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Abstract

Neurons have adapted the transport and positioning of mitochondria to fit their extended shape and high energy needs.
To sustain mitochondrial function, neurons developed systems that allow local biogenesis and adaption to locally regulate
mitochondrial form and function. Likewise, fine-tuned degradative systems are required to protect the neurons from mito-
chondrial dysfunction. Throughout both domains of mitostasis, the local synthesis of the mitochondrial damage-induced
kinase PINK1 emerges as a central player. Along with other nuclear encoded mitochondrial proteins, its mRNA associates
with mitochondria to sustain mitochondrial function locally. It also regulates mitochondrial degradation, via regulation of
proteases, the generation of mitochondria-derived vesicles and mitophagy. In this review, we provide a general overview
of the mechanisms governing mitochondrial health in neurons, with a special focus on the role of PINK1 in this endeavor.
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Mitochondrial dynamics in neurons

Mitochondria arose from an ancestral bacterium that was
retained after engulfment by the precursor of eukaryotic
cells, creating an endosymbiotic relationship that enabled
the development of metazoans [1]. Reminiscent of their
evolutionary origin, mitochondria resemble rod-like bac-
teria, especially in the axon of neurons where they mostly
occur as solitary, roughly 1 um long organelles [2]. In den-
drites however, they can display a more elongated, fused
morphology. Interestingly, even though mitochondrial den-
sity is high in dendrites, they form stable compartments
that are isolated from each other as seen by the spread of
a photoconvertible matrix protein [3]. Finally, in the soma
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of neurons, mitochondria form a reticular network [4].
How the different shapes of mitochondria in the neuronal
sub-compartments are created or maintained is still incom-
pletely understood.

Mitochondrial fission is regulated by recruitment of the
cytosolic GTPase dynamin-related protein 1 (DRP1) to the
mitochondrial outer membrane by various adaptor proteins,
including mitochondrial fission factor (MFF) [5]. Fusion on
the other hand relies on the two GTPases optic atrophy 1
(OPA1) in the inner mitochondrial membrane (IMM, [6])
and Mitofusinl/2 (MFN1/2) in the outer mitochondrial
membrane (OMM, [7]). Unsurprisingly, depletion of MFF
increases mitochondrial length, which is especially evident
in axonal mitochondria, yet does not alter the mitochon-
drial mass within axons [8]. This suggests that the trans-
port of mitochondria and their distribution throughout the
axon follows some still undetermined rules that ensure
proper occupancy. One study suggests that spacing of axo-
nal mitochondria is determined by the local ATP supply, as
removal of one mitochondrion by light-triggered activa-
tion of the phototoxic protein KillerRed targeted to mito-
chondria (mitoKillerRed) elicited a decrease in motility
of nearby mitochondria, essentially enhancing their arrest
at the site of depletion [9]. This aligns with the observa-
tion that mitochondria are stationed at sites of high energy
demand, including the presynapse, nodes of Ranvier or
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axonal growth cones [10—12]. However, while neurons rely
mostly on mitochondrially-derived ATP as a whole [13], not
all synapses contain resident mitochondria, and glycolysis
or diffusion may be sufficient to provide ATP at these sites
[14, 15]. Nevertheless, mitochondria also fundamentally
alter the synaptic release probability due to their Ca*" buff-
ering activity [16, 17]. However, the factors that promote
mitochondrial arrest at some synapses but not others remain
elusive.

Mitochondrial positioning has also been linked to the
extension of axon branches [18], which is also negatively
affected by MFF knockdown [8]. This may be due to the
role that mitochondrially-derived ATP plays in support-
ing local translation in both axons and dendrites [3, 19], as
local translation of cytoskeletal elements may be necessary
for branch formation as well as for spine outgrowth. Vice
versa, formation of actin cages around mitochondria serves
to arrest mitochondria after their long-range transport on
microtubules. Pharmacological depolymerization of Actin
destabilizes the dendritic mitochondrial compartments [3]
and mobilizes previously stationary mitochondria in the
axon [20]. In addition, several mechanisms exist that regu-
late transport and arrest of mitochondrial transport along
microtubules (reviewed by Pekkurnaz & Wang [21]). These
often target the mitochondrial motor adaptor complex,
consisting of the OMM protein RHOT1/2 (Mirol/2) and
TRAK1/2 (Milton) [22-24], which connect mitochondria
to kinesin and dynein, or the anchoring protein Syntaphilin
[25], (Fig. 1A). Mitochondria move at a speed of approx.
0.5 um/s in neurons with frequent pauses, and at any given
time only a small fraction of mitochondria is observed in
motion [26]. Their motility as well as their shape changes
during development and aging, with motility decreasing
as more and more mitochondria reach their final destina-
tion. As protein synthesis in neurons occurs primarily in the
somato-dendritic area [27], this might lead to an aging pop-
ulation of mitochondria in distal axons over time. Indeed,
a gradient of younger to older mitochondria along neurites
is observed by the use of a mitochondrially-targeted fluo-
rescent protein whose maturation from a protein emitting
green fluorescence to red fluorescence has been engineered
to occur only after approximately 24 h (mitoTimer), allow-
ing a ratiometric readout of its relative age [28]. This probe
however does not replicate the intricate relationship some
mRNAs encoding mitochondrial proteins have with their
encoded protein’s target organelle (see next chapter), and
thus is not fully representative of the age of mitochondria.

Proper balance of mitochondrial dynamics is crucial for
neuronal development and health. Following early differen-
tiation, neurons undergo a switch in their metabolism from
generating most of their energy via glycolysis in the begin-
ning, to heavily relying on oxidative phosphorylation, and
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therefore mitochondria, for their energy production as mature
neurons [13, 29, 30]. This metabolic switch is accompa-
nied by changes in mitochondrial dynamics, involving both
fusion and fission [31, 32], and also impacts neuronal size
and complexity [33]. Neuron-specific knock outs of Drpl in
mice led to smaller forebrains, and primary cultures derived
from these mice displayed less neurites, lower expression
of synapse markers and disturbed mitochondrial distribution
[32]. Loss of fusion on the other hand also impairs neuronal
function. Purkinje cells in Mfn2-deficient mice decrease in
size and display a decreased number of branches and spines.
This was accompanied by a reduction in OXPHOS activ-
ity, in line with mitochondrial fusion being a prerequisite
for maintenance of mtDNA [34]. Furthermore, mutations in
Mitn2 have been linked to the Charcot-Marie-Tooth type 2 A
(CMT2A) disease [35, 36]. One study suggested that Mfn2
can interact with Miro and Milton, and that an impaired
Mifn2 could thus result in impaired axonal mitochondrial
transport, possibly contributing to axonal degeneration in
CMT [37]. Mitochondrial dynamics thus set the stage for
proper mitochondrial distribution and function in the ner-
vous system.

Biogenesis of mitochondrial proteins in
neurons is sustained by mitochondrial
mRNA association

Mammalian mitochondria contain around 1500 proteins, of
which more than 99% are encoded in the nucleus ([38—40]).
In order to sort the nuclear encoded mitochondrial (NEM)
proteins to the correct compartment after their synthesis
on cytosolic ribosomes, specialized import pathways have
evolved to accommodate the various topologies of proteins
across the two mitochondrial membranes, the inter mem-
brane space and the innermost matrix [41]. The translocase
of the OMM (TOM complex) hereby serves as the main
entry gate into the organelle and is equipped with receptors
that recognize either a N-terminal amphipathic helix, the
classical mitochondrial targeting sequence (MTS) recog-
nized by Tom22/Tom20 [42], or internal sequences of mito-
chondrial protein precursors, that are guided by chaperones
and recognized by Tom70 [43]. Chaperones are also crucial
for mitochondrial protein import to prevent premature fold-
ing of mitochondrial precursors, as import needs to occur
in an unfolded state to allow threading through the narrow
tunnels of the translocases [44].

While most protein import into mitochondria can
occur post-translationally, co-translational targeting has
been observed, although it had been viewed as the excep-
tion, and can be enhanced by localizing translation close
to the mitochondrial surface [45, 46]. Analysis of isolated
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Fig.1 Biogenesis of mitochondrial proteins. A Mitochondrial transport
along microtubules is facilitated by kinesin (anterograde transport) or
dynein (retrograde transport) binding to Milton and Miro on the outer
mitochondrial membrane, whereas Syntaphilin serves as a mitochon-
drial anchor. B Nuclear-encoded mitochondrial (NEM) mRNA can be
transported along with mitochondria either translationally silent (I) or
co-translationally (II). I: Pink! mRNA, following an initial translation
step, is bound by SYNJ2a within a region of its open reading frame,
preventing complete translation until the Pinkl mRNA is eventually
untethered. II: CLUH is able to bind NEM mRNAs through their
3’UTR, facilitating interaction with ribosomal subunits and co-trans-
lational transport of the mRNAs followed by import of the newly syn-
thesized proteins into mitochondria. C The short-lived PINK1 protein
is locally translated, following hitchhiking of its mRNA along with
mitochondria via a complex consisting of SYNJ2a and its binding pro-

mitochondria and proximity biotinylation approaches have
identified a great wealth of mRNAs associated with mito-
chondria in a translation- dependent manner in various
settings, ranging from yeast and plants to Drosophila and
cultured human cell lines [47—49]. It has been reasoned that
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tein SYNJ2BP, an interaction that is enabled via SYNJ2BP phosphory-
lation by AMPK. Following local translation near endolysosomes,
the PINK1 precursor is guided by the ER resident chaperon DNAJB6
towards mitochondria (ER-SURF pathway). Functions of the PINK1
protein include calcium signaling, mitophagy, or translational control.
D The mRNA for MFF, on the other hand, colocalizes to mitochondria
in the presence of FMRP within RNA granules, which are enriched at
the midzone of mitochondria. MFF recruits Drpl to the midzone of
mitochondria and is thereby able to initiate mitochondrial fission. E
For OXPHOS complexes, proteins from two different sources must
be united: some of them are encoded within the mtDNA, allowing for
local transcription as well as local translation. Others like Cox7c, Cox4
and ATP5B are encoded in the nucleus and require transport of their
mRNA along with mitochondria which allows them to be translated
locally

in fast growing organisms such as yeast, the speed of import
may have to exceed the speed of protein translation at the
ribosome in order to double the mitochondrial mass within
one cell cycle, making co-translational import evolutionary
unfavorable [50]. This may however not be as critical in
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slower dividing mammalian cells, and even less problematic
in mature, postmitotic neurons. Indeed, two recent studies
employed ribosome profiling on HEK293T cells and found
that almost 20% of their identified mitochondrial proteins
were co-translationally imported. Interestingly, the authors
also observed that specifically proteins with a large size and
complex topology relied on co-translational import [51, 52],
with the interaction of the nascent chain with the import
complexes likely being the driving force for the association
of the mRNA. Interestingly, another observation included
a second class of shorter proteins (under 200 amino acids)
that were preferentially co-translationally imported which
was due to their mRNAs being tethered to the OMM by
interaction of the RNA-binding protein La ribonucleo-
protein domain family member 4 (LARP4) with A-kinase
anchoring protein 1 (AKAP1) on the mitochondrial surface
[52, 53]. Such association of the mRNA enables the hitch-
hiking of the transcripts along with mitochondrial traffick-
ing. In neurons this mode of mRNA transport coupled to
local translation is emerging as a fundamental mechanism to
allow local repair and adaption of mitochondria in the distal
parts of a neuron.

Generally, mitochondrial mRNA association is enhanced
by RNA-binding proteins that interact either with ribosomal
subunits, or directly with NEM encoding mRNAs [46, 54].
One of these proteins is clustered mitochondria homolog
(CLUH), whose role in the stability and mitochondrial tar-
geting of NEM mRNAs is conserved from yeast to human
neurons [47, 55-58]. CLUH not only binds to the 3’UTR of
many NEM mRNAs, but it also interacts with factors that
enhance the re-initiation of translation at the same mRNA
[55] (Fig. 1B-II). Loss of CLUH in neurons depletes the
axonal pool of NEM transcripts, yet without affecting the
movement of the remaining RNA particles [55]. Two sce-
narios may explain this observation: (i) CLUH has been
shown to affect the stability of its clients, thus the lower
abundance in axons may simply be a consequence of the
reduced half-life of NEM mRNAs. This matches data from
global mRNA abundance measurements in cultured neu-
rons, that find a relationship between the mRNA stability
and the likelihood of its axonal localization [59]. (ii) As
CLUH is necessary to localize ribosome recycling factors
to the axon, it ensures the continued reassociation of the
ribosomes to the same mRNA after completion of the first
round of translation. This allows continued translation of
the same NEM transcript and thus exposure of an MTS in
close proximity to a potentially moving mitochondrion,
and a continued interaction between the TOM complex and
the MTS/ribosome/mRNA complex. In line with this idea,
overexpression of the ribosome recycling factor ABCEI
rescues mRNA abundance and growth deficits in CLUH
knockout motoneurons [55].

@ Springer

The mitochondrial hitch-hiking of mRNAs was experi-
mentally shown to be the case for the Pinkl mRNA [60],
as well as for the Cox7c mRNA [61], using live cell imag-
ing of mRNAs labelled by the MS2-tagging approach in
cultured neurons. However, hitch-hiking of NEM encod-
ing mRNAs is not restricted to mitochondria. In recent
years, mRNAs which are important for mitochondrial
functions have been shown to also depend on the transport
of endosomes and endolysosomes for their axonal local-
ization [62, 63]. Also other organelles, such as early endo-
somes, have been shown to associate with NEM encoding
mRNAs [64]. Interestingly, several of these hitch-hiking
events can be prevented by destabilization of the ribo-
some by treatment with Puromycin, suggesting that the
nascent polypeptides may be involved in the targeting
to the organelle. In the case of mitochondria, this can be
mediated by an N-terminal MTS, as was shown both for
Pinkl and Cox7c [60, 61]. How the translation-dependent
targeting would allow an association of NEM nascent pro-
teins to organelles of the endolysosomal system remains
to be determined, as the nascent chains of NEM proteins
would not find suitable receptors on these types of mem-
branes. In addition to organellar hitch-hiking, some NEM
mRNAs without a classical MTS have been shown to be
transported within an mRNA granule, containing the RNA
binding protein SFPQ, and to be locally translated within
the vicinity of mitochondria [65]. Likewise, RNA granules
marked by the RNA binding protein FMRP colocalize with
the mRNA for MFF [66], allowing its local translation.

Local translation is especially relevant for short-lived
proteins like PINK1, as the time to travel to the distal
parts of the neurons exceed its life-time [67—69]. Local
translation of PINK1 therefore ensures its availability for
the detection of dysfunctional mitochondrial also in dis-
tal parts of axons, as will be outlined in the mitophagy
chapter. Fittingly, the association of the Pink/ mRNA
with mitochondria is not observed in fibroblasts unless
its anchoring complex is overexpressed [60], as smaller
(“shorter”) cells may not need to add this additional layer
of regulation. Unlike Cox7c, Pinkl mRNA association is
not only driven by translation. After an initial, translation
and MTS-dependent targeting to the OMM, the Pinkl
mRNA becomes tethered to the OMM by binding to Syn-
aptojanin 2a (SYNJ2a) and its binding protein SYNJ2BP
[70, 71] (Fig. 1B-I). SYNJ2a acts as the RNA binding
protein in this complex, and interestingly binds within
the coding region of the PINK1 open reading frame [60].
This suggests that unlike most NEM transcripts, the Pinkl
mRNA may be transported in a translationally silent state
and needs to be untethered from its mitochondrial asso-
ciation to allow access of the ribosome to the part of the
ORF that is otherwise bound by SYNJ2a.
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Local translation of mitochondrial proteins
occurs at organellar contact sites

Organellar hitch-hiking not only plays an important role
in the transport of mRNAs into the axon, but also may be
responsible for the localization of ribosomes within the
axon. Ribosomes in axons, while rare and mostly translat-
ing as monosomes [72], seem to preferentially associate
with endomembranes, including the ER [73] or early endo-
somes via the FERRY complex [64]. Removal of the ER
from axons by heterodimer-induced forced association of
retrogradely moving motor proteins overall reduced axo-
nal protein synthesis. A similar effect was observed for the
knock down of p180/RRBPI, a ribosomal receptor on the
ER [73]. Unlike the other ribosomal receptor on the ER,
Sec61, RRBP1 is not directly associated with the ER trans-
locon, which allows ER-associated protein synthesis to
exist uncoupled from import of the nascent chain into or
across the ER membrane [74]. This would allow the synthe-
sis of not only secretory proteins targeted to the ER, but also
ER-associated synthesis of cytosolic or even mitochondrial
proteins. Whether the ER-associated ribosomes are actively
transported into the axon along with ER tubule dynamics
or whether they arrive in the axonal compartment by lateral
diffusion or other means of transport has not been addressed
experimentally. In contrast, association of ribosomes to
early endosomes has been shown to depend on components
of the FERRY complex [64]. This suggests that hitch-hik-
ing on early endosome during their transport into the axon
may provide an active localization mechanism for axonal
ribosomes.

Fittingly, it was shown that local hotspots of translation
form at contact sites between mitochondria and
endolysosomes, including translation of the OMM protein
VDAC?2 [62]. This is also the case for the local translation
of MFF [66], where ribosomes at these contact sites were
also visualized by CryoET. In the case of PINKI, local
translation at mitochondria endolysosome contact sites
was not only observed in axons but also in the soma
[75]. Interestingly, the translation of PINK1 at these sites
is regulated by metabolic signaling as association of the
Pinkl mRNA to mitochondria depends on phosphorylation
of SYNJ2BP by AMP-activated kinase (AMPK), which
stabilizes the interaction between the RNA-binding
protein SYNJ2a and the OMM protein SYNJ2BP [76].
Interestingly, this association limits the translation and
subsequent functionality of PINKI1. Inhibition of AMPK,
as it occurs downstream of insulin signaling due to
inhibitory phosphorylation of AMPK by AKT, leads to
the dissociation of the Pinkl mRNA and its subsequent
localization near endolysosomes (Fig. 1C) [76]. However,
as a mitochondrial protein, the newly synthesized PINK1

precursor needs to find its way back to mitochondria. Using
correlative light and electron microscopy in combination
with a PINKI1 translation reporter, we now suggest that
the gap between endolysosomes and mitochondria may be
filled by the ER [75] (Fig. 1C). This enables the transport
of the precursor of this transmembrane protein along the
ER surface in order to reach mitochondria in association
with ER-bound chaperones like DNAJB6 [75], as was
shown for other mitochondrial transmembrane proteins in
yeast [77]. This fits well with the above described role for
ER-associated ribosomes in local protein synthesis.

On the other hand, the role of the endolysosomes in
local PINKI1 protein synthesis is less clear. While early
endosomes may bring in the required ribosomes for
PINK1 synthesis via the FERRY, the PINKI1 protein
translation sensor rather colocalized with markers of late
endosomes or lysosomes [75]. Maturation of FERRY-
positive endosomes into late endolysosomes may underlie
this observation, but this hypothesis needs to be tested.
Additionally, the lysosomal surface serves as a signaling
hub for both mTORC1 and AMPK signaling, and thus
formation of mitochondria lysosome contacts may elicit
the untethering of the Pinkl mRNA from SYNJ2BP on
mitochondria. However, inhibition of mTORC1 does not
prevent the untethering of the Pinkl mRNA[76], indicating
that while activation of mTORCI may contribute to the
increased biogenesis of PINK1 upon activation of insulin
signaling due to its effect on general translation initiation
factors, it is not necessary for the initial untethering event.
Finally, lysosomes will produce a local supply of amino
acids depending on their degradative capacity. While this
has not yet been shown to matter for local translation in
neurons, a preprint observes a similar effect of lysosomes
on translation at three-way junctions of ER in cultured
cell lines [78]. Thus, lysosomes may serve as amid acid
reservoirs across cell types.

Functions of locally translated mitochondrial
proteins

Mitophagy, Ca2+ homeostasis and translational
control exerted by PINK1

The best-known function of PINK1 is the detection of dam-
aged mitochondria and their demarcation for mitophagy, as
will be described in the next chapter. Local translation of
PINK1 therefore ensures the continued supply of this pro-
tein also to distal mitochondria in both axons and dendrites
[60].

Beyond mitophagy, activation of PINK1 in response to
mitochondrial damage has been described to repair rather
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than remove damaged mitochondria. It was shown in Dro-
sophila neurons as well as in HeLa cells that PINK1 over-
expression, but not expression of a Parkinson’s disease
(PD)-linked mutant, leads to stimulation of localized trans-
lation of mMRNAs encoding subunits of the respiratory chain
[79]. This is achieved via phosphorylation and subsequent
proteasomal degradation of translational repressors, includ-
ing Pumilio and Glorund/hnRNP-F [79]. Thus, the local
translation of PINK1 at endolysosome-mitochondria contact
sites will lead to a de-repression of translation and favor the
local translation of also other mitochondrially-associated
transcripts in a positive feedback loop (Fig. 1C). However,
in Drosophila oocytes, PINK1 activation also prevents the
transmission of deleterious mtDNA mutations through the
germline by limiting the local production of factors neces-
sary for mtDNA replication [80]. To achieve this, PINK1
activation on dysfunctional mitochondria leads to the
phosphorylation of the RNA binding protein Larp, which
is bound to the OMM protein MDI and normally mediates
the localized translation of NEM mRNAs at the OMM [80,
81]. This in turn dampens translation of mitochondrially-
associated mRNAs [80]. Thus, PINK1 activation can have
opposite effects on localized translation near the OMM
depending on the model system used. In mammalian cells,
the Larp homologue LARP4 also binds nuclear-encoded
mitochondrial transcripts [82], as does the MDI homologue
AKAP1 [53], yet whether PINK1 plays a more direct role
in coordinating localized translation in mammalian neurons
remains to be determined.

Another role of PINKI includes effects on local Ca**
uptake and release from mitochondria, either directly via
phosphorylation of LETMI1, a putative Ca>"/H" antiporter
in the IMM [83], or indirectly via inhibition of PKA-medi-
ated phosphorylation of mitochondrial Na*/Ca?* exchanger,
NCLX [84]. Indeed, the major phenotype of PINK1 loss in
neurons is not the accumulation of damaged mitochondria,
but an increase in the cytoplasmic Ca** concentration that
leads to cell death [85]. How local translation of PINK1
affects the ability of individual mitochondria to modulate
the local Ca*" flux will be an interesting field of study.
Whether any of the other regulators of mitochondrial Ca**
flux are locally translated has not been studied. However,
given the idea that modulation of Ca®* flux may be the main
function of mitochondria in the axon, this would be a pow-
erful way to further tune synaptic signaling through local
protein translation.

Mitochondrial fission induced by FMRP mediates
local translation of MFF

The RNA binding protein FMRP was recently shown to
localize to sites of mitochondrial fission in neurons [66].
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These fission events were characterized by their symmetrical
nature, which is attributed to MFF-mediated recruitment of
DRP1 [86]. Indeed, FMRP-granules colocalized with MFF
mRNA and local translation of MFF could be observed at
mitochondria-endolysosomal contact sites ([66], Fig. 1D),
in agreement with the notion that these organellar contact
sites serve as translational hotspots in neurons [62]. This
may also explain the previous observation that endolyso-
somes mark fission events in neurons [87]. The presence
of ribosomes at these contacts was corroborated by Cryo-
electron microscopy, along with ER tubules marking the fis-
sion site [66]. This association of fission events with FMRP
granules was not a frequent observation in non-neuronal
cells, indicating that this mechanism may represent a unique
adaption to the specific needs of neurons. In line with this,
loss of FMRP leads to a reduction in MFF mRNA presence
in axons, reduced association of the MFF transcript with
mitochondria, and a reduction of mitochondrial fission in
axons [66], suggesting that it impairs both the transport and
the translation of the MFF transcript.

Local translation of OXPHOS components and the
question of mtDNA-encoded subunits

On a more global scale, quantitative mass spectrometry and
in vitro stimulation of isolated mouse synapses revealed
that the synthesis of mitochondrial proteins is upregulated
in response to NMDA administration [88]. Many of these
newly synthesized proteins comigrated with complexes
of the respiratory chain in Blue Native PAGE, suggesting
that they are assembled into functional complexes [88].
This fits with the mitochondrial hitch-hiking of the mRNA
encoding Cox7c as a subunit of complex IV of the respira-
tory chain [61]. Additionally, there is evidence that other
mRNAs encoding further subunits of complex IV and V
also co-localize with mitochondria in neurons [60, 76, 89,
90]. While it has not been directly shown, this suggests that
also the ability to perform OXPHOS may be altered by
local translation of mitochondrial OXPHOS components
(Fig. 1E). In favor of this hypothesis, addition of a protein
translation inhibitor to the axonal compartment of neurons,
cultured in compartmentalized chambers, decreases the
membrane potential across the inner mitochondria mem-
brane [91], which is generated by the respiratory chain
complexes I, III and IV. However, it is unclear whether this
represents exchange of e.g. short-lived peripheral subunits
[92], or a concerted de novo biogenesis of completely new
complexes. Recently, the turnover of OXPHOS complexes
was measured by feeding mice a pulse of the stable nitro-
gen isotope °N followed by mass spectrometric analysis
of mitochondria of different tissues, including whole brain
[93]. This revealed that some mitochondrial proteins in
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brain mitochondria, including many subunits of the respi-
ratory chain complexes, display exceptionally long half-
lives of up to several months. On average, complex III and
V are more long lived than complexes I, II, and IV, and
membrane-embedded subunits have higher stability than
matrix-exposed subunits e.g. within complex I [93]. While
this suggests that the matrix-exposed subunits may benefit
from replacement via local translation of their encoding
mRNA in the long run, it remains doubtful whether this
would be measurable in the short timeframe stimulation
with NMDA or the inhibition of axonal translation. This
leaves the possibility that de novo biogenesis of OXPHOS
complexes may occur locally.

However, de novo biogenesis of most respiratory
chain complexes also requires the incorporation of one or
more proteins that are encoded within the mitochondrial
genome (mtDNA, Fig. 1E). The coordination between
cytoplasmic translation with the translation of mtDNA to
generate stochiometric amounts of proteins is an ongoing
area of research even in non-neuronal cells [94]. To
complicate the matter, it has been suggested that some,
if not most, axonal mitochondria lack mtDNA [95],
questioning the idea that de novo synthesis of complete
respiratory chain complexes can occur in axons. Indeed,
the majority of electron transport chain complexes seemed
to be downregulated in synaptic mitochondria [96]. This
is in line with results from a recent preprint, where the
authors performed proteomics on mitochondria isolated
from MitoTag mice and found that axonal mitochondria
possessed reduced mtDNA expression levels. In addition,
compared to their somato-dendritic counterparts, axonal
mitochondria showed decreased levels of proteins involved
in translation and oxidative phosphorylation, and instead
seemed to favor fatty acid oxidation [97].

There is however evidence that local translation of mito-
chondrially encoded proteins actually happens in axons:
Using clickable non-canonical amino acids in the pres-
ence of inhibitors of the cytoplasmic ribosome, mitochon-
drial translation was detected in both axons and dendrites
of neurons in culture [98]. Additionally, local translation of
mitochondrial initiation factor 3 (mtIF3) has been reported
in axons in response to brain-derived neurotrophic factor
(BDNF) signaling [99]. This is one of only two translation
initiation factors in mitochondria, and fittingly, its local
translation boosts formation of the mitoribosome in axons
[99]. Two possible solutions could reconciliate the absence
of mtDNA with continued translation of mitochondrially
encoded mRNAs. Firstly, mitochondria that enter the axon
lacking mtDNA may still carry enough mRNA to sustain a
limited amount of de novo biogenesis of OXPHOS com-
plexes in the periphery. As also the mRNA associated to the
outside of mitochondria cannot be replenished, this scenario

seems reasonable, yet also places a “best before” date on
an individual mitochondrion, unless it is resupplied by fus-
ing with a younger mitochondrion or replaced altogether.
How frequently mitochondria are replaced in the periphery
is a matter of debate, as with increasing age and maturity of
neurons, less and less mitochondrial transport is observed in
cortical axons in vivo [100]. However, this may also vary by
the cell type, as a similar reduction has not been observed
in axons of retinal ganglion cells even in aged mice [101].
How different cell types manage their mitochondrial bio-
genesis and whether they all rely to the same extent on
mitochondrial transport and local translation of mRNAs
encoding mitochondrial proteins remains an active area of
research.

The second solution takes advantage of the fact that not
all mitochondria entering the axon lack mtDNA. Even in
the most extreme examples, around 10% of axonal mito-
chondria still carried mtDNA [95]. It may be exactly these
mitochondria that serve as a local center of OXPHOS
biogenesis. This is in line with the idea that translational
hotspots occur not at all mitochondria equally, but may be
allocated to mitochondria in specific positions, such as at
axonal branch sites or in direct contact with an endolyso-
some. However, it remains an open question how this
localized de novo biogenesis of OXPHOS complexes
would benefit mitochondria outside of these specialized
positions. Mixing of mitochondrial content may occur
over time through fission and fusion, which are however
restricted in axons due to the high number of stationary
mitochondria [26]. Nevertheless, mtDNA replication also
occurs in axons [102] and is associated with MFF driven
fission [66], which could increase the number of “seeds”
for de novo OXPHOS complexes. Replication of mtDNA
depends on the translation-elongation factor eEF1A1l
of cytoplasmatic translation, suggesting coordination
between cytoplasmic translation and the replication of
mtDNA [102] that may also occur at the translational
hotspots within the axon.

Degradation of mitochondrial proteins in
neurons

In order to ensure mitochondrial quality control, different
approaches can be taken by the cell. First, mitochondria
possess their own set of proteases and chaperones, aiding
in the processing and proper folding of mitochondrial pro-
teins [103, 104]. Secondly, damaged mitochondria can be
removed via a mitochondria-specific form of autophagy
— mitophagy [105]. In recent years, mitochondria-derived
vesicles (MDVs) have also been investigated as a mitochon-
drial quality control mechanism [106] (Fig. 2).
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Proteases

The electron transport chain residing in the IMM is a major
source of reactive oxygen species within the cell [107],
which easily oxidize proteins within mitochondria, often
resulting in their inactivation [108]. This is counteracted by
a system of proteases within mitochondria (Fig. 2A) that
not only keep mitochondrial homeostasis by removing mis-
folded or oxidized proteins, but also play important regula-
tory functions during protein import and complex assembly
(reviewed by Deshwal et al. [107]).

All inner-mitochondrial compartments contain dedi-
cated proteases for mitochondrial protein quality control:
Lon and CLpXP (caseinolytic peptidase P) proteases are
located within the matrix [109-111], while two proteases
of the ATPases Associated with various cellular activities
(AAA) family surveil the inner membrane with one fac-
ing the matrix (m-AAA) and the other facing the inter-
membrane space (IMS, i-AAA) [112-114]. Additionally,
the IMS is also guarded by the HTRA2 (high temperature
requirement A2)/Omi protease [115]. As they are located
within mitochondria, it is assumed that they will be pres-
ent in all neuronal subcompartments, but experimental evi-
dence for this is still lacking. However, their importance in
neurons is evident due to the link between genetic mutations
in some protease subunits and neurodegenerative disorders.
For example, HTRA2 mutations are linked to PD [116, 117]
and deletions as well as mutations of Paraplegin, an m-AAA
subunit, have been associated with hereditary spastic para-
plegia (HSP) [118, 119], an upper motor neuron disease.
Thus, mitochondrial proteases form the first layer of defense
against mitochondrial dysfunction in neurons.

In the matrix, an oxidized form of the TCA cycle enzyme
aconitase is degraded preferentially by the Lon protease
[120]. In line with this, downregulation of Lon leads to
the accumulation of damaged aconitase [120], as well as
to reduced OXPHOS assembly and even cell death [121].
Lon also binds to mitochondrial DNA directly and associ-
ates with Twinkle, the helicase for mtDNA [122, 123]. Lon
is therefore not only an important part of the degradative
system of mitochondria, but may also regulate mitochon-
drial protein biogenesis through its processing of proteins
responsible for mtDNA replication or transcription [123].
In neurons, Lon protease was investigated in the context of
the PD model of treatment with the toxin MPTP (1-Methyl-
4-phenyl-1,2,3,6-tetrahydropyridin), which selectively
damages dopaminergic neurons due to its conversion into
the neurotoxin MPP™ [124, 125]. This leads to an accu-
mulation of oxidized and carbonylated proteins, including
aconitase and OXPHOS proteins, consistent with a loss of
Lon function [125]. Although human post-mortem tissue
of PD tissue revealed increased expression levels of Lon,
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the protease remained inactive, possibly contributing to
the accumulation of damaged proteins [125]. How MPP*
causes Lon dysfunction remains unclear, yet this study dem-
onstrates the tight link between mitochondrial quality con-
trol and PD beyond the genetic linkages mentioned above.
Enhancing protease function in PD might therefore be an
interesting avenue for future research.

Similarily, Clp protease can counteract PD-associated
phenotypes [126]. In eukaryotes, the protease named ClpXP
is made up of two components: the AAA+ATPase ClpX,
which unfolds protein targets, and the peptidase ClpP, which
is responsible for the protein degradation [127]. Decrease
of CIpP in dopaminergic SH-SY5Y cells is triggered by
accumulation of the PD-associated protein aggregate alpha-
synuclein and leads to the increased production of reactive
oxygen species [128]. Conversely, enhancing ClpP lev-
els in alpha-synuclein A53T mice, a PD model carrying a
missense alpha-synuclein mutant, reduces the pathological
phosphorylation of alpha-Synuclein at serine 129 [126].

Moving from the matrix to the mitochondrial inner
membrane, the m-AAA consists of a complex containing
paraplegin and AFG3L2, but AFG3L2 is also able to form a
homo-oligomeric complex [129-131]. In the brain, Afglll
is another, less abundant, complex component of the m-
AAA [131]. Targets of the m-AAA include cytochrome c
peroxidase (CCpl), and the ribosomal mitochondrial pro-
tein MrpL32 [131]. Failure to process the latter protein has
been associated with impaired mitochondrial protein syn-
thesis [132], again linking degradative function to protein
biogenesis in mitochondria. Paraplegin-deficient mice were
also characterized by neurobiologically defects such as
impaired axonal transport, visually affected mitochondria
(e.g. abnormal cristae), and progressive axonal degenera-
tion [119].

HTRA2/Omi is another protease shown to localize to the
IMM under normal conditions, but is able to catalytically
process itself before it translocates to the cytosol. There it
is able to interact with its targets, including the X-linked
inhibitor of apoptosis proteins (XIAP), which is inhibited by
this interaction [133—135]. Downstream, this interaction has
been shown to result in cell death [133]. However, HTRA2/
Omi appears to serve a neuroprotective role as knockdown
of the protease in mice resulted in abnormal neurological
behavior, neuron loss and early lethality [134], fitting to its
association with PD [136]. Recently, DELE], a sensor for
unfolded proteins within the mitochondrial matrix (UPR,)
[137, 138], has been reported to be another substrate of
HTRA2/Omi [139]. Cleaved DELE1 binds and stimulates
HRI [137], which in turn phosphorylates e[F2alpha and ini-
tiates the integrated stress response (ISR) [140]. Activation
of the ISR attenuates cytoplasmic translation, but enables
the specific translation of the transcription factor ATF4



A central role for PINK1 in governing local mitochondrial biogenesis and degradation in neurons

Page90of18 80

Mitochondrial protein degradation

F—— — — — — — e —

|A Proteases
Cytosol -"-——___ TRA2
\ G — | |
| | |
| | |
| | |
| | |
| l | lysosome
| | |
| | |
£ o s o e ol S
s =5 Ge=S kS Sk at=we == e R
c Mitophagy
| I: Healthy mitochondria II: Damaged mitochondria
I kinase domain
|
|
|
l phagophore
| autolysosome ~ lysosome
| ./l
I
L — — —_— [— —

Fig. 2 Mitochondrial protein degradation. A Mitochondrial proteases
can be divided based on their localization: ClpPX and Lon make up
the proteases surveilling the mitochondrial matrix, with Lon targeting
both mitochondrial DNA as well as aconitase, an enzyme of the TCA
cycle. The inner mitochondrial membrane (IMM) contains the i-AAA,
m-AAA (targeting the cytochrome ¢ peroxidase (Ccpl) as well as the
ribosomal protein MrpL32), and HTRA2. HTRA?2 is able to process
itself and subsequently translocates to the cytosol where it processes
its targets XIAP and DELE1. B In healthy mitochondria, PINK1 is
quickly imported and processed by the proteases PARL and MPP (I).
In contrast, when mitochondria are damaged and their membrane
potential is depolarized (II), PINKI1 stabilizes on the mitochondrial
surface where it then phosphorylates target proteins, resulting in the
recruitment of Parkin to mitochondria, which in turn ubiquitinylates

-
B Mitochondria-derived vesicles .

- - 7™

Antimycin A

phosphorylated proteins. This results in a positive feedback loop lead-
ing to the formation of phospho-ubiquitin chains, which can be recog-
nized by NDP52 or Optineurin, and subsequently LC3, triggering the
formation of a phagophore membrane around the tagged mitochondria.
Upon fusion with lysosomes, autolysosomes are formed and digest
the damaged mitochondria. C Mitochondria-derived vesicles (MDV)
can form upon mitochondrial damage, for example triggered by treat-
ment with Antimycin A, and package specific cargo, e.g. Syntaphilin
(SNPH). SNPH-containing MDVs can then be transported along with
late endosomes towards the soma of neurons where they are degraded
by lysosomes. Additionally, treatment with Antimycin A can result in
the formation of MDVs in a Parkin/PINK1-dependent manner that
results in lysosomal degradation of these MDVs independently of
mitophagy as described in B.
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[141]. This may also occur in the periphery of neurons, as
also the mRNA of ATF4 is locally available [142] and, like
other locally synthesized nuclear proteins [143], its retro-
grade transport will enable transcriptional changes triggered
by the ISR. However, whether the transcriptional response,
including the upregulation of mitochondrial proteases and
chaperons, can in any way be targeted to the source or if
all mitochondria will benefit from the change is unknown.
Depending on the cell line, DELEI can also be cleaved by
another mitochondrial protease, OMA1 [144]. In fact, loss
of HTRA2 was linked to increased instead of decreased
induction of CHOP [145], an ATF4 target, suggesting that
OMA1 may compensate for the loss of HTRA2 and medi-
ate DELE1 cleavage. However, the absence of HTRA?2 still
increased levels of ROS and caused an excess of unfolded
proteins in mitochondria [145], supporting its role in ame-
liorating UPR ;.

Interestingly, HTRA2/Omi itself seems to be phosphory-
lated by PINK1 upon mitochondrial stress, likely resulting
in its enhanced activity. Subsequently, PD patients carrying
PINK 1 mutations show decreased HTRA2 phosphorylation
levels in brain tissue [136]. It would be tempting to specu-
late that the stress response enhancing HTRA2 phosphory-
lation by PINK1 is also linked to mitophagy or an altered
UPR,;, but so far, the involvement of HTRA2 in the PINK1/
Parkin pathway of mitophagy has been disputed [146, 147].

Mitophagy

Mitochondria can be subjected to a special form of autoph-
agy, called mitophagy [105]. Selective, distinct pathways
cull mitochondria upon different cues, such as during the
elimination of mitochondria during erythrocyte develop-
ment, during hypoxia or upon mitochondrial damage [148].
Some basal turnover of mitochondria is required in neurons
to balance mitochondrial biogenesis to maintain mitochon-
drial numbers [26]. Overall, mitophagic flux in neurons is
rather low [149], which may be due to a high expression of
negative regulators of autophagy [150], which restricts also
the degradation of mitochondria by general, non-selective
autophagy. Interestingly, mitochondrially-derived proteins,
especially those associated with mtDNA, still make up a
major factor of the autophagosomal content in the brain
[151], arguing that also targeted mechanisms to remove
mitochondria or mitochondrial content contribute to the
turnover of mitochondria in the brain. Some autophago-
somes form at the tip of axons and mature on their way to
the soma [152], while other studies suggest that mitochon-
dria first move retrogradely before they are captured by the
autophagosomal machinery [153, 154] or are exclusively
degraded in the soma [155]. To reunite all these different
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models, it will be imperative to understand which path-
ways trigger basal mitophagy in neurons. Selective basal
mitophagy has been hypothesized to be independent of the
damage-induced PINK1-Parkin pathway (see below) [149]
and instead to be mediated by receptors such as the Bcl-2
interacting protein 3 (BNIP3L). BNIP3L has been shown
to be responsible for mitophagic flux during neuronal
development [156], but also partially appears to be able to
compensate for PINK1 deficiency in more mature neurons
[157]. The mechanisms of BNIP3L-mediated mitophagy
are reviewed elsewhere [158]. It is likely that both redun-
dant mechanisms for basal mitophagy in different subcellu-
lar compartments as well as dedicated mechanisms to detect
damaged mitochondria coexist, and that neuronal cell type
diversity is reflected in their reliance on one pathway over
the other.

Most work in neurons has focused on the damage-induced
PINK1-Parkin pathway of mitophagy (Fig. 2B), given its
association to PD [159, 160]. As a mitochondrial protein,
PINK1 resides on mitochondria, orienting its C-terminal
kinase domain towards the cytoplasm [161]. In healthy cells
with an intact mitochondrial membrane potential, PINK1 is
quickly imported into mitochondria via TOM and TIM23
[162, 163] before it is primarily cleaved by PARL and MPP,
but also by m-AAA and CIpXP [164, 165], and protein
remains undergo proteasomal degradation [166].

However, when the mitochondrial membrane potential is
disrupted, PINK1 no longer gets imported into mitochon-
dria and instead stabilizes on the OMM [167, 168], where
it subsequently undergoes autophosphorylation [169] and
phosphorylates target proteins such as ubiquitin [170—-172].
Another one of these target proteins is Miro, resulting in its
degradation and subsequently halting mitochondrial move-
ment [173].

Additionally, phosphorylation of ubiquitin in the vicinity
of the OMM leads to the recruitment of the E3 ubiquitin
ligase Parkin to mitochondria [169, 170, 174, 175]. Parkin
continues to ubiquitinate phosphorylated OMM proteins
[176], and these ubiquitin chains are then further phosphor-
ylated by PINK1 [177]. PINK1 also phosphorylates Par-
kin at Serin 65, further enhancing its activity [171]. These
reactions of phosphorylation and subsequent ubiquitination
result in the formation of phospho-ubiquitin chains on the
damaged mitochondria [177]. The first reaction to the phos-
phorylation of OMM proteins is in most cases their selective
removal from the OMM and degradation via the proteasome
[176]. This is the case for Miro [173] as well as the Mito-
fusins [178]. This results in mitochondrial fragmentation,
preventing the fusion of damaged with healthy mitochon-
dria, and thereby promoting mitophagy [179]. Recruitment
of the AAA+ATPase, p97/VCP, to mitochondria helps with
the extraction of the OMM proteins from the membrane and
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the release of mitochondria from ER contacts mediated by
those OMM proteins [180].

Extensively phospho-ubiquitinated mitochondria can
be recognized by autophagy receptors, including NDP52
and optineurin [181]. Proteins on phagophores, such as the
microtubule-associated protein light chain 3B (LC3B) are
also recruited, resulting in the formation of autophagosomes
around the labelled mitochondria [182]. Fusion with lyso-
somes and the formation of autolysosomes is followed by the
acidic degradation of the damaged mitochondria [182]. Inter-
estingly, a recent pre-print suggests that while PINK1-Parkin
activation can take place throughout the axon and its termi-
nals, phagophore formation seemed to be spatially restricted
to boutons, placing this step of mitophagy in the necessary
lipid-rich environment. While this may be beneficial for
facilitating mitophagy, it also appears to make pre-synapses
more vulnerable to mitophagy-defects, again highlighting the
importance of this pathway especially in neurons [157].

Mitochondria-derived vesicles (MDVs)

While mitophagy clears whole mitochondria, the enrich-
ment of some but not all mitochondrial proteins in autopha-
gosomes in the brain suggests that piecemeal forms of
autophagy must exist in the brain [151]. Also other path-
ways, including mitochondria-derived vesicles, could
deliver selected cargo to lysosomes. Only the size of
60-150 nm, MDVs originate from mitochondria mostly
independently of DRP1, and selectively choose their cargo
[183, 184], before its delivery to lysosomes or peroxisomes
([185], reviewed by Sugiura et al. [104]. MDV transport can
be initiated e.g. by oxidative stress, which increases their
loading with oxidized subunits of complexes II, III and IV,
and may contain both OMM and IMM membranes [184].
Knockdown of Parkin also resulted in less formation of
an MDV-subtype upon Antimycin A treatment, a process
that was also dependent on the presence of PINK1 [186]
(Fig. 2C, upper part). Interestingly, this elimination of dam-
aged proteins via MDVs could act as a mitochondrial qual-
ity control mechanism, preceding loss of the mitochondrial
membrane potential and subsequent mitophagy [186].

In neurons treated with Antimycin A, Lin et al. [182]
observed a reduction in Syntaphilin in axonal mitochondria.
Immuno-electron microscopy revealed that Syntaphilin
was indeed redistributed within stressed mitochondria and
eventually shed via MDVs. However, these MDVs do not
remain in the vicinity of mitochondria but instead hitch a
ride with late endosomes towards the soma, where they
are then lysosomally degraded (Fig. 2C lower part). The
absence of Syntaphilin at mitochondria should then allow

for damaged mitochondria to be moved out of the axons.
Testing their observation in PD and ALS mouse models,
the authors were able to observe the same decrease in Syn-
taphilin levels [187].

Mitostasis in neurons

Taken together, the previous chapters highlight the neuron-
specific adaptions mitochondrial biogenesis and degrada-
tion have to undergo to support the extended morphology
in neurons. While mitostasis is essential for all cell types,
neurons are especially dependent on healthy mitochondria.
Neurons are post-mitotic and, once fully developed, are lim-
ited in their numbers as neurogenesis in adults takes place
scarcely [188, 189], facing them with the challenge to either
function properly or be subjected to cell death. Reduced
mitochondrial quality control, ranging from mitochondrial
proteases to MDVs and mitophagy, will impact neurons
more than most other cell types. Similarly, failure to trans-
port mitochondria, and the mRNAs associated with them,
will over time lead to the accumulation of dysfunctional
organelles in the periphery [26]. Some mitochondrial dam-
age may be repaired locally, e.g. through local translation
of mitochondrial components, including PINKI1 with its
multifaceted downstream targets that further enhance local
translation [79], activate the UPR,, via phosphorylation of
HTRA2 [136], and by initiating the removal of dysfunc-
tional proteins via MDVs [186]. Only in the most extreme
cases, PINK1 may actually activate mitophagy, as under
basal conditions the amount of PINK1-dependent mitoph-
agy in neurons is negligible [149]. This is all sustained by
the transport of its mRNA via mitochondrial mRNA hitch-
hiking [60] and its local translation, again showing the
importance of local translation for mitostasis in neurons.
Several questions remain to be solved, for example how
communication with the nucleus is orchestrated in neurons.
Retrograde transport of locally-synthesized transcription
factors such as ATF4 upon activation of the UPR, /ISR can
mediate this communication, but mitochondria also have
been reported to form direct contact sites with the nucleus
that sustain pro-survival signaling [190]. Do retrogradely
travelling mitochondria serve as sentinels that bring news
from the periphery? And is a directed transport of replace-
ment mitochondria into affected areas possible or will all
transcriptional measures remain a global response? Only
future research will be able to answer these questions.
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