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Plastic landmark anchoring in zebrafish 
compass neurons

Ryosuke Tanaka1 ✉ & Ruben Portugues1,2,3,4,5 ✉

Vision can inform animals as they navigate their environment. Landmarks can be used 
to maintain heading, while optic flow can be integrated to estimate turning. Although 
it has been shown that head direction (HD) neurons in various species use these visual 
cues1,2, the circuit mechanisms underlying this process in vertebrates remain unknown. 
Here we asked whether and how the recently identified HD cells in the larval zebrafish3, 
one of the smallest vertebrate models, incorporate visual information. By combining 
two-photon microscopy with a panoramic virtual reality setup, we demonstrate that 
the zebrafish HD cells can reliably track the orientation of multiple visual scenes, 
exploiting both visual landmarks and optic flow cues. The mapping between landmark 
cues and heading estimates is idiosyncratic across fish and experience dependent. 
Furthermore, we show that landmark tracking requires the lateralized projection 
from the habenula to the interpeduncular nucleus4, a structure innervated by HD 
neuron processes3. The physiological and morphological parallels suggest that a 
Hebbian mechanism similar to the fly ring neurons5,6 is at work in the habenula axons. 
Overall, our observation that hindbrain HD cells of larval zebrafish can utilize the 
visual cues despite the lack of an elaborate visual telencephalon sheds new light on 
the evolution of navigation circuitry in vertebrates.

Neurons whose activities reflect spatial relationships between animals 
and their environments have been identified in the brains of diverse 
animal species7, probably supporting navigation. A simple example of 
space-tuned cells is HD cells, which persistently fire when animals are 
facing a particular direction8. Because the head direction of an animal 
is typically not directly provided to the sensory system, HD cells need 
to integrate the history of rotational movements that animals make, 
a process called angular path integration. As a simple, yet biophysi-
cally plausible mechanism to implement angular path integration, a 
class of dynamical models called ring attractors has been proposed9.  
A ring attractor typically consists of neurons arranged on a topological 
ring, which excite nearby neurons while inhibiting far away neurons. 
Such connectivity architecture gives rise to a single, persistent bump 
of activity on the ring in the absence of external inputs, which can be 
used to represent the head direction.

More than three decades of research have identified HD cells 
in various mammalian brain regions10. Yet, it has remained incon-
clusive where and how the tuning to head directions first emerges.  
A recent study on the larval zebrafish identified a group of GABA
ergic (γ-aminobutyric acid-dependent) HD cells in the anterior hind-
brain (aHB) rhombomere 1 (ref. 3). This GABAergic nucleus is probably 
homologous to the mammalian dorsal tegmental nucleus (DTN)11, 
one of the basal-most brain regions with HD cells in rodents12–14. The 
dendrites and axons of these zebrafish HD cells form topographi-
cally organized columns in the dorsal interpeduncular nucleus 
(dIPN), such that cells tuned to the opposite head directions would 

inhibit each other, recapitulating a key connectivity motif of ring  
attractors.

In addition to motor-based angular path integration, animals can 
also utilize visual cues, such as landmarks and optic flow, to improve 
their sense of heading1,2. In rodents, cortical visual areas (for example, 
the retrosplenial cortex) are thought to provide visual information to 
HD neurons15. However, unlike mammals, the larval zebrafish lacks an 
elaborate visual telencephalon. This raises the possibility that there 
exist evolutionarily older, non-telencephalic pathways that route 
visual information to the HD neurons in the aHB. We therefore set 
out to ask whether and how the larval zebrafish HD neurons utilize 
visual cues.

GABAergic aHB cells track visual scene orientation
The aHB rhombomere 1 of the larval zebrafish contains a group of gad1b+ 
HD neurons3. The preferred headings of these HD cells are topographi-
cally arranged, such that when the fish turns rightwards, the bump 
of neuronal activity moves counterclockwise, as viewed from the top 
(Fig. 1a). Somewhat surprisingly, the previous study did not detect 
any effect of visual feedback on the bump movements3. We reasoned 
that this might be due to the fact that the visual stimuli were presented 
below the fish. Intuitively, the upper visual field seems to contain more 
relevant cues for orienting oneself. To achieve a panoramic presenta-
tion of visual stimuli covering the upper visual field, we built a compact 
projection setup composed of a single projector and multiple mirrors16  
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(Supplementary Video 1). Larvae embedded in agarose observed 
view-corrected virtual 3D scenes projected onto the planar screens 
on the three sides, which covered 270° of azimuth and 90° of elevation 
(Fig. 1b and Methods). The neural activity was optically monitored from 
above with a two-photon microscope.

In this setup, we imaged the neural activity of aHB neurons express-
ing GCaMP6s17 under the control of gad1b–Gal4 (ref. 18) in 6–9 days 
post-fertilization larvae. Each experiment started with an alternating 
presentation of 8-s-long, bright and dark full-screen flashes. Naively 

visual neurons that reliably responded to these flashes were removed 
from further analysis (Methods). In the first experiment, we presented 
a scene consisting of a circular luminance gradient centred above the 
horizon and dark vertical bars (henceforth ‘sun-and-bars’) for 10 min 
(Fig. 1b). The scene wrapped around the fish, forming a virtual cylin-
der. The orientation of the scene was controlled in a closed-loop man-
ner based on the tail movements. In addition, slow exogenous rotation 
of the scene was superimposed intermittently (90° rotations over 5 s 
every 30 s, switching directions every four times), such that the fish 
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Fig. 1 | aHB GABAergic cells that track a visual scene. a, HD neurons in the 
larval zebrafish aHB are topographically organized by their tunings. As a result, 
the population activity of these cells appears as a single ‘bump’ that moves as 
the fish turns. Tel, telencephalon; TeO, optic tectum. b, The sun-and-bars visual 
scene consisting of a radial luminance gradient and dark bars (top) wrapped 
around the fish, forming a virtual cylinder (bottom). c, Example activity of the 
cells tuned to different scene orientations (pink) with the sinusoidal fit (grey). 
Only the second half of the data were used for the fitting procedure. The 
horizontal and vertical bars indicate 20 s and 1 s.d., respectively. d, Binned 
activity of the scene-orientation tuned cells, with the scene orientation θ 

(black) and the bump phase (yellow) overlaid, as well as associated traces of  
the tail angle (top) and the exogenous rotation velocity ωext (middle). e, Time- 
averaged absolute error (AE; that is, |bump phase − θ|) for each fish (pink) 
compared with the shuffle. The grey dots and bars indicate the median and 5th 
percentile of the shuffle distributions, respectively. Out of 25 fish, 15 showed 
significantly below chance AE. Note that recordings from multiple planes were 
made in four fish, as indicated by the brackets. f, Selected ROIs visualized on 
the anatomy, with their scene orientation tuning colour coded. Scale bars, 
50 μm. P, posterior; R, right; r1, rhombomere 1.
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would experience various scene orientations even if they did not make 
many spontaneous turns. In this stimulus configuration, the behav-
iour of the fish was dominated by low-gain turns counteracting exog-
enous rotations, and they did not obviously fixate on any part of the 
scene (Extended Data Fig. 1). We hypothesized that in this configura-
tion, HD cells would indeed exploit visual information, so we would 
expect their activity to be well fit by a single-peaked periodic function 
of the scene orientation. Thus, we fit a scaled, shifted sinusoid 
a θ b c× cos( − ) +  to one-half of the normalized fluorescence time  
trace of each cell. Here θ denotes the orientation of the scene rela
tive to the fish (clockwise positive), and a, b and c represent the res
ponse amplitude, preferred orientation and baseline, respectively. 
We selected cells where the sinusoidal fit resulted in R2 > 0.15 for fur-
ther analyses. In this notation, the heading of the fish in the virtual 
world would be −θ.

We found cells surpassing the above criteria in all fish we recorded 
from. In some cells, R2 was as high as 0.8 (Fig. 1c and Extended Data 
Fig. 2a–c). At the population level, a single bump of activity was clearly 
visible, even before the onset of the sun-and-bars scene (that is, dur-
ing flash presentations) (Fig. 1d, Extended Data Fig. 2d and Supple-
mentary Video 2). We calculated the ‘bump phase’ as the angle of the 
activity-weighted average of the preferred orientation vectors of the 
selected cells2 (Methods). We then examined the alignment between 
the bump phase and the scene orientation by running bootstrap tests 
on the portion of the data not used for the fitting. The tests revealed 
significant bump–scene alignment in 15 out of 25 fish (Fig. 1e), a pro-
portion not expected from chance (Extended Data Fig. 2e). We did 
not find an obvious predictor of individual variability in the align-
ment (Extended Data Fig. 1h–j). The preferred scene orientations of 
individual cells exhibited a clockwise topographical organization in 
rhombomere 1 (Fig. 1f and Extended Data Fig. 2f), consistent with the 
previous observed topography of HD cells3. The anatomical arrange-
ment of preferred orientations had idiosyncratic offsets across mul-
tiple fish: for example, cells with b = 0 can be on the left or right side 
of the brain. This observation indicated the possibility that anchor-
ing of the HD cells to visual landmarks is not hard-wired, a point we 
return to later.

The scene tuned cells integrate turns
Although we suspect that these scene-orientation-tuned cells are HD 
cells, the sinusoidal-fitting procedure could also pick up visual neurons 
tuned to local features. To ascertain their identity as HD cells, we wanted 
to make sure that their bump phase moved as fish turned, even without 
visual feedback. In the first experiment above, we continued recordings 
for another 10 min in the darkness after turning off the visual scene 
(Extended Data Fig. 3a). However, the small number of swim bouts that 
fish made in the darkness made such analysis difficult. To encourage 
fish to turn frequently without giving them visual cues for rotation, we 
decided to exploit the optomotor response19 (Extended Data Fig. 3b). 
The first half of the new experiment was mostly identical to that pre-
sented in Fig. 1, with a closed-loop panoramic scene with exogenous 
rotations. We performed the sinusoidal fitting on this half of the data 
to identify scene-orientation-tuned cells. During the second half, we 
intermittently presented an array of white dots translating sideways 
on a black background (in the virtual 3D space), which encouraged 
the fish to make turns. Once fish made a swim bout, the dots imme-
diately disappeared without providing any rotational feedback. Here 
we found that the bump moved clockwise and counterclockwise as 
fish turned left and right, consistent with the previous observation3 
(Extended Data Fig. 3c–e). The negative correlation between the turn 
amplitude and bump-phase shift was statistically significant across 
the population (Extended Data Fig. 3f). Overall, these results suggest 
that the scene-orientation-tuned cells detected with the sinusoidal 
fits are genuine HD cells.

The same set of HD cells can track multiple scenes
In the next experiment, we asked whether the same set of HD cells can 
consistently represent heading direction in different visual scenes. 
Here the same sun-and-bar scene was presented in a closed loop with 
exogenous rotations. After 8 min, the scene was switched to what we 
named the ‘Stonehenge’ scene, consisting of multiple irregularly spaced 
bright vertical bars over a dark background (Extended Data Fig. 4a), 
while maintaining the same exogenous rotation sequence. As before, 
HD cells were identified with the sinusoidal fits on the sun-and-bars 
half of the data (Extended Data Fig. 4b,f). To test whether the bump 
phase still tracked the new scene, we fit von Mises distributions on the 
histogram of the offset between the scene orientation and bump phase 
(Extended Data Fig. 4c) and performed bootstrap tests with time- 
domain shuffling on the κ parameter, which controls the peakiness of 
the distribution. Here, 8 out of 20 fish exhibited significantly above 
chance κ (Extended Data Fig. 4d), a higher proportion than expected 
by chance (Extended Data Fig. 4g). The mean offset between the scene 
orientation and the bump offset varied across fish, albeit with a bias 
probably due to the cross-correlation between the scenes (Extended 
Data Fig. 4e).

In a separate experiment, we also tested whether fish are capable of 
tracking scenes with visual landmarks only in the upper or lower visual 
fields. We found that, even though some individual fish can utilize 
either upper or lower landmarks, more fish were able to track the upper 
landmark (Extended Data Fig. 4h–m), confirming the initial intuition 
behind our decision to build the panoramic setup. Together, these 
results demonstrate the capacity of the HD cells to maintain stable 
head direction representations in various visual scenes.

HD cells exploit visual landmarks and optic flow
How these HD neurons track multiple visual scenes remains unknown. 
An early ring attractor model9 proposed two separate mechanisms: 
first, the model assumes an array of visual neurons that tile the visual 
space and detect landmarks, which instruct the activity bump to be at 
a specific phase (Fig. 2a). Second, the model assumes two additional 
rings of neurons (‘rotation cells’), which connect neighbouring HD 
neurons in a clockwise-shifted or counterclockwise-shifted manner, 
respectively. The activities of these rotation cells are further assumed 
to be gated by inputs from cells encoding the angular head velocity of 
animals. As a result, when the animal turns (for example, rightwards), 
the clockwise rotation cell at the current bump phase is activated, caus-
ing the bump to drift counterclockwise (Fig. 2b). Although the original 
model primarily considered the vestibular system to be the source of 
the angular head velocity information, rotational optic flow can also 
inform the animal of their angular head velocity. To test whether the 
zebrafish HD neurons use either the visual landmark-based or optic 
flow-based mechanisms (or both), we designed a new experiment with 
three epochs (Fig. 2c). In the first (‘smooth’) epoch, the sun-and-bars 
scene was presented in a closed-loop with superimposed slow exog-
enous rotations as before. HD cells were identified by performing the 
sinusoidal fitting on this portion of data. In the second (‘jump’) epoch, 
exogenous rotations were substituted by abrupt jumps of 90° without 
any intervening smooth rotation, eliminating the optic flow cues. In the 
final (‘noise’) epoch, the visual scene was swapped with a featureless 
spatial noise pattern, but with a smooth rotation sequence. If the HD 
cells exclusively relied on either optic flow-based or landmark-based 
mechanisms, we would expect them to lose track of the scene orienta-
tion in the jump or noise epochs, respectively.

Figure 2d shows an example fish whose HD cells appeared to track 
the scene orientation well in both jump and noise epochs (see also 
Extended Data Fig. 5a). In 14 out of 24 fish, the bump phase remained sig-
nificantly aligned to the scene orientation in the jump epoch, a higher 
fraction than expected by chance (Fig. 2e,f and Extended Data Fig. 5c). 
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By contrast, only three fish managed to maintain a constant offset 
between the bump phase and the scene orientation in the noise epoch 
(Fig. 2d). Yet, it is still possible that the rotational optic flow moved 
the bump in the correct direction, but not necessarily for the correct 
amount, making the bump-scene offsets variable (Fig. 2g). Indeed, 
in 12 out of 24 fish, the bump phase and the scene orientation were 
significantly positively correlated within short (15 s) periods of time 
around the exogenous rotation episodes in the noise epoch (Fig. 2h), a 
fraction not expected from chance (Extended Data Fig. 5b,c). The gain 
from the rotational optic flow to the bump-phase movement was on 
average about 50% (Extended Data Fig. 5d–g). Overall, these results indi-
cate that mechanisms to exploit both visual landmarks and optic flow 
cues exist in the circuit surrounding the larval zebrafish HD neurons.

Scene symmetry disrupts landmark anchoring
Ring attractor models5,6,9 hypothesize that a unique mapping from 
visual landmarks to the HD cell activity bump is learned (Fig. 3a). The 
starting point is an array of visual neurons with local receptive fields 
that have weak, uniform connectivity to the entire array of the HD neu-
rons. As the animal explores the environment, the activity of each HD 
neuron will consistently coincide with the response of a specific visual 
neuron to distant, stable landmarks (such as the Sun). For example, if 
the Sun is setting on the western horizon, the west-tuned HD neuron 
would be co-active with the visual neurons with frontal receptive field, 
and the north-tuned HD neurons with the left-looking visual neurons, 
and so on. Through Hebbian plasticity at the visual-to-HD synapses, a 
unique mapping from the landmark bearing to the bump phase would 
be established. We made sure that a ring attractor with such Hebbian 

plasticity can indeed replicate the results in Figs. 1 and 2 and Extended 
Data Fig. 4a–g (Extended Data Fig. 6a–j and Supplementary Note 1).

To test whether the mapping of visual landmarks onto the larval 
zebrafish HD system is plastic, we challenged the HD cells with a sym-
metric scene, as has been done in Drosophila5,6 (Fig. 3b). The experi-
ment consisted of three epochs: in the first (pre-learning) and last 
(post-learning) epochs, fish observed the scene consisting of a single 
radial gradient of luminance in the upper visual field, mimicking the 
Sun. During the second (learning) epoch, a second sun was added to the 
scene azimuthally 180° away from the first one, introducing a twofold 
point symmetry in the scene. Here the two suns would simultaneously 
drive the bump to be at two diametrically opposite phases, between 
which the bump could alternate, for example (Fig. 3a). In addition, 
because each HD neuron would be now always co-active with two visual 
neurons, the Hebbian rule predicts the visual-to-HD connectivity to 
become doubled (Fig. 3a and Extended Data Fig. 6k,l). Once such dou-
bled connectivity is established, a single sun would now drive the bump 
to the two opposite phases, degrading the scene–bump alignment 
(Fig. 3a and Extended Data Fig. 6m,n).

Here we identified HD cells with the sinusoidal fitting using one-half 
of the pre-training epoch data. Figure 3c shows the data from an exam-
ple fish. During the pre-learning epoch, the bump phase and the scene 
orientation aligned well, and the scene–bump offset showed a clear 
single peaked distribution centred at 0 (Fig. 3d). During the learning 
epoch, the scene–bump offset became variable (Fig. 3c,d), even though 
the correlation structure among the HD cells was maintained (Extended 
Data Fig. 7a). In the post-learning epoch, the scene–bump offset dis-
tribution widened (Fig. 3d). Across all fish, the scene–bump offset 
spent significantly more time in the out-phase range (that is, absolute 

–2.5
0

2.5

–0.25
0

0.25

0 200 400 600 800 1,000

Time (s)

b
 (r

ad
)

Smooth Jump Noise

–2

–1

0

1

2

s.
d

.

Smooth (6 min)

Jump (6 min)

Noise (6 min)

0

Scene–bump offset (rad)

0

0.2

0.4

0.6

0.8

D
en

si
ty

Jump  = 3.05, P = 0.03
Noise  = 1.17, P = 0.10

Fish (sorted by noise local correlation)

–0.5

0

0.5

Lo
ca

l c
or

re
la

tio
n

Data
Bootstrap

Aligned
(high )

Correlated
(low )

a b

e f g h

c d

Visual
cells

Bump

HD cells

Angular head
velocity cell

Rotation
cells

1

2

3
Ju

m
p

 

Fish (sorted by jump κ)

0

0.5

1.0

N
oi

se
 

Data
Bootstrap

Ta
il

(r
ad

)


ex
t

(r
ad

 p
er

 s
)

–/2

0

/2

Bump phase


Bump phase


– 

Fig. 2 | The HD neurons can exploit both landmark and optic flow cues.  
a, Visual neurons detecting landmark cues can instruct the bump phase.  
b, Rotational optic flow can move the bump by activating the rotation cells 
through angular head velocity cells. c, Schematic of the experiment. The 
sun-and-bars scene was presented with smooth motion (6 min) and with jumps 
(6 min) and was followed by a noise stimulus that rotated consistently leftwards  
or rightwards around the fish, as indicated by the blue or red arrows, respectively  
(6 min). d, An example single fish data, showing the tail angle (top), exogenous 
rotation velocity ωext (middle) and the binned HD cell activity with the scene 
orientation θ (black) and the bump phase (yellow; bottom). Abrupt jumps of 
the scene are indicated by the dots in the middle plot. The white dotted lines 
indicate the beginning of each experimental epoch (that is, smooth, jump 
or noise). e, The histograms of the scene–bump offset during the jump  
(orange solid line) and noise (blue solid line) epochs, with von Mises distributions 
fit to them (dotted lines). The P values are from bootstrap tests (Methods) and 

represent the probability that the κ exceeded the shuffle. f, κ from the von 
Mises distributions fit on the scene–bump offset histogram for each fish for 
each condition (orange dots for jump and blue dots for noise). The shuffle 
distributions are indicated in grey (dot for the median and the bar for the 95th 
percentile). For the jump epoch, 14 out of 24 fish showed significantly above 
change κ, whereas only 3 fish did so for the noise epoch. Note that multiple 
recordings were made in three fish, as indicated by brackets. g, If rotational 
optic flow moves the bump in the right direction but by an incorrect amount, 
the bump phase and the noise scene orientation will no longer be aligned but 
remain positively correlated. h, Local correlation (that is, median Pearson 
correlation between θ and the bump phase within 15-s-windows around the 
exogenous rotation episodes) in the noise epoch (blue) compared with the 
bootstrap distribution (grey dot denotes the median and the grey bar indicates 
the 95th percentile). Of 24 fish, 12 showed significantly above chance positive 
correlation.
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scene–bump offset >  π3 /4) (Fig.  3e). A similar increase was not 
observed in the control group that experienced only the single sun 
scene throughout (Extended Data Fig. 7b–e). Overall, these results 
support the idea that the connectivity from the visual to HD neurons 
is experience dependent.

Twofold remapping in symmetric scenes
Although the experiment above clearly demonstrated the plasticity in 
the landmark-to-bump mapping, we were puzzled as to why the scene–
bump offset never appeared bimodal in the symmetric scene (Extended 
Data Fig. 7f), as predicted from the ‘flip-flop’ scenario (Fig. 3a). To gain 
better insight as to how the HD cells behaved in the symmetric scene, 
we plotted the tuning curve of individual HD cells in each epoch (Fig. 4a 
and Extended Data Fig. 7g). Here, as expected, the tuning of the HD 
cells during the learning epoch appeared bimodal, which was 

significantly better fit by sinusoids of 2θ rather than of θ (Fig. 4b). How-
ever, unexpectedly, the tuning of the HD cells in the symmetric scene 
appeared not simply doubled, but also rotated in a systematic way 
according to their preferred scene orientation (Fig. 4a). In particular, 
pairs of HD cells with the opposite tuning appeared to rotate their 
tuning for a total of 90°, such that they can remain anticorrelated in 
the symmetric scene (Fig. 4c). Indeed, the amount of the relative tun-
ing rotation between pairs of HD cells in the symmetric scene was pro-
portional to their tuning difference in the single-sun scene, with a slope 
of −0.5 (Fig. 4d,e). This slope, which would be expected to be 0 if there 
was no tuning rotation, was significantly below 0 (Fig. 4f).

The population-level consequence of this ordered tuning rotation 
is that, in the symmetric scene, 180° of the visual scene is mapped on 
to the full 360° array of the HD neurons. This can be most intuitively 
seen by plotting the scene orientation θ and the bump phase as a scat-
ter plot: in the symmetric scene (that is, the learning epoch), the bump 
phase hugs the line with slope 2 (bump phase  θ π≡ 2 (mod 2 )) instead 
of the diagonal (bump phase  θ π≡ (mod 2 ); Fig. 4g), which explains 
why the bump–scene offset (which corresponds to the spread of dots 
along the diagonal) never appeared bimodal (Extended Data Fig. 7f). 
Instead, the offset between the bump phase and θ2  was single peaked 
(Fig. 4h) and significantly well fit by a von Mises distribution in 17 out 
of 25 fish (Fig. 4i), a higher proportion than expected by chance 
(Extended Data Fig. 7h). Overall, this stretched remapping phenom-
enon demonstrates the remarkable ability of the HD cells to capture 
the correlation structure in the visual neuron activities in a plastic way.

Landmark anchoring requires the visual habenula
Finally, we asked how visual information reaches the HD neurons. We 
hypothesized that the habenula provides HD neurons with informa-
tion about visual landmarks. The habenula is a conserved epithalamic 
nucleus that sends dense bundles of glutamatergic axons to the IPN20 
(Fig. 5a). In particular, the dIPN, where the HD cell processes reside, 
receives asymmetric projections from the left dorsal habenula4, which 
is enriched with light-responsive cells21,22 that have local visual recep-
tive fields23. In addition, the axon terminals of individual habenula cells 
wrap around the entire lateral extent of the dIPN neuropil24, contacting 
the whole suite of the HD cell dendrites25. This all-to-all connectivity 
between the visual and HD neurons is well suited to implement the 
Hebbian landmark anchoring in the ring attractor model9 (Fig. 3a).

To make sure that the habenula neurons have enough visual informa-
tion to encode the scene orientation, we first measured visual responses 
of habenula neurons expressing GCaMP6s under the control of vglut2a–
Gal426 (n = 6) or another enhancer-trap line (18107–Gal4; n = 2). By pre-
senting vertical or horizontal bright bars against a dark background 
at various azimuths and elevations, we found that the left habenula is 
enriched with cells with local, sustained, ON receptive fields (Extended 
Data Fig. 8a–c), in line with previous studies21–23. Next, we presented the 
sun-and-bars scene rotating slowly (9° s−1) about the fish in an open loop 
for four cycles in alternating directions, while recording the habenula 
activity (Extended Data Fig. 8d). We found that the scene orientation 
can be accurately decoded from the ongoing habenula activity with a 
naive pattern-matching algorithm (Extended Data Fig. 8e,f), suggest-
ing that the habenula cells indeed collectively encode enough visual 
information to disambiguate the scene orientation, as hypothesized.

We then performed unilateral laser ablations of the habenula axons 
entering the IPN (see Methods for details; Extended Data Fig. 9a–f). 
Before and after the ablation, we repeated an experiment similar to 
that in Fig. 2, where the sun-and-bars scene was presented in a closed 
loop, with smooth rotations or abrupt jumps superimposed intermit-
tently (Fig. 5b). In the example fish shown in Fig. 5c,d, the ablation of 
the visual habenula axons abolished the alignment between the scene 
orientation and the bump phase in both epochs, even though the bump 
of activity itself is still clearly visible23. This decrease was not observed 
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in the control-side ablated fish shown in Extended Data Fig. 9g. At the 
population level, the fish in the visual-side ablation group exhibited 
lower bump–scene alignments in both epochs, only after the ablation 
procedure (Fig. 5e and Extended Data Fig. 9i,j). The decrease in the 
bump–scene alignment was also significantly greater in the visual-side 
ablated group (Fig. 5f). These observations support the hypothesis 
that the HD neurons receive information about visual landmarks from 
left habenula neurons.

The aHB contains putative angular head velocity cells
In contrast to the loss of bump–scene alignment, the habenula ablation 
spared the visual angular path integration (Extended Data Fig. 10a–d). 
Thus, we wanted to explore how the rotational optic flow reaches the 
HD neurons. The ring attractor model (Fig. 2b) predicts the existence of 
‘rotation cells’ connecting neighbouring HD neurons in an asymmetric 
manner, as well as angular head velocity (AHV) cells gating the rotation 
cells. In the last experiment, we aimed to narrow down the anatomical 

location of putative AHV cells. Here we reasoned that such AHV cells 
should be multimodal, such that they are activated when fish make 
turns in one direction, as well as by the rotational optic flow indicating 
the same body turn (Extended Data Fig. 10e). To search for putative AHV 
cells, we imaged various hindbrain regions in fish expressing a calcium 
sensor broadly (HuC–H2B–jGCaMP7c), while we presented clockwise 
and counterclockwise rotational optic flows, as well as translational 
optic flows, which were intended to encourage fish to make turns. 
We selected cells that reliably responded to the rotational stimuli in a 
direction-selective manner and examined their bout-triggered activi-
ties during the translational flow presentation.

Across 49 recordings from 21 fish, we generally observed that hind-
brain neurons prefer ipsiversive rotational optic flow as well as turns 
(Extended Data Fig. 10f–h and Supplementary Video 3), as previously 
reported27–30. The major exception to this pattern was the bilateral clus-
ters of cells in the rhombomere 2/3 situated dorsoposterior to the HD 
cells, which preferred contraversive visual rotation, but still preferred 
ipsiversive turns. This pattern was consistently observed across 16 
fish where we imaged this region (Extended Data Fig. 10i,j). In addi-
tion, we observed smaller clusters of cells in lateral rhombomere 1 that 
prefer ipsiversive optic flow and contraversive turns (Extended Data 
Fig. 10f–h). These cells in the vicinity of the HD neurons with reversed 
visuomotor contingency are strong candidates for the putative AHV 
cells, which would enable the multimodal angular path integration in 
the HD neurons through hypothetical rotation cells.

Discussion
We have demonstrated that the larval zebrafish HD neurons can incor-
porate both allothetic (that is, landmark) and idiothetic (that is, optic 
flow) visual cues into their heading estimate. In particular, we found 
that the plastic mapping between the scene orientation and the bump 
phase requires input from the visually responsive side of the habenula 
to the dIPN. The bulk of the physiological data was consistent with the 
mechanism of landmark anchoring proposed in an early modelling work9, 
in which a Hebbian plasticity operating on all-to-all, visual-to-HD cell 
synapses bakes in a unique mapping from visual landmarks to the HD 
representation (Fig. 3a and Extended Data Fig. 6). The all-to-all connectiv-
ity between the habenula axons and the HD neurons in the dIPN (Fig. 5a) 
appears to be particularly well suited to implement this mechanism.
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We found that, in contrast to the motion-based stabilization behav-
iours that rely on the lower visual field31, upper visual field cues are 
more readily recognized as distal landmarks by the fish HD neurons 
(Extended Data Fig. 4h–m). This topographical bias probably reflects 
the visual ecology: reliable celestial landmarks are usually above the 
animals, and the limited underwater visibility would make it especially 
hard for aquatic animals to find reliable distal cues in the lower visual 
field. At the neural level, a skyward bias in the retinal ganglion cells 
providing visual information to the left habenula has been reported22, 
consistent with our observations.

The circuit that we studied is remarkably similar to the compass 
system of Drosophila, probably due to evolutionary convergence: in 
Drosophila, HD neurons (for example, E-PG cells) project their neurites 
to a donut-shaped neuropil called the ellipsoid body in a topographi-
cally organized manner2, just like the fish HD cells projecting to the 
dIPN. The ellipsoid body also receives axons of ellipsoid body ring 
neurons, which have a namesake ring-shaped morphology32 and con-
tact the whole suite of the HD neurons33, just like the habenula axons. 
A subset of the ellipsoid body ring neurons have local visual receptive 

fields34, and the experience-dependent plasticity between the ellipsoid 
body ring and E-PG establishes plastic anchoring of the landmarks to 
the head direction representation5,6.

One of the more surprising observations here is that the symmetry 
in the visual scene leads to ‘stretched’ mapping from 180° of the visual 
space onto the 360° of the head direction (Fig. 4). Such drastic remap-
ping is made possible by two factors: first, the all-to-all habenula-to-HD 
connectivity carries no intrinsic notion of retinotopy. This plastic, 
all-to-all connectivity resembles the ‘parallel fibre system’ motif, which 
can be found in various learning-related structures (for example, the 
cerebellum and insect mushroom body)35. Second, the strong inhibitory 
interactions among the HD neurons force the antipodic pairs of HD neu-
rons to learn maximally dissimilar patterns of habenula inputs. Similar 
modes of contrastive learning guided by interactions among postsyn-
aptic neurons have also been found in other parallel fibre systems36.

In mammals, the three major brain regions containing the HD neu-
rons are the lateral mammillary nucleus, the anterodorsal nucleus of 
the thalamus and the postsubiculum, which form a loop and maintain 
a coherent representation of heading15,37. The anchoring of the head-
ing representation to visual landmarks is thought to happen through 
interactions between the retrosplenial cortex and postsubiculum38,39, 
which is then propagated back to the subcortical areas through feed-
back projections40. By contrast, the observations of HD cells in the tel-
eost forebrain are limited41, and overall, the homology of mammalian 
thalamocortical connections in fish is questioned42,43. In light of the 
highly conserved nature of the habenula–IPN projection20, our results 
suggest an evolutionary scenario in which the habenula–IPN mecha-
nisms for landmark anchoring similar to those of insects first evolved 
in early vertebrates, and the forebrain circuitry was added on top of 
them, as the elaborate visual telencephalon evolved in mammals.

A key open question is the identities of AHV and rotation cells 
(Fig. 2b). We found cells in rhombomere 2/3 that exhibit visuomotor 
tuning with contingencies expected from AHV cells (Extended Data 
Fig. 10e–j), similar to fly GLNO cells44. From their position, we suspect 
these cells to be homologous to the rodent supragenual nucleus, which 
is considered to provide angular head velocity information to the DTN45. 
Furthermore, we do not yet know in which behavioural contexts fish 
utilize the head direction memory. Establishing a paradigm to observe 
behavioural manifestation of head direction memory is crucial to 
understand the outputs of the compass circuitry.

0

0

200 400 600 800 1,000

P
re

-l
ea

rn
in

g
b

 (r
ad

)
P

os
t-

le
ar

ni
ng

b
 (r

ad
)

Smooth Used for �tting Jump

Bump phase 

0 100 200 300 400 500 600 700 800

Time (s)

Smooth Jump

0 0

Scene–bump offset (rad) Scene–bump offset (rad)

0

0.5

D
en

si
ty

 in
p

re
-l

ea
rn

in
g

D
en

si
ty

 in
p

os
t-

le
ar

ni
ng

0

0.5

–2

0

2

s.
d

.

Smooth  = 2.43
Jump  = 1.44

Dorsal habenula

Left (visual)

dIPN

HD cells
(soma 
in aHB)

vIPN

Smooth (12 min)
Jump (6 min)

Laser ablation

Smooth (6 min)
Jump (6 min)

or

a b

c

d

e

f

0 1 2 3 4 5 0 1 2 3 4 5
0

0.5

1.0

1.5

2.0

2.5

3.0

 p
os

t

0

0.5

1.0

1.5

2.0

2.5

3.0

 p
os

t

pre pre

1 1

0.5

0.5

0.25
0.25

P = 0.42

P
 =

 0
.0

3

P
 =

 0
.0

3

Visual side
Control side P = 0.10

Visual Control
0

1

2

3

 p
os

t:
p

re

0

1

2

3

 p
os

t:
p

re

Visual Control

P = 0.012
P = 0.014

>1 h

–/2

/2

0

–/2

– – 

/2

Smooth  = 0.12
Jump  = 0.28

Fig. 5 | Visual habenula ablation abolishes landmark anchoring. a, Schematic 
of the habenulo-interpeduncular projection. b, Schematic of the experiment. 
c, The binned activity of the HD neurons before and after ablating the axons of 
the visual habenula, from an example fish. The white arrowheads indicate 
places where the bump phase still seemed to follow the scene rotation in the 
post-ablation recording. The white dotted lines indicate the beginning of  
each experimental epoch (that is smooth or jump). d, The histograms of the 
scene–bump offset for pre-ablation (left) and post-ablation (right) recordings, 
separately for smooth (pink) and jump (orange) epochs. e, κ of the von Mises 
distributions fit on the scene–bump offset histogram from the pre-ablation 
and post-ablation recordings, plotted against each other. The data from 
smooth (left) and jump (right) epochs are visualized separately. Each dot 
represents an individual fish, and the purple and grey dots indicate visual- 
side and control-side ablated animals, respectively. The thin grey lines indicate 
different ratios between the pre-ablation and post-ablation κ. The vertical 
dashed lines indicate pre-ablation κ = 0.5, and fish that did not reach this 
threshold were excluded when comparing pre-ablation and post-ablation κ. 
The P values are from rank-sum tests performed between the two ablation 
groups on each axis separately. n = 13 and 15 fish (visual side and control side, 
respectively) for the smooth epoch, and n = 12 and 13 (visual side and control 
side, respectively) for the jump epoch. f, The ratio of von Mises κ between 
pre-ablation and post-ablation recordings for each epoch type and ablation 
group. Data are mean ± s.e.m. P values are from rank-sum tests. n = 13 and 15 fish 
(visual side and control side, respectively) for the smooth epoch, and n = 12 and 
13 (visual side and control side, respectively) for the jump epoch.



8  |  Nature  |  www.nature.com

Article

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09888-x.

1.	 Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum 
in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 
(1990).

2.	 Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path 
integration. Nature 521, 186–191 (2015).

3.	 Petrucco, L. et al. Neural dynamics and architecture of the heading direction circuit in 
zebrafish. Nat. Neurosci. 26, 765–773 (2023).

4.	 Aizawa, H. et al. Laterotopic representation of left-right information onto the dorso- 
ventral axis of a zebrafish midbrain target nucleus. Curr. Biol. 15, 238–243 (2005).

5.	 Fisher, Y. E. et al. Sensorimotor experience remaps visual input to a heading-direction 
network. Nature 576, 121–125 (2019).

6.	 Kim, S. S. et al. Generation of stable heading representations in diverse visual scenes. 
Nature 576, 126–131 (2019).

7.	 Grieves, R. M. & Jeffery, K. J. The representation of space in the brain. Behav. Process. 135, 
113–131 (2017).

8.	 Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum 
in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 
(1990).

9.	 Skaggs, W. E. et al. A model of the neural basis of the rat’s sense of direction. Adv. Neural 
Inf. Process. Syst. 7, 173–180 (1995).

10.	 Cullen, K. E. & Taube, J. S. Our sense of direction: progress, controversies and challenges. 
Nat. Neurosci. 20, 1465–1473 (2017).

11.	 Puelles, L. Comments on the limits and internal structure of the mammalian midbrain. 
Anatomy 10, 60–70 (2016).

12.	 Bassett, J. P. & Taube, J. S. Neural correlates for angular head velocity in the rat dorsal 
tegmental nucleus. J. Neurosci. 21, 5740–5751 (2001).

13.	 Sharp, P. E., Tinkelman, A. & Cho, J. Angular velocity and head direction signals recorded 
from the dorsal tegmental nucleus of gudden in the rat: implications for path integration 
in the head direction cell circuit. Behav. Neurosci. 115, 571–588 (2001).

14.	 Taube, J. S. et al. The head-direction signal is generated from two types of head direction 
cells in brainstem nuclei. Nat. Commun. 16, 9755 (2025)

15.	 Yoder, R. M., Clark, B. J. & Taube, J. S. Origins of landmark encoding in the brain. Trends 
Neurosci. 34, 561–571 (2011).

16.	 Creamer, M. S. et al. A flexible geometry for panoramic visual and optogenetic stimulation 
during behavior and physiology. J. Neurosci. Methods 323, 48–55 (2019).

17.	 Chen, T.-W. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. 
Nature 499, 295–300 (2013).

18.	 Förster, D. et al. Genetic targeting and anatomical registration of neuronal populations  
in the zebrafish brain with a new set of BAC transgenic tools. Sci. Rep. 7, 5230  
(2017).

19.	 Orger, M. B. et al. Perception of Fourier and non-Fourier motion by larval zebrafish.  
Nat. Neurosci. 3, 1128–1133 (2000).

20.	 Aizawa, H., Amo, R. & Okamoto, H. Phylogeny and ontogeny of the habenular structure. 
Front. Neurosci. 5, 138 (2011).

21.	 Dreosti, E. et al. Left-right asymmetry is required for the habenulae to respond to both 
visual and olfactory stimuli. Curr. Biol. 24, 440–445 (2014).

22.	 Zhang, B. et al. Left habenula mediates light-preference behavior in zebrafish via an 
asymmetrical visual pathway. Neuron 93, 914–928.e4 (2017).

23.	 Lavian, H. et al. Visual motion and landmark position align with heading direction in the 
zebrafish interpeduncular nucleus. Nat. Commun. 16, 9924 (2025).

24.	 Bianco, I. H. et al. Brain asymmetry is encoded at the level of axon terminal morphology. 
Neural Dev. 3, 9 (2008).

25.	 Wu, Y. K., Petrucco, L. & Portugues, R. Anatomical and functional organization of the 
interpeduncular nucleus in larval zebrafish. Preprint at bioRxiv https://doi.org/10.1101/ 
2024.10.09.617353 (2024).

26.	 Satou, C. et al. Transgenic tools to characterize neuronal properties of discrete populations 
of zebrafish neurons. Development 140, 3927–3931 (2013).

27.	 Brysch, C., Leyden, C. & Arrenberg, A. B. Functional architecture underlying binocular 
coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol. 17, 
110 (2019).

28.	 Chen, X. et al. Brain-wide organization of neuronal activity and convergent sensorimotor 
transformations in larval zebrafish. Neuron 100, 876–890.e5 (2018).

29.	 Feierstein, C. E. et al. Dimensionality reduction reveals separate translation and rotation 
populations in the zebrafish hindbrain. Curr. Biol. 33, 3911–3925.e6 (2023).

30.	 Portugues, R. et al. Whole-brain activity maps reveal stereotyped, distributed networks 
for visuomotor behavior. Neuron 81, 1328–1343 (2014).

31.	 Alexander, E. et al. Optic flow in the natural habitats of zebrafish supports spatial biases in 
visual self-motion estimation. Curr. Biol. 32, 5008–5021.e8 (2022).

32.	 Hanesch, U., Fischbach, K.-F. & Heisenberg, M. Neuronal architecture of the central 
complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989).

33.	 Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs 
suitable for flexible navigation and context-dependent action selection. eLife 10, e66039 
(2021).

34.	 Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila 
central complex. Nature 503, 262–266 (2013).

35.	 Cayco-gajic, N. A. & Silver, R. A. Review re-evaluating circuit mechanisms underlying 
pattern separation. Neuron 101, 584–602 (2019).

36.	 Jacob, P. F. & Waddell, S. Spaced training forms complementary long-term memories of 
opposite valence in Drosophila. Neuron 106, 977–991.e4 (2020).

37.	 Peyrache, A. et al. Internally organized mechanisms of the head direction sense. Nat. 
Neurosci. 18, 569–575 (2015).

38.	 Clark, B. J. et al. Impaired head direction cell representation in the anterodorsal thalamus 
after lesions of the retrosplenial cortex. J. Neurosci. 30, 5289–5302 (2010).

39.	 van der Goes, M.-S. H. et al. Coordinated head direction representations in mouse 
anterodorsal thalamic nucleus and retrosplenial cortex. eLife 13, e82952 (2024).

40.	 Yoder, R. M., Peck, J. R. & Taube, J. S. Visual landmark information gains control of the 
head direction signal at the lateral mammillary nuclei. J. Neurosci. 35, 1354–1367 (2015).

41.	 Vinepinsky, E. et al. Representation of edges, head direction, and swimming kinematics in 
the brain of freely-navigating fish. Sci. Rep. 10, 14762 (2020).

42.	 Bloch, S. et al. Non-thalamic origin of zebrafish sensory nuclei implies convergent 
evolution of visual pathways in amniotes and teleosts. eLife 9, e54945 (2020).

43.	 Mueller, T. What is the thalamus in zebrafish? Front. Neurosci. 6, 64 (2012).
44.	 Hulse, B. K. et al. A rotational velocity estimate constructed through visuomotor competition 

updates the fly’s neural compass. Preprint at bioRxiv https://doi.org/10.1101/2023.09.25. 
559373 (2023).

45.	 Graham, J. A. et al. Angular head velocity cells within brainstem nuclei projecting to the 
head direction circuit. J. Neurosci. 43, 8403–8424 (2023).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution- 
NonCommercial-NoDerivatives 4.0 International License, which permits any 
non-commercial use, sharing, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material.  
You do not have permission under this licence to share adapted material derived from this 
article or parts of it. The images or other third party material in this article are included in the 
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2026

https://doi.org/10.1038/s41586-025-09888-x
https://doi.org/10.1101/2024.10.09.617353
https://doi.org/10.1101/2024.10.09.617353
https://doi.org/10.1101/2023.09.25.559373
https://doi.org/10.1101/2023.09.25.559373
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

Animal husbandry
The animal handling and experiments were performed according to 
protocols approved by the animal welfare officer at Institüt für Neu-
rowissenschaften, Technische Universität München (TUM) and the 
relevant department at the regional government (Regierung von Ober-
bayern, Sachgebiet 55.2; animal protocol number 55-2-1-54-2532 10112 
and 55.2-2532.Vet_02-24-5). Adult zebrafish (Danio rerio) were housed 
in the facility at the Institute for Neuronal Cell Biology at TUM. The 
adult fish were maintained in water temperature of 27.5–28.0 °C on 
the 14–10 h light–dark cycle. All experiments were performed on 6–9 
days post-fertilization larvae of undetermined sex. The eggs were kept 
in 0.3× Danieau solution, and in the water from the fish facility upon 
hatching. The larvae were maintained at 28.0 °C and under the 14–10 h 
light–dark cycle.

Animal strains
All imaging experiments of the HD neurons were performed on fish 
carrying Tg(gad1b–Gal4)mpn155 (ref. 18) and Tg(UAS–GCaMP6s)mpn101 
(ref. 46). To record the activity of habenula neurons (Extended Data 
Fig. 8), either Tg(vglut2a–Gal4)nns20 (ref. 26) (n = 6 fish) or a previously 
uncharacterized enhancer trap line Tg(18107–Gal4) was used (n = 2 fish) 
with UAS–GCaMP6s. The expression pattern of the 18107–Gal4 line can 
be browed on Z Brain Atlas (https://zebrafishexplorer.zib.de/home/). 
For labelling habenula for the ablation (Fig. 5 and Extended Data Fig. 9), 
Tg(18107–Gal4) was used. A subset of fish in the ablation experiment 
possessed Tg(UAS–nfsB–mCherry)47 for a logistical reason. This does 
not affect the results of the ablation experiments as they were evenly 
distributed across the conditions, and the fish were not treated with 
relevant chemogenetic reagents. The experiment to search for putative 
AHV cells (Extended Data Fig. 10e–j) was performed on fish carrying 
Tg(HuC–H2B–jGCaMP7c). All fish were mitfa−/− (that is, nacre) mutants 
lacking melanophores to allow optical access to the brain.

Two-photon microscopy experiments
Animal preparation and the stimulus presentation setup. Animals 
were embedded in 2% low-melting point agarose in 30-mm petri dishes.  
The agarose around the tail was carefully removed with a scalpel to 
allow tail movements. The dish was mounted on a 3D-printed pedestal 
and placed in a cube-shaped acrylic tank with the outer edge length 
of 51 mm. The height of the pedestal was designed so that the head 
of the animal came to the centre of the tank, taking the thickness of 
the dish and the typical amount of agarose into account. The tank 
was then filled with fish facility water to minimize the refraction due 
to the petri dish wall. The three sides of the tank (except for the one 
facing the back of the fish) were made of single-side frosted acrylic 
(PLEXIGLAS Satinice 0M033 SC), which functioned as projection 
screens. The diffusive side faced inwards to minimize the reflections 
between the walls. The visual stimuli were projected onto the three 
walls through two sets of mirrors with a previously described geom-
etry16 (Supplementary Video 1), subtending 270° horizontally and 90° 
vertically. The larvae were lit with an infrared LED array through the 
transparent back wall of the tank. Their tail movements were moni-
tored from below with a high-speed camera (Allied Vision Pike F032) 
at 200 Hz, through a hot mirror and a short pass filter to reject the 
excitation beam.

Microscope. Functional imaging was performed with a custom-built 
two-photon microscope. The excitation was provided by a femtosecond 
pulsed laser with 920-nm wavelength, the repetition rate of 80 MHz and 
the average source power of 1.8 W (Spark ALCOR 920-2). The average 
power at the sample was approximately 10 mW. The scan head consisted 
of a horizontally scanning 12-kHz resonant mirror and a vertically scan-
ning galvo mirror, controlled by a FPGA running a custom LabView 

code (LabView 2015)48. Pixels were acquired at 20 MHz and averaged 
eightfold, resulting in the frame rate of 5 Hz. The typical dimension of 
the image was about 100 µm × 100 µm, with the resolution of about 
0.2 µm per pixel. Only pixels corresponding to the middle 80% of the 
horizontal scanning range were acquired to avoid image distortion, 
and the area outside was not excited to minimize photo-damage. The 
fast power modulation was achieved with the acousto-optic modulator 
built in to the laser.

Stimulus protocols. All visual stimulus presentation and behavioural 
tracking were performed using Stytra package49 (v0.8). The panoramic 
virtual reality environments were created and rendered using OpenGL 
through a Python wrapper (ModernGL). In each frame of the stimuli, 
three views of the virtual environment corresponding to the three 
screen walls were rendered, which were arranged on the projector 
window to fit the screens. Behavioural tracking was performed as previ-
ously reported49. In brief, seven to nine linear segments were fit to the 
tail of the larva, and the ‘tail angle’ was calculated at each camera frame 
as the cumulative sum of the angular offsets between the neighbouring 
pairs of segments. To detect swimming bouts, a running standard devia-
tion of the tail angle within a 50-ms window was calculated (‘vigour’). 
A swimming bout is defined as a contiguous period during which the 
vigour surpassed 0.1 rad. For each bout, the average tail angle within 
70 ms after the onset was calculated, with a subtraction of the baseline 
angle 50 ms before the bout onset. This average angle (‘bout bias’) cap-
tures the first cycle of the tail oscillation in a bout and correlates well 
with the heading change in the freely swimming larvae50. We estimated 
the head direction of the fish in the virtual world as the cumulative sum 
of bout bias. The time trace of the head direction was also smoothed 
with a decaying exponential with the time constant of 50 ms, such 
that swim bouts result in smooth rotations of the scene (as opposed 
to instantaneous jumps).

For the recordings from the HD neurons, we simulated a virtual 
cylinder around the fish, whose height was determined so that the 
gaze angles to the top and bottom would be respectively ±60°. Various 
textures representing the visual scene, generated with the dimension 
of 720 × 240 pixel, were mapped onto this virtual cylinder. Dynamic 
aspects of the stimuli (that is, scene rotations and movements of the 
dots) were achieved by updating the textures on the cylinder. The visual 
scenes used were as follows:
•	 Flash: uniform fields of black or white.
•	 Sun-and-bars: three black vertical bars on a single radial gradient of 

luminance, ranging from white at the centre and black at the periph-
ery. The bars were 15° wide and respectively centred at −90°, +75°,and 
+105° azimuths (0° is to the front and positive angles to the right). 
The centre of the gradient was in front and 45° above the horizon, 
and the radius was 135°.

•	 Translating dots: dots randomly distributed in a virtual 3D space at the 
density of 7.2 cm−3 moved at 10 mm s−1 sideways. The dots within the 
40-mm cubic region around the observer were projected as 3 × 3-pixel 
white squares against a black background (in a texture bitmap on the 
cylinder), regardless of the distance.

•	 Stonehenge: four white vertical bars on a black background. The bars 
were positioned at −120°, −90°, 0° and +135° azimuths, respectively. 
The rightmost bar was broken in the vertical direction with the perio-
dicity of 20° elevation and the duty cycle of 50%.

•	 Cue-cards: a white rectangle with the 90° centred about the 0°  
azimuth, which spanned the elevation ranges of either above +20° 
(top cue) or below −20° (bottom cue). The background was black.

•	 Noise: a 2D array of uniform random numbers within [0, 1], smoothed 
with a 5 × 5 pixel 2D boxcar kernel and binarized into black and white 
at 0.5.

•	 Single sun: a radial gradient of luminance from white at the centre 
and black at the periphery, centred at −90° azimuth and 35° above 
the horizon, with the radius of 60°.

https://zebrafishexplorer.zib.de/home/
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•	 Double sun: the same as the single-sun scene, but symmetrized around 

the vertical meridian.

To identify and exclude naively visual neurons, each HD cell recording 
started with the alternating presentation of white and black flashes (8 s 
long each, five repetitions). In the experiment in Extended Data Fig. 3 
the translating dots moving leftwards and rightwards alternatingly 
were also presented (8 s long, five repetitions). Afterwards, epochs 
of closed-loop scene presentations started. At the beginning of each 
epoch, the scene orientation was reset to 0°. On top of the closed-loop 
control, episodes of exogenous slow rotation (18° s−1) were superim-
posed intermittently (5 s every 30 s (Figs. 1 and 2 and Extended Data 
Figs. 3 and 4a–g) or 20 s (Figs. 3–5 and Extended Data Fig. 4h–m)). The 
directions of the rotations flipped after every four rotational episodes. 
The structures of the virtual cylinder experiments were as follows:
•	 Sun-and-bars experiment (introduced in Fig. 1): in the first epoch 

(10 min), the sun-and-bars scene was presented. In the second epoch 
(10 min), fish received no visual stimuli (that is, darkness).

•	 Translating dots experiment (introduced in Extended Data Fig. 3): in 
the first epoch (8 min), the sun-and-bars (n = 10 fish) or Stonehenge 
(n = 15 fish) scene was presented. In the second epoch (15 min), the fish 
observed translating dots moving either left or right. The dots disap-
peared and the screen turned uniform white if the fish performed a 
bout or 10 s passed without a bout (that is, no rotational visual feed-
back). The dots reappeared after waiting for 10 s.

•	 Stonehenge experiment (introduced in Extended Data Fig. 4a–g): in 
the first and second epochs (8 min each), the sun-and-bars and the 
Stonehenge scenes were presented, respectively.

•	 Cue-card experiment (introduced in Extended Data Fig. 4h–m): the 
sun-and-bars, bottom cue-card and top cue-card scenes were pre-
sented for 4 min each.

•	 Jump and noise experiment (introduced in Fig. 2): in the first and 
second epochs (6 min each), the sun-and-bars scene was presented. 
In the second epoch, the superimposed exogenous rotations were 
swapped with abrupt 90° jumps. In the third epoch (6 min), the noise 
scene was presented.

•	 Symmetry experiment (introduced in Fig. 3): in the first and third 
epochs (12 min each), the single-sun scene was presented. In the sec-
ond epoch (12 min), either the double-sun scene (n = 25 fish; Fig. 3) 
or single-sun scene (n = 20 fish; Extended Data Fig. 7) was presented.

•	 Ablation experiment (introduced in Fig. 5): in all epochs, the sun-and 
bars scene was presented. The first epochs were 12 min and 6 min long 
in the pre-ablation and post-ablation recordings, respectively. In the 
second epochs (6 min), the superimposed exogenous rotations were 
swapped with abrupt 90° jumps.

The experiment to characterize habenula visual responses (Extended 
Data Fig. 8) started with alternating black and white flash presenta-
tions (6 s each, five repetitions), which were used to select visually 
responsive cells. Next, white vertical or horizontal bars against a dark 
(25% luminance) background (which respectively subtended the entire 
height or circumference of the cylinder) were presented at 16 different 
azimuths and 5 different elevations, respectively. The width of the bar 
was 14°, and their azimuths and elevations were evenly spaced in the 
range of [−112.5° to 112.5°] and [−30° to 30°], respectively. Each presen-
tation of bars lasted 4 s, with the interleave of 6 s. Each orientation and 
position combination were repeated three times, and the presentation 
order was randomized. Finally, the sun-and-bars scene rotating about 
the fish for the full 360° at 9° s−1 in an open loop was presented four 
times, in alternating directions. In the habenula ablation experiment, 
we recorded the responses of the habenula neurons to alternating 
black and white flash stimuli (8 s each, ten repetitions) to determine 
the visually responsive side (Extended Data Fig. 9b,c).

For the experiment to look for putative AHV cells (Extended Data 
Fig. 10e–j), we simulated a uniformly distributed point cloud in the 

3D virtual reality environment (instead of simulating dots as a texture 
on the cylinder). Specifically, we simulated 2,000 dots within a cubic 
area with side length of 40 mm, and dots within the 20-mm radius from 
the observer were rendered as bright spots on a dark background with 
a diameter of about 1.2° (regardless of distance). Translational and 
rotational optic flow was simulated by moving the camera in the virtual 
environment. The experiment started with alternating presentations 
of short (5 s) yaw rotational optic flow and translational optic flow 
sideways, interleaved with 5 s of blank, dark screens, repeated five 
times, which were intended for characterizing the sensory responses 
of the cells. Next, leftwards and rightwards translational optic flow was 
continuously presented for 5 min each, which was intended to facilitate 
fish to turn, so that we could analyse the bout-triggered activity of 
the cells. The whole experiment was in open loop. The data acquired 
with two different sets of velocity parameters were merged together: 
in five fish, the speed of the rotational optic flow was 18° s−1, and the 
translational optic flow moved 90° to the side at 5.0 mm s−1. For the rest 
(n = 16 fish), the rotational optic flow was at 6° s−1, and the translational 
optic flow moved 45° to the side-front at 3.0 mm s−1.

Laser ablations. The habenula axons (that is, fasciculus retroflexus) 
were ablated unilaterally either by scanning a laser within a small region 
of interest (ROI) on the fasciculus retroflexus (setup A: Spectra Phys-
ics MaiTai, 830 nm, source power 1.5 W) or by pointing a laser on the 
fasciculus retroflexus (setup B: Spark ALCOR 920-2, 920 nm, source 
power 1.8 W). The pulsing characteristics of the two lasers were com-
parable (repetition rate of 80 MHz, pulse width of less than 100 fs), but 
ALCOR was group delay dispersion corrected and thus more efficient 
for ablations. On setup A, scanning with the duration of 200 ms was 
repeated 10 times with an interval of 300 ms. On setup B, a couple of 
approximately 100-ms-long pulses were delivered. These procedures 
were repeated until the successful ablation was confirmed either by a 
spot of increased fluorescence due to the photo-damage or a cavita-
tion bubble. Ablations were repeated at two to three locations around 
the midbrain or pretectum levels to ensure the complete cut of the 
fasciculus retroflexus. The numbers of the fish treated on setups A and 
B were n = 8 and 8 (visual side ablated and control side, respectively) 
and 5 and 7 (visual side ablated and control side, respectively) fish, 
respectively. We waited at least 1 h after the ablation before making 
the post-ablation recordings.

Data analysis
Behavioural data analysis. The swim bouts estimated online during 
the experiments were analysed without additional preprocessing. In 
particular, we calculated trial-averaged cumulative turns around the 
exogenous scene rotations (Extended Data Fig. 1a,c,e–g), as well as 
comparing the biases of individual swim bouts with the scene orienta-
tion (Extended Data Fig. 1b,d).

Imaging data preprocessing. All imaging data were pre-processed 
using the suite2p package51. In brief, frames were iteratively aligned 
to reference frames randomly picked from the movie, using phase cor-
relation. To detect ROIs representing cellular somata, a singular-value 
decomposition was performed on the aligned movie, and the ROIs 
were seeded from the peaks of the spatial singular-value vectors. All 
ROIs were used without morphological classifiers for cells, because the 
functional ROI selection procedure described below rejected spurious 
non-cell ROIs. In the ablation experiments, ROIs were manually defined, 
as described below.

ROI selection. For the HD neuron recordings, fluorescent time traces 
were first normalized into Z-scores for each ROI by subtracting the 
mean and dividing by the standard deviation. The normalized traces 
were then smoothed with a box-car kernel with the width of 1 s. Next, 
a scaled shifted sinusoid a θ b c× cos( − ) +  was fit to the smoothed  



traces of each ROI, where θ is the orientation of the visual scene relative 
to the fish. The fitting was performed with the ‘curve_fit’ function from 
the scipy package, and parameters were bounded in the range of 
a b π π≥ 0, ∈ (− , ]. Only fractions of the data were used for this fitting 
to allow cross-validated quantifications of bump-to-scene alignments 
on the held-out fraction (described below). Specifically, either the 
second half of the first epoch (Figs. 1 and 3–5) or the entire first epoch 
(Fig. 2 and Extended Data Figs. 3 and 4) were used for fitting. ROIs with 
R2 larger than 0.15 were considered to be sufficiently modulated by the 
scene orientation and included. In addition, pairwise Pearson correla-
tions of response time traces to repeatedly presented flashes (and 
translating dots in Extended Data Fig. 3) at the beginning of the  
experiments were calculated for each ROI, and averaged across all pairs 
of repetitions. Naively visual ROIs with mean pairwise correlations 
above 0.1 were excluded from further analyses. Finally, rectangular 
masks were manually drawn around rhombomere 1 of the aHB, and the 
ROIs outside the mask were excluded.

For the habenula recordings (Extended Data Figs. 8 and 9), ROIs with 
mean pairwise correlations in response to repeated flashes (as 
described above) higher than 0.3 were selected as visually responsive 
ROIs and used for further analyses. For the putative AHV cell experi-
ment (Extended Data Fig. 10e–j), for each ROI, we first calculated the 
mean pairwise correlations over the repeated presentation of short 
optic flows (two rotational and two translational directions, with inter-
leaves). We selected ROIs that had a mean above 0.4 as reliable sensory 
ROIs. Next, for each sensory ROI for each presentation of short rota-
tional optic flow, we normalized the fluorescence time trace F t( ) into 

t( ) =F
F

F t F
F

∆ ( ) − 0

0
, where F0 is the average fluorescence within the imme-

diately preceding 3-s period during which no stimulus was presented. 
We then averaged this F

F
∆  within the duration of each rotational optic 

flow presentation (that is, 5 s), and calculated the Z-scored directional 
difference

Z
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where μd  and σd  are the mean and standard deviation, respectively, of 
the time-averaged normalized response over five repetitions 
(d ∈ {CW, CCW}  (in which CW denotes clockwise and CCW denotes 
anticlockwise); which is plotted in Extended Data Fig. 10f). ROIs with 
Z| | > 2dir  were further analysed as rotation-direction-selective ROIs.

Ablation experiment-specific preprocessing. For each fish in the 
ablation experiment (Fig. 5), we first analysed the responses of the 
habenula neurons to the repeated flash stimuli. We first identified visu-
ally responsive ROIs as described above, and defined the side with more 
visual ROIs as the ‘visual side’. In a minority of fish where the number 
of the visual ROIs from the two sides were close (within ±1 range), we 
determined the visual side based on morphology. This was possible due 
to the asymmetric expression of the 18107–Gal4. Overall, we found 3 
fish with inverted laterality (that is, right visual) out of 28 included in 
the analysis (Extended Data Fig. 9c).

To compare the behaviours of the HD neurons before and after the 
fasciculus retroflexus ablations, ROIs were manually defined around 
the cells that were identifiable in both pre-ablation and post-ablation 
recordings. To minimize the effort for manual ROI drawing, we first 
used the ROIs detected by the suite2p pipeline from the pre-ablation 
recording, and run the HD cell selection procedure as described above. 
Using this as a guide, we drew manual ROIs on the pre-ablation record-
ing, specifically focusing on the suite2p-based HD cell ROIs. We then 
calculated an affine transformation between the average frames of the 
pre-ablation and post-ablation recordings, and used this transform to 
register the manually defined ROIs to the post-ablation recordings. 
Finally, we manually adjusted the ROIs to better match the average 
post-ablation frames, if necessary. To make sure that we managed to 

identify the same cells across two recordings, we calculated the Pearson 
correlations of the smoothed fluorescence traces between all pairs of 
ROIs for each recording, and then computed the correlation of those 
correlations. We excluded fish with correlations of pairwise correla-
tions below 0.4 from further analyses.

Characterization of HD tuning curves. To characterize the tuning of 
individual HD neurons, for each selected HD ROI, we calculated the 
average fluorescence binned according to the centred scene orienta-
tion θ t b( ) −  (Fig. 4a–f and Extended Data Figs. 2b,c, 7g and 9i,j), where 
b is the preferred scene orientation of the ROI. To assess the width  
of these tuning curves, we calculated the fraction of θ b−  (that is, cen-
tred θ) bins where the response was above half maximum (Extended 
Data Fig. 2b,c).

For the data in the learning epoch of the symmetry experiment, we 
refit the tuning curves with scaled-shifted sinusoid with the single or 
double frequency. That is:

a g θ b b c′ × cos( ( − ) − ′) + ′,

where g = 1 (single frequency) or g = 2 (double frequency), and b′ rep-
resents the tuning rotation in the learning epoch relative to the 
pre-learning epoch. Here we first compared the ROI-averaged R2 from 
the g = 1 fits and g = 2 fits (Fig. 4b) to check whether the tuning curves 
were single or double peaked. We then compared the difference in b 
and b′ for every pair of the HD cells in each recording, calculated the 
average of pairwise b′ difference binned by b difference and estimated 
the slope between the two (Fig. 4c–f).

For the ablation data, we refit scaled-shifted sinusoid (with single 
frequency) for each epoch of each recording and compared the changes 
of R2 before and after ablations, for each epoch type and each group 
(Extended Data Fig. 9i,j).

Bump phase calculation. As a readout of the population-level, instan-
taneous estimate of the scene orientation θ t( ) by the HD neurons, we 
calculated the bump phase θ t(̂ ), where t is discretized time. To do so, 
we first averaged the ROI-wise response time traces within eight 45° 
bins of the preferred orientation b. We excluded fish with more than 
four empty bins from the following analyses. We then computed the 
bump phase as:

θ t y t x t(̂ ) = atan2( ( ), ( ))

∑x t r t b( ) = ( )cos
i

i i

∑y t r t b( ) = ( )sin ,
i

i i

where r t( )i  is the average response of the i-th bin at time t, and bi is the 
central angle of the i-th bin. The bump amplitude was also calculated 

as A t x t y t( ) = ( ) + ( )2 2 .

Scene–bump alignments. The alignment between the bump phase θ̂ 
and θ were examined in several different ways. First, we calculated the 
centred scene–bump offset θ t θ t θ t π π π∆ ( ) = [( ( ) − (̂ ) + )mod2 ] − . For  
the cases where we can expect θ∆  to be 0, we simply averaged absolute 

θ∆  over time to obtain the ‘absolute error’ (AE) defined as ∫ θ dtAE = |∆ | . 
Second, when we expected θ∆  to be non-zero but constant (that is, the 
bump follows the scene with an offset), we fit von Mises distribution 






∫

e

e dx

κ x μ

κ x

cos( − )

cos  to the histogram of θ∆ , where κ, a parameter that determines 

the peakiness of the distribution, can be interpreted as a proxy of how 
well the bump followed the scene. Third, in cases in which we expected 
the bump to follow the scene but with variable and non-unity gains 
(Fig. 2g), we calculated Pearson correlations between unwrapped θ t( ) 
and θ t(̂ ) within 15-s windows centred about the exogenous rotation 
episodes. We then calculated the median of these correlations over all 
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rotation episodes, which we termed ‘local correlation’. To more explic-
itly estimate the gain of visual-based and motor-based angular path 
integration, for each of the above 15-s snippets of unwrapped θ t(̂ ), we 
performed a Ridge-regularized multiple regression by the exogenous 
component (that is, 90° rotation over 5 s) and the self-generated com-
ponent (that is, the cumulative sum of bout biases) of θ t( ). The Ridge 
regression was performed using scikit-learn 1.1.2 with α = 1, and the 
regression coefficients (that is, the gain of path integration) were con-
strained to be non-negative. These metrics were also compared with 
various nuisance variables (Extended Data Fig. 1h–j).

In the translating dots experiment (Extended Data Fig. 3), the change 
in bout phase was correlated with, as well as regressed by, the bias of 
swim bouts. For each bout in the translating dots epoch, the change in 
the bump phase θ̂ was calculated as θ τ θ τ(̂ + 5) − (̂ − 1), where τ  is the  
bout onset (in seconds). For this calculation, we selected bouts that 
were separated by more than 5 s from both the preceding and the fol-
lowing bouts. A minority of bouts that had a bias of more than 120° and 
bouts in which tail tracking was faulty (tail not tracked in more than 
10% of frames) were discarded as unreliable. Fish that did not have at 
least five such good bouts were excluded from the analysis. We had a 
single fish in the dataset that had two recordings that passed the above-
quality thresholds. The correlations and slopes from multiple record-
ings in this fish were averaged.

Habenula visual responses. The visual receptive fields of habenula 
neurons were characterized as follows: first, for each ROI for each pres-
entation of a bar, the fluorescence time trace F t( ) was normalized into 

t( ) =F
F

F t F
F

∆ ( ) − 0

0
, where F0 is the average fluorescence within the 2-s  

period immediately preceding the bar onset. The normalized respons-
es were then averaged over repetitions for each orientation and position 
combination to generate the spatiotemporal receptive field maps as 
shown in Extended Data Fig. 8b, and averaged over time and divided 
by the peak response over positions to generate the normalized tuning 
curves in Extended Data Fig. 8c.

For the scene orientation decoding analysis, the responses of the 
visually responsive habenula ROIs were first concatenated across mul-
tiple recordings within each fish at different Z-depth. The response of 
each ROI was normalized into Z-scores for the entire recording (includ-
ing the period during which the flashes and bars were presented; 
Extended Data Fig. 8d). Next, the normalized responses during the 
sun-and-bars scene presentation were downsampled to 1 Hz. For every 
pair of time points during the scene presentation t t( , )1 2 , we calcualted 
the Pearson correlation between the pattern of habenula activities, 
which we denote as r t t( , )1 2  (Extended Data Fig. 8e). For each time point 
during the scene presentation t, the decoded scene orientation was 
defined as:

∼
θ t θ t( ) = ( ),max

t r t τ τ= argmax { ( , )| ∈ [0, 40]}.τmax

For each fish, we calculated the absolute error AE =decode∼
∫ θ t θ t |dt| ( ) − ( )

40

160
 to assess the quality of decoding.

Characterization of the putative AHV cells. To assess the anatomi-
cal distribution of the putative AHV cells, we mapped each recording 
into a common reference frame as follows: for each fish, alongside the 
planar functional recordings, we acquired a 1-µm or 2-µm step Z-stacks. 
First, we mapped the aligned, time-averaged frame of each functional 
recording onto the corresponding Z-stack with a manually defined key 
point-based affine transformation. Next, we mapped each Z-stack onto 
a single select Z-stack in the same way. This Z-stack-to-Z-stack mapping 
was performed separately for the groups of recordings targeted at 
rostral and caudal hindbrain regions. Then, we averaged the mapped 
Z-stacks across fish within the rostral and caudal groups. Finally, we 

mapped the average rostral stack onto the average caudal stack, exploit-
ing the overlap between the two. The coordinates of all ROIs from all 
recordings in all fish were then linearly transformed into the average 
caudal stack coordinate with multistep affine transformations.

The bout-triggered activities of the rotation-direction-selective cells 
identified in the putative AHV cell experiment (Extended Data Fig. 10e–j)  
were characterized as follows: for each recording, we first identified 
turning swim bouts during the longer presentation of translational 
optic flows, which had the absolute bias above 0.2 rad. Recordings that 
did not have at least three turning bouts in both directions were excluded 
from further analyses. Next, for each ROI for each bout, we cut out a 
fluorescent snippet around the bout onset, and normalized it into 

t( ) =F
F

F t F
F

∆ ( ) − 0

0
, where F0 is the average fluorescence within the immedi-

ately preceding 3-s period. The normalized bout-triggered snippet was 
averaged within 3 s from the bout onset and averaged across bouts for 
each direction. We then calculated the difference of time-averaged and 
bout-averaged bout-triggered activity by turn directions, as plotted in 
Extended Data Fig. 10g. To assess the contingency of visual and motor 
directional preferences, for each ROI, we calculated the product between 
the Z-scored rotational optic flow response differences (Zdir) and the 
directional differences of the bout-triggered responses (Extended Data 
Fig. 10h). This visuomotor product was averaged across cells within 
bins along the anteroposterior axis for each fish.

Statistical quantifications. As a rule, when comparing fish-wise met-
rics against null hypothesis values, or when making paired comparisons 
between different conditions within fish, we used the signed-rank tests. 
When comparing scalar metrics across two groups of fish, we used the 
rank-sum tests. To assess the significance of the alignment between 
the scene orientation θ t( ) and the bump phase θ t(̂ ) for each recording 
(more specifically, to show that the observed scene–bump alignment 
did not simply result from the autocorrelation of θ and θ̂), we used 
bootstrap tests with time-domain shifting, as follows: first, we calcu-
lated a metric of interest that quantifies the scene–bump alignment  
as F F θ t θ t= ( ( ), (̂ ))data . We then circularly shifted the bump phase θ̂  
by a random amount t∆  and recalculated the bootstrap metric 
F F θ t θ t t T= ( ( ), (̂[ + ∆ ]mod ))BS  for 1,000 times, where T is the duration 
of the relevant epoch or the experiment. We then calculated the prob-
ability of obtaining a value more extreme than Fdata in the expected 
direction from the resampled distribution FBS as the estimate of the 
statistical significance (that is, bootstrap P value) of the observation. 
Thus, the bootstrap tests were one-sided. When F θ θ( , )̂ depended on 
the temporal structure of θ and θ̂ (that is, local correlation and regres-
sion), care was taken such that the data snippets containing discon-
tinuous points introduced by the circular shifting were not used for 
the FBS calculation. To make sure that the observed significant fish-wise 
P values did not simply result by chance in the absence of true bump–
scene alignments (that is, multiple comparison problem), we per-
formed Kolmogorov–Smirnov tests to compare the observed P value 
distribution with a uniform distribution.

The specific statistical tests we performed, as well as the experiment 
specific exclusion criteria, are as follows:
•	 Sun-and-bars experiment: the absolute error ∫ θ dtAE = |∆ |  was calcu-

lated for the hold-out (that is, not used for the HD cell identification) 
portion of the data, and its significance was tested with the bootstrap 
test (Fig. 1e and Extended Data Fig. 2e).

•	 Translating dots experiment: the correlation between the bout phase 
change across swim bouts and the bias of the swim bouts was tested 
against 0 with a signed-rank test (Extended Data Fig. 3f).

•	 Stonehenge experiment: von Mises distributions were fit on the 
histogram of θ∆  (with 16 evenly spaced bins) in the Stonehenge 
epoch, and κ  was tested with the bootstrap test (Extended Data 
Fig. 4d,g).

•	 Cue-card experiment: von Mises distributions were fit on the histo-
gram of θ∆  in the bottom and top cue epochs, and κ was tested with 



the bootstrap test (Extended Data Fig. 4k,m). In addition, κ was com-
pared across epochs within each recording with a signed-rank test 
(Extended Data Fig. 4l).

•	 Jump and noise experiment: von Mises distributions were fit on the 
histogram of θ∆  in the jump and noise epochs, and κ was tested with 
the bootstrap test (Fig. 2f and Extended Data Fig. 5b,c). In addition, 
local correlation (Fig. 2h and Extended Data Fig. 5b,c), as well as 
trial-averaged R2 from the multiple regression model (Fig. 2f and 
Extended Data Fig. 5e–g) were calculated on the noise epoch data 
and tested with the bootstrap test.

•	 Symmetry experiment: several fish whose bump amplitude A decayed 
more than 60% between the pre-training and post-training epoch 
(for example, owing to poor health) were discarded as unreliable. 
The ‘fraction out-phase’, that is, the proportion of time where θ|∆ | > π3

4  
was calculated for each epoch (only using the hold-out part) and 
compared across epochs with signed-rank tests, separately for the 
double-sun (Fig. 3e) and control (Extended Data Fig. 7d) groups. The 
change in the fraction out-phase from the pre-learning to the post-
learning epoch was compared across groups with a rank-sum test 
(Extended Data Fig. 7e). In Fig. 4b, ROI-averaged R2 from single-fre-
quency and double-frequency sinusoidal fits on the individual HD 
cell tuning curves in the learning epoch were tested against each 
other with a signed-rank test. In Fig. 4f, the slope between the pairwise 
tuning difference and the tuning rotation difference was tested 
against 0 with a signed-rank test. In Fig. 4i, von Mises distributions 
were fit on the histogram of θ θ2 − ,̂ and κ was tested with the bootstrap 
test (Extended Data Fig. 7h).

•	 Habenula experiment: the absolute error of decoding was tested 
against π

2
 with a signed rank test (Extended Data Fig. 8f).

•	 Ablation experiment: von Mises distributions were fit on the histo-
gram of θ∆  for each epoch in each recording. We then compared 
the κ across the ablation group within each epoch of each recording 
with signed-rank tests (Fig. 5e). In addition, the ratios of κ between 
pre-ablation and post-ablation recordings for each epoch were 
compared across the ablation groups, using the rank-sum test 
(Fig. 5f). We excluded fish that had κ < 0.5 in the pre-ablation epochs, 
as they were not informative about the effect of the ablations. In 
addition, visuomotor multiple regression models were fit to the 
bump-phase changes in the smooth epoch of the post-ablation 
recordings in the visual-side-ablated animals, and R2 was tested with 
the bootstrap test (Extended Data Fig. 10c,d). We also tested the 
amount of stabilization turns fish made before and after ablations 
for each epoch–group combination, with signed rank tests 
(Extended Data Fig. 1g).

•	 Putative AHV cell experiment: the binned-averaged visuomotor prod-
uct was tested against 0 for each anteroposterior bin, with signed-rank 
tests (Extended Data Fig. 10i).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
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reproduce the figures have been deposited in a Zenodo repository52 
(https://doi.org/10.5281/zenodo.17233579). The expression pattern of 
the 181017–Gal4 driver line is available from the Z Brain Atlas (https://
zebrafishexplorer.zib.de/home/).
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repository (https://github.com/portugueslab/Tanaka_2025_landmark).
 
46.	 Thiele, T. R., Donovan, J. C. & Baier, H. Descending control of swim posture by a midbrain 

nucleus in zebrafish. Neuron 83, 679–691 (2014).
47.	 Davison, J. M. et al. Transactivation from Gal4-VP16 transgenic insertions for 

tissue-specific cell labeling and ablation in zebrafish. Dev. Biol. 304, 811–824 (2007).
48.	 Varga, Z. et al. Dendritic coding of multiple sensory inputs in single cortical neurons 

in vivo. Proc. Natl Acad. Sci. USA 108, 15420–15425 (2011).
49.	 Štih, V. et al. Stytra: an open-source, integrated system for stimulation, tracking and 

closed-loop behavioral experiments. PLoS Comput. Biol. 15, e1006699 (2019).
50.	 Huang, K. H. et al. Spinal projection neurons control turning behaviors in zebrafish.  

Curr. Biol. 23, 1566–1573 (2013).
51.	 Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. 

Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).
52.	 Tanaka, R. & Portugues, R. Dataset for “Plastic landmark anchoring in zebrafish compass 

neurons”. Zenodo https://doi.org/10.5281/zenodo.17233579 (2025).

Acknowledgements We thank the members of the Portugues laboratory for constructive 
discussions on the project; M. Haesemeyer for the Tg(18107–Gal4) line; and K. Briggman for the 
Tg(HuC–H2B–jGCaMP7c) line. R.T. was supported by the European Molecular Biology Organization 
(EMBO ALTF 732-2022) and the Human Frontier Science Program (HFSP LT0027/2023-L) for 
this work. This research was funded by the German Research Foundation (DFG) under the 
Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems 
Neurology (EXC 2145 SyNergy, identifier 390857198), through the ‘Enhanced resolution 
microscopy’ project DFG – Projektnummer 518284373, by the Volkswagen Stiftung via a  
Life? grant and by the Max Planck Gesellschaft.

Author contributions R.T. and R.P. conceived the project. R.T. designed the virtual reality setup, 
performed the experiments and analysed the data. R.T. and R.P. wrote the manuscript.

Competing interests The authors declare no competing interest.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-025-09888-x.
Correspondence and requests for materials should be addressed to Ryosuke Tanaka or 
Ruben Portugues.
Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5281/zenodo.17233579
https://zebrafishexplorer.zib.de/home/
https://zebrafishexplorer.zib.de/home/
https://github.com/portugueslab/Tanaka_2025_landmark
https://doi.org/10.1101/061507
https://doi.org/10.5281/zenodo.17233579
https://doi.org/10.1038/s41586-025-09888-x
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Behaviors of the fish during the experiments and 
analyses of neural variability. (a) (top) The exafferent component of the scene 
rotation in the experiment in Fig. 1. (bottom) The cumulative turns fish made. 
The solid lines in (a-g) indicate the mean across fish, and the shaded area 
represents the standard error around it. The data are folded across clockwise 
and counterclockwise rotation episodes such that the exafferent rotation of 
the scene is always positive. Note that positive turns move the scene orientation 
negatively. (b) The bias of swim bouts, plotted against the scene orientation, in 
the experiment in Fig. 1 (i.e., with the sun and bars scene). The dots of the same 
color are from the same fish. The marginal distributions of the bout bias and 
the scene orientation is plotted above and to the side. If fish were consistently 
fixating on a specific part of the scene (e.g., the sun at the center), one would 
expect an N-shaped curve for the bias distribution. (c, d) The same as (a, b), but 
for the experiment in Extended Data Fig. 4a–g. (e) The same as (a), but for the 
experiment in Fig. 2. (f) The same as (a), but for the experiment in Figs. 3 and 4. 
Only the fish that experienced the double-sun scene are included. (g) The same 
as (a), but for the ablation experiment in Fig. 5, plotted separately for the groups, 
epoch types, and pre-/post-ablation recordings. We did not detect any significant 
difference in the amount fish turned in smooth epochs (i.e., endpoints of each 
curve at 10 s) across groups within recording types (pre p = 0.54; post p = 0.17) 

or before and after the ablations (visual p = 0.59; control p = 0.71). (h) The 
absolute error (AE) metric from Fig. 1, plotted against potential sources of 
variability (time of the day, the number of ROIs per plane, and the number of 
swim bouts). The larvae with different ages are color-coded. The Pearson 
correlation between the AE and the other variables are noted above the plots. 
We did not find any of the nuisance variables to be strongly correlated with the 
AE metric. (i) Same as (h), but for the κ metric for the Stonehenge epoch in the 
Extended Data Fig. 4a–g. ( j) Same as (h, i), but for (top) the κ metric for the Jump 
epoch and (bottom) for the local correlation (r) from the Noise epoch in Fig. 2. 
Overall, we did not find a particularly consistent relationship between the 
scene tracking performance and the nuisance variables we had a handle on. 
Remaining plausible sources of the variability include the stochasticity in the 
expression pattern of the gad1b:Gal4 line, as well as the embedding condition 
of the animals (e.g., small tilt in the pitch or roll direction affected the HD 
neurons through the vestibular systems). (a, b, h) N = 25 fish. (c, d, i) N = 20 fish. 
(e, j) N = 24 fish. (f) N = 25 fish. (g) N = 13/15 fish (visual side/control) for the 
smooth epoch, and N = 12/13 (visual side/control) for the jump epoch. P-values 
are from rank-sum (for across fish comparisons) or signed-rank (for within fish 
comparisons) tests.



Extended Data Fig. 2 | Further characterizations of the scene orientation 
tuned cells in the Sun-and-bars scene. (a) (left) The distribution of the R2 
values from the sinusoidal fits and the mean pairwise correlation to the flash 
stimuli, for the same fish as in Fig. 1d and (right) for the population. (b) The 
normalized scene orientation tuning of selected individual ROIs, from the 
same fish in (a). Plotted separately for the portion used for the fitting 
(“training”, left) and the portion not used (“test”, middle). The ROIs are sorted 
by the tuning width proxyed by the fraction above half max from the training 
portion, as plotted on the right. (c) The distributions of the fraction above half 
max. Each color represents ROIs from different fish. On average, the scene 
orientation tuning of these cells were on average slightly narrower than the 

sinusoid. (d) The binned activity of the scene orientation tuned cells from six 
more example fish as in Fig. 1d. The dotted line marks the beginning of the 
Sun-and-bars scene. (e) The cumulative distribution of the recording-wise 
p-values from the bootstrap tests in Fig. 1e (pink), which was significantly 
(p = 2.2 × 10−8) different from the uniform distribution (black dotted), from a 
Kolmogorov-Smirnov test. (f) Mean preferred scene orientations b of the  
ROIs in the left and right hemispheres, plotted against each other. Pink dots  
are for the recordings where the absolute error was significantly below  
chance. The data roughly lay on top on the diagonal dotted lines indicating  
(left mean – right mean) = π. N = 30 recordings from 25 fish.
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Extended Data Fig. 3 | Turns triggered by translational optic flow move the 
bump phase. (a) Binned activities of the scene orientation tuned cells from 
two example fish throughout the entire recording, as in Fig. 1d. The dotted 
white lines indicate the beginnings of the Sun-and-bars and darkness epochs, 
respectively. Places where lateralized swim bouts in the darkness appeared to 
coincide with bump phase changes are marked by white triangles. (b) Schematics 
of the experimental structure. (c) The binned activity of the scene orientation- 
tuned cells in an example fish, with the bump phase (yellow) and scene 
orientation θ (black) (note that θ did not correspond to the stimuli presented in 
the second epoch). The red and blue boxes on the tail plot respectively indicate 

periods during which rightward and leftward dots were presented. (d) The 
changes in the bump phase around each swim bout (thin lines). Thick lines are 
the averages for the right and left bouts (defined as bias > 0.2 and < −0.2 rad, 
respectively). (e) The bump phase change (i.e., average bump phase between 1 
to 2 s after the bout onset, with a baseline subtraction) plotted against the bout 
bias. (f) The correlation and slopes between the bump phase change and  
bout bias distributions, plotted against each other. The histograms show the 
marginal distributions. The bout bias-bump phase change correlation was 
significantly negative across the population (p = 7.2 × 10−4 from a signed-rank 
test, N = 25 fish).



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | The HD neurons can track multiple scenes. (a) The 
Sun-and-bars scene (top) and the Stonehenge scene (bottom) were presented  
in sequence. (b) The data from an example fish, showing the (top) tail angle, 
(middle) exogenous rotation velocity ωext, and (bottom) the binned HD cell 
activity with the scene orientation θ (black) and the bump phase (yellow).  
(c) Histogram of the offset between θ and the bump phase during the Stonehenge 
epoch (pink), with a von Mises distribution fit to the data (grey dotted), which  
is proportional to κ θ μexp( cos( − )). The p-value is from a bootstrap test and 
represents the probability that the κ is greater than the shuffle (see Methods). 
(d) κ from the von Mises distributions fit on the scene-bump offset histogram 
for each fish (pink), with the associated shuffle distribution (grey dot for the 
median, the bar for the 95th-percentile). 8 out of 20 fish showed significantly 
above chance κ. (e) The mean angle (μ) of the von Mises distribution fit on the 
scene-to-bump offset during the Stonehenge epoch. Pink lines represent the 
data from fish with significant κ. (f) Same as (b, c), but for more example  
fish. The p-values are from bootstrap tests on κ, as in (c). (g) The cumulative 
distribution of the p-values from the bootstrap tests on the von Mises κ (pink) 
shown in (d), which was significantly (p = 2.1 × 10−5) different from the uniform 
distribution (black dotted), from a Kolmogorov-Smirnov test. (h) To test if the 
elevation of the visual landmarks affects the HD cell behavior, we presented the 
fish with the same sun-and-bars scene (top), a scene with a bottom cue (middle), 

and a scene with a top cue (bottom). Each scene was presented for 4 min in a 
closed loop, with intermittent exogenous rotations. The HD cells were detected 
using the sun-and-bars epoch with the sinusoidal fitting procedure. (i) Binned 
activity of the HD cells and associated tail traces (top) from an example fish. 
The scene orientation θ (black) and the bump phase (yellow) are overlaid.  
( j) The histogram of the scene orientation-bump phase offset for bottom 
(purple) and top (green) cue epochs, with von Mises fits (dotted lines), from the 
same fish as in (i). The p-values are from bootstrap tests on κ, as in (c). (k) κ from 
the von Mises distributions fit on the scene-bump offset histogram for each 
fish (stars), with the associated shuffle distribution (dots for the median, the 
bar for the 95-percentile). Purple and green respectively indicate bottom- and 
top-cue epochs. (l) The distributions of bottom- and top-cue epoch κ across 
the whole population. The difference between two distributions was not 
significant, from a signed-rank test. The bars and error bars indicate the means 
across fish and their standard errors, respectively. The data points from the 
same fish are connected. (m) The cumulative distributions of the p-values for 
the von Mises κ from bootstrap tests, separately plotted for the bottom- and 
top-cue epochs. The p-values from the top-cue epochs were significantly  
below chance (i.e., uniform), from Kolmogorov-Smirnov tests. (d, g) N = 20 fish. 
(k, l, m) N = 12 fish.



Extended Data Fig. 5 | Additional characterizations of landmark- and optic 
flow-based scene tracking by the HD neurons. (a) Binned activities of HD 
cells with bump phase and θ overlaid (left) and the associated histograms of the 
scene orientation-to-bump phase offsets (right) from more example recordings, 
as in Fig. 2d,e. The orange and blue solid lines respectively represent the Jump 
and Noise epochs, and dotted lines the von Mises distributions fit on them. The 
p-values are from bootstrap tests on κ and local correlation (see Methods).  
(b) The von Mises κ for the Jump epoch plotted against the local correlation in 
the Noise epoch for each recording, color-coded by the statistical significance 
of the two metrics. Out of 27 recordings, 5 showed both significant Jump epoch 
κ and Noise epoch correlation (green), 10 showed only significant κ (orange), 8 
showed only significant correlation (blue), and 4 neither (grey). The significance 
is defined as bootstrap p values below 0.05. (c) The cumulative distribution of 
the p-values from the bootstrap test on the von Mises κ fit on the scene-bump 
offset histogram of the Jump (orange) and Noise (blue dotted) epochs, as well 
as on the local correlation between the bump phase and scene orientation 
(blue solid). The distributions of the p-values were significantly different from 

the uniform distribution (black dotted), except for the Noise κ, from Kolmogorov- 
Smirnov tests. (d) To independently estimate the gain of motor-based and  
optic flow-based angular path integration, the change in the bump phase 
(yellow) in the Noise epoch was regressed by the cumulative turn angles 
(motor, red) and cumulative exafferent visual rotation (exafferent visual,  
cyan). The fit was performed separately for each short (15 s) period around the 
exafferent rotation, with a Ridge regularization. The black dotted lines indicate 
the resultant fits. The data is from the same fish as in Fig. 2d. (e) The visual and 
motor coefficients plotted against each other, from the fits in (d). Each dot 
corresponds to each rotation episode. (f) The mean visual and motor coefficients 
averaged across rotation episodes within each fish, plotted against each other. 
Each dot represents a single recording, where colors indicate the p-value from 
bootstrap tests on the episode-averaged R2 value (Methods). The colors are 
scaled with log10(20*p), so that dots with p < 0.05 appear blue. (g) Same as (c), 
but for the p-value on the mean R2 value of the regression models. The 
Kolmogorov-Smirnov test indicates that the distribution of the p-values is 
significantly different from uniform. N = 27 recordings from 24 fish.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | A simple ring attractor model with plastic visual 
inputs replicates the physiological observations. Please see Supplementary 
Note 1 for the details of the model implementation and the calibration procedure. 
(a) The outputs of model HD cells in a simulated experiment similar to Fig. 1, 
where the sun-and-bars scene was presented. The scene orientation θ (black) 
and the activity bump phase (yellow) are overlaid. (b) The connectivity matrix 
from the model visual neuron to the model HD neurons, after the experiment in 
(a), which was initially uniformly 0. As described in Fig. 3a, a unique mapping 
from a visual landmark to the bump position was learned. (c) The offset 
between θ and the bump phase (pink), as well as the distribution of peak positions 
of the scene-bump offset (grey) over 100 repetitions of the simulation (i.e., μ 
from von Mises fits on the scene-bump offset histograms). The peak position 
appeared uniformly distributed over repetition – that is, the scene was 
anchored to the HD neurons with an arbitrary offset, as seen in the real fish 
(Fig. 1g and Extended Data Fig. 2f). (d) The model HD neuron outputs from a 
simulated experiment, where the visual scene switched from the Sun-and-bars 
scene to the Stonehenge scene halfway through (as in Extended Data Fig. 4a–g). 
(e) The scene-bump offset histogram for the simulated data in (d), separately 
for the two visual scenes, as in Extended Data Fig. 4c (f) The distribution of the 
κ parameter from the von Mises fit on the scene-bump offset histograms over 
100 repetitions of the simulation. As a reference, the highest scene-bump 
offset κ we observed in the experimental data was around 4, suggesting that 
the model tracked the two scenes as well as or better than fish most of the time. 
(g) The distribution of the difference in the μ parameter from von Mises fits on 
the scene-bump offset histograms between the two scenes (i.e., differences of 
the peak positions). The radial axis represents the density. Peak difference was 
biased around π /2 similar to the experimental data (Extended Data Fig. 4e;  
see also Supplementary Note 1 for how the model visual cells responded to  

each scene). (h) The model HD neuron outputs from a simulated experiment,  
where the Sun-and-bars scene smoothly rotated about the observer (“Smooth” 
epoch) or abruptly jumped (“Jump” epoch), or a feature-less binary noise 
rigidly rotated about the observer (“Noise” epoch) (as in Fig. 2). (i) The scene-
bump offset histogram from the data in (h), separately for each epoch, as in 
Fig. 2e. ( j) The distribution of the von Mises κ parameters from fits on the scene- 
bump offset histograms, over 100 simulation repetitions. The model performs 
much better than real fish in the Noise epoch, because the model is specifically 
calibrated to perform unity-gain angular path integration (Supplementary 
Note 1). More notably, a short (4 min) experience in the “Smooth” epoch was 
enough to establish strong enough visual-to-HD connectivity capable of 
instructing the bump phase. (k) The outputs of the model HD neurons in an 
experiment where the observer experiences scenes with a single sun-like spots 
(pre- and post-learning epochs) or two suns (learning epoch) as in Fig. 3b. In this 
particular run, the bump phase tracked the scene very well in the double-sun 
epoch, but the experience in the double sun epoch introduced more errors in 
the Post epoch. (l) The visual-to-HD connectivity after each epoch from the 
particular simulation run shown in (k). Even though the bump faithfully tracked 
one of the sun presented during the learning epoch, each model HD neuron was 
always co-activated with an antipodic pair of visual neurons, resulting in the 
doubled connectivity (as illustrated in Fig. 3a). (m) The distribution of the 
scene-bump offset histograms, separately for each epoch, as in Fig. 3d. (n) The 
distribution of the fraction of the time where the absolute scene-bump offset 
was above π3 /4, over 100 simulation repetitions, similar to Fig. 4e. The fraction 
was initially always below 0.1 in the pre-learning epoch, then went up in the 
learning epoch, and did not sometimes come back in the post-learning epoch, 
just like in the real data.
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Extended Data Fig. 7 | Further characterizations of the remapping 
experiment. (a) The distributions of the minimum Pearson correlations 
between pairs of HD neuron bins with the opposite scene orientation  
tunings, during the learning epochs. Antipodic pairs of HD cells remained 
anti-correlated, even in the symmetric scene. (b) Data from an example fish in 
the control experiment, as in Fig. 3c. (c) The distribution of the scene-bump 
offset for each epoch, for the same fish as shown in (c). (d) The fractional time 
that the bump-scene offset spent in the out-phase range, for each epoch in  
the control experiment. No significant increase was detected (sign-rank test). 
N = 20 fish. (e) Increase in the fraction of time that the offset spent in the 
out-phase range from the pre- to post-learning epoch was significantly higher 

in the double-sun experiment, compared to the control experiment (rank  
sum test, N = 25 fish for the double-sun experiment, 20 fish for the controls).  
(f) The histograms of the scene-bump offset from all fish in either condition, 
separately for each epoch. (g) The centered tuning of the HD neurons in each 
epoch sorted by the preferred orientation b, as in Fig. 4a, but from two more 
example fish. (h) The cumulative distribution of the p-values from bootstrap 
tests on the von Mises κ fit on the θ2  - bump offset in the symmetric scene, as in 
Fig. 4i. The distribution of the p-values was significantly non-uniform based on 
a Kolmogorov-Smirnov test (p = 2.5 × 10−11; N = 25 fish). For (d, e), the bars and 
error bars respectively indicate means across fish and their standard errors.



Extended Data Fig. 8 | The habenula encodes sufficient visual information 
to disambiguate the scene orientation. (a) The anatomy of habenula neurons 
labeled by vglut2a:Gal4, plane by plane from dorsal to ventral, 10 microns apart. 
The dots indicate the location of the visually responsive ROIs, color-coded by 
their preferred azimuth. Visually responsive cells were enriched in the dorsal 
left nucleus as reported before21, and no retinotopy was apparent23. (b) The 
responses of selected neurons to (left) vertical bright bars at different azimuths, 
and (right) horizontal bright bars at different elevations, over time. The locations 
of the cell bodies of these cells are indicated by numbers in (a). (c) The time- 
averaged bar responses over azimuth and elevation for each ROI, concatenated 
over multiple fish (dotted horizontal lines separate individual animals). The 
ROIs are sorted within each fish, separately for vertical and horizontal bar 
responses by their peak locations. The peaks of the bar responses were broadly 
distributed in each fish, indicating that local receptive fields of the habenula 
neurons tile the visual space. (d) (bottom) The normalized responses of the 

visually responsive habenula neurons to the Sun-and-bars scene, slowly rotating 
about the fish four times in alternating senses (top). (e) (top) The correlation of 
the instantaneous activity patterns of habenula neurons between a time point 
within the first 40 s (on the y-axis) and another time point anywhere during the 
experiment (on the x-axis). To calculate these correlations, the neural data  
was downsampled to 1 Hz. The zig-zag diagonal pattern of high correlation 
mirroring the scene orientation θ is apparent, suggesting that the habenula 
neurons showed similar activities when the scene was at similar orientations. 
(bottom) For each time point, we decoded θ by looking for the time point with 
in the first 40 s where the habenula activity correlated the best with the ongoing 
pattern of habenula activity and taking θ at that time point (purple dots).  
(f) The time-averaged absolute error between the true and decoded θ. Each dot 
represents a single fish. The absolute error was significantly below the chance 
level (π /2, dotted line), from a signed-rank test. N = 8 fish.



Article

Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Additional details of the ablation experiment.  
(a) The axons of the habenula neurons entering the IPN, before, right after, and 
1 day after the ablation procedure. The ablated site is marked by the red arrow. 
The neuronal processes between the ablation site and the IPN initially increased 
the fluorescence, and the disappeared (red dotted line). The same procedure 
was repeated on all 37 fish tested. (b) Two examples of fish with the typical and 
inverted habenula laterality. The ROIs are color-coded by the average pairwise 
correlations of their responses to the repeated presentations of the flash 
stimuli. The scale bars indicate 10 μm. (c) The numbers of the habenula ROIs 
that had averaged flash correlation beyond 0.3 on each side, plotted against 
each other. The red dots represent fish with the inverted habenula laterality. 
N = 37 fish, including ones that were excluded from the final analyses of the 
ablation effects (see Methods for the criteria). (d) The correlation matrices of 
the HD neuron activity in the pre-ablation (lower triangle) and post-ablation 
recordings (upper triangle), in the same example fish as in Fig. 5c. The cells  
are sorted by their preferred scene orientation. (e) The pairwise correlation 
between all pairs of HD neurons from the pre- and post-ablation recordings in 

the same fish, plotted against each other. The cell pairs are colored by the 
cosine of the difference of their scene orientation tunings. The correlation 
structure among the HD cells were well maintained in this fish after the ablation. 
(f) The distributions of the correlations of pairwise HD cell correlations before 
and after the ablations. Fish with correlation lower than 0.4 were excluded from 
the analysis. (g, h) The binned HD cell activities (g) and the scene-bump offset 
histograms (h) as in Fig. 5c,d, but for an example fish with the control side 
ablation. (i) The centered tuning of the HD cells from a pair of example fish in 
visual side ablated and control groups (the same as in Fig. 5c,g), for each epoch 
of each recording. The visual side ablation appears to more or less uniformly 
abolish the scene orientation tuning in this particular example. ( j) To quantify 
the change in tuning caused by habenula ablation at the single neuron level,  
we fit scaled, shifted sinusoids to individual HD cell tuning, separately for each 
epoch in each recording, and calculated the difference in the goodness- 
of-fit metric (R2) across recordings, which is plotted here as a histogram 
(concatenated across animals). A: anterior; R: right.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Putative mechanisms of angular path integration. 
(a) The post-ablation binned HD cell activities from several example fish (with 
visual-side ablations) as in Fig. 5c. Places where the bump phase appeared to 
move as the scene rotated are indicated by the red arrows. (b) To test if these 
bump movements are statistically meaningful, we regressed the bump  
phase (yellow) around the scene rotation episodes with the cumulative turns 
(“motor”, red) and the exafferent scene rotations (cyan), as in Extended Data 
Fig. 5d, for the smooth epoch in the post-ablation recordings of the visual side-
ablated group. The fitted curves are in dotted black. The data from the same 
fish in Fig. 5c are shown. (c) The visual and motor coefficients from the regression 
analysis, averaged over rotation episodes, plotted against each other. The 
colors indicate the p-values from the bootstrap tests on the episode-averaged 
R2 value. The colors are scaled with log10(20*p), so that p < 0.05 appear blue.  
10 fish out of 13 showed significantly above chance fit. (d) The distribution of 
the bootstrap-based, fish-wise p-values in (c) was significantly non-uniform, 
based on Kolmogorov-Smirnov test (p = 4.2 × 10−8, N = 13 fish). (e) As an observer 
turns one way, it perceives rotational optic flow in the opposite sense. As such,  
if there exist a multi-modal angular head velocity (AHV) cells, they should be 
activated by motor commands and rotational optic flows in the opposite 
senses. (f) Hindbrain ROIs that reliably responded to rotational optic flow are 
shown in the (left) horizontal or (right) sagittal projection. The ROIs are  
color-coded by the Z-scored differences in their response to clockwise (CW) 

and counterclockwise (CCW) stimuli. Note how rotation direction-selective 
cells are widely distributed at different rhombomeres, but they generally prefer 
ipsiversive rotations, with the exception of r2/3. See also Supplementary 
Video 3. (g) Same as (f), but ROIs are now color-coded by the difference in  
turn-triggered activities by directions (in the unit of ΔF/F). Similar to the visual 
direction selectivity, the ROIs generally preferred ipsiversive turns. The r1 
contained bilateral clusters of cells with contraversive motor preference.  
(h) Same as (f, g), but the ROIs are colored by the product of the visual and 
motor related activity differences. Rhombomeres 1 through 2/3 have clusters 
of cells with negative visuo-motor products, as expected of AHV cells. Cells in 
the posterior rhombomeres, in contrast, generally had positive visuo-motor 
produces, a phenomenology consistent of cancellation of expected reafference. 
(i) Binned averaged visuo-motor products along the anterior-posterior axis. 
Grey lines are from individual fish, and the pink line is the average. Each bin  
was tested against 0 with signed-rank tests (N = 13, 16, 20, 18, 11, 8 fish from 
anterior to posterior). ( j) The average visual and motor responses of the cells  
in the second bin (approximately corresponding to r2/3), separately for their 
directional tuning. The solid lines and shades around them respectively indicate 
mean across fish and its standard error. N = 16 fish. r1: rhombomere 1; r2/3: 
rhombomere 2/3; r5/6: rhombomere 5/6; IO: inferior olive; mhb: midbrain-
hindbrain boundary; A: anterior; R: right; D: dorsal.
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