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Abstract 

Background

Individual-level surrogacy (ILS) assesses how well a surrogate endpoint predicts 

treatment effect at the individual level. The paper discusses mutual information (MI) 

and the likelihood reduction factor (LRF) as ways to quantify ILS. It also reassesses 

ILS statements for people with relapsing-remitting multiple sclerosis (RRMS) by using 

T2 MRI lesions (T2L) as surrogates for disability and disease activity. ILS is often 

reported using inadequate concepts, e.g. subgroup analysis, correlation, odds ratios, 

sensitivity/specificity, or metrics based on Prentice’s criteria.

Methods

LRF assesses ILS quality by determining prediction quality through shared informa-

tion (MI) between surrogate(s) and clinical endpoint(s). A simulation study validates 

LRF as a measure of ILS quality. Individual-level data from ten randomized controlled 

trials (n = 5673) provided longitudinal information on T2L, T2 MRI lesion volumes 

(T2V), future disability progression (EDSS), and relapses. LRFs for different scenar-

ios were calculated. Results were compared to those obtained by methods commonly 

applied in RRMS literature.

Results

Simulations confirmed the robustness of LRF as a reliable ILS quality measure. Two of 

ten trials showed weak ILS between T2V and EDSS (LRF = 0.21, CI95%: 0.16–0.26; 
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LRF = 0.28, CI95%: 0.23–0.34). Other LRFs were below 0.2. A method commonly 

used in the MS literature also showed no strong ILS.

Conclusion

LRF is an important measure to quantify ILS and prediction quality. But it is rarely 

applied in RRMS research. LRF did not reveal robust surrogacy patterns when 

applied to data of ten clinical trials. Existing surrogacy claims should be reassessed 

since ILS assessments in the MS literature may have major limitations.

Background

Treatment decisions for people with relapsing-remitting multiple sclerosis (PwRRMS) 
are based on clinical but also paraclinical disease activity [1–5]. MRI measures are 
often used to predict the disease course of RRMS and to design individual treatment 
strategies. MRI measures also indicate treatment failure during the future disease 
course [5]. Clinical decision-making can be based on individual-level surrogacy (ILS) 
concepts between a prognostic surrogate endpoint (SEP) and a clinical endpoint 
(CEP). Precise individual predictions of the future disease course (CEP) are essen-
tial. The paper explains that evidence on high-quality surrogacy cannot be repro-
duced within a set of randomized clinical trials.

Our paper discusses the likelihood reduction factor (LRF) as a measure to quan-
tify ILS quality. LRF is related to mutual information (MI) [6] and is to our knowledge 
rarely applied in MS literature, but often discussed in the methodological literature on 
surrogacy. We explain why LRF is the method of choice and apply it to data from ten 
phase II/III clinical trials in PwRRMS.

If the SEP deteriorates in a PwRRMS, the treating physician may conclude that the 
future CEP is also deteriorating. Subsequently, he/she may suggests more effective 
treatment as a preventive measure. However, there is rarely reliable information on 
which physicians and PwRRMS can weigh up the pros and cons of the decision.

A less successful effort is underway to develop individual prediction models that 
are supposed to provide this information. Reviews in this field question the meth-
odological state-of-the-art of models developed for PwRRMS [7,8]. Before outlining 
the rationale for choosing LRF as our preferred measure, we briefly review how ILS 
quality is addressed in the RRMS literature. One central weakness is the use of mea-
sures that capture associative effects instead of those that reflect individual predictive 
accuracy (see also section 4 in S1 Text).

Some papers [9–16] quantify ILS quality by demonstrating a significant differ-
ence in SEP between treatment response and non-response groups (as measured 
by the SEP outcome; see S1 Table for more details). Here, a significant p-value is 
considered proof of ILS. Unfortunately, it is not possible to convert the p-value into a 
quantitative risk statement. Significance provides qualitative evidence of a potential 
ILS effect and depends on the size of the population studied. A large population may 
even render a clinically irrelevant weak ILS effect significant. Additionally, authors 
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model the SEP-CEP relationship using logistic regression or Cox proportional haz-
ards models. Typically, they do not report their models except for the odds ratio (OR) 
or hazard ratio (HR) attributed to the SEP [9–16]. Again, significant ORs or HRs are 
considered proof of ILS, even though the significance may depend solely on the size 
of the study sample. Clearly, large OR or HR values influence the predictive value 
of the SEP. The positive predictive value (PPV) for an individual is higher with larger 
OR values of the predictor. However, a large OR does not help to quantify individual 
risk precisely, as it reflects a relative ratio which transforms a baseline risk. Differ-
ent individual baseline risks give different individually transformed risks even for the 
same OR. If we have a risk of 10% or 30% for a severe disease course in the group 
of a favorable SEP, the respective risks are 18% and 46% in the group of unfavorable 
SEP given an OR of 2. This missing link between OR or HR and risk statements is 
rarely reflected in MS literature.

One study provides correlation values between SEP and CEP [17]. However, a 
significant correlation is not sufficient to establish clinically relevant ILS quality. As 
we know from linear regression, the coefficient of determination (R²) measures the 
percentage of variability explained. R² values close to 1 are essential for accurately 
predicting the dependent variable given the independent variable(s). The formula for 
R² is independent of the sample size used in the linear regression analysis. An infor-
mative report on the quality of ILS in linear regression settings should also include 
confidence intervals for R² measures.

Accordingly, we require a type of R² measure for more general settings between 
SEP and CEP. LRF is such a candidate and represents a generalization of R². How-
ever, the important point here is not whether the LRF is different from 0, but how high 
the LRF is. In order to make precise predictions, a threshold value must be deter-
mined to establish the quality and confidence intervals for the corresponding estima-
tors. The threshold defines a minimal quality measure above which the metric is  
considered clinically useful. For example, an SEP with a corresponding LRF value 
above a pre-defined threshold may be indicative for treatment failure. Although cor-
relation coefficients (r) and R² values are reported, the concept of applying pre- 
defined thresholds for clinical utility is not used in MS literature. To our knowledge, no 
studies to validate threshold values for r or R² has been conducted for PwRRMS. To 
define such a threshold for MS is out of the scope of this article.

When considering dichotomous SEP and CEP values (favorable/unfavorable), 
many papers report differences in SEP values between PwRRMS with favor-
able and unfavorable CEP responses. These differences are often expressed in 
terms of sensitivity (SE: percentage of people with an unfavorable SEP within people 
with an unfavorable CEP) and specificity (SP: percentage of people with a favor-
able SEP within people with a favorable CEP). However, sensitivity and specificity 
are not predictive concepts. Predictive statements are made using predictive values. 
The positive predictive value (PPV: percentage of people with an unfavorable CEP 
within people with an unfavorable SEP) and the negative predictive value (NPV: 
percentage of people with a favorable CEP within people with a favorable CEP) can 
be derived from sensitivity (SE) and specificity (SP), together with the prevalence 
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of unfavorable CEPs (see section 5 in S1 Text). For example, the title of Table 1 in MAGNIMS (2015) may be misinter-
preted (“MRI criteria for predicting treatment response”) as the data shown does not allow PPVs or NPVs to be calculated. 
In contrast, Table 1 in Rio et al. [15] enables such a calculation. Nevertheless, it is still not standard practice in ILS RRMS 
literature to report predictive values, although some papers report not only predictive values but also accuracy values.

Predictive values are conditional measures on sub-populations with favorable or unfavorable SEP outcomes. An ILS 
quality measure should assess ILS for the entire population, like the R² measure does. The accuracy percentage is a 
global measure for the entire population which is SE · PCEP + SP · (1 – PCEP), where P

CEP
 is the prevalence of unfavor-

able CEP outcome. It is equal to PPV · PSEP + NPV · (1 – PSEP), where PSEP is the prevalence of unfavorable SEP out-
come. However, accuracy cannot easily be generalised to settings involving non-binary endpoints and is rarely reported.

The literature also contains information on the quality of prediction models by reporting its area under the receiver 
operating curve (AUC under the ROC) [18]. The AUC is a discrimination measure. This information is not helpful when 
discussing precise individual risks during shared decision making. The quality of the prediction is also determined by cal-
ibration. Calibration of risk models assesses whether accurately predicted probabilities of risk events align with observed 
outcomes, ensuring the model’s outputs are reliable for decision-making. Good calibration is essential to shared decision 
making. In the MS literature, information on model calibration is generally lacking. External validation is the state-of-
the-art, but rarely provided for prediction models in the RRMS literature [7,8]. This means that the generalisability of the 

Table 1.  Trial information.

clinicaltrials.gov
Registration number

Alternative Reg-
istration number

Analysis 
Groupsa

Number of
time pointsb

Duration (Enroll-
ment – Completion)

Phase N Active Arm(s) Control Arm

NCT00050778 24 CAMMS223 CA1_1
CA1_2

4–5 5 years (2005/06/23–
2010/01)

II 333 Alemtuzumab 
(12/24 mg)

Interferon β-1a
(44 mcg)

NCT00530348 25 CAMMS323 CA2_1 2–3 2 years (2007/09/13–
2011/04)

III 563 Alemtuzumab 
(12 mg)

Interferon β-1a
(44 mcg)

NCT00548405 26 CAMMS324 CA3_1
CA3_2

2–3 2 years (2007/10/22–
2011/09)

III 798 Alemtuzumab 
(12/24 mg)

Interferon β-1a
(44 mcg)

NCT00537082 27 CFTY720D1201E1 CF1_1
CF1_2

2–4 0.5 years 
(2007/09/27–
2010/02)

II 171 Fingolimod 
(1.25 mg, 0.5 mg)

Placebo

NCT00289978 28 CFTY720D2301 CF2_1
CF2_2

2–3 2 years (2006/02/09–
2009/07)

III 1272 Fingolimod 
(1.25 mg, 0.5 mg)

Placebo

NCT00340834 29 CFTY720D2302 CF3_1
CF3_2

1–2 1 year (2006/06/20–
2011/07)

III 1638 Fingolimod 
(1.25 mg, 0.5 mg)

Interferon β-1a
(30 mcg)

NCT00355134 30 CFTY720D2309 CF4_1
CF4_2

2–3 2 years (2006/07/19–
2001/06)

III 1295 Fingolimod 
(1.25 mg, 0.5 mg)

Placebo

NCT01247324 31 WA21092 WA1_1 3 96 weeks 
(2010/11/23–
2015/04/02

III 821 Ocrelizumab 
(600 mg)

Interferon β-1a
(44 mcg)

NCT01412333 31 WA21093 WA2_1 3–4 96 weeks 
(2011/08/08–
2015/05/12)

III 835 Ocrelizumab 
(600 mg)

Interferon β-1a (44 
mcg)

NCT00676715 32 WA21493 WA3_1
WA3_2
WA3_3
WA3_4

1–7 24 weeks 
(2008/05/09–
2012/03/09)

II 218 Ocrelizumab 
(600/1000 mg)

Placebo/ Interferon 
β-1a (30 mcg)

N; total number of participants included in trial; a: The groups analyzed refer to specific pairs of active and control treatment. For example, CA1_1 
corresponds to the Alemtuzumab 12 mg (active) – Interferon β-1a (control) group and CA1_2 corresponds to the Alemtuzumab 24 mg (active) – Interfer-
on β-1a (control) group; b: Longitudinal structures differ between endpoints. The available number of time points depends on the clinical and surrogate 
endpoint combination.

https://doi.org/10.1371/journal.pone.0337893.t001

https://doi.org/10.1371/journal.pone.0337893.t001
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evaluated prediction models to new persons remains unproven, and their clinical applicability cannot be assumed. We 
conclude that the availability of high-quality quantitative individual risk estimates is sparse.

A prominent assessment strategy for establishing ILS for PwRRMS uses the Prentice criteria [12] and the proportion of 
treatment effect explained (PTE), introduced by Freedman [19]: PTE = β1–β2

β1
. Here, β1 is the regression coefficient when 

CEP is regressed on the treatment variable, and β2 is the regression coefficient for treatment when CEP is regressed 
on treatment and SEP. If SEP contains all (or none) of the information on treatment, then β2 = 0 and PTE = 1 (β2 = 1 and 
PTE = 0). PTE is a group-based measure derived from group-specific regression coefficients. However, it ignores the 
variability around the regression lines, which actually determines the quality of the CEP prediction given the SEP. Despite 
its frequent use [20,21], high PTE values do not guarantee accurate predictions at the individual level (see sections 1 and 
4 in S1 Text).

Another qualitative approach to assessing the relevance of the SEP in a CEP prediction model is the likelihood ratio 
test (based on −2LLR, where LLR is the log-likelihood ratio) comparing models with and without the SEP. A significant 
test result is often considered evidence of ILS. However, even if the SEP has a small influence on CEP prediction, a large 
sample size may lead to significant test results. Again, a significant likelihood ratio test indicates potential ILS, but does 
not provide information on ILS quality.

Mutual information (MI) is a general concept that quantifies the amount of information shared between two random 
variables [6]. It is a powerful tool for detecting and measuring statistical dependence in fields such as machine learning, 
information theory, and data analysis. In likelihood models, MI is the mean log-likelihood difference between the model 
with and without the SEP: MI = Deviance

2N . In the ILS context, MI can be interpreted as the average change in individual likeli-
hood of the model including the SEP compared to the model without the SEP. MI represents a form of likelihood alteration 
that is independent of sample size, and it quantifies the shared information between the SEP and the CEP at an individual 
level within the given population. In general, MI quantifies the increase in log-likelihood difference when independence 
between two outcomes is assumed.

Alonso and colleagues [6] introduced the LRF as a function of MI, as well as an instrument to understand the relation-
ship between the SEP and the CEP.

	 LRF = 1 – e–2·MI(SEP,CEP)	 (1)

The mutual information (MI) between an SEP and a CEP is MI(CEP,SEP) = H(CEP) – H (CEP
∣∣SEP). Here, H(CEP) 

is the entropy of the CEP and H (CEP
∣∣SEP) is the entropy of the CEP given the SEP. If the SEP predicts the 

CEP well, H (CEP
∣∣SEP) is small compared to H(CEP) and makes MI(CEP,SEP) large, resulting in an LRF value 

closer to 1. If SEP and CEP are independent (SEP carries no information on CEP), the LRF equals zero since 
H(CEP) = H (CEP

∣∣SEP). Alonso et al. demonstrated that the LRF has properties of a R² measure and equals R² in case 
of a linear model [6].

Section 3 of the S1 Text provides examples of how to calculate the MI or LRF for 2-by-2-tables (3a) or for a logistic 
regression model (3b). While the PPV only reflects those with an unfavorable SEP, the LRF applies to the entire popula-
tion, regardless of the value of the SEP. An LRF close to 1 suggests that the examined prognostic factor(s) add relevant 
information to a predictive model. A high MI suggests that predictive models may exist, but whether such a model with 
high performance can be found depends on how the information is structured and exploited by the modeling approach. 
Exploring the LRF should be part of any predictive model development.

From a clinical perspective, the LRF expresses how much percentage of the uncertainty in an individual prediction is 
explained by considering the SEP. A higher reduction means that the prediction becomes more precise, for example when 
the expected range of a deterioration in EDSS values is narrower instead of wide. As mentioned above, a low variability in 
individual predictions is essential for informed clinical decision making.



PLOS One | https://doi.org/10.1371/journal.pone.0337893  December 26, 2025 6 / 19

We demonstrated the need for predictive models for PwRRMS. Many researchers have taken up this challenge, claim-
ing to possess such models [7,22]. Often, however, the published models yield low to moderate performance metrics. One 
reason could be that the models cannot be any better due to the limited methodology used.

The paper is organised as follows: 1) We introduce the methodological concepts and present a simulation study to 
assess the LRF as a quality measure for ILS; 2) We analyse and interpret ILS in the data of ten MS trials; 3) We evalu-
ate ILS as discussed in the literature; 4) We perform PTE analyses with our data and compare them to the results in the 
literature; 5) As a practical application we provide an assessment of the evidence of T2L as an individual-level SEP and 
treatment failure indicator based on literature cited in two MS guideline articles.

Materials and methods

Description of the trial populations

The Clinical Study Data Request (CSDR) repository [23] provided the individual data from three phase II and seven phase 
III randomized controlled trials (Table 1) on MRI measurements of T2 lesions, data on EDSS and relapses from adult 
PwRRMS (CSDR proposal number 11223). Four ILS settings (SEP: T2 lesion count or T2 lesion volume; CEP: EDSS or 
relapse count) were analysed in treatment vs control comparisons listed in S2 Table.

Statistical analysis

Longitudinal CEP data was modelled by Gaussian or counting data regression models including or excluding longitudinal 
SEP as covariate (Equation (1)) and adjusting for treatment. The likelihood reduction factor (LRF) was calculated accord-
ing to section 2 in S1 Text. The LRF values range between zero (no surrogacy) and one (deterministic dependency).

The SEPs studied are 1.) the log-transformed continuous T2 lesion volume (T2V) and 2.) the number of new or newly 
enlarged T2 lesions (T2L). The clinical endpoints (CEPs) are 1.) disability progression measured by the EDSS, which is 
treated as either a continuous or an ordinal outcome, and 2.) the annualized relapse rate (ARR) defined as the number of 
relapses per year.

In the count data regression models, we adjusted for time via an offset term (log(time)). We applied variance stabilizing 
transformation to normalize the count data [33,34].

As sensitivity analyses, we replicated ILS analyses according strategies applied in the MS literature and focused on 
three scenarios: 1.) longitudinal predictive: repeatedly measured SEP during the first year of the trial and repeatedly mea-
sured CEP during the second year; 2.) aggregated associative: SEP and CEP values were aggregated over the entire trial 
duration (for T2V change from baseline, for T2L total sum over a period); 3.) aggregated predictive: SEP (for T2V change 
from baseline, for T2L total sum over a period) at months 6 and 12 predicts the relapses (CEP) during the second year 
(S1 and S2 Figs). T2 lesion counts were truncated at eight.

Prentice criteria [35] were assessed and the PTEs were quantified (see section 1 in S1 Text) for relevant SEP/CEP 
combinations.

Surrogate validation methods

Alonso and colleagues [6] proposed to estimate mutual information (MI) by the mean contribution of the log-likelihood ratio 
between two models. The first model includes the longitudinal SEP as a covariate, and the second model does not (Equation (2)).

	
mC [E (CEPj)] = f

(
XTCj

,β
)
+ ∈Cj	

	
mC|S [E (CEPj|SEPj)] = g

(
XTSj ,α

)
+ γSEPj+ ∈Sj ,	 (2)
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where:

•	CEPTj =
(
CEPj1,CEPj2, . . . ,CEPj1p

)
 = Clinical endpoint vector

•	SEPTj =
(
SEPj1,SEPj2, . . . ,SEPj1p

)
 = Surrogate endpoint vector

•	 j = 1, 2, . . . , n = number of subjects

•	 XTSj , X
T
Cj

, α and β are the associated design matrices and trial treatment effects

•	 γ are the trial specific effects of the SEP

•	mC and mC|S link functions relate the linear predictors of the models to the mean value of the outcome.

•	 f  and g are functions to describe the time trajectories

Following Equation (1), LRF = 1 – e–2MI(SEP, CEP) = 1 – e–Deviance/N.
Kent et al. and Alonso et al. [36,37] describe asymptotic confidence intervals for LRF. See section 2 in S1 Text for more 
details. The LRF was estimated for each pair of control and active study arm combinations (considering multi arm trials) 
as given in column Analysis Groups in Table 1.

Data preparation

Observations collected during the open label extension of trials NCT01247324, NCT01412333, and NCT00676715 were 
excluded, as the removal of blinding in these phases could have influenced both participant-reported and investigator- 
assessed outcomes, including T2 lesion counts and EDSS measurements, potentially introducing bias. Depending on the 
SEP/CEP combination, pairs of longitudinal data were recorded by 5672 (T2V/EDSS), 5673 (T2V/relapses), 5672 (T2L/
EDSS), or 4773 (T2L/relapses) PwRRMS. No imputation was performed and observations at the same measurement time 
point were excluded if either SEP or CEP were missing. EDSS values measured during and 90 days after a relapse were 
not used. PwRRMS with only one visit or without baseline visit were excluded. In SEP/CEP combinations using relapses 
as the CEP, the relapses occurring between two consecutive T2L or T2V measurements were summed for each PwRRMS 
and assigned to the later time point of the respective interval. S3 and S4 Figs present flow charts at observational and 
patient levels.

Simulation study

SEPs and CEPs were simulated at two or four time points (k = 2 or k = 4). In case of a continuous SEP, the data  
generating process was multivariate normal with mean zero, a standard deviation of one at each time point, and an auto- 
regressive correlation of ϕ = 0.8. The SEP variance-covariance matrix results as ΣSS = D · RS · D , where RS is an auto- 
regressive auto-correlation matrix with ϕ = 0.8, D = 1k x k· ∈, and ∈= 1. A continuous CEP was generated by CEP(t) = α 
SEP(t) + ∈ (with α = 0.1, 0.5, and 2.25) plus an auto-correlated error term ρ with ϕ = 0.8 and standard deviation of ∈ = 1. 
This determines ΣTT  = (α² + ∈²) ΣSS as well as ΣST  = ΣTS = α ·ΣSS and results in Λ =

[
∈2

α2+∈2

]k
. We quantify how accurate 

the IT approach estimates the known R2
Λ = 1 – Λ = LRF  [38]. The simulation implements groups with 100, 300 and 600 

patients. Barbiero and Ferrari describe how to simulate correlated Poisson distributed outcomes [39]. Huber’s method [34] 
transformed count data for SEP and CEP to approximate normality to use Gaussian models for analysis. Detailed descrip-
tions of how data is simulated for the Gauss-Poisson, Poisson-Gauss, and Poisson-Poisson case are given in S2 Text.

To examine the effect of a gradually emerging dependency α on R2
Λ, we simulated SEP and CEP as uncorrelated 

during the initial measurement period and correlated later motivated by a scenario where early T2 lesion activity (SEP) 
can not predict disability progression (e.g., EDSS as CEP), but prediction may emerge over time when pathological 
processes accumulate. The correlation between SEP and CEP was set to zero for the first half of the measurement time 
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points. The auto-regressive correlation of φ = 0.8 of the SEP and CEP were simulated over multiple time points (ranging 
from k = 2 to k = 50) with varying ∈ to assess the impact of parameters ∈ and the number of time points k  on R2

Λ in. In 
cases with an odd number of time points, the first k2 – 0.5 time points were set to 0.

Implementation

In the regression models (Equation (2)), potential non-linear trajectories over time as well as time by treatment interactions 
are modelled by fractional polynomials (FPs) [40]. Model selection follows the AIC step wise approach.

We used Gaussian models if CEP data was continuous. We also treated the EDSS as ordinal and grouped its values 
into ordinal categories (0, 0.5, 1, …, ≥ 4). An ordinal (multinomial) regression model was fitted as additional analysis. We 
fitted multinomial, Poisson, negative binomial, and zero inflated Poisson models if CEP was the number of relapses. The 
annual relapse rate was also analysed as ordinal outcome with three categories. Two or more relapses were summarized 
in one category. Mixed models were fitted with the R-package glmmTMB version 1.1.6, ordinal models by the R-package 
ordinal version 2022.11.16. S3 Table summarizes the model strategies of all analyses.

Software and reporting guidelines.  All statistical analyses use R version 4.2.2. The list of packages is in S3 Text. 
The code is provided on https://osf.io (https://osf.io/ht4su/overview). The language was polished by the ChatGPT 
(OpenAI, 2024) version GPT-4o-mini [41] and DeepL. ChatGPT was also used to create S1 and S2 Figs, and R-scripts/
Figures assigned to sections 1–5 within S1 Text. We also provide the TRIPOD reporting guidelines [42] for the validation 
of prediction models (S4 Table).

Ethics approval and consent to participate

The ethics committee of Ludwig-Maximilians University in Munich reviewed this project and granted a waiver (project num-
ber 19–838 KB). This decision was based on the written informed consent (as stated in the original publications [24–32]) 
from all patients for the use and sharing of data in all trials included in this study, as well as the anonymized nature of the 
collected data.

Results

Simulation studies

Fig 1 displays the results of the simulation study (rows: two or four time points; columns: analysis strategies). Col-
umns one to six show LRFs for transformed count data, the last three columns display LRFs for original count data. 
For each setting, the red horizontal line indicates the true LRF values. The top of each panel shows the number of 
numerically unstable estimations out of 1000 simulation iterations. The results demonstrate that the LRF estima-
tion performs reliably, with only two instances of numerical instability observed (column six, rows one and five). The 
estimates of the LRFs slightly underestimated the true LRF, particularly for a small number of simulated individuals 
(n = 100 or 300) and two time points. In scenarios with low correlations, the LRF can become negative indicating that 
the reduced model without the SEP has a higher log-likelihood than the model including it, suggesting the SEP lacks 
detectable predictive ability.

Results from the simulation study, conducted with n = 1000 iterations. Red horizontal lines in the graphs indicate the 
true LRF values. The numbers displayed at the top of each panel correspond to the instances of convergence issues 
observed during the simulation study. To derive the LRF, Gaussian, Poisson, or ordinal models were employed. It is 
important to note that the results of the Poisson family were analyzed in their untransformed form. The study considered 
four combinations of SEP and CEP: 1) Gaussian – Gaussian, 2) Gaussian – (transformed) Poisson, 3) transformed Pois-
son – Gaussian, and 4) transformed Poisson – (transformed) Poisson. The datasets included 100, 300, and 600 subjects 

https://osf.io
https://osf.io/ht4su/overview
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(labeled at columns title), contributing to a comprehensive analysis of model performance. Abbreviations: LRF: Likelihood 
Reduction Factor; tr.: transformed; Pois: Poisson; Tp: time point.

S5 Fig presents additional results from the simulation scenario (SEP and CEP simulated as count data and ana-
lyzed using negative binomial and zero-inflated Poisson regression models). Instances of numerical instability were 

Fig 1.  Simulation (1000 iterations): LRF derived from models of different distributional families. 

https://doi.org/10.1371/journal.pone.0337893.g001

https://doi.org/10.1371/journal.pone.0337893.g001
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observed. S6 and S7 Figs display the absolute differences between the true LRF values and those estimated from the 
simulated data. These differences range from −0.203 to 0.023 for original (S6 Fig) and from −0.104 to 0.023 for trans-
formed count data (S7 Fig), indicating a small to moderate bias. When both SEP and CEP are normally distributed, the 
LRF shows minimal bias, though smaller sample sizes or transformed endpoints can underestimate its true value (S7 
Fig).

The second simulation study uses the time-lagged model (S8 Fig). Results indicate that a higher number of measure-
ment time points lead to higher R2

Λ (= LRF) values. R2
Λ is not adjusted to the number of longitudinal measurements.

Surrogacy in the trial data

Seven of the ten trials were multi-arm trials, and 19 pairs of treatment/control arms were available for analysis (see Table 
1). S5 Table provides median and interquartile ranges (IQR) aggregated over trial and time. During the trial, median 
changes in T2V ranged from −0.031 to −0.024, while EDSS showed a median change of 0. The mean relapse rate per 
time point ranged from 0.12 to 0.21, and the mean rate of T2L ranged from 1.45 to 1.46.

Fig 2 presents the LRFs derived from 19 pairings (Table 1 and S2 Table). The figure focuses on the four combinations 
of the SEPs and CEPs of interest, considering both transformed count data (columns one and two) and non-transformed 
count data (column three). For the T2V - EDSS outcome combination, LRFs for WA1_1 and WA2_1 exhibit values above 
0.2, but all upper bounds of the LRF 95% CIs remain below 0.5, indicating a lack of strong evidence for ILS. Across all 68 
scenarios, we observed two weak clinically non-relevant signals for ILS. The instabilities observed in Fig 2 (blue asterisks) 
indicate that the distribution of the number of relapses given T2V (P [Number relapses | T2L]) does not always perfectly 
follow a Poisson distribution. Since ordinal models are generally more prone to numerical instability, our results suggest 
that models with Gaussian-Gaussian endpoint combinations appear more reliable. Nevertheless, the observed numerical 
instabilities had minimal impact, as LRF values were highly consistent across model families with and without instability, 
showing comparable results between Gaussian, Poisson, and ordinal models (compare columns 1 to 3 in Fig 2).

LRFs were computed for 19 trial arm combinations (intervention vs. control). Gaussian, Poisson, or ordinal models 
were employed to derive the LRFs. Results from the Poisson model family were analyzed from non-transformed data. 
Four combinations of SEP and CEP (rows) were considered: 1) T2 Volume – EDSS, 2) transformed T2 lesion count – 
transformed relapses, 3) T2 Volume – transformed relapses, and 4) transformed T2 lesion count – EDSS. The calculated 
LRFs are represented by a point with 95% confidence interval bars. Blue asterisks indicate convergence issues encoun-
tered during the derivation of the LRFs from the corresponding models. Notably, the content in column 3 of Fig 2 and col-
umn 4 of S9 Fig, both utilizing the Poisson distribution family, is identical. Furthermore, the combination of T2V and EDSS 
outcomes remain consistent between Fig 2 and S9 Fig. Abbreviations: LRF: Likelihood Reduction Factor; tr: transformed; 
EDSS: expanded disease status scale.

The results for original count data (S9 Fig) align closely with those obtained for transformed count data. Convergence 
issues arose, particularly for the combination of T2V and relapse count, when using models with negative binomial distri-
bution family.

Sensitivity analyses

S10 Fig shows the results. The aggregated associative, predictive longitudinal, and aggregated predictive analyses show 
LRF values mostly around zero, but always below 0.2, indicating low ILS (columns one to four). Column 5 of S10 Fig 
shows the respective PTE values and their 95% bootstrap confidence intervals. The aggregated associative setting gives 
PTE ranges between −0.12 to 0.58 (mean: 0.21; median: 0.2) and the aggregated predictive setting shows PTE ranges 
between 0.01–0.36 (mean: 0.19, median: 0.17). The Prentice criteria are designed to assess surrogacy at a specific time 
point. An extension of the Prentice criteria to a longitudinal setting is not discussed in the literature.
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All four Prentice criteria are fulfilled in three across the 13 aggregated associative SEP/CEP settings and in one across 
the nine aggregated predictive SEP/CEP settings (S10 Fig).

Discussion

We focus on the likelihood reduction factor (LRF) as a quality measure for individual-level surrogacy (ILS). Currently, 
surrogacy between MRI-derived disease activity markers (SEPs) and patient-relevant clinical disease outcomes (CEPs) 

Fig 2.  LRF derived from different distributional families (transformed count data).

https://doi.org/10.1371/journal.pone.0337893.g002

https://doi.org/10.1371/journal.pone.0337893.g002
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is one of the central paradigms in the therapeutic decision-making process for people with remitting-relapsing multiple 
sclerosis (PwRRMS). With this work, we wanted to reproduce evidence for this established and recommended practice 
(see S1 Table).

We explored ILS in longitudinal independent individual-level data from 4773 to 5673 PwRRMS in three phase II and 
seven phase III trials. We could not find generalisable, robust scenarios with noteworthy ILS across trials (see Fig 2, S9, 
and S10 Figs). LRFs were mostly below 0.2 (Fig 2) indicating that in most examined scenarios less than 20% of the CEP 
variability is explained by the SEP. This means that the SEP provides relatively little information for predicting the CEP on 
the individual level, and such a level of explained variability may be insufficient to support informed treatment decisions. 
To provide an intuitive understanding of the LRF, Figs A and B in S1 Text may serve as illustrative examples. While data 
variability is low in Fig A and high in Fig B, this difference is reflected in the R² and LRF. Overall, the scenario shown in Fig 
A provides a more suitable basis for individual predictions than that in Fig B.

As shown in S7 Fig, this limited predictive power should also be interpreted in light of potential bias. While scenarios 
with transformed or non-normal endpoints tend to underestimate the true LRF (up to −0.104 for results corresponding to 
Fig 1), the bias is minimal when both SEP and CEP are approximately normal, and sample sizes are moderate to large 
(N ≥ 300). Accordingly, the LRF values for T2V and EDSS (Fig 2, row 3) are not biased, while values in other scenarios 
may be underestimated. Even so, LRFs remain low. Overall, the results suggest that Gaussian-Gaussian endpoint combi-
nations provide unbiased and less numerically unstable estimates compared to Poisson or ordinal models.

Another question is, if there is an appropriate cut-off point to differentiate between strong and weak ILS? In oncology, 
IQWIG (the German Institute for Quality and Efficiency in Health Care) has defined LRF values below 0.50 as being 
clinically irrelevant [43]. However, future research has to establish a clinically meaningful LRF threshold to differentiate 
between clinically relevant and irrelevant ILS for PwRRMS.

First, imagine a simple 2 × 2 table where 20% of the people have an unfavorable SEP. In this example, the PPV is 
63% and the NPV is 90%, similar to cases reported by Rio et al. [15]. In this situation, the LRF is around 0.30, indicating 
a moderate reduction in uncertainty when predicting outcomes based on SEP. Second, consider how SEP is related to 
the CEP. Suppose CEP at time t depends on α times the SEP plus some random variability: CEP (t)= α · SEP (t)+ϵ (t) 
representing a regression model, where α is the effect of SEP on CEP and σ is the variability of ∈ (t). If the variability is 
small compared to α, the SEP is informative, and the prediction is more precise. If the variability is large, SEP explains 
little about the clinical endpoint and prediction quality is low (see sections 1b and 4 in S1 Text). For example, with four 
time points, the LRF can be calculated as 1–

[
1

1+ρ2

]4
, where ρ is the ratio of the SEP effect α to its variability. An LRF of 

0.2 corresponds to a high variability (σ > 4 ·α), while LRF = 0.5 corresponds to a smaller variability σ ≈ 2.3 ·α. Third, con-
sider a logistic regression model predicting the probability of an unfavorable clinical endpoint based on SEP and additional 
patient information X. Examples in sections 3a and 3b in S1 Text show that ORs of predictors between 2 and 5 result in an 
LRF values of about 0.25, illustrating that even moderately strong predictors on the population-level only partially reduce 
uncertainty in individual predictions.

Results based on the whole population or subgroups are very different and must be considered differently. Our ILS 
assessment of ten independent clinical trials gave low LRF values. We showed that in the MS literature on individual 
prediction, mainly population-wide association measures were used. In most cases significant PTEs, ORs, and HRs 
(S1 Table) were reported instead of metrics suited for assessing the quality of predictions at the individual level, such as 
PPVs, NPVs, calibration, correlation, or the LRF. The unsuccessful search for population-wide prediction models may 
be explained by our weak ILS signals of the predictors used to forecast specific RRMS clinical outcomes. To avoid being 
misguided in their search for prediction models by too optimistic and inappropriate ILS statements, we recommend that 
predictive research in the field of MS focus on state-of-the-art ILS quality measures to assess settings on which future 
individual prediction models may be built. The use of PTE or the Prentice Criteria is misleading and can distort ILS 
assessments. See sections 1 and 4 in S1 Text or elsewhere [6,38].
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The Prentice criteria and the PTE became more prominent. Two studies [20,21] assessed PTE in PwRRMS treated 
with interferon-beta-1 for the accumulated T2L values as SEP and the cumulative relapses as CEP (aggregated associa-
tive): PTE = 0.53 (0.28–1.01). Investigating first-year change in T2L as SEP and the cumulative relapses within the second 
year of treatment (aggregated predictive setting) resulted in PTE of 0.8 (0.34–1.86). Our data (data set W2_1, see Table 
1) gave a PTE of 0.58 for the aggregated associative setting and PTEs below 0.8 for the aggregated predictive analysis 
(S10 Fig). By using comparable designs within the available trial data, we were unable to replicate these findings which 
have been seminal for ILS understanding in RRMS.

The analyses of prediction research that exist to date obviously influence guidelines and their application in everyday 
clinical practice. For example, the MAGNIMS guidelines recommend specific high-quality MRI T2L scans to monitor MS 
disease activity since T2L should have a high prognostic power for disease activity [1,2]. The CMSWG also recommends 
T2L as an indicator of treatment non-response, informing treatment decisions [1–4]. In a survey with US American neu-
rologists, 97% (monitoring of RRMS within 12 months) and 67% (treatment switch to intravenous treatment, when ≥2 T2L 
occurred) of the neurologists follow these recommendations [44].

MAGNIMS and CMSWG recommendations claim a high predictive ability of T2L on relevant CEPs, based on various 
methodologies (see background). However, MAGNIMS and CMSWG also report a few predictive values which can be 
considered as ILS information. S1 Table provides a summary of our assessment.

From a clinical perspective, the utility of the LRF quantifying individual-level SEP quality can be illustrated in the 
following example: Consider a screening test with low sensitivity but high specificity. In this case, positive results are 
generally reliable (high specificity - > low false positives), but many true cases remain undetected, meaning the test alone 
is insufficient to guide decisions for all individuals. In a screening context, false positives can be clarified through subse-
quent testing before any intervention. In contrast, when a therapeutic decision is made directly based on this initial test, 
there is no opportunity to correct for misclassifications, which underscores the need for robust and reliable  
individual-level SEPs to guide treatment decisions. However, current evidence on T2L as a SEP detecting for treatment 
failure is frequently assessed using metrics that are not appropriate for prediction quality. Additionally, if a treated PwR-
RMS shows an unfavorable SEP and a treatment switch is recommended, it remains unclear whether the new therapy 
will be beneficial. There is uncertainty whether an unfavorable CEP will result from the unfavorable SEP and if the per-
son responds to the new treatment. We found no guidelines discussing a benefit/risk trade-off for this decision-making 
process where information about the PPV of the SEP has to be combined with models that predict the best therapy to be 
switched to [45].

Strengths and limitations

The study’s strengths lie in its use of high-quality individual-level clinical trial data, a multi-trial analysis to identify ILS 
structures, and a state-of-the-art methodology applied to longitudinal observation structures within relevant RRMS 
populations.

Limitations include short to moderate observation periods of up to five years and the potential variability of T2L mea-
surements and EDSS. Simple EDSS changes are more variable than confirmed disability progression, so results may 
be influenced by this. Our analysis focused on EDSS and relapse rate and did not consider composite or more modern 
endpoints (e.g., PIRA, cognitive measures, patient-reported outcomes), which may result in underestimating the true pre-
dictive value of MRI lesions and does not fully capture the pathophysiological complexity of RRMS. But follows the lines of 
clinical research which defines the present clinical work-up of PwRRMS.

T2 imaging standards across the trials were not established. However, internally, there were reading guidelines for MRI 
images. Accordingly, potential heterogeneity in T2 lesion detection and assessment between trials may be present. A lim-
itation is the low incidence of events, such as T2L, in active trial arms. Other predictive MRI measures were not evaluated, 
nor whether existing methods sufficiently capture their predictive quality.

../FROM_CLIENT/Accepted_manuscripts/Suppl/Fig_S10.docx
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Conclusions

We critically discussed methodologies commonly used in prediction research in the field of MS to claim ILS quality and 
explored ILS between MRI-derived markers and clinical outcomes within RRMS cohorts using independent individual-level 
data from ten MS trials. We examined ILS for T2L measurements and found weak signals in some trials, but no stable, gener-
alisable ILS patterns between T2L as SEP for disease activity and disability progression in RRMS. To quantify ILS, we intro-
duced the LRF as a reliable and generalized ILS quality measure for normally distributed longitudinal data. In some scenarios 
where endpoints followed a Poisson distribution, were ordinal, or had been transformed, the LRFs were underestimated by up 
to 0.104. However, this did not affect the overall interpretation of the LRF values derived from the ten clinical trials.

Implications

Our findings underscore the complexity of predictive research in the field of multiple sclerosis. Based on our analysis, the 
clinical routine of making treatment decisions based solely on a new or enlarging T2 lesion during therapy should be ques-
tioned. However, we would like to clarify that our study does not question the clinical use of MRI or T2L monitoring but 
indicates that T2L provides limited predictive value for individual RRMS outcomes. But ILS for T2L measurements must 
be reassessed. We consider inadequate statistical methodology to be the main reason for ILS claims underlying relevant 
guidelines for treating and monitoring PwRRMS. We suggest that prediction research in MS should define appropriate 
standards to assess ILS. We argue that LRF is a good candidate for standardized reporting of ILS quality. A positive LRF 
assessment may make it worthwhile working on a prediction model which provides precise individual risk estimates for 
unfavorable CEPs. These models need development following a correct methodology and external, independent valida-
tion. To support the validity of guidelines, we recommend to report prospective risk estimates, validate models with calibra-
tion and discrimination metrics, define thresholds for predictive usefulness, and assess clinical utility via decision curve 
analysis in the future [46]. A consensus on such standards paralleling TRIPOD [47] would improve interpretability, timeli-
ness, and relevance of MRI-based predictions and strengthen guideline recommendations. Research may focus on robust 
individual-level evaluation using appropriate metrics and methods to identify reliable SEPs for RRMS outcomes [23].
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tions: LRF, Likelihood Reduction Factor; Gaus., Gaussian; NB negative Binomial; ZI. Poisson, Zero Inflated Poisson.
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S7 Fig. Simulation (1000 iterations): Absolute difference between generated and true LRF (transformed 
outcomes). Results from the simulation study (with n = 1000 iterations) using the information-theoretic approach 
are presented. The displayed information represents the absolute difference between the generated and true LRF. 
To derive the LRF, Gaussian, Poisson, or ordinal models were employed. Simulated datasets were generated with 
100, 300, and 600 subjects, each having two or four measurement time points. It’s important to note that results from 
the Poisson family were analyzed in their untransformed state. Four SEP – CEP combinations were considered: 1) 
Gaussian – Gaussian, 2) Gaussian – (transformed) Poisson, 3) transformed Poisson – Gaussian, and 4) transformed 
Poisson – (transformed) Poisson. Abbreviations: LRF, Likelihood Reduction Factor; tr., transformed; Pois, Poisson.
(DOCX)

S8 Fig. R2
Λ when correlation between outcomes arises after the halve of measurement time points . Abbrevia-

tions: CEP, Clinical Endpoint. R2
Λ is calculated in different correlation settings when the correlation between SEP and 

CEP emerges after half of the time points considered (correlation for uneven time points begins at the number of time 
points/2 - 0.5). Here, α represents the factor used to derive CEP, and ∈ corresponds to the error in CEP, defined as 

CEP = α ∗ SEP + ∈.
(DOCX)

S9 Fig. Likelihood reduction factor derived from different distributional families. Abbreviations: LRF, Likelihood 
Reduction Factor; EDSS, expanded disease status scale. LRFs were computed for each trial arm combination (inter-
vention vs. control) using the information-theoretic approach by Alonso and colleagues. To derive the LRF, Gaussian, 
Negative Binomial, Poisson, zero-inflated Poisson, and ordinal models were utilized. Four SEP – CEP combinations were 
considered: 1) T2 Volume – EDSS, 2) transformed T2 lesion count – transformed relapses, 3) T2 Volume – transformed 
relapses, and 4) transformed T2 lesion count – EDSS. Blue or red asterisks indicate convergence problems of one or both 
regression models from which the LRFs were derived. Notably, the content in column 3 of Figure 2 and column 4 of Fig 
S9, both utilizing the Poisson distribution family, is identical. Furthermore, the combination of T2V and EDSS outcomes 
remains consistent between Figure 2 and Fig S9.
(DOCX)
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S10 Fig. Sensitivity analysis: Likelihood reduction factor derived from different distributional families. Results 
of the sensitivity analysis are presented. LRF values derived by the information-theoretic (IT) approach and their 
95% confidence intervals (CIs) are displayed in columns one to four, and the proportion treatment effect explained 
(PTE) values with 95% bootstrap CIs are shown in column five. Blue or red asterisks indicate model convergence 
issues within the IT methodology, while blue triangles indicate the fulfillment of the Prentice’ criteria. Surrogate out-
comes include new/newly enlarged lesions or log (T2 volume) change from baseline and the number of relapses as 
the clinical endpoint. The aggregated associative approach (rows one and four) evaluates the surrogate and clinical 
endpoint cross-sectionally after two years. The longitudinal predictive approach (rows two and five) considers surro-
gate measurements (T2 lesion count or T2 volume change from baseline) at months six and twelve, with the number 
of relapses within the second year as the clinical endpoint. The aggregated predictive approach (rows three and six) 
evaluates the surrogate (summed-up T2 lesion count or T2 volume change from baseline) within the first year and the 
number of relapses within the second year of the trial as the clinical endpoint. The IT approach was utilized to evalu-
ate individual surrogacy. Only trials providing the necessary time structure are included. Abbreviations: LRF, likelihood 
reduction factor; PTE, proportion explained; ass., aggregated associative setting; long., longitudinal predictive setting; 
pred., aggregated predictive setting. T2 les., number of new/newly enlarged T2 lesions; T2 Vol., T2 volume; Rel., num-
ber of relapses.
(DOCX)
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