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Abstract

Background and purpose Magnetic resonance imaging guided radiotherapy (MRgRT) offers treatment plan adap-
tation to the anatomy of the day. In the current MRgRT workflow, this requires the time consuming and repetitive
task of manual delineation of organs-at-risk (OARs), which is also prone to inter- and intra-observer variability. There-
fore, deep learning autosegmentation (DLAS) is becoming increasingly attractive. No investigation of its application
to OARs in thoracic magnetic resonance images (MRIs) from MRgRT has been done so far. This study aimed to fill this
gap.

Materials and methods 122 planning MRIs from patients treated at a 0.35 T MR-Linac were retrospectively collected.
Using an 80/19/23 (training/validation/test) split, individual 3D U-Nets for segmentation of the left lung, right lung,
heart, aorta, spinal canal and esophagus were trained. These were compared to the clinically used contours based
on Dice similarity coefficient (DSC) and Hausdorff distance (HD). They were also graded on their clinical usability

by a radiation oncologist.

Results Median DSC was 0.96, 0.96, 0.94, 0.90, 0.88 and 0.78 for left lung, right lung, heart, aorta, spinal canal

and esophagus, respectively. Median 95th percentile values of the HD were 3.9, 5.3, 5.8, 3.0, 2.6 and 3.5 mm, respec-
tively. The physician preferred the network generated contours over the clinical contours, deeming 85 out of 129

to not require any correction, 25 immediately usable for treatment planning, 15 requiring minor and 4 requiring major
corrections.

Conclusions We trained 3D U-Nets on clinical MRI planning data which produced accurate delineations in the tho-
racic region. DLAS contours were preferred over the clinical contours.
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Introduction
The clinical introduction of magnetic resonance imaging
guided radiotherapy (MRgRT) has brought great benefits
such as higher dose conformity to the target and more
healthy tissue sparing [1]. In contrast to conventional
stereotactic body radiotherapy (SBRT) using cone beam
computed tomography (CBCT), magnetic resonance
(MR) images do not expose the patient to extra dose dur-
ing image acquisition. The patient’s anatomy in treatment
position, as depicted on the daily images, is typically used
for online plan adaptation. Real-time cine-MR imaging
can also be used for breath-hold gated treatment with
high geometric gross tumor volume (GTV) coverage
[2]. The MRIdian (ViewRay Inc, Cleveland, OH, USA)
[3] is a 0.35 T MR-guided linear accelerator (MR-Linac)
that enables such treatments. It requires the target and
organs-at-risk (OARs) to be accurately segmented not
only on the planning image, but also on the image of the
day (fraction image) [4]. Although time is a less critical
factor for delineating the planning MR image (MRI), it
is still a fairly time consuming procedure [5] and prone
to inter- and intra-observer variability [6]. These uncer-
tainties may further affect follow-up analyses, such as
dose accumulation studies in the scope of MRgRT [7].
While deformable image registration (DIR) is used in the
MRgRT current clinical workflow to propagate contours
from the planning image to the daily MRI, such contours
often necessitate time-consuming manual correction
or re-contouring. Treatment time without irradiation
ranges from 30 to 70 min for a single fraction [8—10], of
which up to 22 min are due to the delineation [11].
Recent publications have shown that deep learning
auto-segmentation (DLAS) can produce accurate deline-
ations, which in turn accelerates the workflow, decreasing
patient discomfort as well as increasing patient through-
put [12]. Network-generated contours are also more
consistent, helping to reduce inter- and intra-observer
variability [5]. Several groups have demonstrated that
artificial neural networks (ANNs) can produce high qual-
ity contours in the context of MRgRT. Liang et al. [13]
used a support vector machine based model on pancre-
atic images from a 0.35 T MR-Linac. Fu et al. [14] have
used a convolutional neural network (CNN) with two
correction networks to achieve promising results in the
abdominal region for the same MR-Linac. Eppenhof et al.
[15] used a 3D U-Net to segment the clinical target vol-
ume (CTV) for prostate cancer patients by generating a
deformation field from the planning image to the fraction
image of prostate cancer patients from a 1.5 T MR-Linac.
Kawula et al. [16] have demonstrated superior accuracy
for prostate and bladder segmentation using a patient-
specific 3D U-Net on a 0.35 T MR-Linac. Chen et al. [17]
have also used a patient-specific CNN model for prostate
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cancer patients on a 1.5 T MR-Linac. Fransson et al. [18]
used a 2D U-Net model trained from scratch on a single
1.5 T prostate patient planning image. Li et al. [19] used a
modified version of nnU-Net 2D [20] for a daily updated
patient-specific segmentation of pelvic and abdominal
fraction images from a 1.5 T MR-Linac.

Currently, there are few studies on OAR segmenta-
tion of thoracic MR images in general (e.g., Dong et al.
[21]), none of which are in the context of MRgRT of lung
tumors. The goal of this study was to evaluate the per-
formance of DLAS on important OARs for the treatment
of lung tumors (lungs, heart, aorta, esophagus and spinal
canal) on a 0.35 T MR-Linac. The generated contours
were compared to the clinically used ones in a geometri-
cal analysis. They were also graded by a physician with
regards to their clinical usability.

Materials and methods

Database

This study included data from 112 patients with lung
tumors treated at the ViewRay MRIdian MR-Linac
installed at the Department of Radiation Oncology of the
LMU Munich University Hospital. 122 planning MRIs
with their corresponding clinical OAR contours cre-
ated between January 2020 and September 2022 were
retrospectively collected. The patients received fraction-
ated treatment in 3-16 fractions. All patients signed an
informed consent form. More details about the patient
cohort can be found in Table 1. The MR images were
acquired using a 3D balanced steady state free-precession
sequence. The images had a 1.5 x 1.5 mm? in-plane reso-
lution in the axial plane with varying axial size (usually

Table 1 Summary of details about the entire patient cohort and
the training, validation and test set subgroups

Information Training Validation Test Total
Age
Median 64 60 64 64
Range 19-86 25-75 29-88 19-88
M:F ratio 48:52 53:47 78:22 60:40
Lesion location
SLI 17% 37% 9% 19%
SLr 21% 11% 26% 20%
ML r 6% 1% 4% 7%
IL1 17% 5% 30% 18%
ILr 21% 16% 17% 20%
Other 17% 21% 13% 17%
Metastasis 71% 79% 57% 70%

Includes median age and age range (min-max), male to female (M:F) ratio,
location of the lesion (SL—superior lobe, ML—middle lobe, IL—inferior lobe, r—
right, |—left) and the ratio of metastases to primary tumors. Metastasis denotes
lesions of any origin in the lung, as opposed to a primary lung tumor
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> 300 x 300 pixels) and 3 mm slice thickness, with 144
slices in most cases. Segmentation of the ROIs was per-
formed manually and approved during treatment plan-
ning by radiation oncologists. Images were exported from
the treatment planning system (TPS) as DICOM files,
along with their corresponding contours in DICOM-RT
format.

Data pre-processing

Contours were converted to binary masks in ITK Meta
Image format (mha), using plastimatch [22] with nearest-
neighbour (nn) interpolation on the MR reference grid.
Binary masks and images were resampled to 1.5 mm
slice thickness with nn interpolation using the SITK [23]
Python package, resulting in voxels of isotropic dimen-
sion. All images were then center-cropped/zero-padded
to a uniform size of 256 x 256 x 256 voxels. Lastly, inten-
sity normalization to values between 0 and 1 while clip-
ping at the image intensity’s 99.5th percentile to account
for possible high intensity MR artifacts was applied.

Network implementation details

The PyTorch based [24] MONAI [25] implementa-
tion of a 3D U-Net was used in this study. The network,
inspired by Kerfoot et al. [26], had an identical architec-
ture to the one used in Kawula et al. [16]. It has single
input and output channels, which are converted to and
from 16 channels in the beginning and end. Each follow-
ing block then doubles the number of channels, from 16
to 256 in four steps with stride 2 down-convolutions in
the encoding arm, and does the same in reverse with up-
convolutions in the decoding arm. Each residual block
consists of 2 series of a convolution, instance normaliza-
tion and PReLU activation, of which only the first con-
volution changes the tensor dimensions as described. A
Dice similarity coefficient (DSC) based loss function [27]
and the ADAM optimizer [28] were used for training.
The Dice loss DL between the network prediction P and
the ground truth (GT) Y was computed as

23V pyite
SNpi+3Nyi+e

summing over all N = 256 x 256 x 256 voxels p; € P
and y; € Y. The term € = 10~° was used to avoid numeri-
cal issues.

Training was performed using an NVidia RTX A6000
(48 GB VRAM) or an NVidia Quadro RTX 8000 (48 GB
VRAM) GPU.

DL=1

(1)

Training strategy
Planning MRIs were randomly split into 80 training,
19 validation and 23 test MRIs. A separate model was
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trained for each OAR. Contours were used accord-
ing to their availability, so if an OAR had not been
delineated for treatment, the planning MRI had to be
excluded from the model for that particular OAR. The
segmented OARs were chosen based on sufficient data
availability, which was also seen as an indicator for the
most commonly clinically needed segmentations. This
led to a final selection of 6 OARs: right and left lungs,
heart, aorta, spinal canal and esophagus. The exact split
for each OAR is detailed in Table 2.

The network was trained in a two phase process with
successive data augmentation. Data augmentation was
used to prevent overfitting. During the first phase, it
was trained with few computationally inexpensive aug-
mentations and a mini-batch size of 4 for 75 epochs.
The second phase was used to improve the DLAS con-
tours by stronger data augmentations. The training con-
tinued with the model parameters of the epoch with the
highest DSC on the validation set from the first phase.
The mini-batch size was decreased to 1 for the second
step, and the network was trained for 500 epochs. To
further prevent overfitting, the model at the training
epoch with the best performance on the validation set
was automatically selected retrospectively as the final
model for each OAR individually. The aforementioned
two step augmentation process starts with translations
and rotations, followed by a random zoom and by ran-
dom Gaussian noise in the first phase. The probability
Paug for translation, rotation, zoom and Gaussian noise
being applied was p;.

The second phase introduced random elastic defor-
mations, MRI motion artifacts and a random MRI bias
fields following translation and rotation transforma-
tions. For these, the TorchIO [29] Python library was
used. All other transformations were implemented
using functions from the MONAI library [25]. There
was a second intensity clipping of values below 0 and
above 1 after the Gaussian noise was applied. For this
phase, paug was changed to ps.

Table 2 Summary of number of contours used for each set and

ROI

OAR Training Validation Test Sum
Leftlung 75 18 20 113

Right lung 78 18 23 119

Heart 74 15 23 112

Aorta 63 18 19 100

Spinal canal 68 18 23 109

Esophagus 80 18 21 119

Total MR scans 80 19 23 122

Numbers differ due to availability of contours in clinical treatment planning
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Data post-processing

The network output probabilities were passed through
a sigmoid activation function, followed by a threshold
of 0.5 to create a binary mask. Connected components
with less than 1/8™ of the total volume of the mask were
removed before evaluation.

Data evaluation

Geometrical analysis

The DSC and the Hausdorff distance (HD) (average
HD,ys and 95th percentile HDgs5) were calculated using
the clinical contours of the planning MRI as GT. Long,
tubular OARs, i. e., the esophagus, spinal canal and aorta
were often only delineated in the high dose region near
the slices containing the tumor. Thus, these OARs were
only evaluated in the axial slices containing the planning
target volume (PTV) and the 10 slices above and below.

Physician’s grading

A radiation oncologist was presented with the DLAS and
the clinical contours of all considered ROIs of the 23 test
set MRIs and asked to grade them on a 0—4 scale. These
grades represented the following statements: 0—“no
clinically relevant correction possible’, 1 — “ready to use’,
2—“minor corrections required’, 3 — “major corrections
required’, 4—“unusable” To reduce possible evaluation
bias, the ROI contours were presented as 46 separate
MRIs in random order. The radiation oncologist was thus
aware that they were comparing DLAS and clinical seg-
mentation, but not which was which. We used the same
scale as Kawula et al., but refined it by adding a category
0 to differentiate between contours with clinically accept-
able residual errors from those without.

Results

Network training

The same final set of hyperparameters was used across
all OARs. All hyperparameters, aside from pay and
the standard deviation of the Gaussian noise were kept
unchanged during both training phases. The range of
searched hyperparameters can be found in Table 3.
The final set includes a learning rate of 1073, augmen-
tation probabilities of p; = 0.6 and py = 0.85, a stand-
ard deviation for the Gaussian noise of 0.05 and 0.1, a
zoom range between 0.9 and 1.1, a rotation range of up
to 15° and translation range of up to 22.5 mm in all spa-
tial dimensions. B-Spline elastic deformations used a
maximum of 8 control points and a maximum displace-
ment of 24 mm. MR related augmentations were set to
10° and 45 mm for the motion artifacts and an order of
1 and maximum polynomial coefficient magnitude of
0.4 for the bias field. The bias field from TorchIO was
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Table 3 Functions used during training and hyperparameters
that were manually set

Function Parameter  Tested range Final value
Phase 1 Phase 2
Probability Paug 0.25-1 pr =06 p, =085
Learningrate I 10722 x 10=2 103
Spatial
Rotation omax [°] 5-20 15
Translation Amax [mm] 15 —130 225
Zooming Zrning Zrmax - 09, 1.1
Deformation Nep 5-20 - 8
d[mm] 15-45 - 24
MR
Motion Mel°] 0-15 - 10
ma [mm] 15-75 - 45
Bias field order 1-3 - 1
Cmag 0-1 - 04
Noise o 0.01-0.25 0.05 0.1
n - 0

Tested range (min-max) and final chosen value for each training phase are
given. For more information, refer to documentation of corresponding MONAI
or TorchlO functions

modelled as a unit-less quantity that modifies the voxel
intensity by multiplying it with a linear combination of
polynomial basis functions with randomly chosen coef-
ficients [30]. The average training duration per epoch
was around 90 s during the first phase and 5 min in the
second phase.

Geometric evaluation

Figure 1 shows an exemplary MR image with clinical
and DLAS contours. Differences in lung and heart con-
tours can be observed on the coronal slices. Differences
in length between the spinal canal contours on both
ends and the superior end of the heart contour can be
observed on the sagittal slices. The chosen axial slices in
the high dose region show good agreement between both
sets of contours.

DSC for large OARs (lungs and heart) was high with an
averaged median value over the three OARs [interquar-
tile range (IQR)] of 0.95 [0.95-0.96]. For the tubular ROIs
(spinal canal, esophagus and aorta), DSC was lower with
an average median value of 0.86 [0.78-0.88]. The aver-
aged median value of both HDgs5 (5.0 mm [3.9-6.2 mm] vs
3.0 mm [2.3-5.8 mm]) and HDgyg (1.6 mm [1.4—1.9 mm]
vs. 1.1mm [0.8—1.6 mm]) was lower for the second group,
with the IQR being similar for both groups.

The results per OAR are summarized in Table 4 and
visualized in boxplots in Fig. 2.
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Fig. 1 Example DLAS contours (solid outline) and GT contour (

(2023) 18:135

e i
colored overlay) in coronal, axial and sagittal view, subdivided into images
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containing lungs, heart and aorta for the left three panels, and esophagus and spinal canal for the right three panels. The dotted, green lines
represent slices containing the PTV + 10 slices in superior and inferior direction, where the geometrical evaluation of the esophagus, spinal canal
and aorta was performed. MR images from a single patient shown
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Fig. 2 Box plots of Hausdorff distance (left) and Dice similarity coefficient (right) for all test set contours per ROI. Not on display in the left plot are
two data points for the HDgs of the aorta at 29.8 mmand 37.9mm

Table 4 Summary of geometrical analysis, showing DSC and HD
(95th percentile and average value) for each segmented OAR,

median [IQR]
DSC HDgs HDayqg
(mm)

Left lung 0.96 [0.95-0.96] 3.9([3.2-49] 14[1.2-1.6]
Right lung 0.96 [0.96-0.97] 53[4.1-6.5] 1.6[1.4-1.9]
Heart 0.94 [0.93-0.95] 5.8[4.4-73] 1.8[14-2.2]
Aorta 0.90 [0.82-0.92] 3.0[2.5-10.2] 1.1 [0.9-2.0]
Spinal canal 0.88[0.81-0.90] 26[1.7-3.2] 0.91[0.7-1.3]
Esophagus 0.78[0.72-0.81] 35[2.7-4.1] 1.2[1.0-1.5]

Physician’s grading

The physician’s grading favored the DLAS contours,
which were given the rating “O—no clinically relevant
correction possible” 85 times, compared to 18 times for
clinical contours. This was most apparent for the lungs,
the spinal canal and the aorta. The DLAS as well as the
clinical contours of heart and esophagus received lower
scores than the other OARs on average.

85% of DLAS and 65% of clinical contours were deemed
at least “ready to use” (grades 0 or 1). In more detail,
70% and 61% of heart and esophagus DLAS contours
and 48% and 67% of the clinical contours respectively
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received these ratings. Of the remaining OARs (lungs,
aorta and spinal canal), 95% of DLAS contours received
a grading of “no clinically relevant correction possible” or
1—"“ready to use’; versus 69% of clinical contours. A more
detailed breakdown can be seen in Fig. 3.

Discussion

In this study, DLAS for 0.35 T MR-Linac planning images
of lung tumor patients was evaluated via geometric anal-
ysis by comparing it to the clinically used contours, and
via clinical grading by a radiation oncologist. The geo-
metric analysis showed that the DLAS contours were
close to the clinically used ones. We achieved reasonably
high DSCs for all OARs, which were in line with or bet-
ter than average (where curated challenge datasets were
not used) CT-based DLAS results [31, Table 1] [32]. As
mentioned previously, due to the lack of studies on MRI-
based DLAS, this was our only basis for comparison. In

Usability Evaluation

80 H W Spinal canal
W Esophagus
W Aorta
g 60 Heart
g Right lung
S 40 Left lung
# .
20
= -
0 —
0 1 2 3 4

Grade
Fig. 3 Physician’s evaluation of test set contours (total of 129, see
Table 2), subdivided by OARs. DLAS contours on the left in (red hues),
clinical contours on the right (blue hues). Grade descriptions: 0—"no
clinically relevant correction possible’, 1—"ready to use’, 2—"minor
corrections required’, 3—"major corrections required’, 4—"unusable”

Fig. 4 Examples of poor DLAS contours ( )
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the majority of cases, the DLAS contours were preferred
over the clinical contours by the radiation oncologist.

For both lungs, a DSC of 0.96 was achieved and all
DLAS contours received the best grade (0). While high
DSC values are more easily achieved by large, high con-
trast organs, manual lung segmentation is time consum-
ing in the clinical TPS version currently in use due to a
lack of automation tools. Our model therefore may lead
to substantial time savings. The main differences were
attributed to differing contouring styles near the bron-
chial tree or the tumor, which were included in a few
cases, but usually excluded for clinical contours.

The tubular shape of the spinal canal and the aorta
result in an increased surface area to volume ratio, and
therefore DSCs were lower. Nonetheless, HD was com-
parable to the lungs. Only 2 out of 23 DLAS contours
for the spinal canal and 2 out of 19 for the aorta were
deemed to require any kind of correction. These were
mostly due to small holes in the structures (grade 3) or
some slices only having the OAR partially contoured on
one side (grade 2), e.g. due to MRI artifacts. Examples
can be seen in Fig. 4.

The average DSC and HD achieved for the heart were
comparable to the lungs, which is partly due to a large
volume with comparatively small surface area. Grading
resulted in 6 out of 23 contours requiring minor correc-
tions, while 1 required major corrections. These were
mainly due to the heart wall not being included in the
DLAS contour.

As with previous studies on CT images by other groups
[31, Table 1] [32], average DSC scores of the esophagus
contours were worse than for all other OARs. The poor
contrast to the surrounding tissue and possibly decreased
sharpness due to abdominal motion, make it difficult to
segment for both physicians and the network. The much
larger variety in possible shapes in the axial slices and

(

left) for P23 and esophagus (orange, middle) and the spinal canal (green, right) for P14
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differing lengths of the contour in the training data are
also possible reasons for the worse performance for this
OAR. Other groups such as Fu et al. [14] reported similar
problems with the duodenum, which behaves similarly to
the esophagus in this context.

Segmentation on patients with an uncommon anatomy,
such as a collapsed or removed lung, were also included
(1 in training, 1 in validation, 2 in the test set, P18 and
P23). DLAS contours of test case P18 received a near
perfect score (grade O for right lung, spinal canal, esopha-
gus and aorta, grade 1 for heart), whereas test case P23’s
DLAS contours received the worst grading overall (grade
0 for right lung and spinal canal, grade 2 for heart and
esophagus, grade 3 for aorta).

In Fig. 2, five cases stand out (aorta segmentations with
DSC of 0.00, 0.63 and 0.66, P3, P21 and P23 respectively,
and esophagus segmentations with DSC of 0.51 and 0.53,
P13 and P14 respectively). The largest deviation in DSC
was the aorta segmentation for P3 with a DSC of 0 and
a HDg5 of 30 mm. In this case, the ground truth contour
was only done in the inferior part of the MRI, despite
the target region being located in the superior part. The
physician’s grading of this patient was 0 for the DLAS
and 3 for the ground truth. Similarly, P21 had a DSC of
0.63 and a HDg5 of 38 mm for the aorta, but was graded
with 0 for DLAS, and the ground truth was graded with
1. The poor DSC and HD were due to the network fully
segmenting the aorta, while the clinical contour did not
include the ascending aorta and the arch of the aorta,
since they were farther away from the tumor. Exclud-
ing these cases would lead to median [IQR] values of
0.91 [0.84-0.92], 2.9 [2.4-6.9] mm, 1.0 [0.9-1.7] mm
for DSC, HDg5 and HD,yg respectively for the aorta. The
aorta DLAS contour of P23 had a DSC of 0.66 and a a
HDy;5 of 22 mm and received a grade of 3. In this case, the
DLAS failed by including a sizable part of the heart in the
segmentation, exhibiting a minor hole and not continu-
ing the contour far enough into the heart. The esophagus
DLAS contours had two cases with large deviations. P13’s
DLAS contour was however graded with 0, compared to
the ground truth’s 1, despite the DSC of 0.51 and HDgs
of 17 mm. For P14, DSC and HDg5; were 0.53 and 7.4 mm
respectively. The DLAS contours received a grading of 3
and the ground truth a grading of 1. Here, the DLAS con-
tour exhibited a hole in the middle of the contour.

In these cases, it can be concluded that the contour
quality is not always well reflected by the DSC and HD.
A geometric analysis using clinical data as the ground
truth has its limitations, as evidenced by Vaassen et al.
[33]. For example, a segmentation with a good geomet-
ric evaluation can still lead to low gamma pass rates
when used for treatment planning, as indicated by
Kawula et al. [34]. The grading system was found to be
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more helpful at gauging the quality of DLAS contours
for the purpose of this study. We also acknowledge that
the physician might look at the contours differently in
a review compared to a treatment setting. Clinical con-
tours are generated during treatment workflows, and
the physicians tend to focus on the high dose region
around the lesion, which is most relevant for treatment
planning. Clinical contour quality farther away from
the treatment region may thus be lower.

This appears to not have noticeably hindered training,
as most deviations appear to even out in DLAS mod-
els, given enough training data. Lustberg et al. [35] have
also found that using models trained on non-curated
local data could still save 50% time compared to manual
contouring. Nonetheless, the variations in length of the
esophagus, spinal canal and aorta contours remain a
challenge. We used masks to only consider the tumor
region when selecting the best model during valida-
tion, but did not take any measures to alter the train-
ing process in this regard. This was intentional, as any
clipping of the masks would result in DLAS contours
being shorter in general. We judged that, in a scenario
where these contours are presented to a physician as a
starting point, it would be more time efficient for them
to remove or ignore distal, inaccurate parts, as opposed
to having to expand a contour that is too short. How-
ever, we suspect that the inconsistent length of these
contours in the training data might be a contributing
factor for the occasional holes in these OARs. A more
uniform training set, acquired by re-contouring the
training data, could lead to some further segmentation
improvements for the underperforming OARs (esopha-
gus and heart). Similarly, patient specific model fine-
tuning with a single training patient would likely create
more consistent contours (as demonstrated by Kawula
et al. [16]). Albeit that would only apply to the fraction
images, as opposed to new planning images.

The goal of automatic segmentation is to help physi-
cians with delineating structures. This means reduc-
ing the time spent manually delineating structures
and decreasing observer variability. Evaluation meth-
ods need to be chosen with these aspects in mind. The
DLAS contours should therefore not perfectly fit the
existing ground truth, but rather require as few cor-
rections as possible. In a next step, we will quantify the
time saved in the MRgRT workflow by prospectively
providing physicians with these contours for OAR
delineation in treatment planning [36, 37].

Conclusion

In conclusion, we trained U-Nets for contouring the
lungs, heart, aorta, spinal canal and esophagus on tho-
racic images from an 0.35 T MR-Linac. They were able
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to produce contours that were most of the time pre-
ferred to the clinical contours by a radiation oncologist.

Abbreviations

MR Magnetic resonance

MRI Magnetic resonance image
MRgRT Magnetic resonance (imaging) guided radiotherapy
DLAS Deep learning autosegmentation
DSC Dice similarity coefficient

HD Hausdorff distance

SBRT Stereotactic body radiotherapy
CBCT Cone beam computed tomography
GTV Gross tumor volume

MR-Licac  MR-guided linear accelerator

OAR Organ-at-risk

DIR Deformable image registration
ANN Artificial neural network

CNN Convolutional neural network
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