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Abstract 

Background and purpose  Magnetic resonance imaging guided radiotherapy (MRgRT) offers treatment plan adap-
tation to the anatomy of the day. In the current MRgRT workflow, this requires the time consuming and repetitive 
task of manual delineation of organs-at-risk (OARs), which is also prone to inter- and intra-observer variability. There-
fore, deep learning autosegmentation (DLAS) is becoming increasingly attractive. No investigation of its application 
to OARs in thoracic magnetic resonance images (MRIs) from MRgRT has been done so far. This study aimed to fill this 
gap.

Materials and methods  122 planning MRIs from patients treated at a 0.35 T MR-Linac were retrospectively collected. 
Using an 80/19/23 (training/validation/test) split, individual 3D U-Nets for segmentation of the left lung, right lung, 
heart, aorta, spinal canal and esophagus were trained. These were compared to the clinically used contours based 
on Dice similarity coefficient (DSC) and Hausdorff distance (HD). They were also graded on their clinical usability 
by a radiation oncologist.

Results  Median DSC was 0.96, 0.96, 0.94, 0.90, 0.88 and 0.78 for left lung, right lung, heart, aorta, spinal canal 
and esophagus, respectively. Median 95th percentile values of the HD were 3.9, 5.3, 5.8, 3.0, 2.6 and 3.5 mm, respec-
tively. The physician preferred the network generated contours over the clinical contours, deeming 85 out of 129 
to not require any correction, 25 immediately usable for treatment planning, 15 requiring minor and 4 requiring major 
corrections.

Conclusions  We trained 3D U-Nets on clinical MRI planning data which produced accurate delineations in the tho-
racic region. DLAS contours were preferred over the clinical contours.
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Introduction
The clinical introduction of magnetic resonance imaging 
guided radiotherapy (MRgRT) has brought great benefits 
such as higher dose conformity to the target and more 
healthy tissue sparing [1]. In contrast to conventional 
stereotactic body radiotherapy (SBRT) using cone beam 
computed tomography (CBCT), magnetic resonance 
(MR) images do not expose the patient to extra dose dur-
ing image acquisition. The patient’s anatomy in treatment 
position, as depicted on the daily images, is typically used 
for online plan adaptation. Real-time cine-MR imaging 
can also be used for breath-hold gated treatment with 
high geometric gross tumor volume (GTV) coverage 
[2]. The MRIdian (ViewRay Inc, Cleveland, OH, USA) 
[3] is a 0.35 T MR-guided linear accelerator (MR-Linac) 
that enables such treatments. It requires the target and 
organs-at-risk (OARs) to be accurately segmented not 
only on the planning image, but also on the image of the 
day (fraction image) [4]. Although time is a less critical 
factor for delineating the planning MR image (MRI), it 
is still a fairly time consuming procedure [5] and prone 
to inter- and intra-observer variability [6]. These uncer-
tainties may further affect follow-up analyses, such as 
dose accumulation studies in the scope of MRgRT [7]. 
While deformable image registration (DIR) is used in the 
MRgRT current clinical workflow to propagate contours 
from the planning image to the daily MRI, such contours 
often necessitate time-consuming manual correction 
or re-contouring. Treatment time without irradiation 
ranges from 30 to 70 min for a single fraction [8–10], of 
which up to 22 min are due to the delineation [11].

Recent publications have shown that deep learning 
auto-segmentation (DLAS) can produce accurate deline-
ations, which in turn accelerates the workflow, decreasing 
patient discomfort as well as increasing patient through-
put [12]. Network-generated contours are also more 
consistent, helping to reduce inter- and intra-observer 
variability [5]. Several groups have demonstrated that 
artificial neural networks (ANNs) can produce high qual-
ity contours in the context of MRgRT. Liang et  al. [13] 
used a support vector machine based model on pancre-
atic images from a 0.35 T MR-Linac. Fu et al. [14] have 
used a convolutional neural network (CNN) with two 
correction networks to achieve promising results in the 
abdominal region for the same MR-Linac. Eppenhof et al. 
[15] used a 3D U-Net to segment the clinical target vol-
ume (CTV) for prostate cancer patients by generating a 
deformation field from the planning image to the fraction 
image of prostate cancer patients from a 1.5 T MR-Linac. 
Kawula et  al. [16] have demonstrated superior accuracy 
for prostate and bladder segmentation using a patient-
specific 3D U-Net on a 0.35 T MR-Linac. Chen et al. [17] 
have also used a patient-specific CNN model for prostate 

cancer patients on a 1.5 T MR-Linac. Fransson et al. [18] 
used a 2D U-Net model trained from scratch on a single 
1.5 T prostate patient planning image. Li et al. [19] used a 
modified version of nnU-Net 2D [20] for a daily updated 
patient-specific segmentation of pelvic and abdominal 
fraction images from a 1.5 T MR-Linac.

Currently, there are few studies on OAR segmenta-
tion of thoracic MR images in general (e.g., Dong et  al. 
[21]), none of which are in the context of MRgRT of lung 
tumors. The goal of this study was to evaluate the per-
formance of DLAS on important OARs for the treatment 
of lung tumors (lungs, heart, aorta, esophagus and spinal 
canal) on a 0.35  T MR-Linac. The generated contours 
were compared to the clinically used ones in a geometri-
cal analysis. They were also graded by a physician with 
regards to their clinical usability.

Materials and methods
Database
This study included data from 112 patients with lung 
tumors treated at the ViewRay MRIdian MR-Linac 
installed at the Department of Radiation Oncology of the 
LMU Munich University Hospital. 122 planning MRIs 
with their corresponding clinical OAR contours cre-
ated between January 2020 and September 2022 were 
retrospectively collected. The patients received fraction-
ated treatment in 3–16 fractions. All patients signed an 
informed consent form. More details about the patient 
cohort can be found in Table  1. The MR images were 
acquired using a 3D balanced steady state free-precession 
sequence. The images had a 1.5× 1.5mm2 in-plane reso-
lution in the axial plane with varying axial size (usually 

Table 1  Summary of details about the entire patient cohort and 
the training, validation and test set subgroups

Includes median age and age range (min–max), male to female (M:F) ratio, 
location of the lesion (SL—superior lobe, ML—middle lobe, IL—inferior lobe, r—
right, l—left) and the ratio of metastases to primary tumors. Metastasis denotes 
lesions of any origin in the lung, as opposed to a primary lung tumor

Information Training Validation Test Total

Age

 Median 64 60 64 64

 Range 19–86 25–75 29–88 19–88

M:F ratio 48:52 53:47 78:22 60:40

Lesion location

 SL l 17% 37% 9% 19%

 SL r 21% 11% 26% 20%

 ML r 6% 11% 4% 7%

 IL l 17% 5% 30% 18%

 IL r 21% 16% 17% 20%

 Other 17% 21% 13% 17%

Metastasis 71% 79% 57% 70%
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> 300× 300 pixels) and 3  mm slice thickness, with 144 
slices in most cases. Segmentation of the ROIs was per-
formed manually and approved during treatment plan-
ning by radiation oncologists. Images were exported from 
the treatment planning system (TPS) as DICOM files, 
along with their corresponding contours in DICOM-RT 
format.

Data pre‑processing
Contours were converted to binary masks in ITK Meta 
Image format (mha), using plastimatch [22] with nearest-
neighbour (nn) interpolation on the MR reference grid. 
Binary masks and images were resampled to 1.5  mm 
slice thickness with nn interpolation using the SITK [23] 
Python package, resulting in voxels of isotropic dimen-
sion. All images were then center-cropped/zero-padded 
to a uniform size of 256× 256× 256 voxels. Lastly, inten-
sity normalization to values between 0 and 1 while clip-
ping at the image intensity’s 99.5th percentile to account 
for possible high intensity MR artifacts was applied.

Network implementation details
The PyTorch based [24] MONAI [25] implementa-
tion of a 3D U-Net was used in this study. The network, 
inspired by Kerfoot et al. [26], had an identical architec-
ture to the one used in Kawula et  al. [16]. It has single 
input and output channels, which are converted to and 
from 16 channels in the beginning and end. Each follow-
ing block then doubles the number of channels, from 16 
to 256 in four steps with stride 2 down-convolutions in 
the encoding arm, and does the same in reverse with up-
convolutions in the decoding arm. Each residual block 
consists of 2 series of a convolution, instance normaliza-
tion and PReLU activation, of which only the first con-
volution changes the tensor dimensions as described. A 
Dice similarity coefficient (DSC) based loss function [27] 
and the ADAM optimizer [28] were used for training. 
The Dice loss DL between the network prediction P and 
the ground truth (GT) Y was computed as

summing over all N = 256× 256× 256 voxels pi ∈ P 
and yi ∈ Y  . The term ǫ = 10−5 was used to avoid numeri-
cal issues.

Training was performed using an NVidia RTX A6000 
(48 GB VRAM) or an NVidia Quadro RTX 8000 (48 GB 
VRAM) GPU.

Training strategy
Planning MRIs were randomly split into 80 training, 
19 validation and 23 test MRIs. A separate model was 

(1)DL = 1−
2 N

i piyi + ǫ

N
i pi +

N
i yi + ǫ

,

trained for each OAR. Contours were used accord-
ing to their availability, so if an OAR had not been 
delineated for treatment, the planning MRI had to be 
excluded from the model for that particular OAR. The 
segmented OARs were chosen based on sufficient data 
availability, which was also seen as an indicator for the 
most commonly clinically needed segmentations. This 
led to a final selection of 6 OARs: right and left lungs, 
heart, aorta, spinal canal and esophagus. The exact split 
for each OAR is detailed in Table 2.

The network was trained in a two phase process with 
successive data augmentation. Data augmentation was 
used to prevent overfitting. During the first phase, it 
was trained with few computationally inexpensive aug-
mentations and a mini-batch size of 4 for 75 epochs. 
The second phase was used to improve the DLAS con-
tours by stronger data augmentations. The training con-
tinued with the model parameters of the epoch with the 
highest DSC on the validation set from the first phase. 
The mini-batch size was decreased to 1 for the second 
step, and the network was trained for 500 epochs. To 
further prevent overfitting, the model at the training 
epoch with the best performance on the validation set 
was automatically selected retrospectively as the final 
model for each OAR individually. The aforementioned 
two step augmentation process starts with translations 
and rotations, followed by a random zoom and by ran-
dom Gaussian noise in the first phase. The probability 
paug for translation, rotation, zoom and Gaussian noise 
being applied was p1.

The second phase introduced random elastic defor-
mations, MRI motion artifacts and a random MRI bias 
fields following translation and rotation transforma-
tions. For these, the TorchIO [29] Python library was 
used. All other transformations were implemented 
using functions from the MONAI library [25]. There 
was a second intensity clipping of values below 0 and 
above 1 after the Gaussian noise was applied. For this 
phase, paug was changed to p2.

Table 2  Summary of number of contours used for each set and 
ROI

Numbers differ due to availability of contours in clinical treatment planning

OAR Training Validation Test Sum

Left lung 75 18 20 113

Right lung 78 18 23 119

Heart 74 15 23 112

Aorta 63 18 19 100

Spinal canal 68 18 23 109

Esophagus 80 18 21 119

Total MR scans 80 19 23 122
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Data post‑processing
The network output probabilities were passed through 
a sigmoid activation function, followed by a threshold 
of 0.5 to create a binary mask. Connected components 
with less than 1/8th of the total volume of the mask were 
removed before evaluation.

Data evaluation
Geometrical analysis
The DSC and the Hausdorff distance (HD) (average 
HDavg and 95th percentile HD95 ) were calculated using 
the clinical contours of the planning MRI as GT. Long, 
tubular OARs, i. e., the esophagus, spinal canal and aorta 
were often only delineated in the high dose region near 
the slices containing the tumor. Thus, these OARs were 
only evaluated in the axial slices containing the planning 
target volume (PTV) and the 10 slices above and below.

Physician’s grading
A radiation oncologist was presented with the DLAS and 
the clinical contours of all considered ROIs of the 23 test 
set MRIs and asked to grade them on a 0–4 scale. These 
grades represented the following statements: 0—“no 
clinically relevant correction possible”, 1 — “ready to use”, 
2—“minor corrections required”, 3 — “major corrections 
required”, 4—“unusable”. To reduce possible evaluation 
bias, the ROI contours were presented as 46 separate 
MRIs in random order. The radiation oncologist was thus 
aware that they were comparing DLAS and clinical seg-
mentation, but not which was which. We used the same 
scale as Kawula et al., but refined it by adding a category 
0 to differentiate between contours with clinically accept-
able residual errors from those without.

Results
Network training
The same final set of hyperparameters was used across 
all OARs. All hyperparameters, aside from paug and 
the standard deviation of the Gaussian noise were kept 
unchanged during both training phases. The range of 
searched hyperparameters can be found in Table  3. 
The final set includes a learning rate of 10−3 , augmen-
tation probabilities of p1 = 0.6 and p2 = 0.85 , a stand-
ard deviation for the Gaussian noise of 0.05 and 0.1, a 
zoom range between 0.9 and 1.1, a rotation range of up 
to 15◦ and translation range of up to 22.5 mm in all spa-
tial dimensions. B-Spline elastic deformations used a 
maximum of 8 control points and a maximum displace-
ment of 24 mm . MR related augmentations were set to 
10◦ and 45mm for the motion artifacts and an order of 
1 and maximum polynomial coefficient magnitude of 
0.4 for the bias field. The bias field from TorchIO was 

modelled as a unit-less quantity that modifies the voxel 
intensity by multiplying it with a linear combination of 
polynomial basis functions with randomly chosen coef-
ficients [30]. The average training duration per epoch 
was around 90 s during the first phase and 5 min in the 
second phase.

Geometric evaluation
Figure  1 shows an exemplary MR image with clinical 
and DLAS contours. Differences in lung and heart con-
tours can be observed on the coronal slices. Differences 
in length between the spinal canal contours on both 
ends and the superior end of the heart contour can be 
observed on the sagittal slices. The chosen axial slices in 
the high dose region show good agreement between both 
sets of contours.

DSC for large OARs (lungs and heart) was high with an 
averaged median value over the three OARs [interquar-
tile range (IQR)] of 0.95 [0.95–0.96]. For the tubular ROIs 
(spinal canal, esophagus and aorta), DSC was lower with 
an average median value of 0.86 [0.78–0.88]. The aver-
aged median value of both HD95 (5.0 mm [3.9–6.2 mm ] vs 
3.0 mm [2.3–5.8 mm ]) and HDavg (1.6 mm [1.4–1.9 mm ] 
vs. 1.1mm [0.8–1.6 mm ]) was lower for the second group, 
with the IQR being similar for both groups.

The results per OAR are summarized in Table  4 and 
visualized in boxplots in Fig. 2.

Table 3  Functions used during training and hyperparameters 
that were manually set

Tested range (min–max) and final chosen value for each training phase are 
given. For more information, refer to documentation of corresponding MONAI 
or TorchIO functions

Function Parameter Tested range Final value

Phase 1 Phase 2

Probability paug 0.25–1 p1 = 0.6 p2 = 0.85

Learning rate lr 10−5–2× 10−2 10−3

Spatial

Rotation αmax [
◦
] 5–20 15

Translation �max [mm] 15− 30 22.5

Zooming zmin, zmax – 0.9, 1.1

Deformation ncp 5–20 – 8

d [mm] 15–45 – 24

MR

Motion mα[
◦
] 0–15 – 10

m� [mm] 15–75 – 45

Bias field order 1–3 – 1

cmag 0–1 – 0.4

Noise σ 0.01–0.25 0.05 0.1

µ – 0
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Physician’s grading
The physician’s grading favored the DLAS contours, 
which were given the rating “0—no clinically relevant 
correction possible” 85 times, compared to 18 times for 
clinical contours. This was most apparent for the lungs, 
the spinal canal and the aorta. The DLAS as well as the 
clinical contours of heart and esophagus received lower 
scores than the other OARs on average.

85% of DLAS and 65% of clinical contours were deemed 
at least “ready to use” (grades 0 or 1). In more detail, 
70% and 61% of heart and esophagus DLAS contours 
and 48% and 67% of the clinical contours respectively 

Fig. 1  Example DLAS contours (solid outline) and GT contour (colored overlay) in coronal, axial and sagittal view, subdivided into images 
containing lungs, heart and aorta for the left three panels, and esophagus and spinal canal for the right three panels. The dotted, green lines 
represent slices containing the PTV ± 10 slices in superior and inferior direction, where the geometrical evaluation of the esophagus, spinal canal 
and aorta was performed. MR images from a single patient shown

Fig. 2  Box plots of Hausdorff distance (left) and Dice similarity coefficient (right) for all test set contours per ROI. Not on display in the left plot are 
two data points for the HD95 of the aorta at 29.8 mm and 37.9 mm

Table 4  Summary of geometrical analysis, showing DSC and HD 
(95th percentile and average value) for each segmented OAR, 
median [IQR]

DSC HD95 HDavg

(mm)

Left lung 0.96 [0.95–0.96] 3.9 [3.2–4.9] 1.4 [1.2–1.6]

Right lung 0.96 [0.96–0.97] 5.3 [4.1–6.5] 1.6 [1.4–1.9]

Heart 0.94 [0.93–0.95] 5.8 [4.4–7.3] 1.8 [1.4–2.2]

Aorta 0.90 [0.82–0.92] 3.0 [2.5–10.2] 1.1 [0.9–2.0]

Spinal canal 0.88 [0.81–0.90] 2.6 [1.7–3.2] 0.9 [0.7–1.3]

Esophagus 0.78 [0.72–0.81] 3.5 [2.7–4.1] 1.2 [1.0–1.5]
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received these ratings. Of the remaining OARs (lungs, 
aorta and spinal canal), 95% of DLAS contours received 
a grading of “no clinically relevant correction possible” or 
1—“ready to use”, versus 69% of clinical contours. A more 
detailed breakdown can be seen in Fig. 3.

Discussion
In this study, DLAS for 0.35 T MR-Linac planning images 
of lung tumor patients was evaluated via geometric anal-
ysis by comparing it to the clinically used contours, and 
via clinical grading by a radiation oncologist. The geo-
metric analysis showed that the DLAS contours were 
close to the clinically used ones. We achieved reasonably 
high DSCs for all OARs, which were in line with or bet-
ter than average (where curated challenge datasets were 
not used) CT-based DLAS results [31, Table 1] [32]. As 
mentioned previously, due to the lack of studies on MRI-
based DLAS, this was our only basis for comparison. In 

the majority of cases, the DLAS contours were preferred 
over the clinical contours by the radiation oncologist.

For both lungs, a DSC of 0.96 was achieved and all 
DLAS contours received the best grade (0). While high 
DSC values are more easily achieved by large, high con-
trast organs, manual lung segmentation is time consum-
ing in the clinical TPS version currently in use due to a 
lack of automation tools. Our model therefore may lead 
to substantial time savings. The main differences were 
attributed to differing contouring styles near the bron-
chial tree or the tumor, which were included in a few 
cases, but usually excluded for clinical contours.

The tubular shape of the spinal canal and the aorta 
result in an increased surface area to volume ratio, and 
therefore DSCs were lower. Nonetheless, HD was com-
parable to the lungs. Only 2 out of 23 DLAS contours 
for the spinal canal and 2 out of 19 for the aorta were 
deemed to require any kind of correction. These were 
mostly due to small holes in the structures (grade 3) or 
some slices only having the OAR partially contoured on 
one side (grade 2), e.g. due to MRI artifacts. Examples 
can be seen in Fig. 4.

The average DSC and HD achieved for the heart were 
comparable to the lungs, which is partly due to a large 
volume with comparatively small surface area. Grading 
resulted in 6 out of 23 contours requiring minor correc-
tions, while 1 required major corrections. These were 
mainly due to the heart wall not being included in the 
DLAS contour.

As with previous studies on CT images by other groups 
[31, Table 1] [32], average DSC scores of the esophagus 
contours were worse than for all other OARs. The poor 
contrast to the surrounding tissue and possibly decreased 
sharpness due to abdominal motion, make it difficult to 
segment for both physicians and the network. The much 
larger variety in possible shapes in the axial slices and 

Fig. 3  Physician’s evaluation of test set contours (total of 129, see 
Table 2), subdivided by OARs. DLAS contours on the left in (red hues), 
clinical contours on the right (blue hues). Grade descriptions: 0—“no 
clinically relevant correction possible”, 1—“ready to use”, 2—“minor 
corrections required”, 3—“major corrections required”, 4—“unusable”

Fig. 4  Examples of poor DLAS contours (solid outline) compared to GT contour (colored overlay) in coronal, axial and sagittal view of the aorta (red, 
left) for P23 and esophagus (orange, middle) and the spinal canal (green, right) for P14



Page 7 of 9Ribeiro et al. Radiation Oncology          (2023) 18:135 	

differing lengths of the contour in the training data are 
also possible reasons for the worse performance for this 
OAR. Other groups such as Fu et al. [14] reported similar 
problems with the duodenum, which behaves similarly to 
the esophagus in this context.

Segmentation on patients with an uncommon anatomy, 
such as a collapsed or removed lung, were also included 
(1 in training, 1 in validation, 2 in the test set, P18 and 
P23). DLAS contours of test case P18 received a near 
perfect score (grade 0 for right lung, spinal canal, esopha-
gus and aorta, grade 1 for heart), whereas test case P23’s 
DLAS contours received the worst grading overall (grade 
0 for right lung and spinal canal, grade 2 for heart and 
esophagus, grade 3 for aorta).

In Fig. 2, five cases stand out (aorta segmentations with 
DSC of 0.00, 0.63 and 0.66, P3, P21 and P23 respectively, 
and esophagus segmentations with DSC of 0.51 and 0.53, 
P13 and P14 respectively). The largest deviation in DSC 
was the aorta segmentation for P3 with a DSC of 0 and 
a HD95 of 30 mm . In this case, the ground truth contour 
was only done in the inferior part of the MRI, despite 
the target region being located in the superior part. The 
physician’s grading of this patient was 0 for the DLAS 
and 3 for the ground truth. Similarly, P21 had a DSC of 
0.63 and a HD95 of 38 mm for the aorta, but was graded 
with 0 for DLAS, and the ground truth was graded with 
1. The poor DSC and HD were due to the network fully 
segmenting the aorta, while the clinical contour did not 
include the ascending aorta and the arch of the aorta, 
since they were farther away from the tumor. Exclud-
ing these cases would lead to median [IQR] values of 
0.91 [0.84–0.92], 2.9 [2.4–6.9]  mm , 1.0 [0.9–1.7]  mm 
for DSC, HD95 and HDavg respectively for the aorta. The 
aorta DLAS contour of P23 had a DSC of 0.66 and a a 
HD95 of 22 mm and received a grade of 3. In this case, the 
DLAS failed by including a sizable part of the heart in the 
segmentation, exhibiting a minor hole and not continu-
ing the contour far enough into the heart. The esophagus 
DLAS contours had two cases with large deviations. P13’s 
DLAS contour was however graded with 0, compared to 
the ground truth’s 1, despite the DSC of 0.51 and HD95 
of 17 mm . For P14, DSC and HD95 were 0.53 and 7.4 mm 
respectively. The DLAS contours received a grading of 3 
and the ground truth a grading of 1. Here, the DLAS con-
tour exhibited a hole in the middle of the contour.

In these cases, it can be concluded that the contour 
quality is not always well reflected by the DSC and HD. 
A geometric analysis using clinical data as the ground 
truth has its limitations, as evidenced by Vaassen et al. 
[33]. For example, a segmentation with a good geomet-
ric evaluation can still lead to low gamma pass rates 
when used for treatment planning, as indicated by 
Kawula et al. [34]. The grading system was found to be 

more helpful at gauging the quality of DLAS contours 
for the purpose of this study. We also acknowledge that 
the physician might look at the contours differently in 
a review compared to a treatment setting. Clinical con-
tours are generated during treatment workflows, and 
the physicians tend to focus on the high dose region 
around the lesion, which is most relevant for treatment 
planning. Clinical contour quality farther away from 
the treatment region may thus be lower.

This appears to not have noticeably hindered training, 
as most deviations appear to even out in DLAS mod-
els, given enough training data. Lustberg et al. [35] have 
also found that using models trained on non-curated 
local data could still save 50% time compared to manual 
contouring. Nonetheless, the variations in length of the 
esophagus, spinal canal and aorta contours remain a 
challenge. We used masks to only consider the tumor 
region when selecting the best model during valida-
tion, but did not take any measures to alter the train-
ing process in this regard. This was intentional, as any 
clipping of the masks would result in DLAS contours 
being shorter in general. We judged that, in a scenario 
where these contours are presented to a physician as a 
starting point, it would be more time efficient for them 
to remove or ignore distal, inaccurate parts, as opposed 
to having to expand a contour that is too short. How-
ever, we suspect that the inconsistent length of these 
contours in the training data might be a contributing 
factor for the occasional holes in these OARs. A more 
uniform training set, acquired by re-contouring the 
training data, could lead to some further segmentation 
improvements for the underperforming OARs (esopha-
gus and heart). Similarly, patient specific model fine-
tuning with a single training patient would likely create 
more consistent contours (as demonstrated by Kawula 
et al. [16]). Albeit that would only apply to the fraction 
images, as opposed to new planning images.

The goal of automatic segmentation is to help physi-
cians with delineating structures. This means reduc-
ing the time spent manually delineating structures 
and decreasing observer variability. Evaluation meth-
ods need to be chosen with these aspects in mind. The 
DLAS contours should therefore not perfectly fit the 
existing ground truth, but rather require as few cor-
rections as possible. In a next step, we will quantify the 
time saved in the MRgRT workflow by prospectively 
providing physicians with these contours for OAR 
delineation in treatment planning [36, 37].

Conclusion
In conclusion, we trained U-Nets for contouring the 
lungs, heart, aorta, spinal canal and esophagus on tho-
racic images from an 0.35 T MR-Linac. They were able 
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to produce contours that were most of the time pre-
ferred to the clinical contours by a radiation oncologist.
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