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of neurons, mitochondria form a reticular network [4]. 
How the different shapes of mitochondria in the neuronal 
sub-compartments are created or maintained is still incom-
pletely understood.

Mitochondrial fission is regulated by recruitment of the 
cytosolic GTPase dynamin-related protein 1 (DRP1) to the 
mitochondrial outer membrane by various adaptor proteins, 
including mitochondrial fission factor (MFF) [5]. Fusion on 
the other hand relies on the two GTPases optic atrophy 1 
(OPA1) in the inner mitochondrial membrane (IMM, [6]) 
and Mitofusin1/2 (MFN1/2) in the outer mitochondrial 
membrane (OMM, [7]). Unsurprisingly, depletion of MFF 
increases mitochondrial length, which is especially evident 
in axonal mitochondria, yet does not alter the mitochon-
drial mass within axons [8]. This suggests that the trans-
port of mitochondria and their distribution throughout the 
axon follows some still undetermined rules that ensure 
proper occupancy. One study suggests that spacing of axo-
nal mitochondria is determined by the local ATP supply, as 
removal of one mitochondrion by light-triggered activa-
tion of the phototoxic protein KillerRed targeted to mito-
chondria (mitoKillerRed) elicited a decrease in motility 
of nearby mitochondria, essentially enhancing their arrest 
at the site of depletion [9]. This aligns with the observa-
tion that mitochondria are stationed at sites of high energy 
demand, including the presynapse, nodes of Ranvier or 

Mitochondrial dynamics in neurons

Mitochondria arose from an ancestral bacterium that was 
retained after engulfment by the precursor of eukaryotic 
cells, creating an endosymbiotic relationship that enabled 
the development of metazoans [1]. Reminiscent of their 
evolutionary origin, mitochondria resemble rod-like bac-
teria, especially in the axon of neurons where they mostly 
occur as solitary, roughly 1 µm long organelles [2]. In den-
drites however, they can display a more elongated, fused 
morphology. Interestingly, even though mitochondrial den-
sity is high in dendrites, they form stable compartments 
that are isolated from each other as seen by the spread of 
a photoconvertible matrix protein [3]. Finally, in the soma 
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Abstract
Neurons have adapted the transport and positioning of mitochondria to fit their extended shape and high energy needs. 
To sustain mitochondrial function, neurons developed systems that allow local biogenesis and adaption to locally regulate 
mitochondrial form and function. Likewise, fine-tuned degradative systems are required to protect the neurons from mito-
chondrial dysfunction. Throughout both domains of mitostasis, the local synthesis of the mitochondrial damage-induced 
kinase PINK1 emerges as a central player. Along with other nuclear encoded mitochondrial proteins, its mRNA associates 
with mitochondria to sustain mitochondrial function locally. It also regulates mitochondrial degradation, via regulation of 
proteases, the generation of mitochondria-derived vesicles and mitophagy. In this review, we provide a general overview 
of the mechanisms governing mitochondrial health in neurons, with a special focus on the role of PINK1 in this endeavor.
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axonal growth cones [10–12]. However, while neurons rely 
mostly on mitochondrially-derived ATP as a whole [13], not 
all synapses contain resident mitochondria, and glycolysis 
or diffusion may be sufficient to provide ATP at these sites 
[14, 15]. Nevertheless, mitochondria also fundamentally 
alter the synaptic release probability due to their Ca2+ buff-
ering activity [16, 17]. However, the factors that promote 
mitochondrial arrest at some synapses but not others remain 
elusive.

Mitochondrial positioning has also been linked to the 
extension of axon branches [18], which is also negatively 
affected by MFF knockdown [8]. This may be due to the 
role that mitochondrially-derived ATP plays in support-
ing local translation in both axons and dendrites [3, 19], as 
local translation of cytoskeletal elements may be necessary 
for branch formation as well as for spine outgrowth. Vice 
versa, formation of actin cages around mitochondria serves 
to arrest mitochondria after their long-range transport on 
microtubules. Pharmacological depolymerization of Actin 
destabilizes the dendritic mitochondrial compartments [3] 
and mobilizes previously stationary mitochondria in the 
axon [20]. In addition, several mechanisms exist that regu-
late transport and arrest of mitochondrial transport along 
microtubules (reviewed by Pekkurnaz & Wang [21]). These 
often target the mitochondrial motor adaptor complex, 
consisting of the OMM protein RHOT1/2 (Miro1/2) and 
TRAK1/2 (Milton) [22–24], which connect mitochondria 
to kinesin and dynein, or the anchoring protein Syntaphilin 
[25], (Fig. 1A). Mitochondria move at a speed of approx. 
0.5 µm/s in neurons with frequent pauses, and at any given 
time only a small fraction of mitochondria is observed in 
motion [26]. Their motility as well as their shape changes 
during development and aging, with motility decreasing 
as more and more mitochondria reach their final destina-
tion. As protein synthesis in neurons occurs primarily in the 
somato-dendritic area [27], this might lead to an aging pop-
ulation of mitochondria in distal axons over time. Indeed, 
a gradient of younger to older mitochondria along neurites 
is observed by the use of a mitochondrially-targeted fluo-
rescent protein whose maturation from a protein emitting 
green fluorescence to red fluorescence has been engineered 
to occur only after approximately 24 h (mitoTimer), allow-
ing a ratiometric readout of its relative age [28]. This probe 
however does not replicate the intricate relationship some 
mRNAs encoding mitochondrial proteins have with their 
encoded protein’s target organelle (see next chapter), and 
thus is not fully representative of the age of mitochondria.

Proper balance of mitochondrial dynamics is crucial for 
neuronal development and health. Following early differen-
tiation, neurons undergo a switch in their metabolism from 
generating most of their energy via glycolysis in the begin-
ning, to heavily relying on oxidative phosphorylation, and 

therefore mitochondria, for their energy production as mature 
neurons [13, 29, 30]. This metabolic switch is accompa-
nied by changes in mitochondrial dynamics, involving both 
fusion and fission [31, 32], and also impacts neuronal size 
and complexity [33]. Neuron-specific knock outs of Drp1 in 
mice led to smaller forebrains, and primary cultures derived 
from these mice displayed less neurites, lower expression 
of synapse markers and disturbed mitochondrial distribution 
[32]. Loss of fusion on the other hand also impairs neuronal 
function. Purkinje cells in Mfn2-deficient mice decrease in 
size and display a decreased number of branches and spines. 
This was accompanied by a reduction in OXPHOS activ-
ity, in line with mitochondrial fusion being a prerequisite 
for maintenance of mtDNA [34]. Furthermore, mutations in 
Mfn2 have been linked to the Charcot-Marie-Tooth type 2 A 
(CMT2A) disease [35, 36]. One study suggested that Mfn2 
can interact with Miro and Milton, and that an impaired 
Mfn2 could thus result in impaired axonal mitochondrial 
transport, possibly contributing to axonal degeneration in 
CMT [37]. Mitochondrial dynamics thus set the stage for 
proper mitochondrial distribution and function in the ner-
vous system.

Biogenesis of mitochondrial proteins in 
neurons is sustained by mitochondrial 
mRNA association

Mammalian mitochondria contain around 1500 proteins, of 
which more than 99% are encoded in the nucleus ([38–40]). 
In order to sort the nuclear encoded mitochondrial (NEM) 
proteins to the correct compartment after their synthesis 
on cytosolic ribosomes, specialized import pathways have 
evolved to accommodate the various topologies of proteins 
across the two mitochondrial membranes, the inter mem-
brane space and the innermost matrix [41]. The translocase 
of the OMM (TOM complex) hereby serves as the main 
entry gate into the organelle and is equipped with receptors 
that recognize either a N-terminal amphipathic helix, the 
classical mitochondrial targeting sequence (MTS) recog-
nized by Tom22/Tom20 [42], or internal sequences of mito-
chondrial protein precursors, that are guided by chaperones 
and recognized by Tom70 [43]. Chaperones are also crucial 
for mitochondrial protein import to prevent premature fold-
ing of mitochondrial precursors, as import needs to occur 
in an unfolded state to allow threading through the narrow 
tunnels of the translocases [44].

While most protein import into mitochondria can 
occur post-translationally, co-translational targeting has 
been observed, although it had been viewed as the excep-
tion, and can be enhanced by localizing translation close 
to the mitochondrial surface [45, 46]. Analysis of isolated 
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mitochondria and proximity biotinylation approaches have 
identified a great wealth of mRNAs associated with mito-
chondria in a translation- dependent manner in various 
settings, ranging from yeast and plants to Drosophila and 
cultured human cell lines [47–49]. It has been reasoned that 

in fast growing organisms such as yeast, the speed of import 
may have to exceed the speed of protein translation at the 
ribosome in order to double the mitochondrial mass within 
one cell cycle, making co-translational import evolutionary 
unfavorable [50]. This may however not be as critical in 

Fig. 1  Biogenesis of mitochondrial proteins. A Mitochondrial transport 
along microtubules is facilitated by kinesin (anterograde transport) or 
dynein (retrograde transport) binding to Milton and Miro on the outer 
mitochondrial membrane, whereas Syntaphilin serves as a mitochon-
drial anchor. B Nuclear-encoded mitochondrial (NEM) mRNA can be 
transported along with mitochondria either translationally silent (I) or 
co-translationally (II). I: Pink1 mRNA, following an initial translation 
step, is bound by SYNJ2a within a region of its open reading frame, 
preventing complete translation until the Pink1 mRNA is eventually 
untethered. II: CLUH is able to bind NEM mRNAs through their 
3’UTR, facilitating interaction with ribosomal subunits and co-trans-
lational transport of the mRNAs followed by import of the newly syn-
thesized proteins into mitochondria. C The short-lived PINK1 protein 
is locally translated, following hitchhiking of its mRNA along with 
mitochondria via a complex consisting of SYNJ2a and its binding pro-

tein SYNJ2BP, an interaction that is enabled via SYNJ2BP phosphory-
lation by AMPK. Following local translation near endolysosomes, 
the PINK1 precursor is guided by the ER resident chaperon DNAJB6 
towards mitochondria (ER-SURF pathway). Functions of the PINK1 
protein include calcium signaling, mitophagy, or translational control. 
D The mRNA for MFF, on the other hand, colocalizes to mitochondria 
in the presence of FMRP within RNA granules, which are enriched at 
the midzone of mitochondria. MFF recruits Drp1 to the midzone of 
mitochondria and is thereby able to initiate mitochondrial fission. E 
For OXPHOS complexes, proteins from two different sources must 
be united: some of them are encoded within the mtDNA, allowing for 
local transcription as well as local translation. Others like Cox7c, Cox4 
and ATP5ß are encoded in the nucleus and require transport of their 
mRNA along with mitochondria which allows them to be translated 
locally
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The mitochondrial hitch-hiking of mRNAs was experi-
mentally shown to be the case for the Pink1 mRNA [60], 
as well as for the Cox7c mRNA [61], using live cell imag-
ing of mRNAs labelled by the MS2-tagging approach in 
cultured neurons. However, hitch-hiking of NEM encod-
ing mRNAs is not restricted to mitochondria. In recent 
years, mRNAs which are important for mitochondrial 
functions have been shown to also depend on the transport 
of endosomes and endolysosomes for their axonal local-
ization [62, 63]. Also other organelles, such as early endo-
somes, have been shown to associate with NEM encoding 
mRNAs [64]. Interestingly, several of these hitch-hiking 
events can be prevented by destabilization of the ribo-
some by treatment with Puromycin, suggesting that the 
nascent polypeptides may be involved in the targeting 
to the organelle. In the case of mitochondria, this can be 
mediated by an N-terminal MTS, as was shown both for 
Pink1 and Cox7c [60, 61]. How the translation-dependent 
targeting would allow an association of NEM nascent pro-
teins to organelles of the endolysosomal system remains 
to be determined, as the nascent chains of NEM proteins 
would not find suitable receptors on these types of mem-
branes. In addition to organellar hitch-hiking, some NEM 
mRNAs without a classical MTS have been shown to be 
transported within an mRNA granule, containing the RNA 
binding protein SFPQ, and to be locally translated within 
the vicinity of mitochondria [65]. Likewise, RNA granules 
marked by the RNA binding protein FMRP colocalize with 
the mRNA for MFF [66], allowing its local translation.

Local translation is especially relevant for short-lived 
proteins like PINK1, as the time to travel to the distal 
parts of the neurons exceed its life-time [67–69]. Local 
translation of PINK1 therefore ensures its availability for 
the detection of dysfunctional mitochondrial also in dis-
tal parts of axons, as will be outlined in the mitophagy 
chapter. Fittingly, the association of the Pink1 mRNA 
with mitochondria is not observed in fibroblasts unless 
its anchoring complex is overexpressed [60], as smaller 
(“shorter”) cells may not need to add this additional layer 
of regulation. Unlike Cox7c, Pink1 mRNA association is 
not only driven by translation. After an initial, translation 
and MTS-dependent targeting to the OMM, the Pink1 
mRNA becomes tethered to the OMM by binding to Syn-
aptojanin 2a (SYNJ2a) and its binding protein SYNJ2BP 
[70, 71] (Fig.  1B-I). SYNJ2a acts as the RNA binding 
protein in this complex, and interestingly binds within 
the coding region of the PINK1 open reading frame [60]. 
This suggests that unlike most NEM transcripts, the Pink1 
mRNA may be transported in a translationally silent state 
and needs to be untethered from its mitochondrial asso-
ciation to allow access of the ribosome to the part of the 
ORF that is otherwise bound by SYNJ2a.

slower dividing mammalian cells, and even less problematic 
in mature, postmitotic neurons. Indeed, two recent studies 
employed ribosome profiling on HEK293T cells and found 
that almost 20% of their identified mitochondrial proteins 
were co-translationally imported. Interestingly, the authors 
also observed that specifically proteins with a large size and 
complex topology relied on co-translational import [51, 52], 
with the interaction of the nascent chain with the import 
complexes likely being the driving force for the association 
of the mRNA. Interestingly, another observation included 
a second class of shorter proteins (under 200 amino acids) 
that were preferentially co-translationally imported which 
was due to their mRNAs being tethered to the OMM by 
interaction of the RNA-binding protein La ribonucleo-
protein domain family member 4 (LARP4) with A-kinase 
anchoring protein 1 (AKAP1) on the mitochondrial surface 
[52, 53]. Such association of the mRNA enables the hitch-
hiking of the transcripts along with mitochondrial traffick-
ing. In neurons this mode of mRNA transport coupled to 
local translation is emerging as a fundamental mechanism to 
allow local repair and adaption of mitochondria in the distal 
parts of a neuron.

Generally, mitochondrial mRNA association is enhanced 
by RNA-binding proteins that interact either with ribosomal 
subunits, or directly with NEM encoding mRNAs [46, 54]. 
One of these proteins is clustered mitochondria homolog 
(CLUH), whose role in the stability and mitochondrial tar-
geting of NEM mRNAs is conserved from yeast to human 
neurons [47, 55–58]. CLUH not only binds to the 3’UTR of 
many NEM mRNAs, but it also interacts with factors that 
enhance the re-initiation of translation at the same mRNA 
[55] (Fig.  1B-II). Loss of CLUH in neurons depletes the 
axonal pool of NEM transcripts, yet without affecting the 
movement of the remaining RNA particles [55]. Two sce-
narios may explain this observation: (i) CLUH has been 
shown to affect the stability of its clients, thus the lower 
abundance in axons may simply be a consequence of the 
reduced half-life of NEM mRNAs. This matches data from 
global mRNA abundance measurements in cultured neu-
rons, that find a relationship between the mRNA stability 
and the likelihood of its axonal localization [59]. (ii) As 
CLUH is necessary to localize ribosome recycling factors 
to the axon, it ensures the continued reassociation of the 
ribosomes to the same mRNA after completion of the first 
round of translation. This allows continued translation of 
the same NEM transcript and thus exposure of an MTS in 
close proximity to a potentially moving mitochondrion, 
and a continued interaction between the TOM complex and 
the MTS/ribosome/mRNA complex. In line with this idea, 
overexpression of the ribosome recycling factor ABCE1 
rescues mRNA abundance and growth deficits in CLUH 
knockout motoneurons [55].
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precursor needs to find its way back to mitochondria. Using 
correlative light and electron microscopy in combination 
with a PINK1 translation reporter, we now suggest that 
the gap between endolysosomes and mitochondria may be 
filled by the ER [75] (Fig. 1C). This enables the transport 
of the precursor of this transmembrane protein along the 
ER surface in order to reach mitochondria in association 
with ER-bound chaperones like DNAJB6 [75], as was 
shown for other mitochondrial transmembrane proteins in 
yeast [77]. This fits well with the above described role for 
ER-associated ribosomes in local protein synthesis.

On the other hand, the role of the endolysosomes in 
local PINK1 protein synthesis is less clear. While early 
endosomes may bring in the required ribosomes for 
PINK1 synthesis via the FERRY, the PINK1 protein 
translation sensor rather colocalized with markers of late 
endosomes or lysosomes [75]. Maturation of FERRY-
positive endosomes into late endolysosomes may underlie 
this observation, but this hypothesis needs to be tested. 
Additionally, the lysosomal surface serves as a signaling 
hub for both mTORC1 and AMPK signaling, and thus 
formation of mitochondria lysosome contacts may elicit 
the untethering of the Pink1 mRNA from SYNJ2BP on 
mitochondria. However, inhibition of mTORC1 does not 
prevent the untethering of the Pink1 mRNA [76], indicating 
that while activation of mTORC1 may contribute to the 
increased biogenesis of PINK1 upon activation of insulin 
signaling due to its effect on general translation initiation 
factors, it is not necessary for the initial untethering event. 
Finally, lysosomes will produce a local supply of amino 
acids depending on their degradative capacity. While this 
has not yet been shown to matter for local translation in 
neurons, a preprint observes a similar effect of lysosomes 
on translation at three-way junctions of ER in cultured 
cell lines [78]. Thus, lysosomes may serve as amid acid 
reservoirs across cell types.

Functions of locally translated mitochondrial 
proteins

Mitophagy, Ca2+ homeostasis and translational 
control exerted by PINK1

The best-known function of PINK1 is the detection of dam-
aged mitochondria and their demarcation for mitophagy, as 
will be described in the next chapter. Local translation of 
PINK1 therefore ensures the continued supply of this pro-
tein also to distal mitochondria in both axons and dendrites 
[60].

Beyond mitophagy, activation of PINK1 in response to 
mitochondrial damage has been described to repair rather 

Local translation of mitochondrial proteins 
occurs at organellar contact sites

Organellar hitch-hiking not only plays an important role 
in the transport of mRNAs into the axon, but also may be 
responsible for the localization of ribosomes within the 
axon. Ribosomes in axons, while rare and mostly translat-
ing as monosomes [72], seem to preferentially associate 
with endomembranes, including the ER [73] or early endo-
somes via the FERRY complex [64]. Removal of the ER 
from axons by heterodimer-induced forced association of 
retrogradely moving motor proteins overall reduced axo-
nal protein synthesis. A similar effect was observed for the 
knock down of p180/RRBP1, a ribosomal receptor on the 
ER [73]. Unlike the other ribosomal receptor on the ER, 
Sec61, RRBP1 is not directly associated with the ER trans-
locon, which allows ER-associated protein synthesis to 
exist uncoupled from import of the nascent chain into or 
across the ER membrane [74]. This would allow the synthe-
sis of not only secretory proteins targeted to the ER, but also 
ER-associated synthesis of cytosolic or even mitochondrial 
proteins. Whether the ER-associated ribosomes are actively 
transported into the axon along with ER tubule dynamics 
or whether they arrive in the axonal compartment by lateral 
diffusion or other means of transport has not been addressed 
experimentally. In contrast, association of ribosomes to 
early endosomes has been shown to depend on components 
of the FERRY complex [64]. This suggests that hitch-hik-
ing on early endosome during their transport into the axon 
may provide an active localization mechanism for axonal 
ribosomes.

Fittingly, it was shown that local hotspots of translation 
form at contact sites between mitochondria and 
endolysosomes, including translation of the OMM protein 
VDAC2 [62]. This is also the case for the local translation 
of MFF [66], where ribosomes at these contact sites were 
also visualized by CryoET. In the case of PINK1, local 
translation at mitochondria endolysosome contact sites 
was not only observed in axons but also in the soma 
[75]. Interestingly, the translation of PINK1 at these sites 
is regulated by metabolic signaling as association of the 
Pink1 mRNA to mitochondria depends on phosphorylation 
of SYNJ2BP by AMP-activated kinase (AMPK), which 
stabilizes the interaction between the RNA-binding 
protein SYNJ2a and the OMM protein SYNJ2BP [76]. 
Interestingly, this association limits the translation and 
subsequent functionality of PINK1. Inhibition of AMPK, 
as it occurs downstream of insulin signaling due to 
inhibitory phosphorylation of AMPK by AKT, leads to 
the dissociation of the Pink1 mRNA and its subsequent 
localization near endolysosomes (Fig. 1C) [76]. However, 
as a mitochondrial protein, the newly synthesized PINK1 
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These fission events were characterized by their symmetrical 
nature, which is attributed to MFF-mediated recruitment of 
DRP1 [86]. Indeed, FMRP-granules colocalized with MFF 
mRNA and local translation of MFF could be observed at 
mitochondria-endolysosomal contact sites ([66], Fig. 1D), 
in agreement with the notion that these organellar contact 
sites serve as translational hotspots in neurons [62]. This 
may also explain the previous observation that endolyso-
somes mark fission events in neurons [87]. The presence 
of ribosomes at these contacts was corroborated by Cryo-
electron microscopy, along with ER tubules marking the fis-
sion site [66]. This association of fission events with FMRP 
granules was not a frequent observation in non-neuronal 
cells, indicating that this mechanism may represent a unique 
adaption to the specific needs of neurons. In line with this, 
loss of FMRP leads to a reduction in MFF mRNA presence 
in axons, reduced association of the MFF transcript with 
mitochondria, and a reduction of mitochondrial fission in 
axons [66], suggesting that it impairs both the transport and 
the translation of the MFF transcript.

Local translation of OXPHOS components and the 
question of mtDNA-encoded subunits

On a more global scale, quantitative mass spectrometry and 
in vitro stimulation of isolated mouse synapses revealed 
that the synthesis of mitochondrial proteins is upregulated 
in response to NMDA administration [88]. Many of these 
newly synthesized proteins comigrated with complexes 
of the respiratory chain in Blue Native PAGE, suggesting 
that they are assembled into functional complexes [88]. 
This fits with the mitochondrial hitch-hiking of the mRNA 
encoding Cox7c as a subunit of complex IV of the respira-
tory chain [61]. Additionally, there is evidence that other 
mRNAs encoding further subunits of complex IV and V 
also co-localize with mitochondria in neurons [60, 76, 89, 
90]. While it has not been directly shown, this suggests that 
also the ability to perform OXPHOS may be altered by 
local translation of mitochondrial OXPHOS components 
(Fig. 1E). In favor of this hypothesis, addition of a protein 
translation inhibitor to the axonal compartment of neurons, 
cultured in compartmentalized chambers, decreases the 
membrane potential across the inner mitochondria mem-
brane [91], which is generated by the respiratory chain 
complexes I, III and IV. However, it is unclear whether this 
represents exchange of e.g. short-lived peripheral subunits 
[92], or a concerted de novo biogenesis of completely new 
complexes. Recently, the turnover of OXPHOS complexes 
was measured by feeding mice a pulse of the stable nitro-
gen isotope 15N followed by mass spectrometric analysis 
of mitochondria of different tissues, including whole brain 
[93]. This revealed that some mitochondrial proteins in 

than remove damaged mitochondria. It was shown in Dro-
sophila neurons as well as in HeLa cells that PINK1 over-
expression, but not expression of a Parkinson’s disease 
(PD)-linked mutant, leads to stimulation of localized trans-
lation of mRNAs encoding subunits of the respiratory chain 
[79]. This is achieved via phosphorylation and subsequent 
proteasomal degradation of translational repressors, includ-
ing Pumilio and Glorund/hnRNP-F [79]. Thus, the local 
translation of PINK1 at endolysosome-mitochondria contact 
sites will lead to a de-repression of translation and favor the 
local translation of also other mitochondrially-associated 
transcripts in a positive feedback loop (Fig. 1C). However, 
in Drosophila oocytes, PINK1 activation also prevents the 
transmission of deleterious mtDNA mutations through the 
germline by limiting the local production of factors neces-
sary for mtDNA replication [80]. To achieve this, PINK1 
activation on dysfunctional mitochondria leads to the 
phosphorylation of the RNA binding protein Larp, which 
is bound to the OMM protein MDI and normally mediates 
the localized translation of NEM mRNAs at the OMM [80, 
81]. This in turn dampens translation of mitochondrially-
associated mRNAs [80]. Thus, PINK1 activation can have 
opposite effects on localized translation near the OMM 
depending on the model system used. In mammalian cells, 
the Larp homologue LARP4 also binds nuclear-encoded 
mitochondrial transcripts [82], as does the MDI homologue 
AKAP1 [53], yet whether PINK1 plays a more direct role 
in coordinating localized translation in mammalian neurons 
remains to be determined.

Another role of PINK1 includes effects on local Ca2+ 
uptake and release from mitochondria, either directly via 
phosphorylation of LETM1, a putative Ca2+/H+ antiporter 
in the IMM [83], or indirectly via inhibition of PKA-medi-
ated phosphorylation of mitochondrial Na+/Ca2+ exchanger, 
NCLX [84]. Indeed, the major phenotype of PINK1 loss in 
neurons is not the accumulation of damaged mitochondria, 
but an increase in the cytoplasmic Ca2+ concentration that 
leads to cell death [85]. How local translation of PINK1 
affects the ability of individual mitochondria to modulate 
the local Ca2+ flux will be an interesting field of study. 
Whether any of the other regulators of mitochondrial Ca2+ 
flux are locally translated has not been studied. However, 
given the idea that modulation of Ca2+ flux may be the main 
function of mitochondria in the axon, this would be a pow-
erful way to further tune synaptic signaling through local 
protein translation.

Mitochondrial fission induced by FMRP mediates 
local translation of MFF

The RNA binding protein FMRP was recently shown to 
localize to sites of mitochondrial fission in neurons [66]. 
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seems reasonable, yet also places a “best before” date on 
an individual mitochondrion, unless it is resupplied by fus-
ing with a younger mitochondrion or replaced altogether. 
How frequently mitochondria are replaced in the periphery 
is a matter of debate, as with increasing age and maturity of 
neurons, less and less mitochondrial transport is observed in 
cortical axons in vivo [100]. However, this may also vary by 
the cell type, as a similar reduction has not been observed 
in axons of retinal ganglion cells even in aged mice [101]. 
How different cell types manage their mitochondrial bio-
genesis and whether they all rely to the same extent on 
mitochondrial transport and local translation of mRNAs 
encoding mitochondrial proteins remains an active area of 
research.

The second solution takes advantage of the fact that not 
all mitochondria entering the axon lack mtDNA. Even in 
the most extreme examples, around 10% of axonal mito-
chondria still carried mtDNA [95]. It may be exactly these 
mitochondria that serve as a local center of OXPHOS 
biogenesis. This is in line with the idea that translational 
hotspots occur not at all mitochondria equally, but may be 
allocated to mitochondria in specific positions, such as at 
axonal branch sites or in direct contact with an endolyso-
some. However, it remains an open question how this 
localized de novo biogenesis of OXPHOS complexes 
would benefit mitochondria outside of these specialized 
positions. Mixing of mitochondrial content may occur 
over time through fission and fusion, which are however 
restricted in axons due to the high number of stationary 
mitochondria [26]. Nevertheless, mtDNA replication also 
occurs in axons [102] and is associated with MFF driven 
fission [66], which could increase the number of “seeds” 
for de novo OXPHOS complexes. Replication of mtDNA 
depends on the translation-elongation factor eEF1A1 
of cytoplasmatic translation, suggesting coordination 
between cytoplasmic translation and the replication of 
mtDNA [102] that may also occur at the translational 
hotspots within the axon.

Degradation of mitochondrial proteins in 
neurons

In order to ensure mitochondrial quality control, different 
approaches can be taken by the cell. First, mitochondria 
possess their own set of proteases and chaperones, aiding 
in the processing and proper folding of mitochondrial pro-
teins [103, 104]. Secondly, damaged mitochondria can be 
removed via a mitochondria-specific form of autophagy 
– mitophagy [105]. In recent years, mitochondria-derived 
vesicles (MDVs) have also been investigated as a mitochon-
drial quality control mechanism [106] (Fig. 2).

brain mitochondria, including many subunits of the respi-
ratory chain complexes, display exceptionally long half-
lives of up to several months. On average, complex III and 
V are more long lived than complexes I, II, and IV, and 
membrane-embedded subunits have higher stability than 
matrix-exposed subunits e.g. within complex I [93]. While 
this suggests that the matrix-exposed subunits may benefit 
from replacement via local translation of their encoding 
mRNA in the long run, it remains doubtful whether this 
would be measurable in the short timeframe stimulation 
with NMDA or the inhibition of axonal translation. This 
leaves the possibility that de novo biogenesis of OXPHOS 
complexes may occur locally.

However, de novo biogenesis of most respiratory 
chain complexes also requires the incorporation of one or 
more proteins that are encoded within the mitochondrial 
genome (mtDNA, Fig.  1E). The coordination between 
cytoplasmic translation with the translation of mtDNA to 
generate stochiometric amounts of proteins is an ongoing 
area of research even in non-neuronal cells [94]. To 
complicate the matter, it has been suggested that some, 
if not most, axonal mitochondria lack mtDNA [95], 
questioning the idea that de novo synthesis of complete 
respiratory chain complexes can occur in axons. Indeed, 
the majority of electron transport chain complexes seemed 
to be downregulated in synaptic mitochondria [96]. This 
is in line with results from a recent preprint, where the 
authors performed proteomics on mitochondria isolated 
from MitoTag mice and found that axonal mitochondria 
possessed reduced mtDNA expression levels. In addition, 
compared to their somato-dendritic counterparts, axonal 
mitochondria showed decreased levels of proteins involved 
in translation and oxidative phosphorylation, and instead 
seemed to favor fatty acid oxidation [97].

There is however evidence that local translation of mito-
chondrially encoded proteins actually happens in axons: 
Using clickable non-canonical amino acids in the pres-
ence of inhibitors of the cytoplasmic ribosome, mitochon-
drial translation was detected in both axons and dendrites 
of neurons in culture [98]. Additionally, local translation of 
mitochondrial initiation factor 3 (mtIF3) has been reported 
in axons in response to brain-derived neurotrophic factor 
(BDNF) signaling [99]. This is one of only two translation 
initiation factors in mitochondria, and fittingly, its local 
translation boosts formation of the mitoribosome in axons 
[99]. Two possible solutions could reconciliate the absence 
of mtDNA with continued translation of mitochondrially 
encoded mRNAs. Firstly, mitochondria that enter the axon 
lacking mtDNA may still carry enough mRNA to sustain a 
limited amount of de novo biogenesis of OXPHOS com-
plexes in the periphery. As also the mRNA associated to the 
outside of mitochondria cannot be replenished, this scenario 
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the protease remained inactive, possibly contributing to 
the accumulation of damaged proteins [125]. How MPP+ 
causes Lon dysfunction remains unclear, yet this study dem-
onstrates the tight link between mitochondrial quality con-
trol and PD beyond the genetic linkages mentioned above. 
Enhancing protease function in PD might therefore be an 
interesting avenue for future research.

Similarily, Clp protease can counteract PD-associated 
phenotypes [126]. In eukaryotes, the protease named ClpXP 
is made up of two components: the AAA + ATPase ClpX, 
which unfolds protein targets, and the peptidase ClpP, which 
is responsible for the protein degradation [127]. Decrease 
of ClpP in dopaminergic SH-SY5Y cells is triggered by 
accumulation of the PD-associated protein aggregate alpha-
synuclein and leads to the increased production of reactive 
oxygen species [128]. Conversely, enhancing ClpP lev-
els in alpha-synuclein A53T mice, a PD model carrying a 
missense alpha-synuclein mutant, reduces the pathological 
phosphorylation of alpha-Synuclein at serine 129 [126].

Moving from the matrix to the mitochondrial inner 
membrane, the m-AAA consists of a complex containing 
paraplegin and AFG3L2, but AFG3L2 is also able to form a 
homo-oligomeric complex [129–131]. In the brain, Afg1l1 
is another, less abundant, complex component of the m-
AAA [131]. Targets of the m-AAA include cytochrome c 
peroxidase (CCp1), and the ribosomal mitochondrial pro-
tein MrpL32 [131]. Failure to process the latter protein has 
been associated with impaired mitochondrial protein syn-
thesis [132], again linking degradative function to protein 
biogenesis in mitochondria. Paraplegin-deficient mice were 
also characterized by neurobiologically defects such as 
impaired axonal transport, visually affected mitochondria 
(e.g. abnormal cristae), and progressive axonal degenera-
tion [119].

HTRA2/Omi is another protease shown to localize to the 
IMM under normal conditions, but is able to catalytically 
process itself before it translocates to the cytosol. There it 
is able to interact with its targets, including the X-linked 
inhibitor of apoptosis proteins (XIAP), which is inhibited by 
this interaction [133–135]. Downstream, this interaction has 
been shown to result in cell death [133]. However, HTRA2/
Omi appears to serve a neuroprotective role as knockdown 
of the protease in mice resulted in abnormal neurological 
behavior, neuron loss and early lethality [134], fitting to its 
association with PD [136]. Recently, DELE1, a sensor for 
unfolded proteins within the mitochondrial matrix (UPRmt) 
[137, 138], has been reported to be another substrate of 
HTRA2/Omi [139]. Cleaved DELE1 binds and stimulates 
HRI [137], which in turn phosphorylates eIF2alpha and ini-
tiates the integrated stress response (ISR) [140]. Activation 
of the ISR attenuates cytoplasmic translation, but enables 
the specific translation of the transcription factor ATF4 

Proteases

The electron transport chain residing in the IMM is a major 
source of reactive oxygen species within the cell [107], 
which easily oxidize proteins within mitochondria, often 
resulting in their inactivation [108]. This is counteracted by 
a system of proteases within mitochondria (Fig.  2A) that 
not only keep mitochondrial homeostasis by removing mis-
folded or oxidized proteins, but also play important regula-
tory functions during protein import and complex assembly 
(reviewed by Deshwal et al. [107]).

All inner-mitochondrial compartments contain dedi-
cated proteases for mitochondrial protein quality control: 
Lon and CLpXP (caseinolytic peptidase P) proteases are 
located within the matrix [109–111], while two proteases 
of the ATPases Associated with various cellular activities 
(AAA) family surveil the inner membrane with one fac-
ing the matrix (m-AAA) and the other facing the inter-
membrane space (IMS, i-AAA) [112–114]. Additionally, 
the IMS is also guarded by the HTRA2 (high temperature 
requirement A2)/Omi protease [115]. As they are located 
within mitochondria, it is assumed that they will be pres-
ent in all neuronal subcompartments, but experimental evi-
dence for this is still lacking. However, their importance in 
neurons is evident due to the link between genetic mutations 
in some protease subunits and neurodegenerative disorders. 
For example, HTRA2 mutations are linked to PD [116, 117] 
and deletions as well as mutations of Paraplegin, an m-AAA 
subunit, have been associated with hereditary spastic para-
plegia (HSP) [118, 119], an upper motor neuron disease. 
Thus, mitochondrial proteases form the first layer of defense 
against mitochondrial dysfunction in neurons.

In the matrix, an oxidized form of the TCA cycle enzyme 
aconitase is degraded preferentially by the Lon protease 
[120]. In line with this, downregulation of Lon leads to 
the accumulation of damaged aconitase [120], as well as 
to reduced OXPHOS assembly and even cell death [121]. 
Lon also binds to mitochondrial DNA directly and associ-
ates with Twinkle, the helicase for mtDNA [122, 123]. Lon 
is therefore not only an important part of the degradative 
system of mitochondria, but may also regulate mitochon-
drial protein biogenesis through its processing of proteins 
responsible for mtDNA replication or transcription [123]. 
In neurons, Lon protease was investigated in the context of 
the PD model of treatment with the toxin MPTP (1-Methyl-
4-phenyl-1,2,3,6-tetrahydropyridin), which selectively 
damages dopaminergic neurons due to its conversion into 
the neurotoxin MPP+ [124, 125]. This leads to an accu-
mulation of oxidized and carbonylated proteins, including 
aconitase and OXPHOS proteins, consistent with a loss of 
Lon function [125]. Although human post-mortem tissue 
of PD tissue revealed increased expression levels of Lon, 
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Fig. 2  Mitochondrial protein degradation. A Mitochondrial proteases 
can be divided based on their localization: ClpPX and Lon make up 
the proteases surveilling the mitochondrial matrix, with Lon targeting 
both mitochondrial DNA as well as aconitase, an enzyme of the TCA 
cycle. The inner mitochondrial membrane (IMM) contains the i-AAA, 
m-AAA (targeting the cytochrome c peroxidase (Ccp1) as well as the 
ribosomal protein MrpL32), and HTRA2. HTRA2 is able to process 
itself and subsequently translocates to the cytosol where it processes 
its targets XIAP and DELE1. B In healthy mitochondria, PINK1 is 
quickly imported and processed by the proteases PARL and MPP (I). 
In contrast, when mitochondria are damaged and their membrane 
potential is depolarized (II), PINK1 stabilizes on the mitochondrial 
surface where it then phosphorylates target proteins, resulting in the 
recruitment of Parkin to mitochondria, which in turn ubiquitinylates 

phosphorylated proteins. This results in a positive feedback loop lead-
ing to the formation of phospho-ubiquitin chains, which can be recog-
nized by NDP52 or Optineurin, and subsequently LC3, triggering the 
formation of a phagophore membrane around the tagged mitochondria. 
Upon fusion with lysosomes, autolysosomes are formed and digest 
the damaged mitochondria. C Mitochondria-derived vesicles (MDV) 
can form upon mitochondrial damage, for example triggered by treat-
ment with Antimycin A, and package specific cargo, e.g. Syntaphilin 
(SNPH). SNPH-containing MDVs can then be transported along with 
late endosomes towards the soma of neurons where they are degraded 
by lysosomes. Additionally, treatment with Antimycin A can result in 
the formation of MDVs in a Parkin/PINK1-dependent manner that 
results in lysosomal degradation of these MDVs independently of 
mitophagy as described in B.
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models, it will be imperative to understand which path-
ways trigger basal mitophagy in neurons. Selective basal 
mitophagy has been hypothesized to be independent of the 
damage-induced PINK1-Parkin pathway (see below) [149] 
and instead to be mediated by receptors such as the Bcl-2 
interacting protein 3 (BNIP3L). BNIP3L has been shown 
to be responsible for mitophagic flux during neuronal 
development [156], but also partially appears to be able to 
compensate for PINK1 deficiency in more mature neurons 
[157]. The mechanisms of BNIP3L-mediated mitophagy 
are reviewed elsewhere [158]. It is likely that both redun-
dant mechanisms for basal mitophagy in different subcellu-
lar compartments as well as dedicated mechanisms to detect 
damaged mitochondria coexist, and that neuronal cell type 
diversity is reflected in their reliance on one pathway over 
the other.

Most work in neurons has focused on the damage-induced 
PINK1-Parkin pathway of mitophagy (Fig.  2B), given its 
association to PD [159, 160]. As a mitochondrial protein, 
PINK1 resides on mitochondria, orienting its C-terminal 
kinase domain towards the cytoplasm [161]. In healthy cells 
with an intact mitochondrial membrane potential, PINK1 is 
quickly imported into mitochondria via TOM and TIM23 
[162, 163] before it is primarily cleaved by PARL and MPP, 
but also by m-AAA and ClpXP [164, 165], and protein 
remains undergo proteasomal degradation [166].

However, when the mitochondrial membrane potential is 
disrupted, PINK1 no longer gets imported into mitochon-
dria and instead stabilizes on the OMM [167, 168], where 
it subsequently undergoes autophosphorylation [169] and 
phosphorylates target proteins such as ubiquitin [170–172]. 
Another one of these target proteins is Miro, resulting in its 
degradation and subsequently halting mitochondrial move-
ment [173].

Additionally, phosphorylation of ubiquitin in the vicinity 
of the OMM leads to the recruitment of the E3 ubiquitin 
ligase Parkin to mitochondria [169, 170, 174, 175]. Parkin 
continues to ubiquitinate phosphorylated OMM proteins 
[176], and these ubiquitin chains are then further phosphor-
ylated by PINK1 [177]. PINK1 also phosphorylates Par-
kin at Serin 65, further enhancing its activity [171]. These 
reactions of phosphorylation and subsequent ubiquitination 
result in the formation of phospho-ubiquitin chains on the 
damaged mitochondria [177]. The first reaction to the phos-
phorylation of OMM proteins is in most cases their selective 
removal from the OMM and degradation via the proteasome 
[176]. This is the case for Miro [173] as well as the Mito-
fusins [178]. This results in mitochondrial fragmentation, 
preventing the fusion of damaged with healthy mitochon-
dria, and thereby promoting mitophagy [179]. Recruitment 
of the AAA + ATPase, p97/VCP, to mitochondria helps with 
the extraction of the OMM proteins from the membrane and 

[141]. This may also occur in the periphery of neurons, as 
also the mRNA of ATF4 is locally available [142] and, like 
other locally synthesized nuclear proteins [143], its retro-
grade transport will enable transcriptional changes triggered 
by the ISR. However, whether the transcriptional response, 
including the upregulation of mitochondrial proteases and 
chaperons, can in any way be targeted to the source or if 
all mitochondria will benefit from the change is unknown. 
Depending on the cell line, DELE1 can also be cleaved by 
another mitochondrial protease, OMA1 [144]. In fact, loss 
of HTRA2 was linked to increased instead of decreased 
induction of CHOP [145], an ATF4 target, suggesting that 
OMA1 may compensate for the loss of HTRA2 and medi-
ate DELE1 cleavage. However, the absence of HTRA2 still 
increased levels of ROS and caused an excess of unfolded 
proteins in mitochondria [145], supporting its role in ame-
liorating UPRmt.

Interestingly, HTRA2/Omi itself seems to be phosphory-
lated by PINK1 upon mitochondrial stress, likely resulting 
in its enhanced activity. Subsequently, PD patients carrying 
PINK1 mutations show decreased HTRA2 phosphorylation 
levels in brain tissue [136]. It would be tempting to specu-
late that the stress response enhancing HTRA2 phosphory-
lation by PINK1 is also linked to mitophagy or an altered 
UPRmt, but so far, the involvement of HTRA2 in the PINK1/
Parkin pathway of mitophagy has been disputed [146, 147].

Mitophagy

Mitochondria can be subjected to a special form of autoph-
agy, called mitophagy [105]. Selective, distinct pathways 
cull mitochondria upon different cues, such as during the 
elimination of mitochondria during erythrocyte develop-
ment, during hypoxia or upon mitochondrial damage [148]. 
Some basal turnover of mitochondria is required in neurons 
to balance mitochondrial biogenesis to maintain mitochon-
drial numbers [26]. Overall, mitophagic flux in neurons is 
rather low [149], which may be due to a high expression of 
negative regulators of autophagy [150], which restricts also 
the degradation of mitochondria by general, non-selective 
autophagy. Interestingly, mitochondrially-derived proteins, 
especially those associated with mtDNA, still make up a 
major factor of the autophagosomal content in the brain 
[151], arguing that also targeted mechanisms to remove 
mitochondria or mitochondrial content contribute to the 
turnover of mitochondria in the brain. Some autophago-
somes form at the tip of axons and mature on their way to 
the soma [152], while other studies suggest that mitochon-
dria first move retrogradely before they are captured by the 
autophagosomal machinery [153, 154] or are exclusively 
degraded in the soma [155]. To reunite all these different 
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for damaged mitochondria to be moved out of the axons. 
Testing their observation in PD and ALS mouse models, 
the authors were able to observe the same decrease in Syn-
taphilin levels [187].

Mitostasis in neurons

Taken together, the previous chapters highlight the neuron-
specific adaptions mitochondrial biogenesis and degrada-
tion have to undergo to support the extended morphology 
in neurons. While mitostasis is essential for all cell types, 
neurons are especially dependent on healthy mitochondria. 
Neurons are post-mitotic and, once fully developed, are lim-
ited in their numbers as neurogenesis in adults takes place 
scarcely [188, 189], facing them with the challenge to either 
function properly or be subjected to cell death. Reduced 
mitochondrial quality control, ranging from mitochondrial 
proteases to MDVs and mitophagy, will impact neurons 
more than most other cell types. Similarly, failure to trans-
port mitochondria, and the mRNAs associated with them, 
will over time lead to the accumulation of dysfunctional 
organelles in the periphery [26]. Some mitochondrial dam-
age may be repaired locally, e.g. through local translation 
of mitochondrial components, including PINK1 with its 
multifaceted downstream targets that further enhance local 
translation [79], activate the UPRmt via phosphorylation of 
HTRA2 [136], and by initiating the removal of dysfunc-
tional proteins via MDVs [186]. Only in the most extreme 
cases, PINK1 may actually activate mitophagy, as under 
basal conditions the amount of PINK1-dependent mitoph-
agy in neurons is negligible [149]. This is all sustained by 
the transport of its mRNA via mitochondrial mRNA hitch-
hiking [60] and its local translation, again showing the 
importance of local translation for mitostasis in neurons. 
Several questions remain to be solved, for example how 
communication with the nucleus is orchestrated in neurons. 
Retrograde transport of locally-synthesized transcription 
factors such as ATF4 upon activation of the UPRmt/ISR can 
mediate this communication, but mitochondria also have 
been reported to form direct contact sites with the nucleus 
that sustain pro-survival signaling [190]. Do retrogradely 
travelling mitochondria serve as sentinels that bring news 
from the periphery? And is a directed transport of replace-
ment mitochondria into affected areas possible or will all 
transcriptional measures remain a global response? Only 
future research will be able to answer these questions.
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the release of mitochondria from ER contacts mediated by 
those OMM proteins [180].

Extensively phospho-ubiquitinated mitochondria can 
be recognized by autophagy receptors, including NDP52 
and optineurin [181]. Proteins on phagophores, such as the 
microtubule-associated protein light chain 3B (LC3B) are 
also recruited, resulting in the formation of autophagosomes 
around the labelled mitochondria [182]. Fusion with lyso-
somes and the formation of autolysosomes is followed by the 
acidic degradation of the damaged mitochondria [182]. Inter-
estingly, a recent pre-print suggests that while PINK1-Parkin 
activation can take place throughout the axon and its termi-
nals, phagophore formation seemed to be spatially restricted 
to boutons, placing this step of mitophagy in the necessary 
lipid-rich environment. While this may be beneficial for 
facilitating mitophagy, it also appears to make pre-synapses 
more vulnerable to mitophagy-defects, again highlighting the 
importance of this pathway especially in neurons [157].

Mitochondria-derived vesicles (MDVs)

While mitophagy clears whole mitochondria, the enrich-
ment of some but not all mitochondrial proteins in autopha-
gosomes in the brain suggests that piecemeal forms of 
autophagy must exist in the brain [151]. Also other path-
ways, including mitochondria-derived vesicles, could 
deliver selected cargo to lysosomes. Only the size of 
60–150  nm, MDVs originate from mitochondria mostly 
independently of DRP1, and selectively choose their cargo 
[183, 184], before its delivery to lysosomes or peroxisomes 
([185], reviewed by Sugiura et al. [104]. MDV transport can 
be initiated e.g. by oxidative stress, which increases their 
loading with oxidized subunits of complexes II, III and IV, 
and may contain both OMM and IMM membranes [184]. 
Knockdown of Parkin also resulted in less formation of 
an MDV-subtype upon Antimycin A treatment, a process 
that was also dependent on the presence of PINK1 [186] 
(Fig. 2C, upper part). Interestingly, this elimination of dam-
aged proteins via MDVs could act as a mitochondrial qual-
ity control mechanism, preceding loss of the mitochondrial 
membrane potential and subsequent mitophagy [186].

In neurons treated with Antimycin A, Lin et al. [182] 
observed a reduction in Syntaphilin in axonal mitochondria. 
Immuno-electron microscopy revealed that Syntaphilin 
was indeed redistributed within stressed mitochondria and 
eventually shed via MDVs. However, these MDVs do not 
remain in the vicinity of mitochondria but instead hitch a 
ride with late endosomes towards the soma, where they 
are then lysosomally degraded (Fig.  2C lower part). The 
absence of Syntaphilin at mitochondria should then allow 
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