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1 Introduction

This paper revisits the analysis of license auctions of a non-drastic process innovation by an

outside innovator to a Cournot oligopoly. The cost reductions induced by that innovation are

of the private values type and are firms’ private information. After the auction the innovator

and firms update their prior beliefs based on observed bids. The main novel feature is that we

replace the standard license auction by a superior mechanism that combines a standard license

auction with a mandatory royalty contract for those who lose the auction. There, the innovator

has two sources of revenue: the equilibrium price paid by the winner of the license auction, and

the royalty income paid by those who lose the auction.

This licensing mechanism gives rise to a dual signaling problem: If a bidder wins the auction,

his bid signals the own cost reduction to rival firms, whereas if he loses, his bid signals the own

cost reduction to the innovator who sets the royalty rate equal to the expected cost reduction.

Bidders take into account that they can influence others’ beliefs with their bid. Specifically, a

bidder gains a strategic advantage in the oligopoly game with an “inflated bid” that signals a

higher than true cost reduction, provided this bid happens to win the auction. In turn, a bidder

can fool the innovator to set the royalty rate below the true cost reduction with a “deflated bid”,

provided this bid happens to lose the auction.

Of course, no such “misleading” signaling occurs on the equilibrium path of a separating equi-

librium. If a separating equilibrium exists, the marginal benefit of signaling a cost reduction that

deviates from the true cost reduction must be matched by a corresponding marginal cost in such

a way that both kinds of signaling are deterred in all states of the world.

If bids can only influence the beliefs of rival firms, misleading signals are easily deterred by

choosing an appropriate steepness of the bid function. As a result, the possibility to influence

the beliefs of rival firms with a winning bid, simply exerts an upward pressure on equilibrium

bids.

Similarly, the possibility to influence the beliefs of the innovator with the losing bid exerts a

downward pressure on equilibrium bids. However, one cannot deter bidders from signaling to

the innovator a lower than true cost reduction by adjusting the steepness of the bid function

alone. In addition, the innovator must set a sufficiently high reserve price. Without it, bidders

with a low cost reduction would always signal a zero cost reduction, then they lose the auction,

yet obtain the innovation for free.

In the face of the dual signaling problem, where bids can influence the beliefs of rival firms

and of the innovator, a separating equilibrium bid function exists only in combination with a

sufficiently high reserve price. Of course, a seller can typically increase his revenue by adding

a reserve price requirement. However, in the present framework, the role of the reserve price is

more fundamental, because without it, no separating equilibrium exists.

We analyze two specifications of the model that differ exclusively in the information available

to firms in the downstream oligopoly game. In the first highly stylized specification, referred

to as model I, firms’ cost reductions become common knowledge among firms after the auction

and before the oligopoly game is played. However, the innovator remains uninformed about cost
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reductions, and he can only update his prior beliefs after observing bids. The innovator uses this

information to set royalty rates for losers, and firms use their knowledge about the information

available to the innovator to predict the royalty rate to be paid by those who lose the auction.

In the second specification, referred to as model II, firms remain uninformed about their rivals’

cost reductions after the auction. Like the innovator they can, however, update their prior beliefs

from the observed bids. Firms use this updated information to assess the expected costs of their

rivals, to predict the royalty rates the losers have to pay and to predict their rivals’ beliefs about

the royalty rate they themselves have to pay if they lose the auction.

Altogether, model II is more plausible. Nevertheless, model I is useful as a benchmark for

comparison with the literature, and it prepares nicely the more complex analysis of model II.

There is large literature on patent licensing in oligopoly by an outside innovator, among which

the following contributions are closely related to the present paper.

In their seminal contributions, Kamien (1992), Kamien and Tauman (1984, 1986), Katz and

Shapiro (1985, 1986) show that auctioning a restricted number of licenses is strictly more prof-

itable for the innovator than other mechanisms, such as pure royalty contracts, fixed-fee licens-

ing, and two-part tariffs.1 The limitation of the classical literature is that it assumes complete

information both in the auction and in the subsequent oligopoly game.

Later Jehiel and Moldovanu (2000) introduce incomplete information at the bidding stage, com-

bined with complete information in the oligopoly game, (which is the information structure to

which we already referred as model I). They show that patent licensing under incomplete in-

formation is a prime example of an auction with negative externalities, where bidders’ payoffs

depend not only on their own types, but also on the type of the player who wins the auction.

In an auction with negative externalities, the theory of optimal mechanism design does not apply,

which suggests a piecemeal approach to searching for “good” mechanisms. And, unlike in

standard private value auctions, the reserve price plays a much less prominent role, since the

seller in an auction that is subject to negative externalities has a stronger incentive to induce

participation. As Jehiel and Moldovanu (2000, p. 777) put it succinctly: “when the seller sells

more often, the buyers are more afraid that the good will fall into the hands of the competitor,

and they bid more aggressively”.

More recently, Das Varma (2003) and Goeree (2003) reconsider that model under the more

plausible assumption that firms do not know each other’s cost reductions after the auction and

before the oligopoly game is played, which corresponds to the information structure in our model

II. This introduces the possibility to signal the own cost reduction to rival firms.

Das Varma (2003) considers both Cournot and Bertrand competition (with product differenti-

ation). He shows that a separating equilibrium exists under Cournot competition with linear

demand, but generally fails to exist under Bertrand competition when goods are substitutes.

1Recently, Sen (2005) shows that if one takes into account that the number of licenses must be an integer, pure

royalty contracts can be superior to license auctions. However, this result is again reversed if one generalizes the

format of license auctions (see Giebe and Wolfstetter, 2008). See also Sen and Tauman (2007) who analyze an

auction of royalty contracts.
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Goeree (2003) assumes reduced form payoff functions of the oligopoly “subgames” that are

generally satisfied for Cournot but not for Bertrand market games with substitutes. He compares

all three standard auction formats – first-, second–price, and English auctions. Interestingly, he

finds that the second–price auction is the most profitable auction form for the innovator, since

the upward pressure on equilibrium bids due to the possibility of signaling to rival firms is the

most dramatic there.

We follow this insight, and assume in our analysis that the innovator adopts a second-price

auction. With this format the potential of signaling with the winning bid gives rise to the most

dramatic upward pressure on equilibrium bids, and thus maximizes the auction revenue, while

the potential to signal with the losing bid is not affected by the choice of auction format.

In a preceding paper, Giebe and Wolfstetter (2008) introduce an optional royalty scheme to the

license auction under complete information, and show that such a mechanism is strictly more

profitable than the standard license auction.2 However, under incomplete information, adding

royalty contracts for the losers of the auction works in a different way. First of all, one cannot

grant royalty contracts as an option, but one must make them mandatory, second, adding royalty

contracts for the losers leads to a reduction in auction revenue, and third, adding royalty contracts

leads to a complex dual signaling problem where both the winning and the losing bids signal

information to rival firms resp. to the innovator.

Our main findings can be summarized as follows: 1) The equilibrium bid function is strictly

monotone increasing under fairly standard conditions concerning the probability distribution of

firms’ cost reductions, provided the innovator sets a sufficiently high reserve price. 2) The re-

serve price plays a crucial role in assuring existence of a separating equilibrium; without it, no

separating equilibrium exists, unlike in the standard license auction where the reserve price plays

a minor role . 3) Adding the royalty contract for losers adversely affects bidding, which lowers

the innovator’s revenue from the auction. 4) However, the additional royalty income weighs

more than that loss in auction revenue, unless the probability distribution of cost reductions ex-

hibits an extreme concentration on low values. Therefore, the proposed mechanism is generally

more profitable. 5) Adding the royalty scheme has a stronger effect on equilibrium bids for

low than for high cost reductions. Therefore, adding the royalty scheme is particularly profitable

when the probability distribution exhibits a concentration on high cost reductions, since it entails

a relatively small loss in auction revenue together with a high royalty income.

The paper is organized as follows: In Section 2 we present the model and introduce basic as-

sumptions. In Section 3 we analyze model I where we also show in detail why the reserve price

plays a crucial role in assuring that the first–order conditions of the equilibrium bidding problem

yield global maxima. In Section 4 we analyze the more plausible model II which nicely comple-

ments and extends the analysis of model I. We find stronger results for model II, and show that

the royalty scheme is even more profitable in model II. In Section 5 we discuss our results and

sketch some extensions. Some of the proofs are contained in the Appendix.

2In a companion paper Fan, Jun, and Wolfstetter (2009) consider the licensing problem assuming firms draw im-

perfect signals of an unknown common value cost reduction.
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2 The Model

An outsider innovator auctions the right to use a process innovation protected by a patent to

a Cournot duopoly. Prior to the innovation, firms have the same constant unit cost c. The

innovation reduces firms’ unit cost by an amount that depends on who uses it. At the time when

auction game is played, firms’ cost reductions are their private information (private values case)

and unknown both to their competitor and to the innovator.

The innovator employs the following licensing mechanism: one license is auctioned to the high-

est bidder in a second-price auction with the provision that the loser must accept a royalty con-

tract. The winner of the auction can use the innovation at no further cost. The loser of the auction

can also use the innovation, and has to pay a fixed royalty rate per output unit. The royalty rate

is set to be equal to the loser’s expected cost reduction, conditional on the information revealed

to the innovator by his bid.

After the auction, the innovator publishes all bids. Having observed the bids the duopolists

compete in a Cournot market game.

We consider two models that differ in the information available in the duopoly game: In model

I, firms know each other’s cost reductions after the auction and before the duopoly game is

played, and in model II cost reductions remain private information, and firms can only update

their beliefs about each other’s cost reductions after observing their rival’s bid. In both models,

the innovator generally does not know firms’ cost reductions, and can only infer cost reductions

from observed bids.

Firms and the innovator are risk neutral and inverse market demand P(Q) is a decreasing and

concave function of aggregate output Q := q1 +q2.3

The firm specific cost reductions induced by the innovation, denoted by x, y are iid random

variables, drawn from the c.d.f. F : [0,c] → [0,1], with positive density f everywhere. Both

F and the reliability function 1 − F are assumed to be log-concave which rules out that F has

parts that are highly convex and highly concave. The log-concavity of 1− F is equivalent to the

well-known hazard rate monotonicity.4

We consider only non-drastic innovations whose exclusive use does not propel a monopoly. If

P(Q)= 1− Q, innovations are non-drastic if and only if c ∈ [0, 1/2).

We denote the two highest order statistics of the sample of cost reductions by X(1), X(2), and

the associated p.d.f. of X(2) by g2(x2)= 2(1 − F(x2)) f (x2) and the joint p.d.f. of X(1), X(2) by

g12(x1, x2) = 2 f (x1) f (x2). And we denote the equilibrium duopoly profits of the winner and

the loser of the auction by πW and πL , respectively; and the equilibrium profit when both firms

abstain from bidding by πnn.

3This assures that the duopoly game has a unique equilibrium (see Szidarovszky and Yakowitz, 1977).
4A sufficient condition for the log-concavity of both F and 1 − F is the log-concavity of f . See Lemma A2 in

Goeree and Offerman (2003) together with Theorem 1 in Bagnoli and Bergstrom (2005).
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3 Model I (complete information in the duopoly game)

Following Jehiel and Moldovanu (2000) we first consider a highly stylized model in which

firms learn about each other’s cost reductions before they play the duopoly game. Jehiel and

Moldovanu referred to the auctioning of a patent license as a prime example of auctions with

negative externalities. Their main finding was that in the presence of a negative externality, using

a reserve price becomes less attractive for the auctioneer.

Among other results we will show that the reserve price plays a crucial role if one replaces the

simple license auction considered by Jehiel and Moldovanu (2000) by the generally superior

mechanism proposed here.

3.1 Benchmark: The game without royalty contract for the loser

The auctioning of one license without royalty contract for the loser has already been analyzed in

Jehiel and Moldovanu (2000, Sect. 4). We briefly review their results for the case of a duopoly,

which serve as a benchmark.

Since only the winner of the auction has access to the innovation, the equilibrium profits in

the duopoly subgames depend only on the cost reduction of the winner of the license auction,

denoted by x . And the equilibrium profit of the winner, πW (x), is increasing and that of the

loser, πL(x), is decreasing in x .

In a second-price auction with reserve price, R, the winner pays the reserve price if he is the

only bidder and otherwise pays the second highest bid. The game has an equilibrium in weakly

dominant strategies. There, bidders play cutoff strategies, and bid truthfully if and only if their

cost reduction is at least as high as the cutoff value r , and do not bid otherwise. The equilibrium

cutoff value is such that the marginal bidder, with a cost reduction equal to r , is indifferent

between bidding and not bidding, i.e., πW (r)− R = πnn. This yields a unique relationship

between r and R, that allows us to eliminate R, and compute the innovator’s expected profit as

a function of r .

The equilibrium bid function, βn , and the innovator’s expected revenue, Gn(r) are (see Sect. 4,

Jehiel and Moldovanu, 2000), where R = πW (r)−πnn,

βn(x)= πW (x)−πL(x), for x ≥ r (1)

Gn(r)= 2F(r)(1− F(r)) R +

∫ c

r

(πW (x2)−πL(x2))g2(x2)dx2. (2)

And the optimal cutoff value rn solves the following condition:

1− F(r)

f (r)
=
πW (r)−πnn

π ′
W (r)

+
1− F(r)

F(r)

(πnn −πL(r))

π ′
W (r)

. (3)

It is useful to compare this with a hypothetical world in which there is no negative externality in

the sense that the loser’s equilibrium duopoly profit is not affected by the winner’s cost reduction.
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In that hypothetical world, the equilibrium bidding strategy and the innovator’s expected revenue

would be equal to

β0(x)= πW (x)−πnn (4)

G0(r)= 2(πW (r)−πnn)F(r)(1− F(r))+

∫ c

r

(πW (x2)−πnn)g2(x2)dx2, (5)

yielding the optimal cutoff value r0 that solves the equation,

1− F(r)

f (r)
=
πW (r)−πnn

π ′
W (r)

. (6)

Comparing (3) and (6) and using the assumed hazard rate monotonicity it follows immediately:

Proposition 1 (Jehiel and Moldovanu (2000)). The optimal reserve price with negative exter-

nality is lower than that in a standard auction without negative externality: rn < r0.

Essentially, in the presence of the negative externality, the innovator has an incentive to lower

the reserve price, because a lower reserve price makes it more likely that both firms bid, and

the winner pays πW (r)−πL(r), which is more than the reserve price, R = πW (r)−πnn that the

winner pays if only one firm bids.

3.2 The game with royalty contract for the loser

For the moment, suppose cost reductions become common knowledge after the auction to firms

as well as to the innovator. Then neither the duopoly nor the bidding game is affected by adding

the royalty contract. And it follows immediately:

Proposition 2. When costs reductions are common knowledge after the auction, adding the

royalty scheme to the auction is profitable for the innovator and increases welfare.

Adding the royalty scheme leaves the loser’s cost unchanged, since the royalty rate is equal

to his cost reduction. Therefore, neither the duopoly nor the bidding game is affected. The

innovator then earns the same income in the auction, yet the royalty contract adds a positive

royalty income. The equilibrium payoffs of the duopolists remain unchanged, but the innovator’s

equilibrium expected revenue increases; hence, welfare increases.

However, if cost reductions become common knowledge only among firms, while the innovator

remains uninformed, the innovator can only update his prior beliefs about cost reductions from

observed bids, and then sets the royalty rate equal to the inferred cost reduction of the loser.

This, in turn, induces bidders to use their bids to influence the innovator’s beliefs about their

cost reduction and thus the royalty rate they have to pay in the event when they lose the auction.

We employ the following procedure to solve the game. As a working hypothesis we assume that

the bidding game has a symmetric and monotone increasing equilibrium, β : [r,c] → ℜ (which

we will confirm), which allows the innovator to draw a perfect inference from observed bids to

the underlying cost reductions and allows the winner of the auction to infer the royalty rate paid
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by the loser. We consider one bidder, say bidder 1 with cost reduction x , who assumes that his

rival plays the strictly increasing equilibrium strategy β.

Without loss of generality we restrict deviating bids to b ∈ [β(r),β(c)], because bidding outside

that range is obviously dominated. Therefore, bidding according to the strategy β as if the

cost reduction were equal to z ∈ (r,c) captures all relevant deviating bids. We first solve all

duopoly subgames that may occur if bidder 1 unilaterally deviates from the equilibrium bid

while everyone (rival and innovator) believes that firms play the equilibrium bidding strategy β.

3.2.1 Downstream duopoly “subgames”

Suppose firm 1 has drawn the cost reduction x but bids as if it had drawn cost reduction z ≥ x ,

while firm 2 has played the strictly increasing equilibrium bidding strategy.5 In the continuation

duopoly game, the following “subgames” occur, depending upon the true and pretended cost

reductions of firm 1, x, z, and the cost reduction of firm 2, y.

When both firms bid and firm 1 has won the auction Let z > y and x, y ≥ r . The inno-

vator infers that firm 2 has cost reduction y and charges a royalty rate equal to y. It is then

common knowledge among firms that the profile of unit costs is (c1,c2) = (c − x,c). De-

note the Cournot equilibrium strategies for this cost profile by (qW1
(x),qL2

(x)). Therefore,

the reduced form profit function of firm 1, conditional on winning the auction, is πW (x) :=
(

P(qW1
(x)+qL2

(x))− c + x
)

qW1
(x).

When both firms bid and firm 1 has lost the auction Let y > z and x, y ≥ r . The innovator

infers that the cost reduction of firm 1 is equal to z and then charges a royalty rate equal to z. It

is then common knowledge among firms that the profile of unit costs is (c1,c2)= (c− x + z,c−

y). Denote the equilibrium strategies of that duopoly subgame by (qL1
(x, z, y)),qW2

(x, z, y).

Therefore, the reduced form profit function of firm 1, conditional on losing the auction, is

πL(x, z, y) :=
(

P(qW2
(x, z, y)+qL1

(x, z, y))− c + x − z
)

qL1
(x, z, y). On the equilibrium path,

i.e., for z = x , the equilibrium strategy of firm 1 when it lost the auction and the associated re-

duced form payoff are only a function of firm 2’s cost reduction, y; therefore, we write: q∗
L(y)=

qL1
(x, z, y)

∣

∣

z=x
and π∗

L(y)= πL(x, z, y)|z=x . Similarly, we write q∗
W (y)= qW2

(x, z, y)
∣

∣

z=x
.

When at least one firm did not bid If no one has made a bid, the game is just the default

game without innovation; in this case the equilibrium profit of firm 1 is equal to πnn. If firm 1

was the only bidder, its equilibrium profit is the same as in the event when both firms bid and

firm 1 has won the auction, and if firm 2 was the only bidder, the equilibrium profit of firm 1 is

the same as in the game without royalty scheme, and is exclusively a function of the winner’s

cost reduction, πL(y), as explained in section 3.1.

Lemma 1. In the relevant duopoly subgames one has ∂zπL(x, z, y)|z=x = −q∗
L(y)γ (y), where

γ (y) : = 1−
(

P ′(qW2
(·)+qL1

(·))∂zqW2
(x, z, y)

)
∣

∣

z=x
> 1. (7)

5The case of z ≤ x is slightly different, yet yields the same payoff function, 5(x, z) and differential equation, and

hence is omitted.
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and π ′
W (x) > 0, π∗′

L (y) < 0. If demand is linear, γ (y)= 4/3 (for a summary account of the linear

model see Appendix A.5, A.6).

The proof is in Appendix A.1.

3.2.2 Auction “subgame”

Using the equilibria of the continuation duopoly subgames, firm 1’s payoff function is

5(x, z)= F(r)(πW (x)− R)+

∫ z

r

(πW (x)−β(y))d F(y)

+

∫ c

z

πL(x, z, y)d F(y), where R = πW (r)−πnn.

(8)

In equilibrium, the bid function β is such that it is the best reply of firm 1 to bid β(x), rather than

β(z), z 6= x . Therefore, β is an equilibrium if and only if x = argmaxz5(x, z), for all x ∈ [r,c].

Proposition 3. In equilibrium firms with x ≥ r bid according to the strictly increasing strategy,

β(x), provided the reserve price is sufficiently high, and abstain from bidding if x < r ,

β(x)= πW (x)−π
∗
L(x)+

1

f (x)

∫ c

x

∂zπL(x, x, y)d F(y) < βn(x) (9)

Proof. 1) Suppose x ≥ r . Differentiating the expected payoff function of firm 1, 5(x, z), (8),

with respect to z, and then setting z = x , one obtains,

(πW (x)−β(x)) f (x)+

∫ c

x

∂z πL(x, z, y)|z=x d F(y)−π∗
L(x) f (x)= 0. (10)

This implies the asserted bid function (9) and, by Lemma 1, β(x) < βn(x) for all x ≥ r .

2) The proof of the asserted monotonicity of β is in Appendix A.2,

3) The above assumes that bidders play a cutoff strategy, and bid if and only if x ≥ r . In

Appendix A.3 we prove formally that the equilibrium strategy is indeed such a cutoff strategy.

4) Having established sufficient conditions for the monotonicity of the bid function one must

also confirm that the underlying first-order conditions (10) yield a global maximum for each

x . This is assured if the function 5(x, z) is pseudoconcave in z, which is assured if and only

if ∂zx5(x, z) ≥ 0.6 As we explain below, this “second-order condition” is satisfied only if the

innovator adopts a sufficiently high reserve price.

6A function of one variable is pseudoconcave if it is increasing to the left of the stationary point and decreasing to the

right. Bidders’ payoff function5(x, z) is pseudoconcave in z if ∂zx5≥ 0, for all x, z, since the sign of that cross

derivative implies z < x ⇒ ∂z5(x, z) > ∂z5(z, z) = 0, z > x ⇒ ∂z5(x, z) < ∂z5(x, x) = 0. Pseudoconcavity

obviously implies that every stationary point is a global maximum.
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From the point of view of the innovator, adding the royalty scheme has an adverse effect on

equilibrium bids. This signalling effect has the following interpretation. If the introduction of the

royalty scheme did not affect the equilibrium strategy, each bidder would benefit from bidding

below equilibrium in order to signal a cost reduction that is lower than true cost reduction. This

incentive to signal can only be eliminated by pointwise lowering the equilibrium bid function

and by introducing a sufficiently high reserve price. This indicates that the innovator faces a

trade-off between income earned in the auction and royalty income earned from the duopoly

game.

To see why a sufficiently high reserve price is needed, suppose no reserve price is used and

hence r = 0, and assume per absurdum that β is the equilibrium bid function. Then, a bidder

with a cost reduction x > 0 who bids β(x) earns the payoff 5(x, x), whereas if he deviates and

bids β(0) he earns 5(x,0), with

5(x,0)−5(x, x)=

∫ c

0

(πL(x,0, y)−πL(x, x, y))d F(y)+

∫ x

0

πL(x, x, y)d F(y)

−

∫ x

0

(πW (x)−β(y))d F(y).

Evidently, πL(x,0, y) > πL(x, x, y) and for all y < x , πW (x) > β(x) > β(y). Therefore, if x is

sufficiently small, it follows that 5(x,0) > 5(x, x), which contradicts the assumption that β is

an equilibrium strategy.

Specifically,

Proposition 4. If demand is linear, the smallest reserve price and the associated cutoff value

rmin that assure that the second-order conditions are satisfied is implicitly defined as the unique

solution of

r −
1− F(r)

f (r)

2

3
= 0. (11)

Proof. Substituting πW (x), R, β(y) and πL(x, z, y) from Appendix A.5 into the payoff function

of firm 1 (8), one can easily confirm that

∀x, z ≥ r : ∂zx5(x, z)=
4

3
z f (z)−

8

9
(1− F(z))≥ 0 ⇐⇒ r ≥ rmin.

5(x, z) is pseudoconcave and hence has a global maximum at z = x for all x if and only if

∂zx5(x, z) ≥ 0 (see footnote 6), which is equivalent to the condition that r ≥ rmin. Finally, the

existence and uniqueness of rmin follows from the fact that the LHS of (11) is negative at r = 0,

positive at r = c, and strictly increasing in r by the hazard rate monotonicity.

To illustrate the role of the reserve price, consider the following example which indicates why

(9) is an equilibrium only if r ≥ rmin.

10



Example 1. Let F(x) := x/c (uniform distribution), in which case rmin = 2c/5, and suppose c =

0.49, x = 0.296. If r = 0, the stationary point ∂z5(x, z)|z=x = 0 is a local but not a global

maximum (see the left side of Figure 1). Therefore, the best reply is to bid β(0), thus lose the

auction yet obtain the innovation for free. Whereas if r = rmin, that stationary point is a global

maximum (see the right side of Figure 1).

0.0 0.1 0.2 0.3 0.4
z
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0.065
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0.20 0.25 0.30 0.35
z
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0.0392

0.0394

0.0396

PHx,zL

z=x

Figure 1: Left: Stationary point at z = x is not a global maximum for r = 0; Right: Stationary point at

z = x is a global maximum for r ≥ rmin

The purpose of a sufficiently high reserve price is to deter firms with low cost reductions from

bidding as if they had drawn no cost reduction, by making a bid equal to β(0). Of course, the

innovator could also live without a reserve price and an equilibrium that involves pooling at

low levels of x . However, in that case he would earn neither royalty income nor income in the

auction whenever at least one bidder has a low level of x . Whereas, if he adds the reserve price,

he earns at least the reserve price from the firm who has a cost reduction x ≥ r .

3.2.3 Is it profitable to add royalty contracts for the loser?

For the innovator, adding the royalty scheme has a benefit and a cost. The benefit is that he

earns royalty income from the loser whenever both firms bid in the auction, without directly

affecting the payoff of the winner in the downstream duopoly game, since, in equilibrium, the

loser pays a royalty rate equal to his cost reduction. The cost is that the innovator needs to set

a relatively high reserve price, which involves the risk that only one or even no firm bids, and

that bidding is pointwise lower than without royalty scheme. Nevertheless, adding the royalty

scheme is profitable for all standard probability distributions, even though one can construct

examples in which it is not profitable. The latter occurs if the probability distribution exhibits a

high concentration on low cost reductions.

The innovator’s expected revenue in the game including royalties, G(r), has three components:

the collected reserve price, the expected payment from the winning bidder when both firms

participate, and the royalty income from the loser:

G(r)= 2F(r)(1− F(r)) R +

∫ c

r

β(x2)g2(x2)dx2 +

∫ c

r

∫ x1

r

x2q∗
L(x1)g12(x1, x2)dx2dx1.

11



Define 1(r) := G(r)− Gn(r). Substituting Gn(r) (see (2)), β, and R = πW (r)−πnn, one finds

after changing the order of integration and a bit of rearranging:

1(r)= 2

∫ c

r

∫ c

x2

(

x2q∗
L(x1) f (x2)+ (1− F(x2)) ∂zπL(x2, z, x1)|z=x2

)

d F(x1)dx2

= 2

∫ c

r

∫ c

x2

q∗
L(x1)

(

x2 −
1− F(x2)

f (x2)
γ (x1)

)

d F(x1)d F(x2), (by Lemma 1). (12)

To obtain further results, we now assume that the demand function is linear. We denote the

maximizers of Gn , G, and 1 by rn,rr ,r1, respectively, and the root of 1(r) by r̂ .

Lemma 2. Suppose demand is linear. Then, r1 > rmin and 1(r) > 0 for all r ∈ (r̂ ,c).

The proof is in Appendix A.4.

Proposition 5. Suppose demand is linear. Adding the royalty scheme increases the innovator’s

expected revenue: G(rr ) > Gn(rn) if rn > r̂ .

Proof. The assumption that rn > r̂ implies1(rn) > 0 by Lemma 2. Therefore, G(rr )≥ G(rn)≡

Gn(rn)+1(rn) > Gn(rn).

Whether rn is either smaller or greater than r̂ depends on the probability distribution F . We

now state two examples in which rn > r̂ , and then show how one must change the probability

distribution to make the royalty scheme unprofitable for the innovator.

In Figure 2 we plot the innovator’s expected revenue with and without royalty scheme, G(r),Gn(r),

for the case of the uniform distribution, F : [0,c] → [0,1],F(x) = x/c, assuming c = 0.49. In

this case, if the royalty scheme is adopted, the innovator must set a high reserve price resp. cut-

off value r ≥ rmin = 0.196. Although this exposes the innovator to a high risk of not selling his

innovation, altogether, adding the royalty scheme is profitable, since G(rr ) > G(rn).
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Figure 2: Uniform distribution

Adding the royalty scheme is profitable for many standard probability distributions. Starting

from the uniform distribution, one finds that if probability mass is shifted to high cost reduc-

tions, the royalty scheme becomes even more profitable. However, if the probability distribution

12



exhibits a sufficiently high concentration on low cost reductions, the royalty schemes becomes

less profitable, and the revenue ranking can be reversed.

We illustrate this with truncated exponential distributions in Figures 3 and 4.7 The probability

distribution in Figure 3 exhibits a concentration on high cost reductions; whereas the probability

distribution in Figure 4 exhibits a high concentration on low cost reductions.

Figures 3 and 4 plot the innovator’s expected revenue for the corresponding probability distribu-

tions. As one skews the distribution towards high cost reductions, the royalty scheme becomes

more profitable; however, as one concentrates probability mass on low cost reductions, as in

Figure 4, the revenue ranking is reversed and it no longer pays to employ the royalty scheme.
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Figure 3: Truncated exponential distribution with a concentration on high cost reductions: cdf (left) and

associated expected revenue of the innovator (right)

The intuition for these findings is as follows. We know from the analysis of the bid functions

β and βn that adding the royalty scheme has a stronger effect on equilibrium bids for low than

for high cost reductions (see part 2 of the proof of Proposition 3). Also, equilibrium royalty

rates are smaller for low than for high cost reductions. Therefore, if the probability distribution

exhibits a high concentration on low cost reductions, adding the royalty scheme is not very

appealing since it gives rise to a high loss in auction revenue together with a low expected royalty

income. Whereas if the probability distribution has a high concentration on high cost reductions,

adding the royalty scheme is appealing since it entails a relatively small loss in auction revenue

combined with a high gain in royalty income.

4 Model II (incomplete information in the duopoly game)

We now turn to the more plausible model in which firms do not learn each other’s cost reduction

after the auction and before they play the duopoly game. In this case, bids not only signal firms’

cost reductions to the innovator but also to their rival. Like in model I, each firm would like

to signal weakness to the innovator, and make the innovator believe that their cost reduction is

“low”, since a low cost reduction translates into a low royalty rate in the event when they lose

the auction. However, unlike in model I, each firm would also like to signal strength to its rival

and make him believe that one’s cost reduction is “high”, since this will make the rival play less

7Both examples assume c = 0.3, and both distributions are consistent with our assumption of log-concave reliability

functions.
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Figure 4: Truncated exponential distribution with a concentration on low cost reductions: cdf (left) and

associated expected revenue of the innovator (right)

aggressively in the duopoly game. Both signaling considerations will affect equilibrium bids in

the auction.

As we will show, model II yields more general results and altogether adding the royalty scheme

is more profitable than in model I.

We solve the perfect equilibrium of the auction game followed by the incomplete information

duopoly game. Thereby we employ the same methodology as in model I. Note, however, that

unlike in model I, firms do not learn each other’s cost reductions after the auction. Therefore,

both the innovator and firms use the information revealed by observed bids to update their prior

beliefs. The innovator uses this information to set the royalty rate for the loser, and firms use it

to predict their rival’s cost reduction and the royalty rate paid by the loser.

Since the game without royalty scheme corresponds to a game analyzed by Goeree (2003) and

Das Varma (2003), we focus on the game with royalty scheme and only mention casually what

changes if no royalty scheme is adopted.

4.1 Downstream duopoly “subgames”

Suppose firm 1 has drawn cost reduction x but bids as if it had drawn cost reduction z ≥ x ,

while firm 2 has played the strictly monotone increasing equilibrium bidding strategy β.8 In the

continuation duopoly game, the following “subgames” occur, depending upon x ,z and y.

4.1.1 When both firms bid and firm 1 has won the auction

Let z > y and x, y ≥ r . Firm 1 privately knows its cost reduction is x ; whereas firm 2 (the

loser) believes that the winner’s cost reduction is equal to z. Therefore, firm 2 believes to play

a duopoly subgame with the profile of unit costs (c1,c2) = (c − z,c). Denote the associated

equilibrium strategies of that game the loser believes to play by (qW (z),qL2
(z)).

8Like in model I, the case of z ≤ x is slightly different, yet yields the same payoff function,5(x, z), and differential

equation, and hence is omitted.
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Firm 1 anticipates that the loser plays qL2
(z). But since firm 1 privately knows that its cost

reduction is equal to x rather than z it plays the best reply:

qW1
(x, z)= arg max

q

(

P(q +qL2
(z))− c + x

)

q. (13)

The reduced form profit function of firm 1, conditional on winning the auction, is πW (x, z) :=
(

P(qW1
(x, z)+qL2

(z))− c + x
)

qW1
(x, z).

4.1.2 When both firms bid and firm 1 has lost the auction

Let y > z and x, y ≥ r . Firm 2 believes to play a Cournot duopoly subgame with unit costs

(c1,c2) = (c,c − y). Denote the associated equilibrium strategies of the game that firm 2 (the

winner) believes to play by (qL(y),qW2
(y)).

If the royalty scheme is adopted, firm 1 privately knows that its cost reduction is x yet pays a

royalty rate z that exceeds its cost reduction x . Therefore, firm 1 plays the following best reply

to qW2
(y):

qL1
(x, z, y)= argmax

q

(

P(q +qW2
(y))− c + x − z

)

q. (14)

The associated reduced form profit function of firm 1 conditional on losing the auction is then

πL(x, z, y) :=
(

P(qW2
(y)+qL1

(x, z, y))− c + x − z
)

qL1
(x, z, y). Also note that on the equilib-

rium path, for z = x , that payoff is only a function of the cost reduction of firm 2, y; therefore,

we write q∗
L(y)= qL(x, z, y)|z=x and π∗

L(y)= πL(x, z, y)|z=x .

Whereas if no royalty scheme is used, the equilibrium play of firm 1 depends only on its rival’s

cost reduction and therefore is independent of x and z. Hence, in this case, the reduced form

profit function of firm 1 conditional on losing the auction is πL(y) :=
(

P(qW2
(y)+qL(y))− c

)

qL(y).

We stress that in model II the equilibrium strategy that firm 2 plays in the event when firm 1 lost

the auction, qW2
, is only a function of its own cost reduction, y, whereas in model I it is a function

of x , z, and y. This is due to the fact that in model II both firm 2 and the innovator believe that

the cost reduction of firm 1 is equal to z, and therefore firm 2 believes that the effective unit costs

are equal to c1 = c − z + z = c, and c2 = c − y. Whereas in model I, the innovator believes that

the cost reduction of firm 1 is equal to z but firm 2 knows that it is equal to x ; therefore, firm 2

believes that the effective unit costs are equal to c1 = c − x + z, and c2 = c − y.

4.1.3 When at least one firm did not bid

If no one has made a bid, the game is just the default game without innovation; in this case the

equilibrium profit of firm 1 is equal to πnn. If firm 1 was the only bidder, its equilibrium profit is

the same as in subgame 4.1.1, and if firm 2 was the only bidder, the equilibrium profit of firm 1

is the same as in the game without royalty scheme, and is exclusively a function of the winner’s

cost reduction, πL(y), as explained in section 4.1.2.

Lemma 3. In the relevant duopoly subgames one has: 1) ∂zπL(x, z, y)|z=x = −q∗
L(y), and 2)

d
dx
πW (x, x) > 0, π∗′

L (y) < 0.
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Proof. The proof of part 1) is the same as the proof of Lemma 1 (spelled out in Appendix A.1)

if one takes into account that in model II one has ∂zqW2
(·) = 0 and therefore γ (y) = 1, see (7).

Part 2) follows from the envelope theorem:

d

dx
πW (x, x)=

(

P ′(·)∂xqL2
(z)qW1

(x, z)+qW1
(x, z)+ P ′(·)∂zqL2

(z)qW1
(x, z)

)
∣

∣

∣

z=x

=
(

qW1
(x, z)+ P ′(·)∂zqL2

(z)qW1
(x, z)

)∣

∣

∣

z=x
(since ∂x qL2

(z)= 0)

> 0 (since P ′(·) < 0 and ∂zqL2
(z) < 0)

π∗′

L (y)= P ′(·)∂yqW2
(y)qL1

(x, z, y) < 0 (since ∂yqW2
(y) > 0) .

4.2 Auction “subgame”

Suppose firm 1 has drawn the cost reduction x but bids as if its cost reduction were equal to

z ≥ x . Assume that firm 2 plays the strictly monotone increasing equilibrium strategy β(y).

Then, the payoff function of firm 1 in the mechanism with royalty scheme is

5(x, z)= F(r)(πW (x, z)− R)+

∫ z

r

(πW (x, z)−β(y))d F(y)+

∫ c

z

πL(x, z, y)d F(y),

where similar to model I, the following relationship applies to the reserve price R and the cutoff

value r :

R = πW (r,r)−πnn.

In the mechanism without royalty scheme, the payoff function is the same, except that in the last

term πL(x, z, y) is replaced by πL(y), as explained in the above analysis of the relevant duopoly

subgames.

Proposition 6. The equilibrium bidding strategies with resp. without royalty scheme, β(x),βn(x),

are, for all x ≥ r:

β(x)= βn(x)+
1

f (x)

∫ c

x

∂zπL(x, z, y)|z=x d F(y) (15)

βn(x)= πW (x, x)−π
∗
L(x)+

F(x)

f (x)
∂zπW (x, z)|z=x (16)

Whereas β is strictly monotone increasing only if r is sufficiently large, βn is strictly monotone

increasing for all r .

Proof. For the derivation of βn see Goeree (2003, Proposition 2). To proof the monotonicity

of βn , compute the derivative of βn . This derivative has two parts. The first part is positive,
(

πW (x, x)−π
∗
L(x)

)′
> 0, by Lemma 3. The second part, which is equal to d

(

F(x)
f (x)

∂zπW (x,z)|z=x

)

/dx,

is also positive by the assumption that F is log-concave.
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The derivation of β is similar to that in model I. To prove monotonicity of β, it is sufficient to

show that β(x)−βn(x) is strictly monotone increasing, i.e. (β(x)−βn(x))
′, is also positive, as

we confirm below:

d

dx

(

1

f (x)

∫ c

x

∂zπL(x, x, y)d F(y)

)

=
1

f (x)

∫ c

x

(∂zxπL(x, x, y)+ ∂zzπL(x, x, y))d F(y)

− ∂zπL(x, x, x)−
f ′(x)

f (x)2

∫ c

x

∂zπL(x, x, y)d F(y)

= −∂zπL(x, x, x)−
f ′(x)

f (x)2

∫ c

x

∂zπL(x, x, y)d F(y) (step a)

>−∂zπL(x, x, x)+
1

1− F(x)

∫ c

x

∂zπL(x, x, y)d F(y) (step b)

>−∂zπL(x, x, x)+
1

1− F(x)

∫ c

x

∂zπL(x, x, x)d F(y) (step c)

= −∂zπL(x, x, x)+ ∂zπL(x, x, x)= 0.

The different steps in this assessment are explained as follows: step a) follows from the facts

that ∂zxπL(x, x, y)= −∂xq∗
L(y)= 0 and ∂zzπL(x, x, y)= −∂zq

∗
L(y)= 0 (see Lemma 3); step b)

follows from the assumed log-concavity of the reliability function, which implies that f ′(x) >

− f (x)2/(1−F(x)), together with the fact that ∂zπL(x, x, y) < 0; step c) follows from the fact that

∂zπL(x, x, y) = −q∗
L(y) (by Lemma 3), which is monotone increasing in y. Therefore, the

proof of monotonicity of β applies to all concave inverse demand functions. Also note that

β(x) < βn(x) by the fact that ∂zπL(x, x, y)= −q∗
L(y) < 0.

The role of the reserve price, resp. r , to assure that the second-order conditions are satisfied, is

similar to model I.

Proposition 7. The introduction of the royalty scheme reduces equilibrium bids pointwise by a

smaller amount than in model I.

Proof. Distinguish the equilibrium bid functions in models I resp. II by writing β I
n ,β

I , resp.

β II
n ,β

II and define 1β I := β I
n (x)−β

I (x), resp. 1β I I := β I I
n (x)−β

I I (x). Recall that due to

γ (y) > 1:

∂zπ
I
L(x, z, y)

∣

∣

z=x
= −q∗

L(y)γ (y) <−q∗
L(y) (model I) (17)

∂zπ
I I
L (x, z, y)

∣

∣

z=x
= −q∗

L(y) (model II) (18)

Therefore, for all x from the intersection of the domains of these bid functions,

1β I = −
1

f (x)

∫ c

x

∂zπ
I
L(x, z, y)

∣

∣

z=x
d F(y)

=
1

f (x)

∫ c

x

γ (y)q∗
L(y)d F(y) (by Lemma 1)
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>
1

f (x)

∫ c

x

q∗
L(y)d F(y) (since γ (y) > 1)

=1β I I > 0.

The intuition for this result is as follows. Consider the equilibrium bid function in model II

without royalty scheme, which by definition of an equilibrium exhibits equality of the marginal

benefit and the marginal cost of an incremental change in the bid from β I I
n (x) to β I I

n (x + ε).9

Now introduce the royalty scheme, while maintaining the candidate equilibrium bid function.

Then, the marginal benefit of bidding higher does not change while it gives rise to a positive

marginal cost, due to the fact that when the bidder loses the auction, he pays a royalty rate

that exceed his cost reduction. This is also true in model I. However, whereas in model II,

the rival firm believes that the effective cost is equal to c, in model I the rival knows that the

royalty rate exceeds the cost reduction so that the effective cost is higher than c. To reestablish

an equilibrium, the bid function has to be lowered pointwise, to bring the unchanged marginal

benefit in balance with the higher marginal cost. But since that marginal cost is higher in model

I than in model II, the bid function has to be lowered more in model I than in model II.

4.3 The innovator’s expected revenue

The above result suggests that adding the royalty scheme is more profitable in model II than in

model I, since it has a smaller adverse effect on the equilibrium bid and thus on the innovator’s

auction revenue.

The expected revenue of the innovator in the mechanism with resp. without royalty scheme,

G(r), Gn(r), is

Gn(r)= 2(1− F(r))F(r)R +

∫ c

r

βn(x2)g2(x2)dx2

G(r)= 2(1− F(r))F(r)R +

∫ c

r

β(x2)g2(x2)dx2 +

∫ c

r

(∫ x1

r

x2q∗
L(x1)g12(x1, x2)dx2

)

dx1

= Gn(r)+

∫ c

r

(β(x2)−βn(x2))g2(x2)dx2 +

∫ c

r

(∫ x1

r

x2q∗
L(x1)g12(x1, x2)dx2

)

dx1.

Define1(r) := G(r)−Gn(r). After substituting β and R and using the fact that ∂zπL(x2, x2, x1)=

−q∗
L(x1), by Lemma 3, one obtains,

1(r)= 2

∫ c

r

∫ c

x2

q∗
L(x1)

(

x2 −
1− F(x2)

f (x2)

)

d F(x1)d F(x2),

Proposition 8. The introduction of the royalty scheme increases the innovator’ expected revenue

more than in model I, for all r from the intersection of the domains of these functions.

9The benefit is the expected revenue from winning the auction, net after deducting the expected price, and the cost

is the loss in the event of losing the auction and paying a royalty rate that exceed the own cost reduction.
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Proof. Distinguish 1 in model I resp. II by writing 1I (r),1II(r). Using (17), (18), and the

fact that γ (y) > 1 in model I, one finds for all x from the intersection of the domains of these

functions,

1I (r)= 2

∫ c

r

∫ c

x2

q∗
L(x1)

(

x2 −
1− F(x2)

f (x2)
γ (x1)

)

d F(x1)d F(x2)

< 2

∫ c

r

∫ c

x2

q∗
L(x1)

(

x2 −
1− F(x2)

f (x2)

)

d F(x1)d F(x2)=1II(r).

As in model I, define r̂ as the root of1(r), and rr ,rn,r1 as the maximizers of G,Gn,1, respec-

tively. The following results hold for all concave inverse demand functions (unlike in model I

where the corresponding results hold only for a class of concave demand functions).

Lemma 4. 1(r) > 0 for all r ∈ (r̂ ,c).

Proof. Let ϕ(r) := r − (1−F(r))/ f (r). It is straightforward to see that r1 is the unique solution of

ϕ(r)= 0. The remainder of the proof is the same as the proof of Lemma 2. (Note, however, that

the functions ϕ differ in models I and II.)

Proposition 9. Adding the royalty scheme increases the innovator’s expected revenue, G(rr ) >

Gn(rn) if rn > r̂ .

Proof. The assumption that rn > r̂ implies1(rn) > 0 by Lemma 4. Therefore, G(rr )≥ G(rn)≡

Gn(rn)+1(rn) > Gn(rn).

For more specific results turn to the case of linear demand, which was assumed in model I. In that

case we find that adding the royalty scheme is profitable for each of the probability distributions

considered in model I, even for the distribution that exhibits a high concentration on low cost

reductions. This fact is illustrated in Figures 5. There, the figure on the left corresponds to

the probability distribution plotted in Figure 3, and the figure on the right corresponds to the

distribution plotted in Figure 4. Evidently, and unlike in model I, adding the royalty scheme

is profitable even for the probability distribution that exhibits a high concentration on low cost

reductions.

These examples illustrate that adding the royalty scheme is more profitable in model II than in

model I, and is particularly appealing if the probability distribution exhibits a high concentration

on high cost reductions, as already explained intuitively at the end of section 3.
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Figure 5: Expected revenue for truncated exponential distributions with a concentration on high cost re-

ductions (left) and on low cost reductions (right)

5 Discussion

In the present paper we reconsider the licensing of a process innovation to a Cournot duopoly

under incomplete information assuming the private values paradigm. Unlike the previous lit-

erature, we assume that the innovator combines a restrictive license auction with a mandatory

royalty contracts for the firm who loses the auction. We consider two specifications of the model:

one in which the cost reductions become common knowledge among firms after the auction and

bids only serve as signals of the underlying cost reduction to the innovator and one in which cost

reductions remain private information and both the innovator and firms can only update their be-

liefs using the information revealed by bids. In both models, the innovator uses the information

revealed by bids to set the royalty rate to be paid by the loser of the auction. Our main finding is

that adding the royalty scheme to the license auction adversely affects equilibrium bidding in the

auction, yet is generally profitable unless cost reductions are highly concentrated on low values,

and is more profitable in model II than in model I.

The limitation of the present paper is that we only consider the case of two firms. If the oligopoly

consists of more than two firms it remains attractive to add the royalty scheme to the license auc-

tion. However, it becomes also an issue how many licenses should be auctioned. This issue has

been at center stage in the classical literature on patent licensing under complete information (see

Kamien, 1992, Giebe and Wolfstetter, 2008), but has not been addressed as yet in the framework

of incomplete information.

Another concern is whether the private value paradigm is appropriate to analyze the cost re-

ductions for firms that serve the same market and employ similar technologies. If instead one

assumes a common value framework, each firm’s expected cost reduction is a function of the

signals observed by all firms, and so is the royalty rate set by the innovator, unless the largest

signal is a sufficient statistic of the unknown cost reduction, in which case only the largest signal

matters (see Fan, Jun, and Wolfstetter, 2009).

A Appendix

A.1 Proof of Lemma 1

Proof. We show that ∂zπL(x, z, y)|z=x = −q∗
L(y)γ (y), where γ (y) > 1 for all y.
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By the envelope theorem we have

∂zπL(x, z, y)|z=x = −qL1
(x, z, y)

(

1− P ′(qW2
(·)+qL1

(·))∂zqW2
(x, z, y)

)
∣

∣

∣

z=x

= −q∗
L(y)γ (y)

where γ (y) : = 1−
(

P ′(qW2
(·)+qL1

(·))∂zqW2
(x, z, y)

)∣

∣

∣

z=x

> 1 (since P ′ < 0 and ∂zqW2
(x, z, y)

∣

∣

z=x
> 0).

Note, both P ′(·) and ∂zqW2
(x, z, y)

∣

∣

z=x
are only functions of y.

If demand is linear, P ′(·)= −1, ∂zqW2
(x, z, y)

∣

∣

z=x
= 1/3; hence, γ (y)= 4/3 (see Appendix A.5).

Next we show that π ′
W (x) > 0 and π∗′

L (y) < 0. Again, using the envelope theorem and the fact

that q ′
L2
(x) < 0 and q∗′

W2
(y) > 0 one has:

π ′
W (x)= P ′(·)q ′

L2
(x)qW1

(x)+qW1
(x) > 0

π∗′

L (y)= P ′(·)q∗′

W2
(y)q∗

L(y) < 0.

A.2 Part 2 of the proof of Proposition 3

Compute β ′(x) from (9). By Lemma 1 and the assumed log-concavity of the reliability function,

which implies that f ′(x) >− f (x)2/(1−F(x)), this derivative can be written as

β ′(x)= (π ′
W (x)−π

∗′
L (x))+

d

dx

(

1

f (x)

∫ c

x

∂zπL(x, x, y)d F(y)

)

> (π ′
W (x)−π

∗′
L (x))+q∗

L(x)γ (x)−
1

1− F(x)

∫ c

x

q∗
L(y)γ (y)d F(y).

There, πW (x) and π∗
L(x) are the equilibrium profits in the Cournot subgames when the winning

firm’s signal is x :

πW (x)= max
q

(

P(q +q∗
L(x))− c + x

)

q,

π∗
L(x)= max

q

(

P(q∗
W (x)+q)− c

)

q,

and q∗
W (x) and q∗

L(x) are the corresponding equilibrium outputs.10

The first–order conditions of the above maximization problem are:

P ′(q∗
W (x)+q∗

L(x))q
∗
W (x)+ P(q∗

W (x)+q∗
L(x))− c + x = 0

P ′(q∗
W (x)+q∗

L(x))q
∗
L(x)+ P(q∗

W (x)+q∗
L(x))− c = 0.

(19)

10Note that q∗
W
(x)= qW1

(x)= qW2
(x, z, y)|z=x=y and q∗

L
(x)= qL2

(x)= qL1
(x, z, y)|z=x=y .
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Differentiating (19) w.r.t. x , one obtains

(

P ′′(·)q∗
W (x)+ P ′(·)

)

(q∗′

W (x)+q∗′

L (x))+ P ′(·)q∗′

W (x)= −1
(

P ′′(·)q∗
L(x)+ P ′(·)

)

(q∗′

W (x)+q∗′

L (x))+ P ′(·)q∗′

L (x)= 0,

from which one can derive

q∗′

W (x)= −
2P ′(·)+ P ′′(·)q∗

L(x)

P ′(·)[3P ′(·)+ P ′′(·)
(

q∗
W (x)+q∗

L(x)
)

]

q∗′

L (x)=
P ′(·)+ P ′′(·)q∗

L(x)

P ′(·)[3P ′(·)+ P ′′(·)
(

q∗
W (x)+q∗

L(x)
)

]
.

(20)

By the envelope theorem, one obtains

π ′
W (x)=

(

P ′(·)q∗′

L (x)+1
)

q∗
W (x)

π∗′
L (x)= P ′(·)q∗′

W (x)q
∗
L(x).

(21)

To compute γ (x), which is defined as γ (y) := 1 −
(

P ′(qW2
(·)+qL1

(·))∂zqW2
(x, z, y)

)∣

∣

z=x
(see

equation (7)), consider the Cournot subgame in the event when both firms bid and firm 1 has lost

the auction. The first–order conditions of that subgame are:

P ′(·)qW2
(·)+ P(·)− c + y = 0

P ′(·)qL1
(·)+ P(·)− c + x − z = 0.

(22)

Differentiating (22) w.r.t. z, one obtains

∂zqW2
(x, z, y)= −

P ′(·)+ P ′′(·)qW2
(x, z, y)

P ′(·)[3P ′(·)+ P ′′(·)
(

qW2
(x, z, y)+qL1

(x, z, y)
)

]
. (23)

Setting z = y = x , we get

γ (x)= 1+
P ′(·)+ P ′′(·)q∗

W (x)

3P ′(·)+ P ′′(·)
(

q∗
W (x)+q∗

L(x)
) (24)

Combining (20), (21) and (24), we have

(π ′
W (x)−π

∗′
L (x))+q∗

L(x)γ (x)= 2q∗
L(x)+q∗

W (x)+

(

P ′(·)+ P ′′(·)q∗
L(x)

)

q∗
W (x)

3P ′(·)+ P ′′(·)
(

q∗
W (x)+q∗

L(x)
)

> 2q∗
L(x)+q∗

W (x) (since P ′ ≤ 0, P
′′

≤ 0).

(25)

From (23) evaluating at z = x and (7), one obtains γ (y), which has the same form as (24) with

x replaced by y. Hence, we have

−q∗
L(y)γ (y)= −2q∗

L(y)+

(

2P ′(·)+ P ′′(·)q∗
L(y)

)

q∗
L(y)

3P ′(·)+ P ′′(·)
(

q∗
W (y)+q∗

L(y)
) >−2q∗

L(y). (26)
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From (25) and (26), it follows that

β ′(x) > 2q∗
L(x)+q∗

W (x)−
1

1− F(x)

∫ c

x

2q∗
L(y)d F(y)

> 2q∗
L(x)+q∗

W (x)−
1

1− F(x)

∫ c

x

2q∗
L(x)d F(y)

= q∗
W (x) > 0,

the second inequality holds because q∗
L(·) is a decreasing function.

A.3 Part 3 of the proof of Proposition 3

Proof. Denote the payoff from bidding by 5b(x) and that from non-bidding by 5n(x), both for

x ≥ r . One obtains,

5b(x)= F(r)(πW (x)− R)+

∫ x

r

(πW (x)−β(y))d F(y)+

∫ c

x

π∗
L(y)d F(y)

= −F(r)R + F(x)πW (x)−

∫ x

r

β(y)d F(y)+

∫ c

x

π∗
L(y)d F(y)

5n(x)= F(r)πnn +

∫ c

r

π∗
L(y)d F(y).

Let

ψ(x) : =5b(x)−5n(x)

= −F(r)(πnn + R)+ F(x)πW (x)−

∫ x

r

(

π∗
L(y)+β(y)

)

d F(y).

Differentiate ψ with respect to x , and one obtains, using (9):

ψ ′(x)= f (x)πW (x)+ F(x)π ′
W (x)−

(

π∗
L(x)+β(x)

)

f (x)

= F(x)π ′
W (x)−

∫ c

x

∂zπL(x, x, y)d F(y) > 0.

By definition of r , one has ψ(r)= 0, and the assertion follows immediately.

A.4 Proof of Lemma 2

Proof. By Lemma 1, γ (x) = 4/3. Define ϕ(r) := r − 4(1−F(r))/3 f (r), We first show that 1 has a

unique global maximum at r1, which is implicitly defined as the solution of ϕ(r)= 0.

Notice that ϕ is strict monotone increasing (by the assumed hazard rate monotonicity) and

ϕ(r)T 0 ⇐⇒ r T r1.

Differentiating (12) it follows immediately that

1′(r)= −2 f (r)

∫ c

r

q∗
L(x1)ϕ(r)d F(x1)T 0 ⇐⇒ r S r1.
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Therefore, 1(r) has a unique global maximum at r1.

Suppose r ∈ [r1,c). Then, ϕ(r)≥ 0 and since ϕ(r) is increasing,

1(r)= 2

∫ c

r

∫ c

x2

q∗
L(x1)ϕ(x2)d F(x1)d F(x2)

> 2

∫ c

r

∫ c

x2

q∗
L(x1)ϕ(r)d F(x1)d F(x2)≥ 0.

Suppose r ∈ (r̂ ,r1). Then 1′(r) > 0 and since 1(r̂)= 0, it follows that 1(r) > 0.

Therefore, 1(r) > 0 for all r ∈ (r̂ ,c).

Finally, r1 > rmin follows from the monotonicity of ϕ(r) combined with

ϕ(r1)−ϕ(rmin)= −ϕ(rmin)= −rmin +
1− F(rmin)

f (rmin)

4

3
=

2

3

1− F(rmin)

f (rmin)
> 0.

A.5 Model I with linear demand

In the duopoly games with royalty scheme, the equilibrium strategies of firm 1 are: qW1
(x) =

(1−c+2x)/3,qL1
(x, z, y)= (1−c+2x−2z−y)/3. The associated equilibrium profits are πW (x)= qW1

(x)2

and πL(x, z, y) = qL1
(x, z, y)2. The equilibrium profit when both firms do not bid is πnn =

(1−c)2/9.

In the game without royalty scheme, qL1
(x, z, y) should be replaced by qL(y) = (1−c−y)/3 and

πL(y)= qL(y)
2.

The equilibrium bid functions are,

βn(x)=
x(2−2c + x)

3
, β(x)= βn(x)−

4

9 f (x)

∫ c

x

(1− c − y)d F(y).

The relationship between the reserve price R and the critical valuation r induced by R is: R =

πW (r)−πnn = 4(1−c+r)r/9.

A.6 Model II with linear demand

In the game with royalty scheme, the Cournot equilibrium strategies of firm 1, are qW1
(x, z) =

(2−2c+3x+z)/6, qL1
(x, z, y)= (2−2c+3x−3z−2y)/6. The associated equilibrium profits are πW (x, z)=

qW1
(x, z)2 and πL(x, z, y) = qL1

(x, z, y)2. The equilibrium profit when both firms do not bid,

πnn is the same as in model I.

In the game without royalties, qL1
(x, z, y) should be replaced by qL(y)= (1−c−y)/3 and πL(x, z, y)

by πL(y)= (qL(y))
2.

The equilibrium bid functions are,

βn(x)=
x(2−2c + x)

3
+
(1− c +2x)F(x)

9 f (x)
, β(x)= βn(x)−

1

3 f (x)

∫ c

x

(1− c − y)d F(y).

The relationship between R and r is R = πW (r,r)−πnn = 4(1−c+r)r/9.
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