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Vision caninform animals as they navigate their environment. Landmarks can be used
to maintain heading, while optic flow can be integrated to estimate turning. Although
it hasbeen shown that head direction (HD) neurons in various species use these visual
cues'?, the circuit mechanisms underlying this process in vertebrates remain unknown.
Here we asked whether and how the recently identified HD cells in the larval zebrafish?,
one of the smallest vertebrate models, incorporate visual information. By combining

two-photon microscopy with a panoramic virtual reality setup, we demonstrate that
the zebrafish HD cells canreliably track the orientation of multiple visual scenes,
exploiting both visual landmarks and optic flow cues. The mapping between landmark
cues and heading estimates isidiosyncratic across fish and experience dependent.
Furthermore, we show that landmark tracking requires the lateralized projection
from the habenula to the interpeduncular nucleus*, astructure innervated by HD
neuron processes’. The physiological and morphological parallels suggest that a
Hebbian mechanism similar to the fly ring neurons®® is at work in the habenula axons.
Overall, our observation that hindbrain HD cells of larval zebrafish can utilize the
visual cues despite the lack of an elaborate visual telencephalon sheds new light on
the evolution of navigation circuitry in vertebrates.

Neurons whose activities reflect spatial relationships between animals
and their environments have been identified in the brains of diverse
animal species’, probably supporting navigation. A simple example of
space-tuned cellsis HD cells, which persistently fire when animals are
facingaparticular direction®. Because the head direction of ananimal
istypically not directly provided to the sensory system, HD cells need
to integrate the history of rotational movements that animals make,
aprocess called angular path integration. As a simple, yet biophysi-
cally plausible mechanism to implement angular path integration, a
class of dynamical models called ring attractors has been proposed®.
Aringattractor typically consists of neurons arranged on a topological
ring, which excite nearby neurons while inhibiting far away neurons.
Such connectivity architecture gives rise to a single, persistent bump
of activity on the ring in the absence of external inputs, which can be
used to represent the head direction.

More than three decades of research have identified HD cells
in various mammalian brain regions'’. Yet, it has remained incon-
clusive where and how the tuning to head directions first emerges.
A recent study on the larval zebrafish identified a group of GABA-
ergic (y-aminobutyric acid-dependent) HD cells in the anterior hind-
brain (aHB) rhombomere1(ref.3). This GABAergic nucleus is probably
homologous to the mammalian dorsal tegmental nucleus (DTN)",
one of the basal-most brain regions with HD cells in rodents> ™. The
dendrites and axons of these zebrafish HD cells form topographi-
cally organized columns in the dorsal interpeduncular nucleus
(dIPN), such that cells tuned to the opposite head directions would

inhibit each other, recapitulating a key connectivity motif of ring
attractors.

In addition to motor-based angular path integration, animals can
also utilize visual cues, such as landmarks and optic flow, to improve
their sense of heading'?. Inrodents, cortical visual areas (for example,
theretrosplenial cortex) are thought to provide visual information to
HD neurons®. However, unlike mammals, the larval zebrafish lacks an
elaborate visual telencephalon. This raises the possibility that there
exist evolutionarily older, non-telencephalic pathways that route
visual information to the HD neurons in the aHB. We therefore set
out to ask whether and how the larval zebrafish HD neurons utilize
visual cues.

GABAergic aHB cells track visual scene orientation

TheaHBrhombomerelofthelarval zebrafish containsagroup of gadib*
HD neurons?. The preferred headings of these HD cells are topographi-
cally arranged, such that when the fish turns rightwards, the bump
of neuronal activity moves counterclockwise, as viewed from the top
(Fig. 1a). Somewhat surprisingly, the previous study did not detect
any effect of visual feedback on the bump movements>. We reasoned
that this might be due to the fact that the visual stimuli were presented
below the fish. Intuitively, the upper visual field seems to containmore
relevant cues for orienting oneself. To achieve a panoramic presenta-
tion of visual stimuli covering the upper visual field, we built a compact
projection setup composed of asingle projector and multiple mirrors'
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Fig.1|aHB GABAergiccells that trackavisual scene.a, HD neuronsinthe
larval zebrafish aHB are topographically organized by their tunings. As aresult,
the population activity of these cells appears as asingle ‘bump’ that moves as
thefish turns. Tel, telencephalon; TeO, optic tectum. b, The sun-and-bars visual
scene consisting of aradial luminance gradientand dark bars (top) wrapped
around the fish, forming a virtual cylinder (bottom). ¢, Example activity of the
cellstuned to different scene orientations (pink) with the sinusoidal fit (grey).
Only thesecond half of the datawere used for the fitting procedure. The
horizontal and vertical barsindicate20 sand1s.d., respectively.d, Binned
activity of the scene-orientation tuned cells, with the scene orientation 8

(Supplementary Video 1). Larvae embedded in agarose observed
view-corrected virtual 3D scenes projected onto the planar screens
onthethreesides, which covered 270° of azimuth and 90° of elevation
(Fig.1band Methods). The neural activity was optically monitored from
above with a two-photon microscope.

Inthis setup, weimaged the neural activity of aHB neurons express-
ing GCaMP6s" under the control of gad1b-Gal4 (ref. 18) in 6-9 days
post-fertilization larvae. Each experiment started with an alternating
presentation of 8-s-long, bright and dark full-screen flashes. Naively
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(black) and the bump phase (yellow) overlaid, as well as associated traces of
the tail angle (top) and the exogenous rotation velocity w,,, (middle). e, Time-
averaged absolute error (AE; thatis, [bump phase - 6]) for each fish (pink)
compared with the shuffle. The grey dots and bars indicate the median and 5th
percentile of the shuffle distributions, respectively. Out of 25 fish, 15 showed
significantly below chance AE. Note that recordings from multiple planes were
madein fourfish, asindicated by the brackets. f, Selected ROIs visualized on
the anatomy, with their scene orientation tuning colour coded. Scale bars,

50 um. P, posterior; R, right; r1, rhombomere 1.

visual neuronsthatreliably responded to these flashes were removed
from further analysis (Methods). In the first experiment, we presented
ascene consisting of acircular luminance gradient centred above the
horizon and dark vertical bars (henceforth ‘sun-and-bars’) for 10 min
(Fig.1b). The scene wrapped around the fish, forming a virtual cylin-
der. The orientation of the scene was controlled in a closed-loop man-
ner based on the tail movements. Inaddition, slow exogenous rotation
ofthe scene was superimposed intermittently (90° rotationsover5s
every 30 s, switching directions every four times), such that the fish



would experience various scene orientations even if they did not make
many spontaneous turns. In this stimulus configuration, the behav-
iour of the fish was dominated by low-gain turns counteracting exog-
enous rotations, and they did not obviously fixate on any part of the
scene (Extended Data Fig.1). We hypothesized thatin this configura-
tion, HD cells would indeed exploit visual information, so we would
expect theiractivity to be well fit by a single-peaked periodic function
of the scene orientation. Thus, we fit a scaled, shifted sinusoid
axcos(6 - b) +cto one-half of the normalized fluorescence time
trace of each cell. Here 8 denotes the orientation of the scene rela-
tive to the fish (clockwise positive), and a, b and c represent the res-
ponse amplitude, preferred orientation and baseline, respectively.
We selected cells where the sinusoidal fit resulted in R? > 0.15 for fur-
ther analyses. In this notation, the heading of the fish in the virtual
world would be 6.

We found cells surpassing the above criteriain all fish we recorded
from. In some cells, R* was as high as 0.8 (Fig. 1c and Extended Data
Fig.2a-c). At the population level, asingle bump of activity was clearly
visible, even before the onset of the sun-and-bars scene (that is, dur-
ing flash presentations) (Fig. 1d, Extended Data Fig. 2d and Supple-
mentary Video 2). We calculated the ‘bump phase’ as the angle of the
activity-weighted average of the preferred orientation vectors of the
selected cells?* (Methods). We then examined the alignment between
thebump phase and the scene orientation by running bootstrap tests
onthe portion of the data not used for the fitting. The tests revealed
significantbump-scene alignmentin 15 out of 25 fish (Fig. 1e), a pro-
portion not expected from chance (Extended Data Fig. 2e). We did
not find an obvious predictor of individual variability in the align-
ment (Extended Data Fig. 1h—j). The preferred scene orientations of
individual cells exhibited a clockwise topographical organization in
rhombomere1(Fig.1fand Extended Data Fig. 2f), consistent with the
previous observed topography of HD cells®. The anatomical arrange-
ment of preferred orientations had idiosyncratic offsets across mul-
tiple fish: for example, cells with b = 0 can be on the left or right side
of the brain. This observation indicated the possibility that anchor-
ing of the HD cells to visual landmarks is not hard-wired, a point we
return to later.

The scene tuned cells integrate turns

Although we suspect that these scene-orientation-tuned cellsare HD
cells, the sinusoidal-fitting procedure could also pick up visual neurons
tunedtolocalfeatures. Toascertain theiridentity as HD cells, we wanted
to make sure that their bump phase moved as fish turned, even without
visual feedback. Inthe first experiment above, we continued recordings
for another 10 min in the darkness after turning off the visual scene
(Extended DataFig. 3a). However, the small number of swim bouts that
fish made in the darkness made such analysis difficult. To encourage
fish to turn frequently without giving them visual cues for rotation, we
decided to exploit the optomotor response” (Extended Data Fig. 3b).
The first half of the new experiment was mostly identical to that pre-
sented in Fig. 1, with a closed-loop panoramic scene with exogenous
rotations. We performed the sinusoidal fitting on this half of the data
to identify scene-orientation-tuned cells. During the second half, we
intermittently presented an array of white dots translating sideways
on ablack background (in the virtual 3D space), which encouraged
the fish to make turns. Once fish made a swim bout, the dots imme-
diately disappeared without providing any rotational feedback. Here
we found that the bump moved clockwise and counterclockwise as
fish turned left and right, consistent with the previous observation®
(Extended DataFig.3c-e). The negative correlation between the turn
amplitude and bump-phase shift was statistically significant across
the population (Extended Data Fig. 3f). Overall, these results suggest
that the scene-orientation-tuned cells detected with the sinusoidal
fits are genuine HD cells.

The same set of HD cells can track multiple scenes

Inthe next experiment, we asked whether the same set of HD cells can
consistently represent heading direction in different visual scenes.
Here the same sun-and-bar scene was presented in a closed loop with
exogenous rotations. After 8 min, the scene was switched to what we
named the ‘Stonehenge’ scene, consisting of multipleirregularly spaced
bright vertical bars over a dark background (Extended Data Fig. 4a),
while maintaining the same exogenous rotation sequence. As before,
HD cells were identified with the sinusoidal fits on the sun-and-bars
half of the data (Extended Data Fig. 4b,f). To test whether the bump
phasestill tracked the new scene, we fit von Mises distributions on the
histogram of the offset between the scene orientation and bump phase
(Extended Data Fig. 4c) and performed bootstrap tests with time-
domain shuffling on the x parameter, which controls the peakiness of
the distribution. Here, 8 out of 20 fish exhibited significantly above
chance k (Extended Data Fig. 4d), a higher proportion than expected
by chance (Extended Data Fig. 4g). The mean offset between the scene
orientation and the bump offset varied across fish, albeit with a bias
probably due to the cross-correlation between the scenes (Extended
DataFig. 4e).

Inaseparate experiment, we also tested whether fish are capable of
tracking scenes with visual landmarks only in the upper or lower visual
fields. We found that, even though some individual fish can utilize
either upper or lower landmarks, more fish were able to track the upper
landmark (Extended Data Fig. 4h-m), confirming the initial intuition
behind our decision to build the panoramic setup. Together, these
results demonstrate the capacity of the HD cells to maintain stable
head direction representations in various visual scenes.

HD cells exploit visual landmarks and optic flow

How these HD neurons track multiple visual scenes remains unknown.
An early ring attractor model® proposed two separate mechanisms:
first, the model assumes an array of visual neurons that tile the visual
space and detect landmarks, whichinstruct the activity bump tobe at
aspecific phase (Fig. 2a). Second, the model assumes two additional
rings of neurons (‘rotation cells’), which connect neighbouring HD
neurons in a clockwise-shifted or counterclockwise-shifted manner,
respectively. The activities of these rotation cells are further assumed
tobe gated by inputs from cells encoding the angular head velocity of
animals. Asaresult, when the animal turns (for example, rightwards),
the clockwise rotation cellat the current bump phaseis activated, caus-
ing the bump to drift counterclockwise (Fig.2b). Although the original
model primarily considered the vestibular system to be the source of
the angular head velocity information, rotational optic flow can also
inform the animal of their angular head velocity. To test whether the
zebrafish HD neurons use either the visual landmark-based or optic
flow-based mechanisms (or both), we designed a new experiment with
three epochs (Fig. 2c). In the first (‘smooth’) epoch, the sun-and-bars
scene was presented in a closed-loop with superimposed slow exog-
enous rotations as before. HD cells were identified by performing the
sinusoidal fitting on this portion of data. In the second (‘jump’) epoch,
exogenous rotations were substituted by abrupt jumps of 90° without
any intervening smooth rotation, eliminating the optic flow cues. Inthe
final (‘noise’) epoch, the visual scene was swapped with a featureless
spatial noise pattern, but with a smooth rotation sequence. If the HD
cells exclusively relied on either optic flow-based or landmark-based
mechanisms, we would expect themto lose track of the scene orienta-
tionin the jump or noise epochs, respectively.

Figure 2d shows an example fish whose HD cells appeared to track
the scene orientation well in both jump and noise epochs (see also
Extended DataFig.5a).In14 out of 24 fish, the bump phase remained sig-
nificantly aligned to the scene orientation in the jump epoch, a higher
fraction than expected by chance (Fig. 2e,f and Extended Data Fig. 5c).
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Fig.2| The HD neurons can exploit bothlandmark and optic flow cues.

a, Visual neurons detecting landmark cues caninstruct the bump phase.

b, Rotational optic flow can move the bump by activating the rotation cells
through angular head velocity cells. ¢, Schematic of the experiment. The
sun-and-bars scene was presented with smooth motion (6 min) and withjumps
(6 min) and was followed by a noise stimulus that rotated consistently leftwards
orrightwards around the fish, asindicated by the blue or red arrows, respectively
(6 min).d, Anexample single fish data, showing the tail angle (top), exogenous
rotation velocity w,,, (middle) and the binned HD cell activity with the scene
orientation 8 (black) and the bump phase (yellow; bottom). Abrupt jumps of
thesceneareindicated by the dotsinthe middle plot. The white dotted lines
indicate the beginning of each experimental epoch (thatis, smooth, jump
ornoise). e, The histograms of the scene-bump offset during the jump
(orangesolidline) and noise (blue solid line) epochs, with von Mises distributions
fitto them (dotted lines). The Pvalues are from bootstrap tests (Methods) and

By contrast, only three fish managed to maintain a constant offset
betweenthe bump phase and the scene orientationin the noise epoch
(Fig. 2d). Yet, it is still possible that the rotational optic flow moved
the bump in the correct direction, but not necessarily for the correct
amount, making the bump-scene offsets variable (Fig. 2g). Indeed,
in12 out of 24 fish, the bump phase and the scene orientation were
significantly positively correlated within short (15 s) periods of time
around the exogenous rotation episodes in the noise epoch (Fig. 2h), a
fraction not expected from chance (Extended DataFig. 5b,c). The gain
from the rotational optic flow to the bump-phase movement was on
average about 50% (Extended Data Fig. 5d-g). Overall, these results indi-
cate that mechanisms to exploit both visual landmarks and optic flow
cues exist in the circuit surrounding the larval zebrafish HD neurons.

Scene symmetry disrupts landmark anchoring

Ring attractor models*®® hypothesize that a unique mapping from
visual landmarks to the HD cell activity bump is learned (Fig. 3a). The
starting point is an array of visual neurons with local receptive fields
that have weak, uniform connectivity to the entire array of the HD neu-
rons. As the animal explores the environment, the activity of each HD
neuronwill consistently coincide with the response of a specific visual
neuron to distant, stable landmarks (such as the Sun). For example, if
the Sun is setting on the western horizon, the west-tuned HD neuron
would be co-active with the visual neurons with frontal receptive field,
and the north-tuned HD neurons with the left-looking visual neurons,
andso on. Through Hebbian plasticity at the visual-to-HD synapses, a
unique mapping from the landmark bearing to the bump phase would
be established. We made sure that aring attractor with such Hebbian
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represent the probability that the k exceeded the shuffle. f, k from the von
Mises distributions fit on the scene-bump offset histogram for each fish for
each condition (orange dots for jump and blue dots for noise). The shuffle
distributions areindicated ingrey (dot for the median and the bar for the 95th
percentile). For thejump epoch, 14 out of 24 fish showed significantly above
change k, whereas only 3 fish did so for the noise epoch. Note that multiple
recordings were made in three fish, asindicated by brackets. g, If rotational
optic flow moves the bumpin theright directionbutbyanincorrectamount,
thebump phase and the noise scene orientation will no longer be aligned but
remain positively correlated. h, Local correlation (thatis, median Pearson
correlation between 6 and the bump phase within 15-s-windows around the
exogenous rotation episodes) in the noise epoch (blue) compared with the
bootstrap distribution (grey dot denotes the median and the grey barindicates
the 95th percentile). Of 24 fish, 12 showed significantly above chance positive
correlation.

plasticity canindeed replicate the resultsin Figs.1and 2 and Extended
DataFig. 4a-g (Extended Data Fig. 6a—j and Supplementary Note 1).

To test whether the mapping of visual landmarks onto the larval
zebrafish HD system is plastic, we challenged the HD cells with a sym-
metric scene, as has been done in Drosophila®® (Fig. 3b). The experi-
ment consisted of three epochs: in the first (pre-learning) and last
(post-learning) epochs, fish observed the scene consisting of asingle
radial gradient of luminance in the upper visual field, mimicking the
Sun. During the second (learning) epoch, asecond sunwas added to the
scene azimuthally 180° away from the first one, introducing a twofold
pointsymmetryinthe scene. Here the two suns would simultaneously
drive the bump to be at two diametrically opposite phases, between
which the bump could alternate, for example (Fig. 3a). In addition,
because each HD neuron would be now always co-active with two visual
neurons, the Hebbian rule predicts the visual-to-HD connectivity to
become doubled (Fig. 3aand Extended Data Fig. 6k,I). Once such dou-
bled connectivity is established, a single sun would now drive the bump
to the two opposite phases, degrading the scene-bump alignment
(Fig. 3a and Extended Data Fig. 6m,n).

Here weidentified HD cells with the sinusoidal fitting using one-half
ofthe pre-training epoch data. Figure 3c shows the datafrom an exam-
plefish. During the pre-learning epoch, the bump phase and the scene
orientation aligned well, and the scene-bump offset showed a clear
single peaked distribution centred at O (Fig. 3d). During the learning
epoch, the scene-bump offset became variable (Fig. 3c,d), even though
the correlationstructure among the HD cells was maintained (Extended
Data Fig. 7a). In the post-learning epoch, the scene-bump offset dis-
tribution widened (Fig. 3d). Across all fish, the scene-bump offset
spent significantly more time in the out-phase range (that s, absolute
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between the scene orientation and the bump phase over time (bottom). The
white dotted linesindicate the beginning of each experimental epoch (that s,
pre-learning, learning or post-learning). d, The histograms of the scene-bump
offset foreachepoch, fromthe fish shownin panel c. The grey shaded areas
indicate the out-of-phase range (|scene-bump offset| >3 /4). e, The fraction of
time that the scene-bump offset spentin the out-phase range for eachepoch.
Thedotsindicateindividual fish, and the grey lines connect the same fish.
Pvalues are from the signed-rank tests. n =25 fish.

scene-bump offset >3m/4) (Fig. 3e). A similar increase was not
observed in the control group that experienced only the single sun
scene throughout (Extended Data Fig. 7b-e). Overall, these results
support the idea that the connectivity from the visual to HD neurons
isexperience dependent.

Twofold remapping in symmetric scenes

Although the experiment above clearly demonstrated the plasticity in
the landmark-to-bump mapping, we were puzzled as to why the scene—
bump offset never appeared bimodal in the symmetric scene (Extended
DataFig. 7f), as predicted from the ‘flip-flop’ scenario (Fig. 3a). To gain
better insight as to how the HD cells behaved in the symmetric scene,
we plotted the tuning curve of individual HD cellsin each epoch (Fig. 4a
and Extended Data Fig. 7g). Here, as expected, the tuning of the HD
cells during the learning epoch appeared bimodal, which was

significantly better fit by sinusoids of 2@ rather than of 8 (Fig. 4b). How-
ever, unexpectedly, the tuning of the HD cells in the symmetric scene
appeared not simply doubled, but also rotated in a systematic way
according to their preferred scene orientation (Fig. 4a). In particular,
pairs of HD cells with the opposite tuning appeared to rotate their
tuning for a total of 90°, such that they can remain anticorrelated in
the symmetric scene (Fig. 4c¢). Indeed, the amount of the relative tun-
ingrotation between pairs of HD cellsin the symmetric scene was pro-
portionaltotheir tuning differencein the single-sun scene, withaslope
of -0.5(Fig.4d,e). Thisslope, whichwould be expected tobe O if there
was no tuning rotation, was significantly below O (Fig. 4f).

The population-level consequence of this ordered tuning rotation
is that, in the symmetric scene, 180° of the visual scene is mapped on
to the full 360° array of the HD neurons. This can be most intuitively
seen by plotting the scene orientation 8 and the bump phase as ascat-
ter plot: inthe symmetric scene (that s, the learning epoch), the bump
phase hugs the line with slope 2 (bump phase = 26 (mod 2m)) instead
of the diagonal (bump phase = 8 (mod 2m); Fig. 4g), which explains
why the bump-scene offset (which corresponds to the spread of dots
along the diagonal) never appeared bimodal (Extended Data Fig. 7f).
Instead, the offset between the bump phase and 20 was single peaked
(Fig. 4h) and significantly well fit by a von Mises distribution in 17 out
of 25 fish (Fig. 4i), a higher proportion than expected by chance
(Extended Data Fig. 7h). Overall, this stretched remapping phenom-
enon demonstrates the remarkable ability of the HD cells to capture
the correlation structure inthe visual neuron activities ina plastic way.

Landmark anchoring requires the visual habenula

Finally, we asked how visual information reaches the HD neurons. We
hypothesized that the habenula provides HD neurons with informa-
tionaboutvisuallandmarks. The habenulais a conserved epithalamic
nucleus that sends dense bundles of glutamatergic axons to the IPN*®
(Fig. 5a). In particular, the dIPN, where the HD cell processes reside,
receives asymmetric projections from the left dorsal habenula*, which
is enriched with light-responsive cells*** that have local visual recep-
tive fields®. In addition, the axon terminals of individual habenula cells
wrap around the entire lateral extent of the dIPN neuropil®, contacting
the whole suite of the HD cell dendrites®. This all-to-all connectivity
between the visual and HD neurons is well suited to implement the
Hebbian landmark anchoring in the ring attractor model® (Fig. 3a).
Tomake sure that the habenula neurons have enough visual informa-
tiontoencode the scene orientation, we first measured visual responses
ofhabenulaneurons expressing GCaMPé6s under the control of vglut2a-
Gal4?® (n=6) oranother enhancer-trap line (18107-Gal4; n = 2). By pre-
senting vertical or horizontal bright bars against a dark background
atvarious azimuths and elevations, we found that the left habenulais
enriched with cellswith local, sustained, ONreceptive fields (Extended
DataFig.8a-c),in line with previous studies”**. Next, we presented the
sun-and-bars scene rotating slowly (9° s™) about the fish in an open loop
forfour cyclesinalternating directions, while recording the habenula
activity (Extended Data Fig. 8d). We found that the scene orientation
canbe accurately decoded from the ongoing habenula activity witha
naive pattern-matching algorithm (Extended Data Fig. 8e,f), suggest-
ing that the habenula cells indeed collectively encode enough visual
information to disambiguate the scene orientation, as hypothesized.
Wethen performed unilateral laser ablations of the habenula axons
entering the IPN (see Methods for details; Extended Data Fig. 9a-f).
Before and after the ablation, we repeated an experiment similar to
thatin Fig. 2, where the sun-and-bars scene was presented in a closed
loop, withsmooth rotations or abrupt jumps superimposed intermit-
tently (Fig. 5b). In the example fish shown in Fig. 5c,d, the ablation of
the visual habenula axons abolished the alignment between the scene
orientation and the bump phase in both epochs, even though the bump
of activity itselfis still clearly visible?. This decrease was not observed

Nature | www.nature.com | 5



Article

a Pre Learning

Q
B 3
3 of 3
3
: b “e
r 2
c
e TS
o 0
-2.5 0 25 -25 0 25 -25 0 25
Centred 6 (rad)
b [ 0
@ Double sun @ Control Pre
- 0.8 Single vs double  ~
by pP=74x10° ,/ pp— ]2
206 ® L7
2 ‘. /
S04 @ ’/ .
‘& h// Learning
c °
g 0.2 ,’. °
—
0 0.25 0.50 0.75 '
Mean R? single 0 fit i 4
d e f
- \ - 024 o
8 1 v\ o g 1
k= k= 0 ¢
%0 | S . s
[ ) Q [
= = © -0.2
< W < 04
¥
T T T T T T
-2 0 o
Ab (rad) P=12x10
g 9
! = z
€3 £ 2 .,’ “,’ £8 2 R
25 88 i 2o 2
o £ z
2 s= 5y /‘ 8Sc 7
G'E 52 0 'l/ ™ SsE 0 ,
X Q€ a
+ L VR B
3¢ a8 -2 / ‘ @g 29 I/
= W W &7 | of
B 7z
T T T T T T
2.5 0 25 -25 0 25
0 (rad) 6 (rad) 0 (rad)
h Pre !
0.4 Learning 1.5 es
. — Post ; ° e Data
’§ £ 1.0 . Bootstrap
g o2 3 e,
405 teseny,,.
Y TITION
0 R B e e B
-2.5 0 25 Fish (sorted)

20 - bump offset (rad)

inthe control-side ablated fish shown in Extended Data Fig. 9g. At the
population level, the fish in the visual-side ablation group exhibited
lower bump-scene alignmentsinboth epochs, only after the ablation
procedure (Fig. 5e and Extended Data Fig. 9i,j). The decrease in the
bump-scene alignment was also significantly greater in the visual-side
ablated group (Fig. 5f). These observations support the hypothesis
that the HD neuronsreceive information about visual landmarks from
left habenula neurons.

The aHB contains putative angular head velocity cells

Incontrast to theloss of bump-scene alignment, the habenulaablation
spared the visual angular pathintegration (Extended Data Fig.10a-d).
Thus, we wanted to explore how the rotational optic flow reaches the
HD neurons. The ring attractor model (Fig. 2b) predicts the existence of
‘rotation cells’ connecting neighbouring HD neuronsinan asymmetric
manner, as well as angular head velocity (AHV) cells gating the rotation
cells.Inthe last experiment, we aimed to narrow down the anatomical
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Fig.4|Stretched remappinginthe symmetricscene. a, The tuning of the
individual HD neuronsineachepoch, fromthe same fish asin Fig.3b. The tuning
iscentred toand sorted by the preferred orientation b. b, R*from sinusoidal fits
by 6 or 20 on the individual HD cell tuning curves during the learning epoch,
averaged across cells within fish. The pink and grey dots represent fish from
‘double-sun’and control groups, respectively. The fit with 20 resulted in higher
R*for the double-sungroup, from asigned-rank test (n = 25 fish). The black
dashedlineindicates thelinealong which both fits are equal. ¢, The tunings of
four example cells as polar plots (indicated by triangles of matching coloursin
panela). Thedarklinesindicate the mean tuning directionin the pre-learning
epoch.d, Forall pairs ofthe HD cellsin panel a, the difference in the tuning
rotation during the learning epoch (Atuningshift) is plotted against the tuning
difference (Ab). Thered, yellow and violet dots indicate cells with matching
coloursinpanelsa,c,compared withthecyancell.e, Asind, but for all fish, as
thebinned mean along thexaxis (thinlines) and the average across fish (thick
line). f, The slope between Ab and Atuning shift for each fish (dots), as well as
the population average (bar). The black starindicates the slope of the population
mean (thatis, the thicklineine). The Pvalueis from asigned-rank test (n = 25 fish).
g, Thebump phase plotted against the scene orientation 6 for each epoch, from
thesame fishasin panela.Inthe pre-and post-training epochs, the black dashed
linesindicate bump phase =6, whereasin thelearning epoch theyindicate
bump phase =26 (mod 2m). h, The histogram of the 26 - bump offset for each
epoch, as well as von Mises fit for the leaning epoch (magenta dotted line).

i, von Mises k fiton the 26 — bump offset histogram (magenta dots), as well as
the bootstrap median (grey dots) and 95th percentile (grey bars).

location of putative AHV cells. Here we reasoned that such AHV cells
should be multimodal, such that they are activated when fish make
turnsinonedirection, as well as by the rotational optic flow indicating
thesamebody turn (Extended Data Fig.10e). To search for putative AHV
cells, weimaged various hindbrain regionsin fish expressing a calcium
sensor broadly (HuC-H2B-jGCaMP7c), while we presented clockwise
and counterclockwise rotational optic flows, as well as translational
optic flows, which were intended to encourage fish to make turns.
We selected cells that reliably responded to the rotational stimuliin a
direction-selective manner and examined their bout-triggered activi-
ties during the translational flow presentation.

Across 49 recordings from 21 fish, we generally observed that hind-
brain neurons prefer ipsiversive rotational optic flow as well as turns
(Extended Data Fig.10f-h and Supplementary Video 3), as previously
reported?*°. The major exception to this pattern was the bilateral clus-
ters of cellsin the rhombomere 2/3 situated dorsoposterior tothe HD
cells, which preferred contraversive visual rotation, but still preferred
ipsiversive turns. This pattern was consistently observed across 16
fish where we imaged this region (Extended Data Fig. 10i,j). In addi-
tion, we observed smaller clusters of cellsin lateral rhombomere1that
prefer ipsiversive optic flow and contraversive turns (Extended Data
Fig.10f-h). These cells in the vicinity of the HD neurons with reversed
visuomotor contingency are strong candidates for the putative AHV
cells, which would enable the multimodal angular path integrationin
the HD neurons through hypothetical rotation cells.

Discussion

We have demonstrated that the larval zebrafish HD neurons can incor-
porate both allothetic (that is, landmark) and idiothetic (that is, optic
flow) visual cues into their heading estimate. In particular, we found
that the plastic mapping between the scene orientation and the bump
phase requires input from the visually responsive side of the habenula
to the dIPN. The bulk of the physiological data was consistent with the
mechanism oflandmark anchoring proposed inan early modelling work®,
inwhich a Hebbian plasticity operating on all-to-all, visual-to-HD cell
synapses bakes in a unique mapping from visual landmarks to the HD
representation (Fig. 3aand Extended DataFig. 6). The all-to-all connectiv-
ity between the habenulaaxons and the HD neuronsin the dIPN (Fig. 5a)
appears to be particularly well suited to implement this mechanism.
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We found that, in contrast to the motion-based stabilization behav-
iours that rely on the lower visual field®, upper visual field cues are
more readily recognized as distal landmarks by the fish HD neurons
(Extended Data Fig. 4h-m). This topographical bias probably reflects
the visual ecology: reliable celestial landmarks are usually above the
animals, and the limited underwater visibility would make it especially
hard for aquatic animals to find reliable distal cues in the lower visual
field. At the neural level, a skyward bias in the retinal ganglion cells
providing visual information to the left habenula has beenreported®,
consistent with our observations.

The circuit that we studied is remarkably similar to the compass
system of Drosophila, probably due to evolutionary convergence: in
Drosophila, HD neurons (for example, E-PG cells) project their neurites
to adonut-shaped neuropil called the ellipsoid body in a topographi-
cally organized manner?, just like the fish HD cells projecting to the
dIPN. The ellipsoid body also receives axons of ellipsoid body ring
neurons, which have a namesake ring-shaped morphology* and con-
tact the whole suite of the HD neurons®, just like the habenula axons.
Asubset of the ellipsoid body ring neurons have local visual receptive

Fig.5|Visual habenulaablationabolisheslandmark anchoring. a, Schematic
ofthe habenulo-interpeduncular projection. b, Schematic of the experiment.
¢, Thebinned activity of the HD neurons before and after ablating the axons of
the visual habenula, from an example fish. The white arrowheads indicate
placeswhere thebump phase still seemed to follow the scene rotationin the
post-ablation recording. The white dotted linesindicate the beginning of

each experimental epoch (thatis smooth orjump).d, The histograms of the
scene-bump offset for pre-ablation (left) and post-ablation (right) recordings,
separately for smooth (pink) and jump (orange) epochs. e, k of the von Mises
distributions fit on the scene-bump offset histogram from the pre-ablation
and post-ablationrecordings, plotted against each other. The data from
smooth (left) and jump (right) epochs are visualized separately. Each dot
represents anindividual fish, and the purple and grey dots indicate visual-

side and control-side ablated animals, respectively. The thin grey lines indicate
differentratios between the pre-ablation and post-ablation k. The vertical
dashedlinesindicate pre-ablation x = 0.5, and fish that did not reach this
threshold were excluded when comparing pre-ablation and post-ablation «.
The Pvalues are fromrank-sumtests performed between the two ablation
groupson each axis separately. n=13and 15 fish (visual side and control side,
respectively) for the smoothepoch,and n=12and 13 (visual side and control
side, respectively) for the jump epoch.f, Theratio of von Mises k between
pre-ablationand post-ablation recordings for eachepoch type and ablation
group.Dataare mean +s.e.m. Pvalues are fromrank-sumtests.n=13 and 15 fish
(visual side and control side, respectively) for the smoothepoch,andn=12and
13 (visual side and control side, respectively) for the jump epoch.

fields*, and the experience-dependent plasticity between the ellipsoid
body ring and E-PG establishes plastic anchoring of the landmarks to
the head direction representation®®.

One of the more surprising observations here is that the symmetry
inthe visual scene leads to ‘stretched’ mapping from180° of the visual
space onto the 360° of the head direction (Fig. 4). Such drastic remap-
pingis made possible by two factors: first, the all-to-all habenula-to-HD
connectivity carries no intrinsic notion of retinotopy. This plastic,
all-to-all connectivity resembles the ‘parallel fibre system’ motif, which
can be found in various learning-related structures (for example, the
cerebellumand insect mushroombody)*. Second, the strong inhibitory
interactions among the HD neurons force the antipodic pairs of HD neu-
rons to learn maximally dissimilar patterns of habenulainputs. Similar
modes of contrastive learning guided by interactions among postsyn-
aptic neurons have also been found in other parallel fibre systems®.

In mammals, the three major brain regions containing the HD neu-
rons are the lateralmammillary nucleus, the anterodorsal nucleus of
the thalamus and the postsubiculum, which form aloop and maintain
acoherentrepresentation of heading™?¥. The anchoring of the head-
ingrepresentation to visual landmarksis thought to happen through
interactions between the retrosplenial cortex and postsubiculum?®-*,
whichis then propagated back to the subcortical areas through feed-
back projections*’. By contrast, the observations of HD cellsin the tel-
eost forebrain are limited*, and overall, the homology of mammalian
thalamocortical connections in fish is questioned*>*. In light of the
highly conserved nature of the habenula-IPN projection®, our results
suggest an evolutionary scenarioin which the habenula-IPN mecha-
nisms for landmark anchoring similar to those of insects first evolved
inearly vertebrates, and the forebrain circuitry was added on top of
them, as the elaborate visual telencephalon evolved in mammals.

A key open question is the identities of AHV and rotation cells
(Fig. 2b). We found cells in rhombomere 2/3 that exhibit visuomotor
tuning with contingencies expected from AHV cells (Extended Data
Fig.10e-j), similar to fly GLNO cells**. From their position, we suspect
these cellsto be homologousto the rodent supragenual nucleus, which
is considered to provide angular head velocity information to the DTN®,
Furthermore, we do not yet know in which behavioural contexts fish
utilize the head direction memory. Establishing a paradigm to observe
behavioural manifestation of head direction memory is crucial to
understand the outputs of the compass circuitry.
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Methods

Animal husbandry

The animal handling and experiments were performed according to
protocols approved by the animal welfare officer at Institiit fiir Neu-
rowissenschaften, Technische Universitat Miinchen (TUM) and the
relevant department at the regional government (Regierung von Ober-
bayern, Sachgebiet 55.2; animal protocol number 55-2-1-54-253210112
and 55.2-2532.Vet_02-24-5). Adult zebrafish (Danio rerio) were housed
in the facility at the Institute for Neuronal Cell Biology at TUM. The
adult fish were maintained in water temperature of 27.5-28.0 °C on
the 14-10 h light-dark cycle. All experiments were performed on 6-9
days post-fertilization larvae of undetermined sex. The eggs were kept
in 0.3x Danieau solution, and in the water from the fish facility upon
hatching. The larvae were maintained at 28.0 °Cand underthe14-10 h
light-dark cycle.

Animal strains

Allimaging experiments of the HD neurons were performed on fish
carrying Tg(gad1b-Gal4)mpn155 (ref.18) and Tg(UAS-GCaMP6s)mpni01
(ref. 46). To record the activity of habenula neurons (Extended Data
Fig.8), either Tg(uglut2a-Gal4)nns20 (ref.26) (n = 6 fish) or apreviously
uncharacterized enhancer trap line Tg(18107-Gal4) was used (n = 2 fish)
with UAS-GCaMPé6s. The expression pattern of the 18107-Gal4 line can
bebrowed onZ Brain Atlas (https://zebrafishexplorer.zib.de/home/).
Forlabelling habenulafor the ablation (Fig.5and Extended Data Fig.9),
Tg(18107-Gal4) was used. A subset of fish in the ablation experiment
possessed Tg(UAS-nfsB-mCherry)* for a logistical reason. This does
not affect the results of the ablation experiments as they were evenly
distributed across the conditions, and the fish were not treated with
relevant chemogenetic reagents. The experiment tosearch for putative
AHV cells (Extended Data Fig. 10e-j) was performed on fish carrying
Tg(HuC-H2B-jGCaMP7c). All fish were mitfa™ (thatis, nacre) mutants
lacking melanophores to allow optical access to the brain.

Two-photon microscopy experiments

Animal preparation and the stimulus presentation setup. Animals
wereembeddedin2%low-melting pointagarose in30-mm petridishes.
The agarose around the tail was carefully removed with a scalpel to
allow tailmovements. The dish was mounted on a3D-printed pedestal
and placed in a cube-shaped acrylic tank with the outer edge length
of 51 mm. The height of the pedestal was designed so that the head
of the animal came to the centre of the tank, taking the thickness of
the dish and the typical amount of agarose into account. The tank
was then filled with fish facility water to minimize the refraction due
to the petri dish wall. The three sides of the tank (except for the one
facing the back of the fish) were made of single-side frosted acrylic
(PLEXIGLAS Satinice OM033 SC), which functioned as projection
screens. The diffusive side faced inwards to minimize the reflections
between the walls. The visual stimuli were projected onto the three
walls through two sets of mirrors with a previously described geom-
etry' (Supplementary Video1), subtending 270° horizontally and 90°
vertically. The larvae were lit with an infrared LED array through the
transparent back wall of the tank. Their tail movements were moni-
tored frombelow with a high-speed camera (Allied Vision Pike F032)
at 200 Hz, through a hot mirror and a short pass filter to reject the
excitation beam.

Microscope. Functional imaging was performed with a custom-built
two-photon microscope. The excitation was provided by afemtosecond
pulsedlaser with 920-nmwavelength, the repetition rate of 80 MHz and
the average source power of 1.8 W (Spark ALCOR 920-2). The average
power at the sample was approximately 10 mW. The scan head consisted
ofahorizontally scanning 12-kHz resonant mirror and a vertically scan-
ning galvo mirror, controlled by a FPGA running a custom LabView

code (LabView 2015)*8, Pixels were acquired at 20 MHz and averaged
eightfold, resulting in the frame rate of 5 Hz. The typical dimension of
the image was about 100 pm x 100 pum, with the resolution of about
0.2 pm per pixel. Only pixels corresponding to the middle 80% of the
horizontal scanning range were acquired to avoid image distortion,
and the area outside was not excited to minimize photo-damage. The
fast power modulation was achieved with the acousto-optic modulator
builtinto thelaser.

Stimulus protocols. All visual stimulus presentation and behavioural
tracking were performed using Stytra package*’ (v0.8). The panoramic
virtual reality environments were created and rendered using OpenGL
through a Python wrapper (ModernGL). In each frame of the stimuli,
three views of the virtual environment corresponding to the three
screen walls were rendered, which were arranged on the projector
window tofit the screens. Behavioural tracking was performed as previ-
ously reported®. Inbrief, seven to nine linear segments were fit to the
tailof thelarva, and the ‘tail angle’ was calculated at each cameraframe
asthe cumulative sumof the angular offsets between the neighbouring
pairs of segments. To detect swimming bouts, a running standard devia-
tion of the tail angle within a 50-ms window was calculated (‘vigour’).
A swimming bout is defined as a contiguous period during which the
vigour surpassed 0.1 rad. For each bout, the average tail angle within
70 ms after the onset was calculated, with a subtraction of the baseline
angle 50 msbefore the bout onset. This average angle (‘bout bias’) cap-
tures the first cycle of the tail oscillation in a bout and correlates well
withthe heading change in the freely swimming larvae®. We estimated
the head direction of the fishin the virtual world as the cumulative sum
of bout bias. The time trace of the head direction was also smoothed
with a decaying exponential with the time constant of 50 ms, such
that swim bouts result in smooth rotations of the scene (as opposed
toinstantaneousjumps).

For the recordings from the HD neurons, we simulated a virtual
cylinder around the fish, whose height was determined so that the
gaze angles to the top and bottom would be respectively +60°. Various
textures representing the visual scene, generated with the dimension
of 720 x 240 pixel, were mapped onto this virtual cylinder. Dynamic
aspects of the stimuli (that is, scene rotations and movements of the
dots) were achieved by updating the textures on the cylinder. The visual
scenes used were as follows:

« Flash: uniform fields of black or white.
« Sun-and-bars: three black vertical bars on a single radial gradient of
luminance, ranging from white at the centre and black at the periph-
ery. The bars were 15° wide and respectively centred at -90°, +75°,and
+105° azimuths (0° is to the front and positive angles to the right).
The centre of the gradient was in front and 45° above the horizon,
and the radius was 135°.
Translating dots: dots randomly distributedin a virtual 3D space at the
density of 7.2 cm™ moved at 10 mm s sideways. The dots within the
40-mm cubic regionaround the observer were projected as 3 x 3-pixel
white squares against a black background (in atexture bitmap onthe
cylinder), regardless of the distance.
Stonehenge: four white vertical bars onablack background. The bars
were positioned at—120°,-90°, 0° and +135° azimuths, respectively.
Therightmost bar was brokeninthe vertical direction with the perio-
dicity of 20° elevation and the duty cycle of 50%.
Cue-cards: a white rectangle with the 90° centred about the 0°
azimuth, which spanned the elevation ranges of either above +20°
(top cue) or below —20° (bottom cue). The background was black.
Noise:a2D array of uniform random numbers within [0, 1], smoothed
with a5 x 5 pixel 2D boxcar kernel and binarized into black and white
at0.5.
« Single sun: aradial gradient of luminance from white at the centre
and black at the periphery, centred at —-90° azimuth and 35° above
the horizon, with the radius of 60°.
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+ Double sun: the same as the single-sun scene, but symmetrized around
the vertical meridian.

Toidentify and exclude naively visual neurons, each HD cell recording
started with the alternating presentation of white and black flashes (8 s
long each, five repetitions). In the experiment in Extended Data Fig. 3
the translating dots moving leftwards and rightwards alternatingly
were also presented (8 s long, five repetitions). Afterwards, epochs
of closed-loop scene presentations started. At the beginning of each
epoch, the scene orientation wasreset to 0°. Ontop of the closed-loop
control, episodes of exogenous slow rotation (18° s™) were superim-
posed intermittently (5s every 30 s (Figs.1and 2 and Extended Data
Figs.3and 4a-g) or 20 s (Figs. 3-5and Extended DataFig.4h-m)). The
directions of the rotations flipped after every four rotational episodes.
The structures of the virtual cylinder experiments were as follows:

* Sun-and-bars experiment (introduced in Fig. 1): in the first epoch
(10 min), the sun-and-bars scene was presented. Inthe second epoch
(10 min), fish received no visual stimuli (that is, darkness).

« Translating dots experiment (introduced in Extended DataFig. 3):in
the firstepoch (8 min), the sun-and-bars (n =10 fish) or Stonehenge
(n=15fish) scene was presented. In the second epoch (15 min), the fish
observed translating dots moving either left or right. The dots disap-
peared and the screen turned uniform white if the fish performed a
bout or10 s passed without about (that is, no rotational visual feed-
back). The dots reappeared after waiting for 10 s.

- Stonehenge experiment (introduced in Extended DataFig. 4a-g):in
the first and second epochs (8 min each), the sun-and-bars and the
Stonehenge scenes were presented, respectively.

« Cue-card experiment (introduced in Extended Data Fig. 4h-m): the
sun-and-bars, bottom cue-card and top cue-card scenes were pre-
sented for 4 min each.

« Jump and noise experiment (introduced in Fig. 2): in the first and
second epochs (6 min each), the sun-and-bars scene was presented.
In the second epoch, the superimposed exogenous rotations were
swapped withabrupt 90° jumps. In the third epoch (6 min), the noise
scene was presented.

- Symmetry experiment (introduced in Fig. 3): in the first and third
epochs (12 min each), the single-sun scene was presented. In the sec-
ond epoch (12 min), either the double-sun scene (n =25 fish; Fig. 3)
orsingle-sunscene (n =20 fish; Extended Data Fig. 7) was presented.

« Ablation experiment (introducedin Fig.5):in allepochs, the sun-and
barsscenewas presented. The firstepochs were12 minand 6 minlong
inthe pre-ablation and post-ablation recordings, respectively. Inthe
second epochs (6 min), the superimposed exogenous rotations were
swapped with abrupt 90° jumps.

The experiment to characterize habenula visual responses (Extended
Data Fig. 8) started with alternating black and white flash presenta-
tions (6 s each, five repetitions), which were used to select visually
responsive cells. Next, white vertical or horizontal bars against a dark
(25% luminance) background (which respectively subtended the entire
height or circumference of the cylinder) were presented at 16 different
azimuths and 5 different elevations, respectively. The width of the bar
was 14°, and their azimuths and elevations were evenly spaced in the
range of [-112.5°t0112.5°] and [-30° to 30°], respectively. Each presen-
tation of barslasted 4 s, with theinterleave of 6 s. Each orientation and
position combination were repeated three times, and the presentation
order was randomized. Finally, the sun-and-bars scene rotating about
the fish for the full 360° at 9° s in an open loop was presented four
times, inalternating directions. Inthe habenula ablation experiment,
we recorded the responses of the habenula neurons to alternating
black and white flash stimuli (8 s each, ten repetitions) to determine
the visually responsive side (Extended Data Fig. 9b,c).

For the experiment to look for putative AHV cells (Extended Data
Fig.10e-j), we simulated a uniformly distributed point cloud in the

3D virtual reality environment (instead of simulating dots as a texture
on the cylinder). Specifically, we simulated 2,000 dots within a cubic
areawith sidelength of 40 mm, and dots within the 20-mm radius from
the observer wererendered as bright spots on adark background with
a diameter of about 1.2° (regardless of distance). Translational and
rotational optic flow was simulated by moving the camerain the virtual
environment. The experiment started with alternating presentations
of short (5 s) yaw rotational optic flow and translational optic flow
sideways, interleaved with 5 s of blank, dark screens, repeated five
times, whichwere intended for characterizing the sensory responses
ofthe cells. Next, leftwards and rightwards translational optic flow was
continuously presented for 5 min each, whichwasintended tofacilitate
fishto turn, so that we could analyse the bout-triggered activity of
the cells. The whole experiment was in open loop. The data acquired
with two different sets of velocity parameters were merged together:
in five fish, the speed of the rotational optic flow was 18°s™, and the
translational optic flow moved 90° to the side at 5.0 mm s™. For the rest
(n=16fish), the rotational optic flow was at 6° s, and the translational
optic flow moved 45° to the side-front at 3.0 mms™.

Laser ablations. The habenula axons (that is, fasciculus retroflexus)
were ablated unilaterally either by scanning alaser withinasmall region
of interest (ROI) on the fasciculus retroflexus (setup A: Spectra Phys-
ics MaiTai, 830 nm, source power 1.5 W) or by pointing a laser on the
fasciculus retroflexus (setup B: Spark ALCOR 920-2, 920 nm, source
power 1.8 W). The pulsing characteristics of the two lasers were com-
parable (repetition rate of 80 MHz, pulse width of less than 100 fs), but
ALCOR was group delay dispersion corrected and thus more efficient
for ablations. On setup A, scanning with the duration of 200 ms was
repeated 10 times with an interval of 300 ms. On setup B, a couple of
approximately 100-ms-long pulses were delivered. These procedures
were repeated until the successful ablation was confirmed either by a
spot of increased fluorescence due to the photo-damage or a cavita-
tionbubble. Ablations were repeated at two to threelocations around
the midbrain or pretectum levels to ensure the complete cut of the
fasciculus retroflexus. The numbers of the fish treated on setups A and
B were n =8 and 8 (visual side ablated and control side, respectively)
and 5 and 7 (visual side ablated and control side, respectively) fish,
respectively. We waited at least 1 h after the ablation before making
the post-ablation recordings.

Data analysis

Behavioural data analysis. The swim bouts estimated online during
the experiments were analysed without additional preprocessing. In
particular, we calculated trial-averaged cumulative turns around the
exogenous scene rotations (Extended Data Fig. 1a,c,e-g), as well as
comparingthe biases of individual swim bouts with the scene orienta-
tion (Extended Data Fig. 1b,d).

Imaging data preprocessing. All imaging data were pre-processed
using the suite2p package®. In brief, frames were iteratively aligned
toreference frames randomly picked from the movie, using phase cor-
relation. To detect ROIs representing cellular somata, a singular-value
decomposition was performed on the aligned movie, and the ROIs
were seeded from the peaks of the spatial singular-value vectors. All
ROIs were used without morphological classifiers for cells, because the
functional ROl selection procedure described below rejected spurious
non-cellROIs. Inthe ablation experiments, ROIs were manually defined,
asdescribed below.

ROl selection. Forthe HD neuronrecordings, fluorescent time traces
were first normalized into Z-scores for each ROI by subtracting the
mean and dividing by the standard deviation. The normalized traces
were then smoothed with a box-car kernel with the width of 1s. Next,
a scaled shifted sinusoid a x cos(6 - b) + c was fit to the smoothed



traces of each ROI, where @is the orientation of the visual scene relative
to thefish. The fitting was performed with the ‘curve_fit’ function from
the scipy package, and parameters were bounded in the range of
a=0,b e (-m, m]. Only fractions of the data were used for this fitting
to allow cross-validated quantifications of bump-to-scene alignments
on the held-out fraction (described below). Specifically, either the
second half of the first epoch (Figs.1and 3-5) or the entire first epoch
(Fig.2and Extended DataFigs. 3 and 4) were used for fitting. ROIs with
R?larger than 0.15 were considered to be sufficiently modulated by the
scene orientation andincluded. Inaddition, pairwise Pearson correla-
tions of response time traces to repeatedly presented flashes (and
translating dots in Extended Data Fig. 3) at the beginning of the
experiments were calculated for each ROI, and averaged across all pairs
of repetitions. Naively visual ROIs with mean pairwise correlations
above 0.1 were excluded from further analyses. Finally, rectangular
masks were manually drawnaround rhombomerelofthe aHB, and the
ROIs outside the mask were excluded.

Forthe habenularecordings (Extended DataFigs. 8 and 9), ROIs with
mean pairwise correlations in response to repeated flashes (as
described above) higher than 0.3 were selected as visually responsive
ROIs and used for further analyses. For the putative AHV cell experi-
ment (Extended Data Fig. 10e-j), for each ROI, we first calculated the
mean pairwise correlations over the repeated presentation of short
opticflows (tworotational and two translational directions, withinter-
leaves). We selected ROIs thathad amean above 0.4 as reliable sensory
ROIs. Next, for each sensory ROI for each presentation of short rota-
tional optic flow, we normalized the fluorescence time trace F(¢) into
%(t) = F(t;; fo where Fyis the average fluorescence within the imme-
diately preceding 3-s period during which no stimulus was presented.
We then averaged this = within the duration of each rotational optic
flow presentation (thatis, 5 s), and calculated the Z-scored directional
difference

Hew™H ccw
ocw*occw
! 5

where p, and o, are the mean and standard deviation, respectively, of
the time-averaged normalized response over five repetitions
(d € {CW, CCW} (in which CW denotes clockwise and CCW denotes
anticlockwise); which is plotted in Extended Data Fig. 10f). ROIs with
|Zg,| > 2 were further analysed as rotation-direction-selective ROls.

Zgi =

Ablation experiment-specific preprocessing. For each fish in the
ablation experiment (Fig. 5), we first analysed the responses of the
habenulaneuronstotherepeated flash stimuli. We firstidentified visu-
ally responsive ROIs as described above, and defined the side with more
visual ROIs as the ‘visual side’. In a minority of fish where the number
of the visual ROIs from the two sides were close (within £1 range), we
determined the visual side based on morphology. This was possible due
to the asymmetric expression of the 18107-Gal4. Overall, we found 3
fish with inverted laterality (that is, right visual) out of 28 included in
the analysis (Extended DataFig. 9c).

To compare the behaviours of the HD neurons before and after the
fasciculus retroflexus ablations, ROIs were manually defined around
the cells that were identifiable in both pre-ablation and post-ablation
recordings. To minimize the effort for manual ROl drawing, we first
used the ROIs detected by the suite2p pipeline from the pre-ablation
recording, and run the HD cell selection procedure as described above.
Using this as aguide, we drew manual ROIs on the pre-ablation record-
ing, specifically focusing on the suite2p-based HD cell ROIs. We then
calculated an affine transformation between the average frames of the
pre-ablation and post-ablation recordings, and used this transform to
register the manually defined ROIs to the post-ablation recordings.
Finally, we manually adjusted the ROIs to better match the average
post-ablation frames, if necessary. To make sure that we managed to

identify the same cells across two recordings, we calculated the Pearson
correlations of the smoothed fluorescence traces between all pairs of
ROIs for each recording, and then computed the correlation of those
correlations. We excluded fish with correlations of pairwise correla-
tions below 0.4 from further analyses.

Characterization of HD tuning curves. To characterize the tuning of
individual HD neurons, for each selected HD ROI, we calculated the
average fluorescence binned according to the centred scene orienta-
tion 6(t) - b (Fig.4a-fand Extended Data Figs. 2b,c, 7g and 9i,j), where
bis the preferred scene orientation of the ROI. To assess the width
ofthese tuning curves, we calculated the fraction of 8- b (thatis, cen-
tred 0) bins where the response was above half maximum (Extended
DataFig.2b,c).

For the datain the learning epoch of the symmetry experiment, we
refit the tuning curves with scaled-shifted sinusoid with the single or
double frequency. That is:

a’xcos(g(@-b)-b")+c’,

where g =1 (single frequency) or g=2 (double frequency), and b’ rep-
resents the tuning rotation in the learning epoch relative to the
pre-learning epoch. Here we first compared the ROl-averaged R*from
the g=1fits and g = 2 fits (Fig. 4b) to check whether the tuning curves
were single or double peaked. We then compared the difference in b
and b’ for every pair of the HD cells in each recording, calculated the
average of pairwise b’ difference binned by b difference and estimated
the slope between the two (Fig. 4c-f).

For the ablation data, we refit scaled-shifted sinusoid (with single
frequency) for each epoch of each recording and compared the changes
of R?before and after ablations, for each epoch type and each group
(Extended DataFig. 9i,j).

Bump phase calculation. As areadout of the population-level, instan-
taneous estimate of the scene orientation 6(¢) by the HD neurons, we
calculated the bump phase 6(¢), where tis discretized time. To do so,
we first averaged the ROI-wise response time traces within eight 45°
bins of the preferred orientation b. We excluded fish with more than
four empty bins from the following analyses. We then computed the
bump phase as:

6(t) = atan2(y(¢), x(t))

x(6) =Y. r(t)cosb;

¥(©) =Y r(t)sinb,

where r(¢) is the average response of the i-th bin at time ¢, and b; is the
central angle of the i-th bin. The bump amplitude was also calculated

as A(t) = x (O + y(t)>.

Scene-bump alignments. The alignment between the bump phase 6
and Owere examined in several different ways. First, we calculated the
centred scene-bump offset A6(¢) = [(6(¢) - 6(¢) + ®)mod2m] - 1. For
the cases where we can expect AG@tobe 0, we simply averaged absolute
ABovertime to obtain the ‘absolute error’ (AE) defined as AE :j |AG|dt.
Second, whenwe expected AGto be non-zero but constant (thatis, the
bump follows the scene with an offset), we fit von Mises distribution

Kkcos(x—p) . .
(}EWT,%X tothe histogram of A6, where k, a parameter that determines

the peakiness of the distribution, canbe interpreted as a proxy of how
wellthe bump followed the scene. Third, in cases in which we expected
the bump to follow the scene but with variable and non-unity gains
(Fig.2g), we calculated Pearson correlations between unwrapped 6(¢)
and 6(¢) within 15-s windows centred about the exogenous rotation
episodes. We then calculated the median of these correlations over all
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rotation episodes, whichwe termed ‘local correlation’. To more explic-
itly estimate the gain of visual-based and motor-based angular path
integration, for each of the above 15-s snippets of unwrapped 6(¢), we
performed aRidge-regularized multiple regression by the exogenous
component (thatis, 90° rotation over 5 s) and the self-generated com-
ponent (that is, the cumulative sum of bout biases) of 8(¢). The Ridge
regression was performed using scikit-learn 1.1.2 with =1, and the
regression coefficients (thatis, the gain of pathiintegration) were con-
strained to be non-negative. These metrics were also compared with
various nuisance variables (Extended Data Fig. 1h-j).

Inthe translating dots experiment (Extended Data Fig. 3), the change
in bout phase was correlated with, as well as regressed by, the bias of
swimbouts. Foreachboutinthetranslating dotsepoch, the changein
the bump phase 8 was calculated as (t+5) - §(r - 1), where T is the
bout onset (in seconds). For this calculation, we selected bouts that
were separated by more than 5 s from both the preceding and the fol-
lowing bouts. Aminority of bouts that had abias of more than 120° and
bouts in which tail tracking was faulty (tail not tracked in more than
10% of frames) were discarded as unreliable. Fish that did not have at
least five such good bouts were excluded from the analysis. We had a
singlefishin the dataset that had two recordings that passed the above-
quality thresholds. The correlations and slopes from multiple record-
ings in this fish were averaged.

Habenula visual responses. The visual receptive fields of habenula
neurons were characterized as follows: first, for each ROl for each pres-
entation of abar, the fluorescence time trace F(¢) was normalized into
%(t) = F(tl); fo, is the average fluorescence within the 2-s
period immediately preceding the bar onset. The normalized respons-
eswere thenaveraged over repetitions for each orientation and position
combination to generate the spatiotemporal receptive field maps as
shown in Extended Data Fig. 8b, and averaged over time and divided
by the peak response over positions to generate the normalized tuning
curvesin Extended Data Fig. 8c.

For the scene orientation decoding analysis, the responses of the
visually responsive habenula ROIs were first concatenated across mul-
tiplerecordings within each fish at different Z-depth. The response of
eachROIwasnormalizedinto Z-scores for the entire recording (includ-
ing the period during which the flashes and bars were presented;
Extended Data Fig. 8d). Next, the normalized responses during the
sun-and-bars scene presentation were downsampled to1Hz. Forevery
pair of time points during the scene presentation (¢;, ¢,), we calcualted
the Pearson correlation between the pattern of habenula activities,
whichwedenoteasr(t,, t,) (Extended DataFig. 8e). For eachtime point
during the scene presentation ¢, the decoded scene orientation was
defined as:

6(6)=6(t ),

tmax = argmax _{r(¢, 1)z € [0, 40]}.

For each fish, we calculated the absolute error AEge.q4.=
f 16(¢) - B(¢)\dt to assess the quality of decoding.

Characterization of the putative AHV cells. To assess the anatomi-
cal distribution of the putative AHV cells, we mapped each recording
intoacommonreference frame as follows: for each fish, alongside the
planar functional recordings, we acquired a1-pm or 2-pm step Z-stacks.
First, we mapped the aligned, time-averaged frame of each functional
recording onto the corresponding Z-stack with amanually defined key
point-based affine transformation. Next, we mapped each Z-stack onto
asingle select Z-stack in the same way. This Z-stack-to-Z-stack mapping
was performed separately for the groups of recordings targeted at
rostral and caudal hindbrain regions. Then, we averaged the mapped
Z-stacks across fish within the rostral and caudal groups. Finally, we

mapped the average rostral stack onto the average caudal stack, exploit-
ing the overlap between the two. The coordinates of all ROIs from all
recordings in all fish were then linearly transformed into the average
caudal stack coordinate with multistep affine transformations.

Thebout-triggered activities of the rotation-direction-selective cells
identified inthe putative AHV cell experiment (Extended Data Fig.10e—j)
were characterized as follows: for each recording, we first identified
turning swim bouts during the longer presentation of translational
opticflows, which had the absolute bias above 0.2 rad. Recordings that
didnothaveatleastthree turningboutsinboth directions were excluded
from further analyses. Next, for each ROI for each bout, we cut out a
ﬂuorescent smppet around the bout onset, and normallzed it lnto
*(t)
ately precedmg 3-speriod. The normalized bout-triggered snippet was
averaged within 3 s from the bout onset and averaged across bouts for
each direction. We then calculated the difference of time-averaged and
bout-averaged bout-triggered activity by turndirections, as plottedin
Extended DataFig.10g. To assess the contingency of visual and motor
directional preferences, for each ROI, we calculated the product between
the Z-scored rotational optic flow response differences (Z;,) and the
directional differences of the bout-triggered responses (Extended Data
Fig.10h). This visuomotor product was averaged across cells within
bins along the anteroposterior axis for each fish.

Statistical quantifications. As arule, when comparing fish-wise met-

ricsagainst null hypothesis values, or when making paired comparisons

between different conditions within fish, we used the signed-rank tests.

When comparing scalar metrics across two groups of fish, we used the

rank-sum tests. To assess the significance of the alignment between

the scene orientation 6(t) and the bump phase 6(t) for each recording

(morespecifically, to show that the observed scene-bump alignment

did not simply result from the autocorrelation of 8 and ), we used

bootstrap tests with time-domain shifting, as follows: first, we calcu-

lated a metric of interest that quantifies the scene-bump alignment

as Fy,.,= F(6(2), 6(2)). We then circularly shifted the bump phase 6

by a random amount At and recalculated the bootstrap metric

Fss=F(6(0), O([¢ + AtJmodT)) for 1,000 times, where Tis the duration

oftherelevant epoch or the experiment. We then calculated the prob-

ability of obtaining a value more extreme than Fy,, in the expected
direction from the resampled distribution Fg as the estimate of the
statistical significance (that is, bootstrap Pvalue) of the observation.

Thus, the bootstrap tests were one-sided. When F(6, §) depended on

the temporalstructure of @and 6 (thatis, local correlationand regres-

sion), care was taken such that the data snippets containing discon-
tinuous points introduced by the circular shifting were not used for
the Fgscalculation. To make sure that the observed significant fish-wise

Pvalues did not simply result by chance in the absence of true bump-

scene alignments (that is, multiple comparison problem), we per-

formed Kolmogorov-Smirnov tests to compare the observed Pvalue
distribution with a uniform distribution.

The specific statistical tests we performed, as well as the experiment
specific exclusion criteria, are as follows:

« Sun-and-bars experiment: the absolute error AE =_[ |AB|dt was calcu-
lated for the hold-out (thatis, not used for the HD cell identification)
portion of the data, and its significance was tested with the bootstrap
test (Fig. 1e and Extended Data Fig. 2e).

« Translating dots experiment: the correlation between the bout phase
change across swim bouts and the bias of the swim bouts was tested
against O with a signed-rank test (Extended Data Fig. 3f).

« Stonehenge experiment: von Mises distributions were fit on the
histogram of A@ (with 16 evenly spaced bins) in the Stonehenge
epoch, and k was tested with the bootstrap test (Extended Data
Fig.4d,g).

« Cue-card experiment: von Mises distributions were fit on the histo-
gram of A@in the bottom and top cue epochs, and k was tested with



thebootstrap test (Extended Data Fig. 4k,m). In addition, k was com-
pared across epochs within each recording with a signed-rank test
(Extended Data Fig. 41).

Jump and noise experiment: von Mises distributions were fit on the
histogram of A@in the jump and noise epochs, and k was tested with
the bootstrap test (Fig. 2f and Extended Data Fig. 5b,c). In addition,
local correlation (Fig. 2h and Extended Data Fig. 5b,c), as well as
trial-averaged R? from the multiple regression model (Fig. 2f and
Extended Data Fig. S5e-g) were calculated on the noise epoch data
and tested with the bootstrap test.

Symmetry experiment: several fish whose bump amplitude A decayed
more than 60% between the pre-training and post-training epoch
(for example, owing to poor health) were discarded as unreliable.
The ‘fraction out-phase’, that s, the proportion of time where|A6| > %"
was calculated for each epoch (only using the hold-out part) and
compared across epochs with signed-rank tests, separately for the
double-sun (Fig. 3e) and control (Extended Data Fig. 7d) groups. The
change in the fraction out-phase from the pre-learning to the post-
learning epoch was compared across groups with a rank-sum test
(Extended Data Fig. 7e). In Fig. 4b, ROl-averaged R? from single-fre-
quency and double-frequency sinusoidal fits on the individual HD
cell tuning curves in the learning epoch were tested against each
otherwith asigned-rank test. In Fig. 4f, the slope between the pairwise
tuning difference and the tuning rotation difference was tested
against O with a signed-rank test. In Fig. 4i, von Mises distributions
were fit on the histogram of 26 - 6, and k was tested with the bootstrap
test (Extended Data Fig. 7h).

Habenula experiment: the absolute error of decoding was tested
against%with asigned rank test (Extended Data Fig. 8f).

Ablation experiment: von Mises distributions were fit on the histo-
gram of A6 for each epoch in each recording. We then compared
the k across the ablation group within each epoch of eachrecording
with signed-rank tests (Fig. 5e). Inaddition, the ratios of k between
pre-ablation and post-ablation recordings for each epoch were
compared across the ablation groups, using the rank-sum test
(Fig. 5f). We excluded fish that had k < 0.5in the pre-ablation epochs,
as they were not informative about the effect of the ablations. In
addition, visuomotor multiple regression models were fit to the
bump-phase changes in the smooth epoch of the post-ablation
recordingsinthe visual-side-ablated animals, and R*was tested with
the bootstrap test (Extended Data Fig. 10c,d). We also tested the
amount of stabilization turns fish made before and after ablations
for each epoch-group combination, with signed rank tests
(Extended Data Fig. 1g).

Putative AHV cell experiment: the binned-averaged visuomotor prod-
uctwas tested against O for each anteroposterior bin, with signed-rank
tests (Extended Data Fig. 10i).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.1|Behaviors of the fish during the experiments and
analyses of neural variability. (a) (top) The exafferent component of the scene
rotationin the experimentinFig. 1. (bottom) The cumulative turns fish made.
Thesolidlinesin (a-g) indicate the mean across fish, and the shaded area
represents the standard erroraroundit. The data are folded across clockwise
and counterclockwise rotation episodes such that the exafferent rotation of
the sceneisalways positive. Note that positive turns move the scene orientation
negatively. (b) The bias of swimbouts, plotted against the scene orientation, in
theexperimentinFig.1(i.e., with the sunand bars scene). The dots of the same
colorare fromthe same fish. The marginal distributions of the bout biasand
thescene orientationis plotted above and to the side. If fish were consistently
fixating on aspecific part of the scene (e.g., the sun at the center), one would
expectanN-shaped curve for the bias distribution. (c,d) The same as (a, b), but
fortheexperimentin Extended DataFig.4a-g. (e) The sameas (a), but for the
experimentinFig. 2. (f) The same as (a), but for the experimentin Figs.3 and 4.
Only the fish that experienced the double-sunscene areincluded. (g) Thesame
as (a), but for the ablation experimentinFig. 5, plotted separately for the groups,
epochtypes,and pre-/post-ablation recordings. We did not detect any significant
differenceinthe amount fish turned in smooth epochs (i.e., endpoints of each
curveat10s)acrossgroupswithinrecordingtypes (prep = 0.54; postp = 0.17)
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or before and after the ablations (visual p=0.59; control p=0.71). (h) The
absolute error (AE) metric fromFig. 1, plotted against potential sources of
variability (time of the day, the number of ROIs per plane, and the number of
swimbouts). The larvae with different ages are color-coded. The Pearson
correlationbetweenthe AE and the other variables are noted above the plots.
Wedid not find any of the nuisance variables to be strongly correlated with the
AE metric. (i) Same as (h), but for the k metric for the Stonehenge epochinthe
Extended DataFig.4a-g. (j) Sameas (h, i), but for (top) the k metric for the Jump
epochand (bottom) for the local correlation (r) from the Noise epoch in Fig. 2.
Overall, we did not find a particularly consistent relationship between the
scenetracking performance and the nuisance variables we had ahandle on.
Remaining plausible sources of the variability include the stochasticity in the
expression pattern of the gadlb:Gal4 line, as well as the embedding condition
of the animals (e.g., smalltiltin the pitch or roll direction affected the HD
neurons through the vestibular systems). (a, b, h) N =25 fish. (c, d, i) N = 20 fish.
(e,j) N=24fish. (f) N =25fish. (g) N =13/15fish (visual side/control) for the
smoothepoch,and N =12/13 (visual side/control) for the jump epoch. P-values
are from rank-sum (for across fish comparisons) or signed-rank (for within fish
comparisons) tests.
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Extended DataFig.2|Further characterizations of the scene orientation
tuned cellsin the Sun-and-bars scene. (a) (left) The distribution of the R?
values from the sinusoidal fits and the mean pairwise correlation to the flash
stimuli, for the same fish asin Fig.1d and (right) for the population. (b) The
normalized scene orientation tuning of selected individual ROIs, from the
same fishin (a). Plotted separately for the portion used for the fitting
(“training”, left) and the portion not used (“test”, middle). The ROls are sorted
by the tuning width proxyed by the fraction above half max from the training
portion, as plotted on the right. (c) The distributions of the fraction above half
max. Each color represents ROIs from different fish. On average, the scene
orientation tuning of these cells were on average slightly narrower than the

sinusoid. (d) Thebinned activity of the scene orientation tuned cells from six
more example fishasinFig.1d. The dotted line marks the beginning of the
Sun-and-bars scene. (e) The cumulative distribution of the recording-wise
p-values from the bootstrap tests in Fig. 1e (pink), which was significantly
(p=2.2x107%) different from the uniform distribution (black dotted), froma
Kolmogorov-Smirnov test. (f) Mean preferred scene orientations b of the
ROIsintheleftand right hemispheres, plotted against each other. Pink dots
are forthe recordings where the absolute error was significantly below
chance. The dataroughly lay ontop on the diagonal dotted lines indicating
(left mean - right mean) =m.N=30recordings from 25 fish.
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Extended DataFig. 3 | Turns triggered by translational optic flow move the
bump phase. (a) Binned activities of the scene orientation tuned cells from
two example fish throughout the entire recording, asin Fig.1d. The dotted
whitelinesindicate the beginnings of the Sun-and-bars and darkness epochs,
respectively. Places wherelateralized swim boutsin the darkness appeared to
coincide withbump phase changes are marked by white triangles. (b) Schematics
of the experimental structure. (c) The binned activity of the scene orientation-
tuned cellsin an example fish, with the bump phase (yellow) and scene
orientation 6 (black) (note that 8 did not correspond to the stimuli presentedin
thesecondepoch). Thered and blue boxes on the tail plot respectively indicate

bout bias (rad) bias - bump correlation

periods during whichrightward and leftward dots were presented. (d) The
changesinthebump phase around each swimbout (thin lines). Thick lines are
the averages for theright and left bouts (defined as bias>0.2and <-0.2rad,
respectively). (e) Thebump phase change (i.e., average bump phase between 1
to2safter thebout onset, with abaseline subtraction) plotted against the bout
bias. (f) The correlation and slopes between the bump phase change and
boutbias distributions, plotted against each other. The histograms show the
marginal distributions. The bout bias-bump phase change correlation was
significantly negative across the population (p =7.2 x10~* from a signed-rank
test, N=25fish).
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Extended DataFig.4|The HD neurons can track multiplescenes. (a) The
Sun-and-bars scene (top) and the Stonehenge scene (bottom) were presented
insequence. (b) The datafrom an example fish, showing the (top) tail angle,
(middle) exogenous rotation velocity w,,,, and (bottom) the binned HD cell
activity with the scene orientation 6 (black) and the bump phase (yellow).

(c) Histogram of the offset between 8 and the bump phase during the Stonehenge
epoch (pink), withavon Mises distribution fit to the data (grey dotted), which
isproportional toexp(kcos(8 - u)). The p-value is fromabootstrap testand
represents the probability that the k is greater than the shuffle (see Methods).
(d) k from the von Mises distributions fit on the scene-bump offset histogram
foreach fish (pink), with the associated shuffle distribution (grey dot for the
median, the bar for the 95th-percentile). 8 out of 20 fish showed significantly
above chance k. (e) The mean angle (u) of the von Mises distribution fit on the
scene-to-bump offset during the Stonehenge epoch. Pink lines represent the
datafrom fish withsignificant «. (f) Sameas (b, ¢), but for more example

fish. The p-values are frombootstrap testson k, asin (c). (g) The cumulative
distribution of the p-values from the bootstrap tests on the von Mises k (pink)
shownin (d), which was significantly (p = 2.1x107%) different from the uniform
distribution (black dotted), from a Kolmogorov-Smirnov test. (h) To test if the
elevation of the visual landmarks affects the HD cell behavior, we presented the
fish with the same sun-and-bars scene (top), ascene withabottom cue (middle),

and ascenewithatop cue (bottom). Each scene was presented for 4 minina
closedloop, withintermittent exogenous rotations. The HD cells were detected
using the sun-and-bars epoch with the sinusoidal fitting procedure. (i) Binned
activity of the HD cells and associated tail traces (top) from an example fish.
Thesceneorientation 6 (black) and the bump phase (yellow) are overlaid.

(j) The histogram of the scene orientation-bump phase offset for bottom
(purple) and top (green) cue epochs, with von Mises fits (dotted lines), from the
same fishasin (i). The p-values are frombootstrap testson k, asin (c). (k) x from
thevon Mises distributions fit on the scene-bump offset histogram for each
fish (stars), with the associated shuffle distribution (dots for the median, the
bar for the 95-percentile). Purple and greenrespectively indicate bottom-and
top-cueepochs. (I) The distributions of bottom-and top-cue epoch x across
the whole population. The difference between two distributions was not
significant, fromasigned-rank test. The barsand error barsindicate the means
across fish and their standard errors, respectively. The data points from the
same fish are connected. (m) The cumulative distributions of the p-values for
thevon Mises x frombootstrap tests, separately plotted for the bottom-and
top-cue epochs. The p-values from the top-cue epochs were significantly
below chance (i.e., uniform), from Kolmogorov-Smirnov tests. (d, g) N =20 fish.
(k,1,m) N=12fish.
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Extended DataFig. 5| Additional characterizations of landmark- and optic
flow-based scene tracking by the HD neurons. (a) Binned activities of HD
cellswithbump phase and 6 overlaid (left) and the associated histograms of the
sceneorientation-to-bump phase offsets (right) from more example recordings,
asinFig.2d,e. The orange and blue solid lines respectively represent the Jump
and Noise epochs, and dotted lines the von Mises distributions fiton them. The
p-values are from bootstrap testson x and local correlation (see Methods).

(b) The von Mises k for the Jump epoch plotted against the local correlationin
the Noise epoch for eachrecording, color-coded by the statistical significance
of the two metrics. Out of 27 recordings, 5 showed both significant Jump epoch
kand Noise epoch correlation (green), 10 showed only significant x (orange), 8
showed only significant correlation (blue), and 4 neither (grey). The significance
isdefined asbootstrap p values below 0.05. (c) The cumulative distribution of
the p-values from the bootstrap test on the von Mises k fit on the scene-bump
offset histogram of the Jump (orange) and Noise (blue dotted) epochs, as well
asonthelocal correlation between the bump phase and scene orientation
(bluesolid). Thedistributions of the p-values were significantly different from

0.75
individual p values

1.00

the uniformdistribution (black dotted), except for the Noise k, from Kolmogorov-
Smirnov tests. (d) Toindependently estimate the gain of motor-based and
optic flow-based angular pathintegration, the change in thebump phase
(yellow) inthe Noise epoch wasregressed by the cumulative turnangles
(motor, red) and cumulative exafferent visual rotation (exafferent visual,

cyan). The fit was performed separately for each short (15 s) period around the
exafferent rotation, withaRidge regularization. The black dotted linesindicate
theresultant fits. The datais from the samefish asin Fig.2d. (e) The visual and
motor coefficients plotted against each other, from the fitsin (d). Each dot
correspondsto eachrotation episode. (f) The mean visual and motor coefficients
averaged acrossrotation episodes within each fish, plotted against each other.
Eachdotrepresentsasinglerecording, where colors indicate the p-value from
bootstrap tests on the episode-averaged R?value (Methods). The colors are
scaled withlog,,(20*p), so that dots with p < 0.05appear blue. (g) Same as (c),
but for the p-value on the mean R?value of the regression models. The
Kolmogorov-Smirnov testindicates that the distribution of the p-values is
significantly different from uniform. N =27 recordings from 24 fish.
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Extended DataFig. 6 | Asimple ring attractor model with plastic visual
inputsreplicates the physiological observations. Please see Supplementary
Notelforthe details of the modelimplementation and the calibration procedure.
(a) The outputs of model HD cellsin asimulated experiment similar to Fig.1,
where the sun-and-bars scene was presented. The scene orientation 6 (black)
and the activity bump phase (yellow) are overlaid. (b) The connectivity matrix
fromthe model visual neuron to the model HD neurons, after the experimentin
(a), which was initially uniformly 0. As described in Fig. 3a, a unique mapping
fromavisuallandmark to the bump positionwaslearned. (c) The offset
between 8 and the bump phase (pink), as well as the distribution of peak positions
ofthe scene-bump offset (grey) over 100 repetitions of the simulation (i.e., u
from von Mises fits on the scene-bump offset histograms). The peak position
appeared uniformly distributed over repetition - that is, the scene was
anchored tothe HD neurons with an arbitrary offset, as seenin the real fish
(Fig.1gand Extended DataFig. 2f). (d) The model HD neuron outputs froma
simulated experiment, where the visual scene switched from the Sun-and-bars
scene to the Stonehenge scene halfway through (asin Extended Data Fig. 4a-g).
(e) The scene-bump offset histogram for the simulated datain (d), separately
forthe two visual scenes, asin Extended Data Fig. 4c (f) The distribution of the
k parameter from the von Mises fit on the scene-bump offset histograms over
100repetitions of the simulation. Asareference, the highest scene-bump
offset k we observed in the experimental data was around 4, suggesting that
the model tracked the two scenes as well as or better than fish most of the time.
(g) Thedistribution of the differencein the pz parameter from von Mises fitson
the scene-bump offset histograms between the two scenes (i.e., differences of
the peak positions). The radial axis represents the density. Peak difference was
biased around /2 similar to the experimental data (Extended Data Fig. 4e;
seealso Supplementary Note 1for how the model visual cellsresponded to

eachscene). (h) The model HD neuron outputs from asimulated experiment,
where the Sun-and-bars scene smoothly rotated about the observer (“Smooth”
epoch) orabruptly jumped (“Jump” epoch), or afeature-less binary noise
rigidly rotated about the observer (“Noise” epoch) (asin Fig. 2). (i) The scene-
bump offset histogram from the datain (h), separately for each epoch, asin
Fig.2e. (j) Thedistribution of the von Mises k parameters from fits on the scene-
bump offset histograms, over 100 simulation repetitions. The model performs
muchbetter thanreal fishinthe Noise epoch, because the modelis specifically
calibrated to perform unity-gain angular path integration (Supplementary
Note1). More notably, ashort (4 min) experience in the “Smooth” epoch was
enough to establish strong enough visual-to-HD connectivity capable of
instructing the bump phase. (k) The outputs of the model HD neuronsinan
experiment where the observer experiences scenes with asingle sun-like spots
(pre-and post-learning epochs) or two suns (learning epoch) as in Fig. 3b. In this
particular run, the bump phase tracked the scene very wellin the double-sun
epoch, buttheexperienceinthe double sunepochintroduced more errorsin
the Post epoch. (I) The visual-to-HD connectivity after each epoch from the
particular simulation runshownin (k). Even though the bump faithfully tracked
one of the sun presented during the learning epoch, each model HD neuron was
always co-activated with an antipodic pair of visual neurons, resulting in the
doubled connectivity (asillustrated in Fig. 3a). (m) The distribution of the
scene-bump offset histograms, separately for each epoch, asin Fig.3d. (n) The
distribution of the fraction of the time where the absolute scene-bump offset
was above 3 /4, over 100 simulation repetitions, similar to Fig. 4e. The fraction
was initially always below 0.1in the pre-learning epoch, then went upin the
learning epoch, and did not sometimes come backin the post-learning epoch,
justlikeinthereal data.



Article

a minimum correlation between b
anti-phase bins in the learning epoch

[ double sun
6 0 ctrl.
b (rad)
g4
kS
2 scene-
| | bump
offset
0 T T T 1 (rad)
-1.0 -05 00 0.5 1.0
r
c d e
0.7 0.5 =
06 7 Iea’rnin =
g o 04 4 p=0.13 @
0.5 — post e — 2
< = [~%r
2> 04 So3AP 0.28 g
® 3 IS
G 03 - c . s B
© 5 02 - 28
02 - 3 . -
- ] A £
0.0
T T T 0.0 T T T
- 0 n pre learning post
scene-bump offset (rad)
f
=
[2]
2
Sg
j=)
(R =4 0.8
£3
8_ 0.6
3 z
04 2
[}
©
0.2
0.0

control fish
(sorted)

-n 0 n -n 0 n -n 0 n
bump - scene offset (rad)

Extended DataFig.7 | Further characterizations of the remapping
experiment. (a) The distributions of the minimum Pearson correlations
between pairs of HD neuron bins with the opposite scene orientation
tunings, during the learning epochs. Antipodic pairs of HD cells remained
anti-correlated, evenin the symmetric scene. (b) Data from an example fishin
the control experiment, asin Fig.3c. (c) The distribution of the scene-bump
offset foreach epoch, for the same fish as shownin (c). (d) The fractional time
that the bump-scene offset spentin the out-phase range, foreach epochin
the control experiment. No significantincrease was detected (sign-rank test).
N=20fish. (e) Increaseinthe fraction of time that the offset spentin the
out-phase range from the pre- to post-learning epoch was significantly higher

e o
= )

4
o

T
0 3
-2
~—— bump phase
—_— 0
750 1250 1500
time (s)
h
p=0.03
. 1.0 -
.
0.8 -
® o
oq .
L 3 . 06
ol‘ '.. L
° . =)
Py oo O 44
&, < A
i D
° ®
. ] 02 =
4 - -1
7’ p=25x10
o 0.0 -
T T T T T T T
double sun ctrl. 000 025 050 0.75 1.00
individual p values
9 pre learning post
el
’5 o~
s
(=)
=3
£ _
=]
o
0
o~
=)
© o
- o
el
©
o

-25 0.0 25 -25 0.0 25 -25 0.0 25
relative scene angle (rad)

inthe double-sun experiment, compared to the control experiment (rank
sumtest, N =25 fish for the double-sun experiment, 20 fish for the controls).
(f) The histograms of the scene-bump offset fromall fish in either condition,
separately foreachepoch. (g) The centered tuning of the HD neuronsin each
epochsorted by the preferred orientationb, asin Fig.4a, but from two more
example fish. (h) The cumulative distribution of the p-values frombootstrap
tests on the von Mises k fit on the 26 - bump offset in the symmetric scene, asin
Fig.4i. Thedistribution of the p-values was significantly non-uniformbased on
aKolmogorov-Smirnov test (p =2.5x10"; N =25fish). For (d, e), the bars and
errorbarsrespectively indicate means across fish and their standard errors.
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Extended DataFig. 8| The habenulaencodes sufficient visual information
todisambiguate the scene orientation. (a) The anatomy of habenulaneurons
labeled by vglut2a:Gal4, plane by plane from dorsal to ventral, 10 microns apart.
Thedotsindicate thelocation of the visually responsive ROIs, color-coded by
their preferred azimuth. Visually responsive cells were enriched in the dorsal
left nucleus asreported before?, and no retinotopy was apparent®. (b) The
responses of selected neurons to (left) vertical bright bars at different azimuths,
and (right) horizontal bright bars at different elevations, over time. The locations
ofthe cellbodies of these cells are indicated by numbers in (a). (c) The time-
averaged barresponses over azimuth and elevation for each ROI, concatenated
over multiple fish (dotted horizontal lines separate individual animals). The
ROls are sorted within each fish, separately for vertical and horizontal bar
responses by their peak locations. The peaks of the bar responses were broadly
distributedineach fish, indicating that local receptive fields of the habenula
neurons tile the visual space. (d) (bottom) The normalized responses of the

visually responsive habenulaneurons to the Sun-and-bars scene, slowly rotating
aboutthe fish four times in alternating senses (top). (e) (top) The correlation of
theinstantaneous activity patterns of habenulaneurons between atime point
withinthe first 40 s (on the y-axis) and another time pointanywhere during the
experiment (on the x-axis). To calculate these correlations, the neural data

was downsampled to1Hz. The zig-zag diagonal pattern of high correlation
mirroring the scene orientation @ is apparent, suggesting that the habenula
neurons showed similar activities when the scene was at similar orientations.
(bottom) For each time point, we decoded 6 by looking for the time point with
inthefirst40 swhere the habenulaactivity correlated the best with the ongoing
patternof habenulaactivity and taking @ at that time point (purple dots).

(f) The time-averaged absolute error between the true and decoded 6. Each dot
represents asingle fish. The absolute error was significantly below the chance
level (/2, dotted line), from asigned-rank test. N = 8 fish.
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Extended DataFig. 9 |Additional details of the ablation experiment.

(a) The axons of the habenulaneurons entering the IPN, before, right after,and
1day after the ablation procedure. The ablated siteis marked by thered arrow.
Theneuronal processes between the ablation site and the IPN initially increased
thefluorescence, and the disappeared (red dotted line). The same procedure
wasrepeated onall 37 fish tested. (b) Two examples of fishwith the typicaland
inverted habenulalaterality. The ROIs are color-coded by the average pairwise
correlations of their responses to the repeated presentations of the flash
stimuli. Thescalebarsindicate10 pm. (c) The numbers of the habenula ROIs
that had averaged flash correlation beyond 0.3 oneachsside, plotted against
eachother. Thered dotsrepresent fish with theinverted habenula laterality.
N=37fish,including ones that were excluded from the final analyses of the
ablation effects (see Methods for the criteria). (d) The correlation matrices of
the HD neuronactivity in the pre-ablation (lower triangle) and post-ablation
recordings (uppertriangle),in the same example fish asin Fig.5c. The cells
aresorted by their preferred scene orientation. (e) The pairwise correlation
betweenall pairs of HD neurons from the pre- and post-ablation recordingsin

thesamefish, plotted against each other. The cell pairs are colored by the
cosine of the difference of their scene orientation tunings. The correlation
structure amongthe HD cells were well maintained in this fish after the ablation.
(f) The distributions of the correlations of pairwise HD cell correlations before
and after the ablations. Fish with correlation lower than 0.4 were excluded from
theanalysis. (g, h) The binned HD cell activities (g) and the scene-bump offset
histograms (h) asinFig.5c,d, but for an example fish with the control side
ablation. (i) The centered tuning of the HD cells from a pair of example fish in
visual side ablated and control groups (the same asin Fig. 5c,g), for eachepoch
ofeachrecording. The visual side ablationappears tomore or less uniformly
abolish the scene orientation tuning in this particular example. (j) To quantify
the change in tuning caused by habenula ablation at the single neuron level,

we fitscaled, shifted sinusoids toindividual HD cell tuning, separately for each
epochineachrecording, and calculated the difference in the goodness-

of-fit metric (R?) across recordings, which is plotted here as a histogram
(concatenated across animals). A: anterior; R: right.
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Extended DataFig.10|See next page for caption.



Extended DataFig.10|Putative mechanisms of angular pathintegration.
(a) The post-ablation binned HD cell activities from several example fish (with
visual-side ablations) asin Fig. 5c. Places where the bump phase appeared to
moveasthescenerotated areindicated by thered arrows. (b) To testif these
bump movements are statistically meaningful, we regressed the bump

phase (yellow) around the scene rotation episodes with the cumulative turns
(“motor”, red) and the exafferent scene rotations (cyan), asin Extended Data
Fig.5d, for the smooth epochinthe post-ablation recordings of the visual side-
ablated group. Thefitted curves arein dotted black. The data from the same
fishin Fig.5care shown. (c) The visualand motor coefficients fromtheregression
analysis, averaged over rotation episodes, plotted against each other. The
colorsindicate the p-values fromthe bootstrap tests onthe episode-averaged
R?value. The colors are scaled with log,,(20*p), so that p < 0.05 appear blue.

10 fish out of 13 showed significantly above chance fit. (d) The distribution of
thebootstrap-based, fish-wise p-valuesin (c) was significantly non-uniform,
based onKolmogorov-Smirnov test (p=4.2x10°%, N=13fish). (¢) Asan observer
turns one way, it perceives rotational optic flow in the opposite sense. As such,
ifthere existamulti-modal angular head velocity (AHV) cells, they should be
activated by motor commands and rotational optic flows in the opposite
senses. (f) Hindbrain ROIs that reliably responded to rotational optic flow are
shownin the (left) horizontal or (right) sagittal projection. The ROIs are
color-coded by the Z-scored differences in their response to clockwise (CW)

and counterclockwise (CCW) stimuli. Note how rotation direction-selective
cellsare widely distributed at different rhombomeres, but they generally prefer
ipsiversive rotations, with the exception of r2/3.See also Supplementary

Video 3. (g) Sameas (f), but ROIs are now color-coded by the difference in
turn-triggered activities by directions (in the unit of AF/F). Similar to the visual
directionselectivity, the ROIs generally preferred ipsiversive turns. Therl
contained bilateral clusters of cells with contraversive motor preference.

(h) Same as (f, g), but the ROIs are colored by the product of the visual and
motor related activity differences. Rhombomeres1through 2/3 have clusters
of cells with negative visuo-motor products, as expected of AHV cells. Cellsin
the posterior rhombomeres, in contrast, generally had positive visuo-motor
produces, aphenomenology consistent of cancellation of expected reafference.
(i) Binned averaged visuo-motor products along the anterior-posterior axis.
Greylines are fromindividual fish, and the pink lineis the average. Each bin
wastested against O with signed-rank tests (N =13,16,20,18,11, 8 fish from
anterior to posterior). (j) The average visual and motor responses of the cells
inthe second bin (approximately corresponding tor2/3), separately for their
directional tuning. The solid lines and shades around them respectively indicate
meanacross fishandits standard error.N =16 fish.rl: rhombomere1;r2/3:
rhombomere 2/3;r5/6:rhombomere 5/6;10: inferior olive; mhb: midbrain-
hindbrain boundary; A: anterior; R: right; D: dorsal.
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Data collection  Two-photon imaging data were acquired using a python-based, custom-written software, which interfaced with an FPGA controlling a
resonant-galvo scanning head through the National Instruments modular instruments python API (nimi-python). The FPGA was running a
custom LabView code (LabView 2015) to control the scanning and the data acquisition (Varga et al. 2011 PNAS). Stimulus presentation and
tail-tracking were performed using the Stytra 0.8 package (https://github.com/portugueslab/stytra).

Data analysis All two-photon imaging data were pre-processed with the suite2p 0.10 package. The code for the subsequent analyses are available from our
github repository (https://github.com/portugueslab/Tanaka_2025_landmark). The scripts were written in python 3.10, within the framework
of Jupyterlab 3.4. General numerical operations were performed using numpy 1.22, and more complex operations (convolution, binning,
statistics, curve fitting) used scipy 1.9 as well as scikit-learn 1.1.2. The data were visualized using matplotlib 3.6.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All the source data from the functional experiments (ROI-wise fluorescent traces, anatomical ROl maps, behavioral traces, and traces of the stimulus states), as well
as anatomical stacks used to generate the images in the figures are deposited on a Zenodo repository (DOI: 10.5281/zenodo.17233579). The anatomical stack for
the 18107:Gal4 driver line is available from Z Brain Atlas (https://zebrafishexplorer.zib.de).
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Sample size Due to the novel nature of hte phenomenology we studied, it was difficult to estimate the effect size and individual variability beforehand. As
such, we did not pre-calculate the sample size (the number of fish). Instead, we initially aimed to collect data from about 20 animals per
experiment or per condition (where an experiment involved comparisons across different groups of animals), following other studies using the
larval zebrafish. Since the first experiment (Fig. 1) with about 20 fish allowed us to observe relevant physiology of the head-direction (HD)
neurons consistently (as statistically qunatified with a Kolmogorov-Smirnov test in Extended Data Fig. 2e), we decided to pursue similar
samples sizes in the following experiments on the HD neurons as well (Fig. 2-5, Extended Data Fig. 3, 4a-g). We have smaller sample sizes in
some cases: For extended Data Fig. 4h-m (N = 12 fish), we collected less data due to the supplementary nature of the experiment. For Fig. 5,
we ended up with 12 to 15 fish per condition, due to the exclusion that were necessary for a tighter quality control for across-fish / across-
recording comparisons. For the recording of visual resposnes in habenula (N = 8 fish), we collected less data because we expected less
individual variability due to the peripheral, sensory nature of the neurons of interest.

Data exclusions  As stated in the Materials and Methods section, in all experiments, recordings where we could not identify a group of head-direction (HD)
neurons covering at least 5 out 8 45 degree bins of the head direction angles were excluded from further analyses. This is because it was
difficult to estimate the internal heading estimate by the HD cells in such recordings. In addition, in Extended Data Fig. 3, fish with less than 5
reliable swim bouts were excluded, as it made correlating neural data with behavior unreliable. In Fig. 3 and 4, recordings where the HD cell
activity bump amplitude decayed more than 60% between the pre- and post-learning epochs were excluded, as it made assessing the change
in bump-scene alignment unreliable. In Fig. 5, fish where the correlation structure among the HD cells changed between the pre- and post-
ablation recordings (correlation of corrleation < +0.4) were excluded. The change in correlation structure likely represent our failure to
identify the same imaging plane across the ablation and/or poor health of the animal. In addition, fish whose HD cell bump did not align well
enough in the pre-ablation recordings (tkappa < +0.5 from von Mises fit on the bump-scene offset distribution) were excluded, because it was
difficult to assess the effect of ablation in such fish.

Replication All our findings are based on observations from experiments repeated on around 20 animals, as stated above.




Randomization  Animals were selected randomly from clutches of larvae for experiments, and assigned to different groups randomly, where there were
multiple groups of animals (Fig. 3-5).

Blinding In Fig. 3 and 4, the experimenter were not blinded to the groups of animals, as they needed to initiate different stimulus protocols according

to the group each animal was assigned to. In Fig. 5, the experimenter did not know whether the ablated side was visually reponsive or not
unitl the data analysis, although this sidedness was heavily biased (Extended Data Fig. 9c).
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Zebrafish (Danio rerio) from Tuepfel long ifn (TL) strain, 6-9 days post fertilization.
Wild animals No wild animals were used in the study.
Reporting on sex All animlas were of yet undetermined sex.

Field-collected samples  No field-collected samples were used in the study.

Ethics oversight The animal handling and experiments were performed according to protocols approved by the animal welfare officer at Institut fur
Neurowissenschaften, Technische Universitat Minchen (TUM) and the relevant department of the regional government (Regierung
von Oberbayern, Sachgebiet 55.2) (animal protocol number 55-2-1-54-2532-1011 and 55.2-2532.Vet_022-24-5).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Novel plant genotypes  N/A

Authentication N/A
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