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Abstract

We consider procurement of an innovation from heterogeneous sellers.
Innovations are random but depend on unobservable effort and private
information. We compare two procurement mechanisms where potential
sellers first bid in an auction for admission to an innovation contest. After
the contest, an innovation is procured employing either a fixed prize or
a first–price auction. We characterize Bayesian Nash equilibria such that
both mechanisms are payoff–equivalent and induce the same efforts and
innovations. In these equilibria, signaling in the entry auction does not
occur since contestants play a simple strategy that does not depend on
rivals’ private information.
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1 Introduction

Consider a procurement problem where a buyer needs an innovative good that
can potentially be provided by many sellers and where the good’s quality de-
pends on the seller’s innovative ability. Although we focus on innovations, the
setting applies to general goods where the good’s value for the buyer is uncer-
tain before it has been produced and where that value is correlated with the
producer’s type.
An innovation of any quality serves the procurer’s needs, but the procurer’s profit
is increasing in innovation quality. Quality is random, but stochastically increas-
ing in the seller’s ability and R&D effort. Ability (type) is private information.
Neither ability nor effort are observable. Innovation quality is observable be-
tween the seller and the procurer, but not verifiable and thus not contractible.
We consider two prominent procurement methods that are employed in real-
world procurement settings:1 innovation contests where an innovation is bought
either employing a first-price (first-score) auction or a fixed prize.2

In a fixed-prize contest, a prize is paid in return for the best of all innovations
that are delivered at some due date. In the first-score auction, each innovator
submits an innovation and a financial bid from which the procurer computes a
score. The highest score wins and the winner is paid his financial bid.
In a world with heterogeneous contestants, a well-known adverse selection prob-
lem arises:3 Selecting the wrong contestants may dampen competition, reduce
effort incentives, and produce an unsatisfactory result.
In principle, a fixed entry fee might solve that problem, the idea being that only
the strongest contestants are willing to pay since their expected profit is large
enough. However, setting the right entry fee requires a considerable amount of
information while getting it wrong either leads to too many or too few contes-
tants again implying an unsatisfactory result.
Following Fullerton and McAfee (1999), we consider an entry auction as a means
of solving the adverse selection problem by setting an endogeneous entry fee.
There, the buyer only needs to think about how many contestants to admit.
In particular, we combine each of the two mechanisms mentioned above with
an entry auction where the highest-bidding participants pay an entry fee (ac-
cording to the auction rules) and then enter the contest stage, where, in one
mechanism, they compete for a fixed prize, and in the other, they compete in a
scoring auction.
If the auction revenue does not accrue to the buyer, the entry auction can be
interpreted in a way that makes those mechanisms similar to what we observe

1Scotchmer (2004) provides many current and historical examples.
2The first-score auction is a two-dimensional equivalent of a first-price auction. We use these

terms synonymously. A bid has a financial and a quality dimension that are combined to a score.
The highest score wins the auction and the winner receives his financial bid in return for his good.
See Che (1993) for an analysis of this format in a procurement setting.

3See, e.g., the discussion in Fullerton and McAfee (1999).
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in real procurement applications: the procurer announces a shortlisting proce-
dure and then selects a few of the supposedly most able sellers to compete in
a contest where the winner will be rewarded with a prize (or a contract). The
shortlisted sellers face a cost of writing a detailed proposal or building a proto-
type (their “bid”).
Fullerton and McAfee (1999) highlight the advantages of using an entry auction,
i.e., the auction not only selects the right contestants, it also restricts entry which
is generally optimal. Restricting entry avoids duplication of cost and it increases
the effort incentives for the selected contestants. Moreover, at the procurement
stage, it reduces the cost of evaluating proposals, i.e., of selecting the winner.
The focus and model of Fullerton and McAfee (1999) is close to ours. However,
they model the contestants’ heterogeneity as a different (constant) marginal ef-
fort cost. In the present model, the contestants’ types affect the distribution of
their innovations while marginal effort cost is constant and equal. We get differ-
ent results in two important respects: First, in Fullerton and McAfee (1999) the
optimal number of contestants is generally two, which is due to an economies-
of-scale effect: Provided that you already have the best innovators, adding an-
other one only increases fixed cost while that innovator’s (constant) marginal
cost is larger than that of all other contestants. In the present model, also larger
numbers can be optimal since there is a tradeoff: adding contestants adds fixed
cost but it also adds ability and thus improves the distribution of the winning in-
novation (for a given total effort). If increasing innovation quality is sufficiently
profitable then the buyer employs more innovators. In our setting, ability can
be interpreted as the value of a different approach or a second opinion. Second,
Fullerton and McAfee (1999) show that standard auctions generally cannot be
used as entry auctions, while an all-pay auction works if one adds a (negligible)
interim prize for all auction winners. In the equilibria that we focus on in this
paper, standard auctions work since auction winner’s expected contest profit is
a strictly increasing function of own type only.4

We characterize symmetric equilibria of the two mechanisms with the following
appealing properties: a) all sellers participate in the entry auction, b) the entry
auction selects the most able sellers, c) although abilities are private informa-
tion, signaling in the entry auction does not occur;5 d) at the contest stage, both
mechanisms induce the same equilibrium efforts, the same expected innova-
tions, the same buyer’s profit (pointwise), and, e) in both mechanisms, sellers
expect the same profit and that also holds if the fixed prize is not chosen opti-
mally but is sufficiently large.
Given the huge literature on contests and on innovation (see, e.g., Konrad (2009)
on contests and Scotchmer (2004) on the economics of innovation), we only
mention work that is closely related to the present paper. Fullerton and McAfee

4In particular, it is independent of the marginal bidder’s type. See the discussion in (Fullerton
and McAfee, 1999, p.586ff).

5We allow for signaling but focus on equilibria where it is not an issue.
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(1999) also analyze entry auctions for selecting participants for a fixed-prize
contest. They focus on the (in)efficiency of standard auctions, while we com-
pare fixed-prize procurement with the use of scoring auctions, both combined
with an entry auction. Fullerton et al. (2002) is an experimental study that builds
on the model of Taylor (1995). The contest winner is awarded through a first-
price auction. Taylor (1995) looks at a contest as an optimal stopping problem,
where identical innovators pay a fixed entry fee and then make a number of in-
dependent innovation draws where after each draw they decide whether to draw
again. Che and Gale (2003) look at the optimal design of R&D contests assum-
ing a deterministic innovation technology. They find that a first-score auction
outperforms a fixed prize. Schöttner (2008) asks why we observe both fixed-
prize contests and scoring auctions and presents a model where the fixed prize
can outperform the auction. Both assume that entry fees are not feasible. Che
(1993) studies the use of scoring auctions in procurement problems. Ding and
Wolfstetter (2009) also analyze the performance of contests with fixed prize and
first-score auction but they study the adverse selection problem that arises if
the procurer cannot commit herself to never negotiating with inventors who cir-
cumvent the mechanism.
In this paper, we study particular equilibria induced by the play of two procure-
ment mechanisms. We do not explicitly look for other, less plausible, equilibria
but we will briefly discuss them. The paper proceeds as follows. In section 2 we
introduce the model. In sections 3 and 4 we analyze the two mechanisms. We
identify particular symmetric equilibrium candidates that we obtain by solving
the continuation games backwards. In section 5 we show that these equilibria
can indeed exist and we state the main result. In section 6 we discuss welfare
issues. Section 7 provides a discussion and section 8 concludes. The appendix
contains some of the proofs as well as some results on order statistics.

2 The model

There is a set of risk-neutral sellers, I := {1, . . . , N }, N ≥ 3, and a risk-neutral
buyer. Seller i ∈ I has a privately known ability (or type). Ability is an i.i.d. ran-
dom variable, A i , with realizations a i , c.d.f. H , continuous positive density and
support [a , a ], a ≥ 0. Sellers produce innovations by exerting nonobservable ef-
fort e i > 0 at cost C (e i ) = c e i +γ, where c ,γ > 0. Zero effort is costless and does
not produce an innovation. Seller i ’s innovation is the random variable Yi with
realizations yi and is independently drawn from the c.d.f. G a i+e i , where G is a
c.d.f. with continuous positive density and support [y , y ]where y ≥ 0.
We consider the following game.6

• Stage 0: Nature draws abilities, a i , and each seller privately learns his own

6We assume random tie-breaking, e.g., when several innovators have the same innovation
quality in the fixed-prize contest or when two innovators have the same bid (or score) in an auc-
tion. However, in the equilibria we consider, ties have zero probability.
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ability. The buyer announces a procurement mechanism. It specifies the
rules of an entry auction (stage 2), a number n ∈ [2, N − 1] of sellers who
will be admitted to the contest, and a procurement method (stage 3).7

• Stage 1: Sellers simultaneously submit financial bids b i ≥ 0, bidding for
entry to an innovation contest. Winners and losers make payments ac-
cording to the auction rules. Bids are published.

• Stage 2: Contestants (the winners of stage 1) simultaneously choose un-
observable effort, e i ≥ 0, and draw innovations, yi .

• Stage 3: The buyer procures an innovation from among the contestants,
either employing a fixed prize or a scoring auction (as specified at stage
0). In a scoring auction, all contestants who have drawn an innovation
submit financial bids βi ≥ 0 and the highest-scoring contestant is paid his
financial bid.

For simplicity, yi is the buyer’s net profit generated by employing seller i ’s inno-
vation. We also call yi the quality of i ’s innovation. Quality is not contractible,
but observable between the buyer and the seller. The innovation is assumed to
be worthless for the seller and the buyer can only employ one innovation.
The production technology is such that ability and effort are perfect substitutes
in the sense that their marginal rate of substitution is constant. For innovation
quality, only the sum k i := a i + e i is relevant and a larger k i implies a stochas-
tically better innovation in the sense of first-order stochastic dominance. The
sum k i can also be interpreted as the (noninteger) number of independent in-
novation draws from c.d.f. G .8

Any R&D activity implies a fixed cost γwhile effort has a constant marginal cost.
A seller’ ability, a i , can be interpreted as expertise or prior knowledge. Techni-
cally, it is a number of free draws from cdf G while additional draws are costly,
or a minimum contest effort to which the player is comitted.
Throughout the paper, random variables are denoted by upper-case letters and
the corresponding realizations by the respective lower-case letters. The super-
scripts F and S (e.g., in k S) indicate mechanisms, not powers.
We make use of order statistics and denote them as follows: The m th highest of
M independent draws from c.d.f. H (ability) is A (m :M ) and its c.d.f. is H(m :M ). The
m th-best of M innovations is Y(m :M ) with c.d.f. G (m :M ).9 For example, H(1:N−1) is
the c.d.f. of the highest ability, A (1:N−1), among seller i ’s N −1 rivals; G (2:n ) is the
c.d.f. of the second-best innovation, Y(2:n ), generated among n sellers; and a (1:N )

is the highest type realization among all N sellers.

7In case of fixed-prize procurement, the prize P is also fixed at stage 0.
8If one makes k i independent draws from c.d.f. G , then the highest order statistic (the best

innovation draw) is distributed with c.d.f. G ki .
9Note that the exact form of G (m :M ) depends on contest efforts and abilities and, thus, is poten-

tially different for different mechanisms and equilibria.
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3 Procurement with fixed-prize contest

We look at the first mechanism and concentrate on characterizing a particular
symmetric pure-strategy equilibrium candidate while, for the moment, ignoring
the issue of existence. We come back to that issue in section 5.
Consider procurement mechanism F (for “fixed” prize). At stage 0, the procurer
announces a fixed prize P and a number n ∈ [2, N−1] for an entry auction (stage
1) where the n highest-bidding participants win and pay the highest losing bid
as an entry fee.10 Bids are published. The n auction winners (“contestants”)
compete for the prize P that is awarded in return for the best innovation gener-
ated among them. All other sellers are excluded from the contest.11

Consider stage 3, the procurement stage, where cost and effort are sunk. The
best (out of n) innovations is awarded the prize P .12 Contestant i has produced
innovation yi and i ’s expected profit is (where the superscript F 3 refers to the
mechanism and the stage of the game)

πF 3
i (yi ) = PG

∑

j 6=i k j (yi ), (1)

where G
∑

j 6=i k j (yi ) is the probability that yi is the best innovation.
At stage 2, contestant i chooses effort e i and expects profit

πF 2
i (a i , e i ) = E

�

πF 3
i (Yi )

�

− c e i −γ (2)

=
k i

k i +
∑

j 6=i k j

P − c e i −γ, (3)

where

E
�

πF 3
i (Yi )

�

=

∫ y

y

PG
∑

j 6=i k j (yi )dG k i (yi ) =
k i

k i +
∑

j 6=i k j

P. (4)

The profit πF 2
i (a i , e i ) is strictly concave and, if P is sufficiently large, positive.

The interior solution is characterized by the first-order conditions
∑

j 6=i k j

�

k i +
∑

j 6=i k j

�2 =
c

P
, i = 1, . . . n . (5)

The RHS of (5) is constant, and the unique solution is k1 = k2 = · · ·= kn . Substi-
tuting back into (5), we obtain the (candidate) equilibrium effort

e F
i =
(n −1)P

n 2c
−a i (6)

10Naturally, competition at the contest stage requires n ≥ 2 while the bidding equilibrium of
the entry auction requires n ≤N −1.

11Losers of the entry auction do not pay anything.
12Note, that it is in the buyer’s interest to choose the best innovation: a different innovation

would be procured at the same price but have a lower quality.
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that is independent of rivals’ private information (a j , j 6= i ). If e F
i > 0 for all i

then (6) characterizes the unique pure-strategy equilibrium. Intuitively, a suffi-
ciently large prize ensures positive efforts, which is confirmed by (6). Note that
e F

i +a i is the same constant for each i . Denote

k F :=
(n −1)P

n 2c
= e F

i +a i . (7)

Inserting (6) into (3), i ’s equilibrium expected contest profit, πF 2(a i ), is

πF 2(a i ) =
P

n
− c (k F −a i )−γ. (8)

Summing up, in the candidate, all contestants choose positive effort indepen-
dent of rivals’ private information, expecting a profit that is entirely a function
of own type. It follows that all contestants draw innovations from the same c.d.f.,
(9), and have the same probability of winning, 1/n , regardless of ability.

G a i+e F
i =G k F

=G
(n−1)P

n2c . (9)

At stage 1, sellers bid for entry. The maximum willingness to pay is equal to
one’s equilibrium expected contest profit conditional on entry. This profit, (8),
is strictly increasing in ability. It only depends on a seller’s own ability and is
thus a pure private value, while, accordingly, rivals’ equilibrium expected con-
test profits are i.i.d. random variables with the same distribution, H . Thus, we
have symmetric independent private values, which implies that there is no sig-
naling issue in the entry game. It is sufficient that everyone believes that the
equilibrium “k F ” is played at the contest stage.
Thus, in particular, the discriminatory and the uniform-price auction formats
are efficient and revenue-equivalent.13 We analyze the uniform-price format
because it is simpler, not because we recommend it or think it is the most ap-
propriate format. There, bidders have the weakly dominant strategy to bid their
expected contest profits conditional on entry,

β F (a i ) =π
F 2(a i ). (10)

This strategy guarantees a non-negative expected profit since if i wins, the price
(entry fee) he pays is not above his expected contest profit. Consider bidding
more than β F (a i ). If i was previously a winner, he is still a winner with the same
profit. If he was previously a loser, he is either still a loser or becomes a winner,
in which case the previous price was at or above i ’s profit, and it is not lower
now. Thus, i is not better off. A similar argument applies for bids below β F (a i ).

13In our setting, these formats are standard sealed-bid multi-unit auctions with single-unit de-
mand. See, e.g., (Krishna, 2002, chs. 13, 14) for an analysis of these mechanisms in the symmetric
independent private values framework.
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The bid β F (a i ) is positive and strictly increasing. Thus the auction selects the n

most able sellers. Suppose all N sellers participate, then seller i ’s profit is14

πF 1(a i ) = Pr
�

a i > A (n :N−1)
	
�

πF 2(a i )−E
�

β F (A (n :N−1))
�

�a i > A (n :N−1)

��

=H(n :N−1)(a i )π
F 2(a i )−

∫ a i

a

πF 2(a )d H(n :N−1)(a )

=

∫ a i

a

∂ πF 2(a )

∂ a
H(n :N−1)(a )d a

= c

∫ a i

a

H(n :N−1)(a )d a ≥ 0, (11)

which confirms that all N sellers participate.
At stage 0, the procurer chooses P and n ; the optimal prize is denoted by P F . By
(9), the expected value of the best innovation is

E
h

Y F
(1:n )

i

=

∫ y

y

y dG nk F
(y ) = y −

∫ y

y

G nk F
(y )d y . (12)

In order to obtain that innovation, the procurer pays P but also collects auction
revenue, equal to n times the expected contest profit of the seller with the n +1st
highest ability. The procurer’s profit is

ΠF (n , P) = E
h

Y F
(1:n )

i

−P +n E
�

β F �A (n+1:N )
�
�

. (13)

Inserting (8), (10) and (12), we have

ΠF (n , P) = E
h

Y F
(1:n )

i

−P +n

�

P

n
− c k F + c E

�

A (n+1:N )
�

−γ
�

.

= y −
∫ y

y

G nk F
(y )d y −nc k F +nc E

�

A (n+1:N )
�

−nγ (14)

Consider (14). We have, intentionally, written the buyer’s expected profit as a
function of k F . By (7), any prize P has a unique corresponding k F that char-
acterizes the equilibrium efforts. Thus, choosing the prize P is equivalent to
deciding which equilibrium efforts to implement. Then the buyer just sets the
corresponding prize P . Denote (14) by ΠF (n , k F ). The first-order condition with
respect to k F is (after dividing both sides by n)

−
∫ y

y

G nk F
(y ) ln(G (y ))d y = c . (15)

14We drop the subscript i from the profit function since it is the same function for all types.
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Also note that (14) is strictly concave in k F ,

∂ 2ΠF (n , k F )

(∂ k F )2
=−n 2

∫ y

y

G nk F
(y )
�

ln(G (y ))
�2

d y < 0. (16)

If the model parameters are such that k F >max{a 1, . . . , a n} then there is a sym-
metric equilibrium (candidate) at the contest stage where every contestant has
positive effort and e F

i = k F − a i for all contestants i = 1, . . . , n .15 Thus, for any
n , the buyer chooses k F according to (15) and this determines the optimal fixed
prize P F , via (7). We do not discuss the optimal n since it is not needed for our
results.

4 Procurement with first-price auction

Again, we characterize a certain symmetric pure-strategy equilibrium and for
the moment ignore the issue of existence.
Here, the buyer at stage 0 announces mechanism S (“scoring”), i.e., a number
n ∈ [2, N − 1] of contestants and a first-score auction for stage 3. Mechanisms
S and F only differ at stage 3, where a scoring auction is used instead of a fixed
prize. Whereas the fixed prize is paid to the best innovator, in the scoring auction
all innovators compete on price and quality. The auction provides an endoge-
nous reward, while a fixed prize is a strategic variable chosen by the buyer.
At stage 1, sellers bid in a uniform-price entry auction (as in the previous sec-
tion). Bids are published. The n highest bids win, the winners pay the n + 1st
highest bid as an entry fee and enter the contest.16 At stage 2, they simulta-
neously choose efforts and draw innovations. Finally, at stage 3, the procurer
conducts a first-score auction. There, each bidder i submits an innovation, yi ,
and a financial bid, βi , from which a score, s i , is computed. The highest score
wins and the winner is paid his financial bid in return for his innovation. The
procurer applies the ideal scoring rule s i = yi −βi .17

Lemma 1. In the symmetric equilibrium of the first-score auction, contestant i

with innovation yi has a score of s (yi ) and a financial bid of β (yi ), where

s (yi ) = E
�

Y(1:n−1)

�

�Y(1:n−1) < yi

�

(17)

= yi −β (yi ), (18)

β (yi ) =

∫ yi

y

G (1:n−1)(s )

G (1:n−1)(yi )
d s . (19)

15A sufficient condition is k F > a .
16Losers do not pay anything and do not enter the contest.
17This scoring rule is ideal in the sense that it is credible: it reflects the true profit of the procurer.

Thus the procurer has an incentive to select the most profitable innovation (taking into account
the financial bid), which, in equilibrium, is equal to the best innovation. Since the price paid to
the winner his independent of innovation quality, the innovation need not be verifiable.

9



The corresponding expected payoff of contestant i is

πS3
i (yi ) =

∫ yi

y

G (1:n−1)(y )d y ≥ 0. (20)

The proof is in the appendix.
By (17), the equilibrium score is equal to the well-known symmetric equilibrium
bid of a first-price auction in the independent private values framework where
bidders bid for objects with private values yi . The financial bid β (yi ) is equal to
the amount of bid shading in that standard auction.18

At stage 2, the contest stage, contestant i chooses effort e i at cost c e i+γ and has

an expected profit of (inserting (20) and recalling that G (1:n−1)(y ) =G
∑

j 6=i k j (y ))19

πS2
i (a i , e i ) = E [πS3

i (Yi )]− c e i −γ (21)

=

∫ y

y

πS3
i (yi )dG k i (yi )− c e i −γ

=

∫ y

y

G
∑

j 6=i k j (y )

∫ y

y

dG k i (yi )d y − c e i −γ

=

∫ y

y

G
∑

j 6=i k j (y )
�

1−G k i (y )
�

d y − c e i −γ. (22)

The first derivative w.r.t. effort e i delivers the first-order condition20

−
∫ y

y

G
k i+

∑

j 6=i k j (y ) ln(G (y ))d y = c . (23)

Denote the sum k i+
∑

j 6=i k j that solves (23) implicitly by k S := (1/n )(k i+
∑

j 6=i k j ),

−
∫ y

y

G nk S
(y ) ln(G (y ))d y = c . (24)

If the model parameters are such that k S >max{a 1, . . . , a n} then there is a sym-
metric equilibrium (candidate) where every contestant has positive effort and
e S

i = k S − a i for all contestants i = 1, . . . , n . Observe, however, that only total
effort is determined by (23) while the allocation of that effort among the contes-
tants is arbitrary. Thus, there is a continuum of equilibrium candidates.

18See, e.g., (Krishna, 2002, p.17).
19The third line is obtained after interchanging the order of integration.
20The second derivate is negative, also see (16). Thus,the first-order condition characterizes the

maximizer.
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Recalling (22), seller i ’s equilibrium profit at stage 2, πS2(a i ), is

πS2(a i ) =

∫ y

y

G (n−1)k S
(y )
�

1−G k S
(y )
�

d y − c
�

k S −a i

�

−γ. (25)

Again, a seller’s expected contest profit in equilibrium is a pure private value,
i.e., a function of own ability only, and, again, these symmetric effort strategies,
e S

i = k S −a i imply that all contestants draw from the same c.d.f., G k S , and thus
have the same probability of winning, 1/n .
Consider stage 1, the entry auction stage. Similar to mechanism F , a bidder’s
weakly dominant strategy is

βS1(a i ) =π
S2(a i ). (26)

If all sellers participate, seller i ’s expected profit is21

πS1(a i ) = Pr{a i > A (n :N−1)}
�

πS2(a i )−E [βS1(A (n :N−1))|a i > A (n :N−1)]
�

= c

∫ a i

a

H(n :N−1)(a )d a ≥ 0. (27)

Thus, in our symmetric equilibrium, all N sellers participate.

Lemma 2. The procurer’s expected equilibrium profit (stage 1) is

ΠS(n ) = E
h

s
�

Y S
(1:n )

�i

+n E
�

βS1 �A (n+1:N )
�
�

= E
h

Y S
(2:n )

i

+n E
�

βS1 �A (n+1:N )
�
�

.
(28)

It can be written as

ΠS(n ) = y −
∫ y

y

G nk S
(y )d y −nc k S +nc E

�

A (n+1:N )
�

−nγ. (29)

The proof is in the appendix.
Consider (28). The expected winner’s score in equilibrium is equal to the value
of the expected second best innovation. The procurer’s profit is that value plus
the entry auction revenue.

5 Main Result

In the following we will repeatedly refer to “the equilibria of mechanisms F and
S, characterized by k F and k S”. By this we mean the equilibria of the games in-
duced by the two mechanisms where the mechanisms are chosen optimally (i.e.,

21The computation is similar to that of (11).
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with optimal fixed prize P F and number of contestants n) given the symmetric
continuation game equilibria characterized so far.
So far we ignored the issue of equilibrium existence. In general, we cannot solve
the games analytically without further assumptions. We can, however, prove
that there are feasible parameters for which these equilibria exist. To that end,
we can use simple distributions, like, e.g., G (x ) = x 2 or G (x ) = x , and then
straightforwardly compute the explicit solution of the games.
Naturally, these equilibria cannot exist for all parameters. The expected inno-
vation must be sufficiently profitable to make it worthwhile to engage several
innovators in competition and reimburse their cost. Moreover, employing an
entry auction is only worthwhile if the advantage of selecting the best innova-
tors covers the additional cost in the form of information rents.

Lemma 3. There are model parameters such that the symmetric equilibria of

mechanisms F and S, characterized by k F and k S , exist.

The proof is in the appendix.
Collecting the results so far we now proceed to the main result.22

Proposition 1. Consider the symmetric equilibria of mechanisms F and S, char-

acterized by k F and k S . In these equilibria, both mechanisms implement

1. participation of all sellers,

2. an entry auction that selects the same number of the mosts able sellers,

3. the same equilibrium efforts,

4. the same expected innovations,

5. the same buyer’s profit (pointwise), and,

6. the same expected seller’s profit (as a function of ability).

Proof of Proposition 1. First, since the sellers’ expected profits, (11) and (27), are
nonnegative, all sellers participate. Since the bid functions in the entry auction,
(10) and (26), are strictly increasing in type, the entry auctions select the most
able sellers.
Second, note that (15) and (24) have the same solution, nk F = nk S . Given that
the equilibria exist, i.e., k F = k S >max{a 1, . . . , a n}, and given some n , all con-
testants have the same sum of effort and ability, k F = k S = e i +a i . Thus, for the
same n , efforts are the same. Since the most able sellers are in the contest, and
k F = k S , all sellers draw innovations from the same c.d.f., G n F

=G nS , which also
implies that the best innovation is the same.
Since k F = k S , we have (14)=(29) which implies that the optimal n is also the
same. The buyer’s profit has two components: the innovation (which is the same

22The term “pointwise” in Proposition 1 means “for any realization of abilities”.
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under both mechanisms) and payments to and from the buyer. These payments
have constant components (the prize P F and the constant parts of the entry
auction bids, see (8) and (25). Then there is part that depends on the realization
of types, again see (8) and (25). But that part is the same in both mechanisms.
Thus, for any realization of abilities the buyer’s profits are the same.
Since (11)=(27), and the same n is optimal, sellers expect the same profit in both
mechanisms.

Remark 1. Recall how (11) and (27) have been derived. For given n, sellers expect

the same equilibrium profits in both mechanisms regardless of the choice of P, as

long as P is sufficiently large to ensure equilibrium existence. Thus, an increase in

the prize P will increase efforts (see (6)) but it does not affect the sellers’ profits.

6 Welfare

Here we look at welfare properties of the two mechanisms in the symmetric
equilibria, characterized by k F and k S . Recall that the n most able sellers in-
novate. Thus, for given n , we look at the welfare generated by the n most able
players. Consider arbitrary realizations of abilities that w.l.o.g. are ordered a 1 >

· · · > a N . For given n , expected welfare, W (n , e1, . . . , en ), is the difference be-
tween the expected value of the best innovation and total social cost.

W (n , e1, . . . , en ) = E
�

Y(1:n )
�

− c

n
∑

i=1

e i −nγ,

where E
�

Y(1:n )
�

=

∫ y

y

y dG (y )
∑n

i=1 a i+e i = y −
∫ y

y

G (y )
∑n

i=1 a i+e i d y .

(30)

From (30), it is obvious that for given n only total effort and total ability matter,
while the allocation among the n sellers is inconsequential. Thus, we can re-
place the choice variables e1, . . . , en and the abilities by ên :=

∑n

i=1 e i and â n :=
∑n

i=1 a i in (30). We get

W (n , ên ) = y −
∫ y

y

G (y )â n+ên d y − c ên −nγ (31)

The first-order condition with respect to ên (interior solution) is

−
∫ y

y

G (y )â n+ên ln(G (y ))d y = c (32)

Denote the sum â n + ên that solves (32) implicitly by k W := (1/n )(â n + ên ).

Lemma 4. In the equilibria of mechanisms F and S, characterized by k F and k S ,
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1. The c.d.f. of innovations is welfare-optimal,

2. Consider the buyer-optimal (i.e. equilibrium) number of contestants. For

that number, the equilibrium efforts are welfare-maximizing.

Proof of Lemma 4. First, denote the welfare-optimal n by n W and observe the
similarity of (32) with (15) and (24). In all three, the total sum of efforts and
abilities that solves the equations is the same, nk F = nk S = n W k W . Therefore,
in all three, the c.d.f. of the best innovation is the same, G nk F

=G nk S
=G n W k W .

Second, recall that only total effort, ên , is relevant. Also recall the discussions of
(15) and (24) in the respective sections, where we said that as long as k F = k S >

max{a 1, . . . , a n}, there is positive effort for all contestants. The same holds here:
For given n , we can assign the welfare-optimal total effort, implicitly defined by
k W , in the same way as in the contest equilibria of mechanisms F and S.

We can now write welfare as

W (n , k W ) = y −
∫ y

y

G (y )nk W
d y − c

 

nk W −
n
∑

i=1

a i

!

−nγ. (33)

We have not looked at the welfare-maximizing number of contestants yet. Recall
that the mechanism is announced at stage 0, simultaneously with nature’s draw
of abilities. In particular, the number n of “active” innovators is fixed at that
stage. Note that fixing n has two consequences: the social fixed R&D cost of nγ

is incurred regardless of subsequent effort choices.23 It is appropriate to define
a welfare benchmark that also fixes n before abilities are realized. Therefore, we
look for the number n that maximizes expected welfare where the expectation
is about abilities and we insert the optimal efforts (characterized by k W above).

Definition 1 (Welfare Benchmark). The welfare benchmark is the maximum ex-

pected welfare obtainable by the social planner given that the number of inno-

vators, n, is chosen when abilities are still unknown. The social planner employs

the n most able innovators, and does not face incentive or other informational

constraints. The benchmark is given by

max
n∈[1,N ]

EA (1:N ),...,A (n :N )

�

W (n , k W )
�

. (34)

Observe that the benchmark allows for n = 1 and n = N which is not feasible
under mechanisms F and S. Expected welfare for given n can be computed as

E
�

W (n , k W )
�

= y −
∫ y

y

G (y )nk W
d y − c nk W + c

n
∑

i=1

E
�

A (i :N )
�

−nγ. (35)

23We discuss this feature in section 7. Observe that it does not make sense to “fix” some n and
later, after abilities become known, decide to make use of a lower number n ′ < n of innovators
in order to save the fixed cost γ if that is more profitable. Then we could as well say that we “fix”
n =N (all innovators) and later decide how many to employ. But then “fixing n” is meaningless.

14



By Lemma 4 and comparison of (35) with (14) and (29), we see that the only
difference is n E

�

A (n+1:N )
�

vs.
∑n

i=1 E [A (i :N )]. The latter is larger, but since both
terms are functions of n and depend on the distribution of abilities, it is hard to
evaluate their effect on the optimal n .24

Again, for the uniform distribution example (see the proof of Lemma 3) one can
straightforwardly compute that the welfare benchmark sets a larger n .25

In contrast to the benchmark, the profit-maximizing buyer pays informational
rents. This difference is expressed in the terms n E

�

A (n+1:N )
�

and
∑n

i=1 E [A (i :N )].
The term

∑n

i=1 E [A (i :N )] in the benchmark signifies the saving of variable ef-
fort cost due to ability. The term n E

�

A (n+1:N )
�

in the profit-maximizing buyer’s
problems (see (14) and (29)) can be written as

n E
�

A (n+1:N )
�

=

n
∑

i=1

E [A (i :N )]−
n
∑

i=1

E
�

A (i :N )−A (n+1:N )
�

(36)

The first term is the same as in the benchmark and the second term signifies
the loss due to informational rents, where each summand is the rent paid to one
contestant. The highest rent is paid to the most able contestant: E

�

A (1:N )−A (n+1:N )
�

.
Moreover, there is a cost tradeoff that has to be observed by both, the bench-
mark and the profit-maximizing buyer: adding an “active” innovator (i.e. mov-
ing from n to n +1) adds the fixed cost γwhile, in our equilibria, it reduces total
effort (and thus variable cost), since the expected innovation is the same. More
formally, suppose that, as argued above, the optimal n at the benchmark, de-
noted by n B satisfies n B > n F = nS . This implies â n B > â n F = â nS ; and since
n F k F = nSk S = n B k W , we have k B < k F = k S . Therefore, ên B < ên F = ênS , i.e.,
total effort is lower under the welfare benchmark. Recall that, by Lemma 4, the
same innovation is produced.

7 Discussion

In this section we discuss various aspects of the model and our results.

Differences between F and S Intuitively, an auction (stage 3) is more competi-
tive than a fixed-prize mechanism. In the latter, the best innovator wins for sure,
while in the former, less successful innovators can compete via lower financial
bids. By that intuition, the buyer should procure the innovation at a price below
the fixed prize of mechanism F . In our equilibria, however, the bids in the entry
auction take that into account and equalize sellers’ profits across both mecha-
nisms.
For our model, it is not easy to pin down this difference in general. We can
however employ our uniform distribution example (as in the proof of Lemma

24One would also have to analyze the curvature of (35) and (14), resp. (29).
25Ignoring the integer constraint on n we have for F and S, n ∗ = 1

2

�

N − (N +1) γ
c

�

, while at the

benchmark, n ∗ = 1
2
+N − (N +1) γ

c
, which is larger.
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3). There, one can straightforwardly compute that the buyer’s expected stage-3
profit is larger in S, ΠS3(n ) > ΠF 3(n , P F ). Since the same innovations are pro-
duced and procured in our equilibria, this implies that the procurement price in
mechanism S is lower. For any feasible n (ignoring the integer constraint),

ΠF 3(n , P F ) = E
h

Y F
(1:n )

i

−P F = 1−
p

c − n (
p

c − c )

n −1
, (37)

ΠS3(n ) = E
h

Y S
(2:n )

i

=
(n −1)(1−pc )2

n −1+
p

c
. (38)

Thus, for a given realization of abilities, the winners of the entry auction pay
larger entry fees in mechanism F . Then they proceed to the contest and invest
the same cost across both mechanisms while, in the end, n−1 of them (the final
losers) will not win a prize and thus have a different profit than in mechanism S

where they would have paid lower entry fees.
For the buyer, there is a corresponding difference in the “composition” of her
profit, i.e., entry fees vs. procurement price at stage 3, but the innovation is
the same and the sum of transfers is the same. Thus, the buyer’s payoff is not
affected by the choice of the mechanism.
This makes clear why in Proposition 1 sellers’ expected profit is equal in both
mechanisms while the buyer’s profit is pointwise the same. Thus, even a risk-
averse buyer would be indifferent between the mechanisms. Our result goes
beyond “revenue equivalence”26 which is a statement about expected profit.

The common structure of F and S Our results are due to the special R&D tech-
nology where type and effort are additive. Moreover, we assumed constant and
equal marginal effort cost. In both mechanisms, these ingredients provide dif-
ferent first-order conditions of equilibrium effort choice but what they have in
common is that they are entirely a function of all players’ sum of type and effort,
k i = a i +e i , such that the same sum for all contestants, k = k1 = · · ·= kn , is a so-
lution. Thus, in any equilibrium, only that sum is relevant while its composition
is inconsequential. Contestants do not need to infer rivals’ types since they only
care about rivals’ “contribution” to the contest, k , but not about their profits.
One might guess that a fixed prize and a first-score auction are not the only pro-
curement methods that produce the result of Proposition 1. In fact, all we need
is an equilibrium at stage 3 that implements a “winner-take-all” prize structure,
i.e., where only the best innovation is rewarded. Given this, it does not matter
what the reward exactly looks like. The equilibrium reward is, generally, a func-
tion of all innovations. It may be constant (as in F ), or, it may depend on a con-
testant’s own innovation only, as in S. Alternatively, it might be a payment con-
tingent on the second-best innovation, e.g., a second-score auction, or it might
be conditional on the whole vector of innovations, e.g., when the winner is paid

26as used in standard auction theory, see, e.g., Krishna (2002)
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the average score. Observe, however, that procurement methods where the re-
ward is conditional on other player’s innovations, e.g., a second-score auction,
are not feasible under our assumption that innovation quality is not verifiable.
In order to induce effort, one has to reward innovation quality. Payments that
are only type-specific cannot induce effort. In our equilibria, the bids in the en-
try auction are such that differences in the profitability of stage 3 in both mech-
anisms are “competed away” in the entry auction. In order to elicit private in-
formation, the buyer pays information rents. The rents are larger for more able
sellers. They depend on the difference between a contestant’s ability and that of
the most able seller who is not admitted to the contest (see the discussion in 6).
Finally, selection of the highest types is achieved by using an auction (with an
increasing equilibrium bid function).

Tullock contests Note that (3) can be written as

πi (k i , a i ) =
k i

k i +
∑

j 6=i k j

P − c k i − (c a i +γ). (39)

This is similar to a symmetric Tullock lottery contest27 with choice variable k i

(where we ignore the different “fixed cost” c a i + γ since it does not affect the
interior solution). Thus, the equilibrium characterized by k F corresponds to the
symmetric equilibrium in that Tullock contest. It has been shown by Schweinzer
and Segev (2008) that the winner-take-all structure is optimal if this symmetric
equilibrium exists and if the objective is to maximize total effort. That objective,
in our case, corresponds to maximizing nk F , and, thus, the expected value of
the best innovation.
Similar to the model of Fullerton and McAfee (1999) one might see ours as a
micro-foundation for the Tullock contest.28

The number of contestants Sellers’ expected profits (see (11) and (27)) are in-

creasing in the number of contestants. Sellers face a tradeoff. Of course, an
additional rival decreases every contestant’s chance of winning (it is 1/n in our
equilibria) and it lowers individual efforts since the expected prize is decreasing
(see (20)). This is due to the fact that more competition leaves more profit with
the buyer (at stage 3, see the reasoning above).29 On the positive side, however,
adding another contestant decreases the entry fee. Recall that we consider an
equilibrium where positive effort is worthwhile for everybody. The equilibrium

27The contest success function is k r
i /(
∑n

j=1 k r
j ) with r = 1. There, ‘lottery’ refers to the fact that

the winning probability is the same as if everybody had bought k j lottery tickets where each ticket
has equal chance of winning, see Tullock (1980).

28See also Corchón and Dahm (2010), Fu and Lu (2007), Jia (2008) and Skaperdas (1996) for
different foundations of contest success functions.

29This can also be seen in (15) and (24). There, nk F = nk S is a constant. A larger n corresponds
to a lower k and thus lower efforts.
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entry fee characterizes the size of the information rents. Everybody pays accord-
ing to the lowest ability in the contest. Thus, making participation worthwile for
an additional less able type increases the profit for the stronger ones.

Other equilibria and signaling Our procurement problem, in principle, ex-
hibits a signaling issue. Players may want to signal their ability at the entry stage
in order to influence their potential contest rivals’ effort choices (or induce them
to exit after the auction). We focused on symmetric equilibria where strategies
do not require predicting rivals’ types.30 Although these equilibria are appealing,
we do not want to downplay the relevance of signaling.
However, in section 4 we found that, apart from “our” equilibria, mechanism S

has a continuum of equilibria at the contest stage wher signaling is indeed an is-
sue. Note that this includes many symmetric equilibria. There is no convincing
argument why a certain one of those would be more relevant than others. We
argue that the only equilibrium that clearly stands out is the equilibrium with-
out signaling. And precisely that one happens to be the unique equilibrium in
the fixed-prize mechanism.31

The relevance of an equilibrium without signaling can also be justified as fol-
lows. When a game has multiple equilibria, one has to decide which, if any,
equilibrium is the “solution” of the game. In complex decision problems, play-
ers may have to revert to simple heuristic strategies. This may be due to time,
cognitive or cost constraints, etc. In this sense, simple strategies, like the ones
we derived (based on one’s own information), might be the appropriate solu-
tion.
The literature sometimes assumes that the private information becomes com-
mon knowledge before the game stage that would be affected by signaling (e.g.,
Fullerton and McAfee (1999)). This assumption is justified, e.g., in settings where
players know each other such that they are sufficiently well informed as soon as
the identity of their rivals is revealed after the auction.
Our equilibria require that the contest stage is attractive for any auction winner,
for all realizations of types. Otherwise, contestants need to infer their rivals’
strength in order to determine their efforts. They also might want to drop out of
the contest if they face tough competition. In that case, however, there might be
a coordination problem since it need not necessarily be the weak players who
exit. Moreover, strong players might have an incentive to exert just a very small
effort if additional effort is not worthwhile.32

It is also in the buyer’s interest to make the contest attractive. Otherwise, ex-
its or mixed-strategy play might endanger the procurement success, i.e., then
procurement cannot be guaranteed.

30Thus, we do not need beliefs other than the belief that these equibria will be played.
31Recall that we are talking about equilibria where each contestant plays a positive effort.
32Then their best reply does not exist since we assume that zero effort does not produce an

innovation.
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In the fixed-prize mechanism one can obviously generate an interior solution
(i.e., positive efforts) at the contest stage by choosing a sufficiently large prize.
However, we saw that the optimal prize is chosen such that the outcome be-
comes similar to that of the scoring-auction mechanism where the buyer does
not choose the reward. So how can one make the mechanisms more attractive?
Several ways seem possible. The buyer could, e.g., pay fixed interim prizes that
would effectively lower the fixed R&D cost33 or pay negative entry fees, e.g., let
sellers bid for the lowest amount of subsidy required.

Why not choose n after the entry auction? In real procurement settings, we
often observe that procurers announce in advance how many sellers will be al-
lowed to compete if there is a costly entry stage (e.g., where prototypes or mod-
els have to be developed). For sellers, this is important since they need to decide
whether it is worthwhile to participate. Fixing the number of contestants in ad-
vance makes that decision considerably simpler.
Government procurers are often bound by fixed procurement rules, specifying,
e.g., a (minimum) number of offers to elicit. This is meant to increase trans-
parency and prevent corruption by government agents to whom the task of pro-
curement is delegated. It is also a typical feature of multi-unit auctions that the
number of objects to be sold is announced before the auction. In our case, an
object means entry to the contest.
From a theoretical (or welfare) perspective, one might ask if it is optimal to let
the buyer choose the number of contestants before the entry stage, since it pre-
vents her from using information about abilities collected in the auction to op-
timally adjust the number of (costly) contestants.
First, observe that the entry auction already provides an automatic adjustment
of the mechanism to the given realization of abilities, in the sense that the equi-
librium entry fees are strictly increasing in ability (of the marginal bidder). Sec-
ond, mechanisms where n is chosen after the entry auction introduce other
complications, as we discuss next.
Suppose mechanisms F and S are modified such that the procurer announces
n after the entry auction (and, in F , the prize P F ; alternatively, the buyer might
announce a prize function P F (n ) at stage 0; then the uncertainty is only about
n). The weaknesses of this design are that sellers cannot express their willing-
ness to pay for different n (which might lead to cautious bidding, and, in the end
to lower buyer’s profit) and that predicting the choice of n is complicated.34

Now consider the more appealing modification of F and S where bids are con-
tingent on the subsequent choice of n (and in mechanism F , the buyer an-
nounces a prize function P F (n ) at stage 0). There, seller i submits bids βi (n )

33That feature is central to the proposed auction in Fullerton and McAfee (1999).
34For related reasons, combinatorial auctions are used for the sale of, e.g., radio spectrum, in-

stead of “simple” multi-object auctions where bidders just make a bid for every item. In the pres-
ence of complementarities, it is important for bidders to express their preferences for combina-
tions of items.
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for each n ∈ [2, N − 1]. The buyer selects the most profitable n and collects the
entry fees of an entry auction with bids β1(n ), . . . ,βN (n ). This is equivalent to
saying that the sellers take part in N − 2 different auctions and then the buyer
selects one of them (and the corresponding n and P F (n )) to be payoff-relevant.
A complication is that sellers need beliefs about how the buyer chooses n (i.e.
infers abilities) if bids are inconsistent (e.g. suppose bidder i submits the highest
bid for n = 2 but the second-highest bid for n = 3).
The dominant strategies we derived for the uniform-price entry auction might
still be an intuitive candidate (i.e., bidding one’s expected contest profit condi-
tional on entry for each n), but there is a potential incentive to deviate: Sup-
pose everybody bids as in our basic games (for each n). Suppose the buyer then
chooses some n = ñ . Then, say, seller j ’s bid, βj (ñ ) is the ñ + 1st highest bid for
ñ which implies that j sets the entry fee while not being selected as a contestant.
If j deviates by reducing his bid βj (ñ ) then the entry fee for n = ñ decreases and
ñ becomes less attractive for the buyer.35 If this induces the buyer to choose a
larger n then j enters the contest with a positive expected continuation profit.

Entry fees In our setting with heterogeneous types, it is vital to select the most
able innovators. Similar to Fullerton and McAfee (1999), we adopted an entry
auction. The alternative, a fixed entry fee, would be an additional strategic vari-
able and thus requires more information. The auction provides an endogenous
entry fee that is adjusted to the given realizations of abilities.
One can interpret the entry auction in a way that makes our mechanisms more
similar to real procurement settings: If we do not take the bids literally in the
sense that they are payments to the buyer, we can interpret them as (sunk) cost
of writing a proposal, or building a prototype. Then one might expect that the
most able sellers have the best proposals or the most promising prototypes and
can thus be identified. They bear this entry cost and then compete for a prize (or
a contract). Of course the buyer might reimburse (part of) that bid preparation
cost. This is something we observe in reality.
Also, we can abstract away from the particular auction format we used (the
uniform-price auction). In our equlibria, we have seen that the entry auction
is a competition for independent private values (the tournament profit condi-
tional on entering the contest). Thus, one can consider any auction format that
fits the above story and has an increasing equilibrium bid fuction, e.g., an all-pay
auction, or a discriminatory auction.
For this modified setting, i.e., if there is no auction revenue, Proposition 1 in
part still applies without further checks, e.g., sellers still expect the same profit
in both mechanisms. However, the optimal prize in F might be different.

35The feasible range for that “deviation” depends on the next-lowest bid. If j undercuts the
next-lowest rival then that rival sets the entry fee and j ’s bid is irrelevant.
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8 Conclusion

We considered procurement of an innovation when innovations are random,
non-verifiable, and depend on innovators’ privately known ability and unob-
servable effort. In that setting, the questions of selecting the right innovators
arises. Moreover, one should generally restrict entry in order to avoid duplica-
tion of cost and dampening of incentives.
We looked at two prominent procurement mechanisms: procurement using a
fixed prize and a scoring auction. These mechanisms are observed in reality,
not least because they are feasible if the good’s quality is not verifiable.
We argued that in reality we also observe entry, or bid preparation, cost for
sellers who decide to compete for contracts. Following Fullerton and McAfee
(1999), we model this by way of an entry auction. Although we analyzed it as a
regular auction that generates revenue, we argued that some of our results still
hold if bids represent sunk cost and there is no revenue.
In the analysis of the combined mechanisms we focused on appealing equilibria
with simple strategies where signaling in the entry auction is not an issue. In
these equilibria the mechanisms are payoff-equivalent and implement the same
efforts and innovations. In fixed-prize procurement, the buyer needs to set the
right prize and we saw that only the optimal prize can match the profit of the
scoring auction mechanism. This corresponds to large parts of the literature
that recommend the use of auctions for their simplicity and low informational
requirements.
An intuitive explanation for the equivalence result might be that it is caused by
the sellers’ competition with each other at the entry stage. A more generous re-
ward, in the sense of a more profitable continuation game, leads to more aggres-
sive bidding. This might also explain why sellers’ expected profits are not only
independent of the choice of the mechanism but also independent of the choice
of the fixed prize: different profit opportunities are “competed away” between
the sellers.
As a practical conclusion, it seems intuitive that having a competitive entry stage
makes the choice of the subsequent procurement method a bit more arbitrary
since stronger competition requires more generous rewards (in the sense of ex-
pected profits) which dampens the differences in profitability of different pro-
curement methods. Thus, the focus of attention can be shifted in favor of other
relevant issues when choosing a procurement method, like, e.g., informational
requirements, multiplicity of equlibria, or collusion.
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9 Appendix

9.1 Standard results on order statistics

Results we repeatedly use are

H(i :N )(a ) =

i−1
∑

j=0

�

N

j

�

H (a )N−j (1−H (a ))j , (40)

G (i :n )(y ) =

i−1
∑

j=0

�

n

j

�

�

G k (y )
�n−j �

1−G (y )k
�j

, (41)

G (1:n−1)(y ) =G (n−1)k (y ), (42)

G (2:n )(y ) = nG (n−1)k (y )− (n −1)G nk (y ), (43)
�

G (2:n )(y )
�′
= n (n −1)kG ′(y )

�

G (n−1)k−1(y )−G nk−1(y )
�

. (44)

For the uniform distribution on [0, 1], we have

E
�

A (i :N )
�

=
N +1− i

N +1
, (45)

E





n
∑

i=1

A (i :N )



=
n (2N −n +1)

2(N +1)
, (46)

G (2:n )(y ) = ny k (n−1)− (n −1)y k n , (47)

G ′
(2:n )(y ) = k n (n −1)

�

y k (n−1)−1− y k n−1
�

. (48)

9.2 Proofs

Proof of Lemma 1. Recall that G (1:n−1)(yi ) = G
∑

j 6=i k j (yi ) is the c.d.f. of the best
innovation generated among player i ’s n−1 rivals. Its exact form depends on the
equilibrium at the contest stage, where the k j are chosen. We solve the auction
supposing that everybody believes that all contestants have drawn their innova-
tions from the same c.d.f. G k . In our equilibria, these beliefs are confirmed.
The candidate, (17), is strictly increasing. This implies that the equilibrium is
efficient and that the equilibrium probability of winning is Pr{yi > Y(1:n−1)} :=
G (1:n−1)(yi ). Thus, the expected payoff is

πS3
i (yi ) =G (1:n−1)(yi )β (yi ) =

∫ yi

y

G (1:n−1)(y )d y ≥ 0. (49)

Finally, we demonstrate that deviating bids are not profitable. Given bidder i ’s
innovation yi , any deviating financial bid z ∈ [0, yi ] results in a nonnegative
score that is equal to the equilibrium score generated by innovation ỹ , implicitly
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defined by s (ỹ ) = ỹ −β (ỹ ) = yi − z .36 Then expected profit is

πS3
i (z , yi ) =G (1:n−1)(ỹ )z (50)

=G (1:n−1)(ỹ )






yi − ỹ +

∫ ỹ

y

G (1:n−1)(s )

G (1:n−1)(ỹ )
d s






(51)

=G (1:n−1)(ỹ )
�

yi − ỹ
�

+

∫ ỹ

y

G (1:n−1)(s )d s . (52)

Therefore,

πS3
i (yi , yi )−πS3

i (z , yi ) =

∫ yi

ỹ

G (1:n−1)(s )d s −G (1:n−1)(ỹ )
�

yi − ỹ
�

=

∫ yi

ỹ

G (1:n−1)(s )−G (1:n−1)(ỹ )d s > 0,

(53)

which holds for all ỹ 6= yi .

Proof of Lemma 2. The first line in (28) is obvious. We show that E [s (Y(1:n ))] =

E [Y(2:n )]. At stage 1 we know that all contestants draw from the same cdf G k

where k = k S . Thus, the c.d.f.s of the best and second-best innovations are
G (1:n ) =G nk and G (2:n ) =G nk +nG (n−1)k (1−G k ). Employing (17), we get

E
�

s
�

Y(1:n )
��

=

∫ y

y

1

G (1:n−1)(y )

∫ y

y

s dG (1:n−1)(s )dG (1:n )(y ) (54)

=

∫ y

y

s

∫ y

s

1

G (1:n−1)(y )
dG (1:n )(y )dG (1:n−1)(s ) (55)

=

∫ y

y

s

∫ y

s

nkG nk−1(y )G ′(y )

G (n−1)k (y )
d y (n −1)kG (n−1)k−1(s )G ′(s )d s (56)

=

∫ y

y

s n
�

1−G k (s )
�

(n −1)kG (n−1)k−1(s )G ′(s )d s (57)

=

∫ y

y

s dG (2:n )(s ) = E
�

Y(2:n )
�

. (58)

Finally, (29) can be computed straightforwardly, noting that

E
�

Y(2:n )
�

= y −
∫ y

y

G (2:n )(y )d y , (59)

36Thus, we rule out negative scores.
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where G (2:n )(y ) is given by (43), and, using (26) and (25),

E
�

βS1 �A (n+1:N )
�
�

=

∫ y

y

G (n−1)k S
(y )
�

1−G k S
(y )
�

d y −nc k S +nc E
�

A (n+1:N )
�

−γ.

Proof of Lemma 3. The proof is done by computing an example under the fol-
lowing set of parameters. Abilities and innovations are uniformly distributed on
[0, 1]. Thus, [y , y ] = [a , a ] = [0, 1] and H (x ) =G (x ) = x for x ∈ [0, 1]. Furthermore,

0<γ<
c

N −2
≤ c <

1

(N +2)2
< 1. (60)

Start with the fixed-prize mechanism. The buyer’s profit, (14), simplifies to

ΠF (n , k F ) = 1− 1

nk F +1
−nc k F +nc

N −n

N +1
−nγ, (61)

∂ ΠF

∂ k F
=

n

(nk F +1)2
−nc . (62)

We get the interior maximizer and, from that, the optimal prize P F (using (7))

k F = e F
i +a i =

1

n

�

1
p

c
−1

�

, (63)

P F =
nc

n −1

�

1
p

c
−1

�

=
n
�p

c − c
�

n −1
. (64)

We have a = 1 and thus effort e i is positive for all ablities iff

e i =
1

n

�

1
p

c
−1

�

> 1 ⇐⇒ c <
1

(n +1)2
, (65)

which is satisfied since, by (60), c < 1/(N +2)2 and n ≤N −1.
Now, insert k F and P F into πF 2(a i ) (see (8)),

πF 2(a i ) =

p
c − c

n (n −1)
+ c a i −γ. (66)

This is positive if it is positive for the lowest ability, a = 0. Thus check if

p
c − c

n (n −1)
+ c a i >γ. (67)

By (60), c < 1/(N +1)2. We get

c <
1

(N +1)2
⇒ c <

1

N 2 ⇐⇒
(N −1)(N −2)

N −2)
+1<

1
p

c
. (68)
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Since n ≤N −1, we continue

⇒ n (n −1)

N −2
+1<

1
p

c
⇐⇒ c

N −2
<

p
c − c

n (n −1)
⇒ γ<

p
c − c

n (n −1)
. (69)

The last step follows from (60), where γ < c/(N − 2). The sellers’ stage-1 profit
is nonnegative by (11). It remains to show that the buyer’s profit is positive. The
buyer’s profit at the optimal prize, ΠF (n , P F ), is

ΠF (n , P F ) =
�

1−
p

c
�2
+n

�

c
N −n

N +1
−γ
�

. (70)

Since (N −n )/(N +1)> 0, the above is positive if
�

1−pc
�2
> nγ. This is satisfied

by our assumptions: By (60), c < 1/(N + 2)2. This can be written as c < (1−p
c )2/(N + 1)2. Since γ < c (by (60)), γ < (1−pc )2/(N + 1)2. And since n ≤N − 1

and N ≥ 3, this implies γ< (1−pc )2/n which proves the assertion.
Now turn to mechanism S. Equation (22) becomes

πS2
i (a i , e i ) =

1

1+
∑

j 6=i k j

− 1

1+k i +
∑

j 6=i k j

− c e i −γ. (71)

It is strictly concave in e i and, thus,

e S
i = k S −a i =

1

n

�

1
p

c
−1

�

−a i . (72)

Since e S
i = e F

i , e S
i > 0. Seller i ’s contest profit becomes

πS2(a i ) =

p
c (1−pc )2

n (n −1+
p

c )
+ c a i −γ. (73)

We show that it is positive. Since γ< c/(N −2) by (60), we only need to show that

c

N −2
<

p
c (1−pc )2

n (n −1+
p

c )
. (74)

Recall that n ≤N −1. Thus we can replace n by N −1 in (74). We get

c

N −2
<

p
c (1−pc )2

(N −1)(N −2+
p

c )
⇐⇒
p

c (N −1)(N −2+
p

c )

N −2
< (1−

p
c )2. (75)

Next, we use assumption c < 1/(N +2)2 (see (60)): We replace
p

c by 1/(N +2) on
both sides. This makes the LHS larger and the RHS smaller. We get an inequality
in N that is satisfied for N ≥ 3 (as we assume).
The sellers’ stage-1 profits are nonnegative by (27). Also, it is obvious that (17)
and (20) are nonnegative.
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Now recall (28). The expected second-best innovation, E
h

Y S
(2:n )

i

, is

∫ 1

0

y G ′
(2:n )(y )d y =

∫ 1

0

(n −1)

�

1
p

c
−1

��

y
n−1

n

�

1p
c
−1
�

− y

�

1p
c
−1
��

d y

=
(n −1)

�

1−pc
�2

n −1+
p

c
.

(76)

The expected entry fee is, using (73) and (45),

E
�

πS2 �A (n+1:N )
�
�

=

p
c (1−pc )2

n (n −1+
p

c )
+ c E

�

A (n+1:N )
�

−γ

=

p
c (1−pc )2

n (n −1+
p

c )
+ c

N −n

N +1
−γ.

(77)

Thus, (28) becomes

ΠS(n ) =
(n −1)

�

1−pc
�2

n −1+
p

c
+n

� p
c (1−pc )2

n (n −1+
p

c )
+ c

N −n

N +1
−γ
�

=
�

1−
p

c
�2
+n

�

c
N −n

N +1
−γ
�

.

(78)

Since (78) is equal to (70), the profit is here positive as well.
For both mechanisms, we did not specify the optimal n . However, we have
shown that the profit is positive for any feasible n , i.e., n ∈ [2, N − 1], n ∈ N.
Thus, it is positive for the optimal n .
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