglobulin gamma Fc 
region receptor II-b

IGGFC

4 Receptor for advanced glycosylation end 
products

RAGE

5 Interleukin-10 receptor subunit β IL10RB

 (Continued)

Rényi4 Abbreviations

6 TNF-related activation-induced cytokine TRANCE

7 Vascular endothelial growth factor D VEGFD

CE

1 N-terminal pro-B-type natriuretic peptide NT-proBNP

2 Tumor necrosis factor receptor 
superfamily member 10A

TNFRSF10A

3 Interleukin-6 IL6

4 C-reactive protein CRP

5 Thrombospondin-2 THBS2

6 Contactin-1 CNTN1

7 C-C motif chemokine 23 CCL23

8 Tumor necrosis factor–related activation-
induced cytokine

TRANCE

9 Receptor for advanced glycosylation end 
products

RAGE

10 Growth/differentiation factor 15 GDF15

CE indicates compression entropy; ényi4, Rényi entropy of the histogram 
with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval 
variability; SDWS, SD of word sequence; and TP, total power of the density 
spectra.

Table 2.  Continued
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Table 3.  Effect Estimates of the “Best”-Performing Models of S4 Study Sample

Regression coefficients 
(β) (95% CI); P value, 
permutated P value Abbreviations Rényi4, bit TP, ms2 SDWS, AU SDSA, ms CE, AU

N-terminal pro-B-type 
natriuretic peptide

NT-proBNP 0.01 (−0.09 to 0.10); 
0.926 to 0.980

1.86 (−0.32 to 
4.05); 0.094 to 
0.059

0.01 (−0.01 to 0.02); 
0.256 to 0.295

Tumor necrosis factor 
receptor superfamily 
member 10A

TNFRSF10A 0.044 (−0.05 to 
0.14); 0.375 to 0.527

0.001 (−0.01 to 
0.02); 0.885 to 0.98

C-C motif chemokine 23 CCL23 0.10* (0.01 to 0.20); 
0.039 to 0.047

0.0001 (−0.01 to 
0.02); 0.976 to 1

Interleukin-6 IL-6 −0.05 (−0.15 to 
0.05); 0.295 to 
0.085

−0.002 (−0.017 to 
0.014); 0.828 to 1

Thrombospondin-2 THBS2 −0.05 (−0.14 to 
0.05); 0.342 to 0.474

−1.26 (−3.41 to 
0.89), 0.251 to 
0.51

0.0001 (−0.01 to 
0.01), 0.980 to 0.961

Insulin-like growth factor-
binding protein 1

IGFBP1 0.01 (−0.09 to 0.11); 
0.848 to 0.882

Tumor necrosis factor–
related activation-induced 
cytokine

TRANCE −0.02 (−0.11 to 
0.08); 0.739 to 1

−28.5 (−202.8 to 
145.8); 0.748 to 1

−1.04 (−3.06 to 
0.99); 0.317 to 
0.097

−0.02** (−0.03 to 
−0.002); 0.024 to 
0.039*

Neurotrophin-3 NT3 −0.04 (−0.13 to 
0.05); 0.400 to 
0.423

Peptidoglycan recognition 
protein 1

PGLYRP1 −0.15* (−0.25 to 
−0.05); 0,004 to 
0.002*

Interleukin-1 receptor-like 2 IL1RL2 −0.04 (−0.14 to 
0.05); 0.343 to 1

Protein α1-microglobulin/
bikunin precursor

AMBP 0.01 (−0.10 to 0.11); 
0.920 to 1

Fibroblast growth factor 21 FGF21 −0.15* (−0.25 to 
−0.06); <0.001 to 
<0.001*

Low-affinity immunoglobulin 
γ Fc region receptor II-b

IGGFC −87.0 (−262.5 to 
88.5); 0.331 to 
0.403

0.49 (−1.53 to 
2.51); 0.637 to 
0.563

Lipoprotein lipase LPL 20.9 (−154.9 to 
196.7); 0.816 to 1

Vascular endothelial growth 
factor D

VEGFD −35.5 (−212.6 to 
141.6); 0.694 to 1

1.38 (−0.98 to 
3.73); 0.251 to 
0.941

Interleukin-2 receptor 
subunit α

IL2RA 38.5 (−159.6 to 
236.6); 0.703 to 
0.941

Tyrosine-protein kinase 
receptor UFO

AXL −160.3 (−357.4 to 
36.7); 0.111 to 0.227

Interleukin-10 receptor 
subunit β

IL10RB −0.33 (−2.59 to 
1.93); 0.773 to 1

Receptor for advanced 
glycosylation end products

RAGE −0.81 (−3.37 to 
1.75); 0.537 to 
0.941

0.01 (−0.01 to 0.02); 
0.329 to 0.223

Contactin-1 CNTN1 −0.01 (−0.03 to 
0.002); 0.086 to 
0.062

Growth/differentiation factor 
15

GDF15 −0.03 (−0.05 to 
−0.02); <0.001 to 
<0.001*

 (Continued)
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In addition, the robustness of inference to replace-
ment and impact threshold of a confounding variable 
estimates of the bias analysis indicated that the as-
sociation between CCL23 and Rényi4 was the least 
robust to bias, while the association between GDF15 
and CE was the most robust to bias. Details are pro-
vided in Data  S1. Furthermore, test RMSE indicated 
that, on average, predictions were off by 0.69 bit for 
Rényi4, 817.18 ms2 for TP, 0.49 AU for SDWS, 18.4 ms 
for SDSA, and 0.11 AU for CE.

The DDA’s homoscedasticity and independence 
tests indicated that for all associations, the putatively 
correct causal order did not convincingly outperform 
the reverse causal order (Table S5). These results sug-
gest that the reverse causal order, that is, the influence 
of these HRV indices on their associated proteomics 
biomarkers cannot be excluded with certainty.

Association Between Proteomics 
Biomarkers and HRV Indices in S4-FF4 
Study Sample

There were 5 (4 proteomics biomarkers and 1 co-
variate), 4 (all proteomics biomarkers), 1 (proteomics 
biomarker), 5 (all proteomics biomarkers) and 8 (all 
proteomics biomarkers) robust predictor variables 
for Rényi4, TP, SDWS, SDSA and CE, respectively 
(Table  4). The robust proteomics biomarkers include 
adrenomedullin for Rényi4, myoglobin for TP, myo-
globin for SDWS, AGRP (agouti-related protein) for 
SDSA, and CUB domain-containing protein 1 for CE. 
Triglycerides was the only robust covariate, observed 
for Rényi4. The MUVR-PLS, MUVR-RF, and MUVR-EN 
regression-specific predictor variables are provided in 
Table S6.

No glucose tolerance group was selected by 
the RF for the five HRV indices hence there was no 

complex-full model in model comparison. The com-
parison of Rényi4’s robust predictor variables (full) 
model with its covariates-only (basic) model indicated 
that the models have equal performance scores of 
0.5 (Table S7). Hence, the basic model with only tri-
glycerides was considered as the best-performing 
model of Rényi4. The proteomics biomarkers-only (full) 
models of TP, SDWS, SDSA, and CE were their best-
performing models.

Table  5 summarizes the β and 95% CI of the 
best-performing models. Five proteins remained in-
dependently associated with 3 indices over time. 
Specifically, 1-SD higher interleukin-6 receptor subunit 
α (IL6RA) was associated with 63 ms2 higher TP, while 
1-SD higher macrophage CSF1 (colony-stimulating 
factor 1) was associated with 57 ms2 lower TP. Further, 
1-SD higher myoglobin was associated with 2.04-ms 
higher SDSA, while 1-SD higher AGRP was associated 
with 1.92-ms lower SDSA. Finally, 1-SD higher gastro-
tropin was associated with 0.04-AU higher CE, while 
one-SD higher AGRP was associated with 0.03-AU 
lower CE.

Moreover, the robustness of inference to replace-
ment and impact threshold of a confounding variable 
estimates of the bias analysis suggested that associ-
ation between CSF1 and TP was the least robust to 
bias, while the association between gastrotropin and 
CE was the most robust to bias. Details are provided 
in Data S1. Besides, the test RMSE indicated that on 
average, predictions were off by 0.49 bit, 172 ms2, 0.43 
AU, 6.4 ms, and 0.09 AU for Rényi4, TP, SDWS, SDSA, 
and CE, respectively.

Collectively, in both study samples, 10 proteomics 
biomarkers—CCL23, PGLYRP1, FGF21, TRANCE, 
GDF15, CSF1, IL6RA, AGRP, myoglobin, and gastro-
tropin—were associated with 4 HRV indices, Rényi4, 
TP, SDSA, and CE (Table 6).

Regression coefficients 
(β) (95% CI); P value, 
permutated P value Abbreviations Rényi4, bit TP, ms2 SDWS, AU SDSA, ms CE, AU

C-reactive protein CRP −0.06 (−0.17 to 
0.04); 0.223 to 1

−0.01 (−0.03 to 
0.003); 0.128 to 
0.066

Hemoglobin A1c HbA1c −0.02 (−0.11 to 
0.08), 0.709 to 
0.592

Waist circumference 0.07 (−0.03 to 0.17); 
0.192 to 0.189

0.001 (−0.06 
to 0.07); 0.786 
to 0.51

Leukocyte count 0.06 (−0.05 to 0.16); 
0.308 to 1

All continuous predictor variables are Z score standardized (mean of 0 and SD of 1). Outcome variables are in their original units. CE indicates compression 
entropy; ényi4, Rényi entropy of the histogram with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval variability; SDWS, SD of word 
sequence; and TP, total power of the density spectra.

*Statistically significant estimates.

Table 3.  Continued
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Independence of Sets of Proteomics 
Biomarkers, Bivariable Associations of 
Predictor Variables, and Statistical Power
There was dependency between all 3 sets of prot-
eomics biomarkers (Table S8). Additionally, there were 
several strong (|r|≥0.7, P≤0.05) pairwise correlations 
between individual proteomics biomarkers as well as 
between HRV indices of S4 (Table S9). Covariates were 
moderately associated with the proteomics biomark-
ers (Tables S9 and S10), while continuous covariates 
showed fewer associations (Table  S9) as compared 
with categorical covariates (Table S11) with HRV indi-
ces of S4. For S4-FF4, individual proteomics biomark-
ers and HRV indices showed similar magnitude of 

pairwise correlations as the S4 (Table S12), but fewer 
covariates were associated with the proteomics bio-
markers (Tables S12 and S13) and with HRV indices 
(Tables S12 and S14). All these results confirm the ap-
propriateness of the a priori multivariable modeling 
approach with variable selection that adequately ac-
counts for multicollinearity and dependency. Moreover, 
the statistical power of the generalized linear model of 
each of training, validation, and testing data sets of S4 
was ≈100%. The S4-FF4 training and testing data sets 
had 63% and 35% power, respectively.

The robust predictor variables of individual power 
components, ultra-low frequency, very low frequency, 
low frequency, and high frequency were proteomics 
biomarkers, except for high frequency in the S4-FF4 
(Table S15). No proteomics biomarker was significantly 
associated with their respective power components in 
the holdout data sets (Table S16). There is a consistent 
absence of association of proteomics biomarkers with 
individual power and TP cross-sectionally in S4, while 
2 proteomics biomarkers were significantly associated 
with TP and none with individual power in S4-FF4. All 
Supplemental Materials are accessible at https://​figsh​
are.​com/s/​12c7a​e9a7b​d27a8​5f8a2​.

DISCUSSION
In this population-based epidemiological study of 
German older adults, we uncovered 10 novel proteom-
ics biomarkers—CCL23, PGLYRP1, FGF21, TRANCE, 
GDF15, CSF1, IL6RA, AGRP, myoglobin, and gas-
trotropin—that were associated with 4 HRV indices: 
Rényi4, TP, SDSA, and CE. Our findings are intrigu-
ing in the light of the dual roles of several inflammatory 
biomarkers,34 the antagonistic but dynamic balance of 
sympathetic and parasympathetic activities on HRV,35 
higher HRV generally deemed to be health preserv-
ing,36 and severely diminished HRV reflecting CAND.37

Association of CCL23, PGLYRP1, and 
FGF21 With Rényi4
CCL23 was positively associated with Rényi4, while 
PGLYRP1 and FGF21 were negatively associated 
with Rényi4. Rényi4 is a measure of the complexity, 
diversity, uncertainty, or randomness of the beat-to-
beat intervals9,38 and evenly captures linear and non-
linear variability.9 Rényi4 is generally higher in healthy 
individuals as compared with those with cardiac ab-
normalities.38 CCL23, a chemokine expressed by 
macrophages in the lungs, liver, and pancreas stim-
ulates the production of proinflammatory cytokines 
and adhesion molecules.39 It is associated with neu-
roinflammation39 and related to chronic diseases with 
inflammatory components such as rheumatoid arthri-
tis,40 systemic sclerosis,41 ischemic stroke,42 coronary 

Table 4.  Robust Predictor Variables of S4-FF4 Study 
Sample

Rényi4 Abbreviations

1 Adrenomedullin ADM

2 Myoglobin MB

3 Triglycerides

4 C-C motif chemokine 16 CCL16

5 Stem cell factor SCF

TP

1 Myoglobin MB

2 Protein α1-microglobulin/bikunin 
precursor

AMBP

3 Macrophage colony-stimulating factor 1 CSF1

4 Interleukin-6 receptor subunit α IL6RA

SDWS

1 Myoglobin

SDSA

1 Agouti-related protein AGRP

2 Myoglobin MB

3 Interleukin-10 receptor subunit β IL10RB

4 Kidney injury molecule KIM1

5 Fatty acid-binding protein, intestinal FABP2

CE

1 CUB domain-containing protein 1 CDCP1

2 Angiopoietin-1 receptor TIE2

3 Gastrotropin GT

4 Tumor necrosis factor receptor 
superfamily member 9

TNFRSF9

5 Tumor necrosis factor–related apoptosis-
inducing ligand

TRAIL

6 Agouti-related protein AGRP

7 Serpin A12 SERPINA12

8 Decorin DCN

CE indicates compression entropy; ényi4, Rényi entropy of the histogram 
with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval 
variability; SDWS, SD of word sequence; and TP, total power of the density 
spectra.

https://figshare.com/s/12c7ae9a7bd27a85f8a2
https://figshare.com/s/12c7ae9a7bd27a85f8a2
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artery calcium,43 atherosclerosis,44 and Alzheimer dis-
ease.39 CCL23 plays a role in angiogenesis,45 which 
is part of vascular remodeling. This is a potential ex-
planation for its association with Rényi4. PGLYRP1 is 
primarily expressed in leukocytes, providing antimicro-
bial and proinflammatory functions.46 Its higher blood 
level is linked to increased CVD risk.47 FGF2 is synthe-
sized in the liver, pancreas, adipose tissue, and skeletal 
muscle,48 as well as in cardiomyocytes.49 It is involved 
in the regulation of metabolism and anti-inflammatory 
processes.50 It plays a protective role in diabetic car-
diomyopathy and prevents cardiac damage.51 The 
mechanisms underlying its cardioprotective role are 
regulation of adipocyte adiponectin production and 

suppression of hepatic expression of the transcription 
factor sterol regulatory element-binding protein-2.52 
However, FGF21 is also associated with increased risk 
of secondary CVD,52 which suggests that its negative 
association with Rényi4 is plausible. The association 
between FGF21 and Rényi4 may also be a reflection of 
the potential link between hepatic steatosis and early 
development of CAND.5

Association of TRANCE, GDF15, AGRP, 
and Gastrotropin With CE
TRANCE and GDF15 were negatively associated with 
CE, while higher baseline AGRP and gastrotropin 

Table 5.  Effect Estimates of the “Best”-Performing Models of S4-FF4 Study Sample

Regression coefficients 
(β) (95% CI); P value, 
permutated P value Abbreviations Rényi4, bit TP, ms2 SDWS, AU SDSA, ms CE, AU

Myoglobin MB 42.9 (−3.2 to 89.0); 
0.068 to 0.068

0.05 (−0.03 to 
0.14); 0.222 to 
0.065

2.04 (0.55 to 3.53); 
0.008 to <0.001*

Protein α1-microglobulin/
bikunin precursor

AMBP −34.2 (−86.0 to 
17.6); 0.194 to 0.194

Macrophage colony-
stimulating factor 1

CSF1 −57.0 (−107.0 to 
−6.9); 0.026 to 
<0.001

Interleukin-6 receptor 
subunit α

IL6RA 63.0 (20.0 to 105.9); 
0.004 to <0.001*

Agouti-related protein AGRP −1.92 (−3.45 to −0.39); 
0.014 to <0.001*

−0.03 (−0.05 to 
−0.01); 0.008 to 
<0.001*

Interleukin-10 receptor 
subunit β

IL10RB −1.40 (−3.01 to 0.22); 
0.089 to 0.089

Kidney injury molecule KIM1 −1.01 (−2.57 to 0.41); 
0.153 to 0.153

Fatty acid-binding protein, 
intestinal

FABP2 1.50 (−0.03 to 3.04); 
0.055 to 0.055

CUB domain-containing 
protein 1

CDCP1 0.003 (−0.02 to 
0.02); 0.772 to 0.603

Angiopoietin-1 receptor TIE2 −0.01 (−0.03 to 
0.01); 0.337 to 0.064

Gastrotropin GT 0.04 (0.02 to 0.06); 
<0.001 to <0.001*

Tumor necrosis factor 
receptor superfamily 
member 9

TNFRSF9 −0.01 (−0.04 to 
0.01); 0.192 to 0.192

Tumor necrosis factor–
related apoptosis-inducing 
ligand

TRAIL −0.002 (−0.02 to 
0.02); 0.818 to 0.818

Serpin A12 SERPINA12 0.01 (−0.01 to 0.03); 
0.470 to 0.470

Decorin DCN −0.01 (−0.03 to 
0.02); 0.672 to 0.672

Triglycerides −0.13 (−0.23 to 
−0.02); 0.020 
to <0.001

CE indicates compression entropy; ényi4, Rényi entropy of the histogram with order (alpha) 4; SDSA, SD of the short-term normal-to-normal interval 
variability; SDWS, SD of word sequence; and TP, total power of the density spectra.

*Statistically significant estimates. All continuous predictor variables are Z score standardized (mean of 0 and SD of 1. Outcome variables are in their original units.
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were associated with decrease and increase in CE 
over time, respectively. CE is also a marker of com-
plexity, but more sensitive to nonlinear than linear 
variability.9 It generally indicates parasympathetic 
(vagal) modulation.53 This suggests that TRANCE, 
GDF15, and AGRP may be linked with decreased 
vagal activity, while gastrotropin may be linked with 
increased vagal activity. TRANCE is expressed by 
osteoblasts and fibroblasts, activated T cells, sub-
capsular sinus macrophages, metallophilic mac-
rophages, and certain myeloma.54 It plays a role in 
endothelial cell activation, which is pivotal to angio-
genesis and proinflammatory processes.55 Higher 
serum TRANCE is associated with the Charcot foot, 
a neuropathic arthropathy,56 closely linked to pre-
ceding neuropathy.57 Similarly, GDF15 exhibits pro-
inflammatory and anti-inflammatory properties.58 It 
is associated with diabetic neuropathy, specifically 
showing direct and inverse associations with longer 
sensory and motor nerve latencies and slower nerve 
conduction velocity, respectively.59 AGRP is a neu-
ropeptide synthesized by the brain’s AGRP/neuro-
peptide Y neurons, regulating glucose sensing and 
metabolism.60,61 AGRP neurons are highly active 
during hunger, promoting robust feeding behavior.62 
Besides, they mediate the effects of leptin on auto-
nomic nerve activity63 and the mechanistic relation-
ship between the vagal afferent pathway and the 
central nervous system.64 Gastrotropin is one of the 
fatty acid–binding proteins.65 It is most abundant in 
the ileum and transports bile acids,65 regulating lipid 
and glucose metabolism.66 Recent epidemiological 
investigations reported that gastrotropin is directly 
associated with CAD67 but inversely associated with 
the risk of CVD.68

Association of CSF1 and IL6RA With TP
Higher baseline CSF1 and IL6RA were associated with 
decrease and increase in TP over time, respectively. 
Sympathetic activation and its resulting tachycardia 
are usually accompanied by a marked reduction in 
TP, while the reverse occurs during vagal activation.69 
These findings suggest that CSF1 and IL6RA are as-
sociated with higher and lower sympathetic activity, 
respectively. CSF-1, expressed in the brain70 and en-
teric neurons,71 is one of the most common proin-
flammatory cytokines involved in somatosensory and 
autonomic neuronal regulatory processes.71 It medi-
ates microglial and macrophage signaling in the gen-
eration of neuropathic pain, which occurs after nerve 
injury.72 It is responsible for various inflammatory 
disorders.73 In fact, its genetically predicted higher 
levels are linked to higher risk of coronary artery dis-
ease.74 IL6RA is a transmembrane protein expressed 
on hepatocytes,75 leukocytes,75 adipocytes,76 myo-
cytes,77 and right atrium.78 Most of the proinflamma-
tory roles of interleukin-6 are attributed to its binding 
to soluble IL6RA.75 CSF-1 and some interleukins have 
overlapping binding sites.70 Hence, our observed as-
sociation of CSF-1 and IL6RA with TP may suggest 
their concerted cardiac autonomic regulatory action. 
Surprisingly, these proteins were not associated with 
individual power components, suggesting that these 
indices may be less reflective of the cardiac impact of 
these proteins.

Association of Myoglobin and AGRP With 
SDSA
Higher baseline myoglobin and AGRP were associated 
with an increase and a decrease in SDSA over time, 

Table 6.  Overall Results of the Proteomics Biomarkers Significantly Associated With Cardiac Autonomic Nervous 
Dysfunction–Heart Rate Variability Indices

Proteomics biomarkers Abbreviations S4 study sample S4-FF4 study sample CAND-HRV indices

1 C-C motif chemokine 23 CCL23 + Rényi4

2 Peptidoglycan recognition protein 1 PGLYRP1 − Rényi4

3 Fibroblast growth factor 21 FGF21 − Rényi4

4 Tumor necrosis factor–related activation-
induced cytokine

TRANCE − CE

5 Growth/differentiation factor 15 GDF15 − CE

6 Interleukin-6 receptor subunit alpha IL6RA + TP

7 Macrophage colony-stimulating factor 1 CSF1 − TP

8 Myoglobin MB + SDSA

9 Agouti-related protein AGRP − SDSA

9 Agouti-related protein AGRP − CE

10 Gastrotropin GT + CE

CAND-HRV indicates cardiac autonomic nervous dysfunction-heart rate variability; CE, compression entropy. Rényi4, Rényi entropy of the histogram with 
order (α) 4; SDSA, SD of the short-term normal-to-normal interval variability; and TP, total power of the density spectra. +=Positive association; −=Negative 
association.
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respectively. SDSA is a measure of both parasympa-
thetic and sympathetic activity.78 These findings sug-
gest that myoglobin and AGRP may be necessary for 
maintaining a dynamic balance between cardiac para-
sympathetic and sympathetic modulations. Myoglobin 
is primarily expressed in skeletal and cardiac mus-
cles.79 It protects the cardiovascular system through 
storage and facilitation of dioxygen diffusion.80 The 
production and role of AGRP has been discussed with 
respect to CE.

Influence of Glucose Tolerance Status 
on the Relationship of Proteomics 
Biomarkers With HRV Indices
Contrary to our expectations, none of the glucose 
tolerance groups relative to NGT seemed to have an 
important influence on the relationship between any 
of these biomarkers and their respective HRV indi-
ces. This is in spite of the glucose tolerance status 
having bivariable associations with FGF21 and GDF15 
(Table S8) and with CSF1, myoglobin, and AGRP in 
the S4-FF4 (Table S11). Moreover, as compared with 
NGT, isolated impaired fasting glucose, known T2D, 
or newly detected T2D were associated with indices 
in 1 or 2 variable selection models of S4 (Table S1) 
and S4-FF4 (Table S4). However, none was a robust 
predictor for any index. These findings suggest that in 
the presence of other proteomics biomarkers and risk 
factors, glucose tolerance status is unlikely to exert 
a substantial influence on the association between 
these 10 proteomics biomarkers and HRV indices. 
This underscores the need for a nuanced under-
standing of role of glucose tolerance status, espe-
cially T2D, in the relationship between these current 
biomarkers and CAND.

Previously Reported Biomarkers and Risk 
Factors for CAND
CRP,13,15 interleukin-6,15 interleukin-18,16 interleukin-1 
receptor antagonist,15 and adiponectin14,16 are linked 
to CAND. Additionally, a review predating these stud-
ies indicated that parasympathetic nervous system 
tone as inferred from HRV is inversely related to CRP 
and interleukin-6.81 Reassuringly, across the variable 
selection models of both study samples, we observed 
the association of these biomarkers with at least 1 HRV 
index. However, in the S4, only CRP and interleukin-6 
were robust, as both were associated with Rényi4 and 
CE cross-sectionally. However, none was validated. In 
contrast, none of these previously reported biomark-
ers were robust in the longitudinal S4-FF4 analysis. 
This suggests that, despite their widespread impor-
tance in pathophysiological processes, CRP and in-
terleukin-6 are unlikely to provide added value beyond 

these 10 novel proteomics biomarkers for Rényi4, TP, 
SDWS, SDSA, and CE.

Similarly, we observed previously reported risk 
factors of CAND such as age, sex, obesity, smoking, 
blood pressure, dyslipidemia, and dysglycemia in at 
least 1 variable selection model. However, they were 
simply not robust as compared with HbA1c, waist cir-
cumference, or triglycerides. The associations between 
HbA1c and Rényi4 and between waist circumference 
and SDWS were not validated. HbA1c was associ-
ated with some HRV indices in a study that did not 
include Rényi4 and SDWS.82 Interestingly, triglycerides 
were validated in our S4-FF4 study sample, showing a 
negative association with Rényi4. This is in support of 
inverse association of triglycerides with prevalent car-
diac autonomic neuropathy.82

Strengths and Limitations
One of the strengths of this study is that it is the larg-
est study exploring proteomic biomarkers of CAND. 
Additionally, this targeted profiling of proteomics bio-
markers includes known proteins with documented 
biological roles. This helps place our findings in proper 
context. The multivariable selection models with re-
peated cross-validation ensures the precision and 
reliability of predictor variable selection. Further, the 
selection of variables across 3 methods reduces bias 
inherent in any method. The adequate inclusion of the 
glucose tolerance group, as a stratifying variable for 
data splitting and in the multivariable selection helps 
avoid omitted variable bias. Given the complicated na-
ture of statistical power analysis in mixed models,83 all 
our power estimates assumed single measurement, 
but as repeated measurements typically have higher 
power than single measurement,84 the S4-FF4 data 
sets are unlikely to be underpowered. Hence, we ef-
ficiently tested our hypotheses and obtained reliable 
β. Moreover, the inferential estimates of the predic-
tor variables, which were obtained from distinct data 
sets help to reduce the risk of erroneous results and 
inflated performance metrics. Rather than merely ac-
knowledging the limitations of the cross-sectional S4, 
our DDA ensures that we are not overly confident in 
the findings of the a priori causal flow. Further, the bias 
analyses reinforced the reliability of our inferences. 
The longitudinal S4-FF4 helps control for unobserved 
time-specific heterogeneity. Although the S4-FF4 has 
the temporal ordering advantage over the S4, the fact 
that our final protein–indices associations are distinct 
suggests that these proteins are likely to have clinical 
translational relevance. Therefore, joint investigation of 
both study samples is also a merit of this work. Finally, 
our study accounted for several cardiometabolic risk 
factors as well as commonly assessed inflammatory 
biomarkers. This suggests that the impact of these 
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novel biomarkers on HRV indices is likely independent 
of these factors.

The limitations of our study include its observational 
nature, hence we cannot draw a definite conclusion on 
causal relationships. Overall, we found small to mod-
erate effect estimates in all associations so that the 
clinical relevance of our findings remains to be deter-
mined. Although the most efficient method to ensure 
the reliability and predictive ability of these identified 
proteomics biomarkers would have been through ex-
ternal replication in a purely independent cohort, the 
reliability of our findings was achieved using the widely 
accepted holdout approach. Although within-study 
validation indicates the reliability of proteomics bio-
markers–HRV indices association, nonetheless it was 
surprising that no proteomics biomarkers–HRV indices 
association overlapped between studies in the final S4 
validation and S4-FF4 testing data sets. However, 1 as-
sociation, interleukin-10 receptor subunit β with SDSA, 
overlapped between the S4 and S4-FF4 training data 
sets. This association was not validated in both S4 val-
idation and S4-FF4 testing data sets, suggesting con-
sistency. It is possible that bivariable selection models 
and a single multivariable selection model, which are 
likely more prone to bias as compared with the current 
rigorous and robust multivariable selection approach, 
might have provided more overlapping associations to 
be subsequently validated. Despite combinations of 
our covariates being likely reasonable surrogates for 
uncontrolled and residual confounding, these issues 
might still have an impact on our findings. These con-
founders may include HRV-influencing health condi-
tions such as depression.85 Residual confounding may 
also arise from lack of flexible modeling of covariates. 
Besides, we cannot completely exclude untoward con-
sequences of excluding some individuals on the basis 
of the absence of the exposure, outcome, and glu-
cose tolerance status. However, the low proportion of 
the excluded suggests that its impact on our findings 
is likely trivial. As expected in most cohorts of older 
adults, the S4-FF4 study sample was comparatively 
smaller than the S4 study sample due to the attrition 
of the study participants at follow-up who were already 
older adults at baseline. Additionally, these current 
HRV indices were obtained from short-term, 5-minute 
measurement. Findings for indices from long-term 
measurements such as 24-hour might be different. The 
binary outcome (CAND or no CAND) could have been 
of added value to the individual HRV indices. However, 
this was not possible for logistic reasons. Actually, the 
biological interpretation of biomarkers associated with 
binary outcome would still be heavily hinged on the 
clinical relevance of the individual HRV indices. Another 
limitation is that prospectively linking baseline proteins 
to indices assessed at baseline and at 14 years later 
in S4-FF4 assumes that circulating levels of proteins 

are stable over this period. This assumption may not 
hold for all proteins. Multiple targeted proteomics pro-
filing as well as additional assessments of HRV indi-
ces will increase the validity of these findings. While 
the complexity of untargeted proteomics profiling may 
be daunting, this approach has merits that warrant its 
consideration in future studies with larger sample size. 
Although our held-out data sets are well powered, it is 
possible that causal direction did not adequately mani-
fest itself in the association between proteins and HRV 
indices, which the current DDA tests rely on. Future 
studies should consider pathway enrichment analysis 
of these proteins and integrate them into a broader 
pathophysiological model as well as in risk stratification 
framework for CAND. Validation of these novel proteins 
using highly sensitive and specific methods such as 
ELISA will ensure the robustness of our findings.

In conclusion, this population-based epidemiologi-
cal study adds to the emerging knowledge on inflam-
matory and cardiovascular biomarkers of CAND. We 
observed that independent of glucose tolerance sta-
tus and other risk factors, plasma levels of 10 novel 
proteomics biomarkers, CCL23, PGLYRP1, FGF21, 
TRANCE, GDF15, CSF1, IL6RA, AGRP, myoglobin, 
and gastrotropin, are related to 4 HRV indices. These 
biomarkers reflect aspects of the pathophysiology 
of CAND, which have not been previously reported. 
Certainly, the clinical manifestation of CAND is likely 
a consequence of multiple risk factors and biomark-
ers intricately interacting together. Nonetheless, these 
novel biomarkers may be valuable in understand-
ing and dissecting some aspects of manifestation of 
CAND. A deeper understanding of the roles of these 
proteins under various conditions could advance the 
therapeutic strategies for CAND.
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