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Priority Auctions and Queue Disciplines that

Depend on Processing Time

Thomas Kittsteiner and Benny Moldovanu∗

May 10, 2004

Abstract

We analyze the allocation of priority in queues via simple bidding

mechanisms. In our model, the stochastically arriving customers are pri-

vately informed about their own processing time. They make bids upon

arrival at a queue whose length is unobservable. We consider two bidding

schemes that differ in the definition of bids (these may reflect either total

payments or payments per unit of time) and in the timing of payments (be-

fore, or after service). In both schemes, a customer obtains priority over

all customers (waiting in the queue or arriving while he is waiting) who

make lower bids. Our main results show how the convexity/concavity of

the function expressing the costs of delay determines the queue-discipline

(i.e., SPT, LPT) arising in a bidding equilibrium.

1 Introduction

We analyze simple auction schemes in an environment where randomly arriving,

heterogenous customers need to share a processing device that can only be

∗The authors are grateful to an associate editor and two referees for excellent editorial

comments on a previous version. We are grateful to Philippe Afeche, Alan Beggs, Maria

Angeles de Frutos, Oliver Hart, Moshe Haviv, Paul Klemperer, Meg Meyer and Roger Myerson

for helpful comments. Kittsteiner: Nuffield College, Oxford University, and University of

Bonn; Moldovanu: Department of Economics, University of Bonn; mold@uni-bonn.de
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used sequentially. Since customers can only be served one at a time, queues

may form and the customers incur a waiting cost until their job is completed.

Examples are landing and takeoffs at airports, communication in congested

networks, job processing by capacity-constrained computers (including services

provided via the internet), public facilities such as supermarkets, banks and

amusement parks, the clearance of vehicles at toll booths, and the usage of

various industrial production units.

In a queueing system where all customers can be eventually served, the

allocation problem reduces to a determination of the order in which customers’

jobs are processed. There are two main reasons for awarding priority to certain

customers:

1) Giving priority to certain customers (e.g., those with shorter processing

times) can lead to a decrease in overall (expected) queuing costs, and thus to

overall higher welfare.

2) Since customers are willing to pay a price for being served earlier (which

means avoidance of waiting costs), it is revenue-increasing for the service provider

to charge customers for priority.

The efficiency aspect of priority pricing through auction-like schemes has

been addressed in important papers by Glazer and Hassin[1986], Lui[1985] and

Afeche and Mendelson [2001]. In their set-up, customers incur a waiting cost

that is linear in waiting time, and they differ in their marginal costs which

are private information (Afeche and Mendelson also consider a multiplicative

structure that bundles delay costs and values). Each customer’s processing

time is a random variable, and it is realized when processing starts (thus it is

unknown to customers a-priori). An efficient allocation (i.e., one that minimizes

total delay costs) calls here for higher priority to be awarded to customers with

higher marginal costs - this is the so-called ”Cµ rule”. It has been indeed shown

that customers with higher marginal costs bid more, and hence that the auction

implements the efficient queue discipline. Note that in this model the efficient

discipline is unrelated to processing times.

In contrast, we analyze here a situation where own processing time is known
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to customers and it is private information. This is a natural assumption in

situations where customers know better than others the type of job they will

submit to the server.

We first study a simple bidding scheme where arriving customers submit a

bid that reflects total payment for service, and then pay this bid before joining

the queue. A customer is given priority over all customers in the queue who

submitted lower bids upon arrival. This mechanism has several compelling prop-

erties: 1) Its rules do not depend on distributional assumptions about stochastic

arrival and processing times. 2) The service provider need not enforce payments

after service has been granted1: especially in situations with many unknown

customers (e.g., services provided via the internet) ex-post enforcement may be

very costly and sometimes impracticable. 3) Since auctions extract and aggre-

gate information available to the customers, it seems a-priori likely that such a

mechanism is able to implement a queue discipline with good welfare properties

(e.g., better than, say, the first-come-first-serve method).

We next compare the above mechanism with another very natural scheme

where arriving customers bid for a unit of time and, after being served, pay

their bid multiplied by the actual monitored processing time. Thus, this scheme

relies on monitoring and ex-post payments. It seems a-priori intuitive that the

bidders’ strategic manipulations can be better controlled in this way.

The main role in our analysis of both auction schemes is played by the

curvature of the cost function. The point is that the increase in waiting cost

that is incurred by a customer who waits one additional time unit depends on

his own processing time: if the cost function is convex [concave] the magni-

tude of this dependence is increasing [decreasing] in own processing time. Since

bids reflect the willingness to pay in order to avoid increases in waiting costs,

this effect determines the form of the equilibrium bidding function: if this

function is increasing [decreasing] in own processing time, the auction imple-

1The Economist [2003] reports for example that Britain’s debt-collection agencies handled

20 million cases of unpaid debt in one year. The involved sum was over $8 billion, or about

7% of all unsecured debt and the recovery rate was less than 2-3%.
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ments the longest-processing-time-first (LPT) [the shortest-processing-time-first

(SPT)] queue discipline.

In practice, delay cost functions are often non-linear. In situations with

a concave cost function, initial increases in waiting time are extremely costly,

but further increases are less costly. Good examples are emergency situations

in capacity constrained facilities such as hospitals, fire-fighting, etc... On the

other hand, convex cost function approximate the ubiquitous situations where

there is a deadline (this can be real or stemming from a customer’s expectation)

by which a job must be processed in order for the customer to derive a value.

Van Mieghem[1995] surveys several papers that describe real-life applications

exhibiting such costs.

We show that, with the exception of linear cost functions in our first scheme,

depending on the curvature of the cost function either the SPT or the LPT

discipline can be implemented, but not both. Moreover, the auction where

customers have linear cost functions and make bid per units of processing time

yields the SPT discipline which is, in this case, efficient (i.e., minimizes overall

delay costs).

From a technical point of view, our model is relatively difficult to analyze

since bids directly depend here on the customers’ actual processing time and

since the queue discipline and the resulting waiting time distribution are endoge-

nously determined by the bids (whereas, in the model where customers know

only their marginal cost of waiting, bids are unrelated to processing time).

The paper is organized as follows: The next subsection reviews the relevant

literature. In Section 2 we present the queueing model and the auction scheme

where customers make ex-ante payments. In Section 3 we explicitly calculate

bidding equilibria for the case of convex and concave cost functions, and dis-

cuss the resulting queue disciplines. We also show how Laplace-transforms can

be used to derive closed-form solutions for the case of cost functions that are

polynomial in waiting time. In Section 4 we relax the assumption of unanimous

participation, and we discuss the welfare properties of participation decisions

in equilibrium. In Section 5 we introduce a simple auction scheme where the
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ex-post payments depend on monitored service times, and compare its perfor-

mance to those obtained for the auction with ex-ante payments. Section 6

gathers some concluding comments. Appendix A displays some technical ma-

terial about Laplace transforms, and Appendix B deals with the ”non-generic”

case where there are linear costs of delay.

1.1 Related Literature

Queues with a finite number of priorities (which are independent of processing

times) have been first analyzed by Cobham [1954]. Phipps [1956] generalized

Cobham’s results to a model where jobs with a shorter processing time have a

higher priority (thus there are a continuum of priorities). Phipps derived steady-

state expected waiting times for the SPT discipline. Schrage and Miller [1966]

allow also for preemption, and derive the Laplace Transform of the waiting

time distribution in Phipps’ model with the shortest remaining time discipline

(SRPT)2. We extensively use this derivation for our case with non-linear de-

lay costs. Schrage [1968] proved that the SRPT discipline minimizes expected

waiting time (or, equivalently, minimizes expected cost due to delay if the cost

function is linear). For the case of quadratic waiting costs, Schrage [1973] noted

that queue disciplines based on priority functions cannot be optimal. A priority

function assigns a priority to a job based solely on its own characteristics (e.g.,

it does not depend on characteristics of other jobs)

Kleinrock [1967] was the first to study the allocation of priorities based on

payments made by customers - this small strand of the literature, together

with many other strategic issues arising in queues, is well surveyed in the ex-

cellent book by Hassin and Haviv [2002]. In Kleinrock’s model a new arrival

offers a nonnegative payment to the queue manager (these payments were called

”bribes”). This customer is then assigned a position in the queue such that all

those customers which made larger payments are in front of him, and all those

2Their presentation is somewhat dense. For a more leisurely one see the book by Conway,

Maxwell and Miller [1967].
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customers which made smaller payments are behind him. Kleinrock derived

steady-state expected waiting times (which depend on the bribes) and studied

the resulting queue discipline for various payment functions. He also showed

that payment functions that are monotone in customers’ valuations of time

minimize (linear) waiting costs subject to a budget constraint. Here we use

Kleinrock’s results for the case of a linear cost of delay. Note that Kleinrock’s

payment functions were exogenous, i.e., they were not determined by individual

maximization or by some equilibrium condition.

The earliest work on priority assignment based on payments that satisfy an

equilibrium condition is due to Balachandran [1972]. In his model, identical

customers observe the length of the queue and choose from a discrete, infinite

set of possible payments. Constraints on the set of payments are exhibited under

which it is an equilibrium to purchase the lowest payment that ensures being

placed at the head of the queue. Tilt and Balachandran [1979] generalize this

idea and derive conditions on the set of payments such that either the FCFS

or the LCFS discipline are implemented in an M/M/s/N queue where arriving

customers can observe the number of queuing customers (but neither their own,

nor the other customers’ processing time). They show how the auctioneer is

able to implement each of the two opposite queue disciplines by restricting the

set of possible payments in an appropriate manner.

Incentive problems that arise with privately informed customers have been

first studied in the context of queues by Ghanem [1975]. In his model, cus-

tomers have linear delay costs, and are privately informed about the marginal

cost. In this model total waiting cost is minimized by first serving customers

with a higher marginal cost- this is the ”Cµ rule”. Ghanem assumes that there

is a fixed, finite and exogenously given set of priorities, and calculates incen-

tive compatible prices ensuring that customers sort themselves according to the

(constrained) Cµ rule. Mendelson and Whang [1990] assume that customers

in different classes have different distributions of processing times and analyze

pricing schemes which charge customers on the basis of both the declared class

and on ex-post realized processing time (which is thus assumed to be verifiably
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monitored). It is shown that incentive compatible pricing that leads to optimal

participation decisions of the customers must include a quadratic component,

which is a form of non-linear pricing. Wilson [1983] offers an extensive treatment

of priority pricing in this and other (non-queuing) contexts.

Glazer and Hassin [1986] and Liu [1985] revisit Kleinrock’s model, but as-

sume that customers make payments in order to minimize total cost (which is

the sum of the delay cost and the bid). In their model, customers have privately

known, heterogeneous marginal costs of delay (delay costs are linear in waiting

time). This yields a so called ”private values” auction. As in our model, cus-

tomers do not get to see the actual queue length, nor the bids made by others

before placing their own bid. These authors derive a bidding equilibrium, and

show that a higher marginal cost leads to a higher bid. Thus, the Cµ rule is

implemented by the auction. The above authors also investigate wether cus-

tomers gain by the introduction of the payment scheme in relation to a FCFS

serve discipline. This line of study and other extensions (e.g., the introduction

of a minimum bid) were also pursued by Afeche and Mendelson [2001].

Note that, in contrast to the present work, the induced queue discipline in

all above papers is not a function of service times since customers’ bids cannot

be made contingent on the yet unknown processing times.

If customers can submit a bid (or bribe), and priority is given to customers

with higher bids, Hassin [1995] showed that customers’ decisions to queue are

socially optimal and the revenue of the service provider is maximized if the

queue is unobservable. This complements the result in Edelson and Hildebrand

[1975] who show that efficient participation can be achieved by charging the

revenue maximizing (fixed) price. If the queue is observable, Naor [1969] shows

that the revenue maximizing toll leads to inefficient participation.

The scheduling problem (i.e., where all jobs arrive simultaneously) with in-

terdependent costs has been introduced by Hain and Mitra [2002]. Their main

result is that, for cost functions that are concave polynomials of degree less than

or equal to n − 2 (where n is the number of customers and slots), a general-
ized Clarke-Groves-Vickrey mechanism can be constructed that is efficient and
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ex-post budget balanced. The construction of the CGV mechanism is based on

general insights about efficient implementation for multi-object auctions with

interdependent valuations due to Dasgupta and Maskin [2000] and Jehiel and

Moldovanu [2001]. The use of CGV mechanisms for solving incentive problems

in queues has been first proposed by Dolan [1978].

Kittsteiner and Moldovanu [2003] use the scheduling framework of Hain and

Mitra in order to study the equilibrium and performance of simple bidding mech-

anisms (e.g., auctions, auctions with bid caps, and a fixed-fee+lottery scheme).

They show that a lottery performs better than an auction (both from the ef-

ficiency and from the revenue point of views) if the cost functions are convex.

The present paper generalizes some of their insights to a queueing framework

where arrivals are stochastic.

2 The Queueing and Bidding Models

Customers arrive at a server according to a Poisson process. Thus, there are

infinitely many potential customers, and the number of customers arriving in

a given time interval ∆t is distributed according to a Poisson distribution with

mean λ∆t. The distribution of the number of arriving customers is indepen-

dent of the number of customers that have already arrived. The assumption of

Poisson arrivals essentially allows the computation of explicit bidding functions.

Our qualitative results continue to hold for other arrival processes, as long as

they guarantee existence of a steady state.

Each customer i has a job that needs to be processed by the server. We

assume that the processing time ti of customer i is drawn from a distribution

F with support [t,t] , t≥ 0, independently of other processing times. We also
assume that F has a continuous density f > 0. The realization ti is only known

to i, whereas the distribution F is common knowledge.

If customers are served according to a queue discipline that does not depend

on the customers’ types (i.e. on their private information) we obtain a standard

M/G/1 queue. This is the case, for example, if the queue discipline is first-come

8



first-served (FCFS).

The waiting time of a customer is the difference between the time when

his job is finished and his arrival time to the queue. The queuing time is the

difference between his waiting time and his processing time, i.e. it is the time a

customer spends in the queue.

Each customer i derives a value of Vi if his task is processed. The valuation

Vi need not be known to customers other than i.

Customers face a cost of waiting that is an increasing function of their total

waiting time: a customer with processing time ti who has to queue for Ti time

units incurs a cost C (ti + Ti) , where C : R+ 7→R+ is strictly increasing and

differentiable.

Customer i’s utility is given by Ui = Vi−C (ti + Ti)−mi, where mi denotes

a monetary payment.

Note that the queuing time Ti depends on the processing times of the cus-

tomers served before i, and, therefore, that it depends on other customer’s pri-

vate information. We assume that customers cannot observe the queue’s length

and its composition prior to their arrival. We also assume that all customers

join the queue, regardless of Vi. This can be rationalized if Vi is always high

enough to cover the expected waiting costs (We relax this last assumption in

section 4). We further assume that customers are either not allowed to leave the

queue (this implies that there is no bound on the cost they are facing ex-post),

or not willing to leave the queue (since they cannot observe it and costs are

non-convex).

Upon arrival a customer submits a non-negative bid, and is placed in front

of all customers who are presently in the queue and who submitted lower bids.

Each customer has to pay his bid. In Section 5 we modify the bidding model by

introducing bids per unit of processing time, and letting customers pay (after

service) this bid times their actual processing time.

If two customers submit the same bid, any tie-breaking device can be used,

e.g. they can be served on a FCFS basis. Any tie breaking rule can be applied

also if customers arrive at the same time (this event has zero probability) and
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submit the same bid. The task of the customer who is currently processed is

never interrupted (hence we consider a non-preemptive queuing-discipline).

In contrast to standard queuing models, the distribution of an customer’s

waiting time is endogenously determined by his bidding behavior, and, con-

versely, this distribution must be taken into account when computing equilib-

rium bidding behavior.

We analyze the bidding behavior and the resulting allocation in the steady

state of the queue. In order to ensure the existence of a steady state, we assume

that
R t
t tf (t) dt <

1
λ , i.e. that the average processing time is smaller than the

average inter-arrival time.

3 Bidding Equilibria and Queue Disciplines with

Ex-Ante Bids

The shortest-processing-time (SPT) discipline [longest-processing-time disci-

pline (LPT)] puts an arriving customer with processing time t ahead of all

[behind of all] waiting customers with processing times longer than t. It is well

known (see e.g. Conway et al. [1967]) that, for the case of linear costs of delay,

the SPT discipline, minimizes expected waiting time, and hence overall expected

costs among all possible work conserving queue disciplines. Similarly, the LPT

disciplines maximizes expected total waiting time, and hence overall expected

costs.

In the linear case, e.g., C (t) = ct, c ∈ R+, the willingness to pay for priority
depends only on expected queuing time, but not on own processing time. This

”non-genericity” allows us to implement in a bidding equilibrium both the SPT

and the LPT disciplines (see Appendix B for the derivation and discussion of

this result).

We assume here that C is either strictly convex or strictly concave. The

main effects of these assumptions are:

1. The increase in cost that is incurred by customer i who waits one addi-
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tional time unit depends on his own processing time ti : if C is convex

[concave] the magnitude of this effect is increasing [decreasing] in ti.

2. The increase in cost that is incurred by a customer who waits one addi-

tional time unit depends on the time he has already queued.

To understand these effects, consider a customer who has already queued

for eTi time units, who has to queue for another Ti time units, and who has a
processing time of ti. The increase in cost due to a marginally higher queueing

time Ti+dt is given by C
0
³eTi + Ti + ti´, which is increasing [decreasing] in ti if

C is convex [concave]. A consequence of 1. is that we cannot have both LPT and

SPT disciplines implemented in equilibrium for a strictly convex [concave] cost

function. A consequence of 2. is that the SPT discipline is not necessarily cost-

minimizing since the time already spent waiting has to be taken into account by

the queue discipline. For example, if C is convex, it may be possible to reduce

overall cost by giving priority to a customer with a long processing time if he

already waited a long time. Or, if C is concave, it may be possible to reduce

cost by awarding priority to a new arrival with a longer processing time. The

derivations of the optimal discipline (and the associated distribution of waiting

time) in the general case is very complex and not yet known (Van Mieghem

[1995] shows that a generalized cµ rule that also incorporates actual waiting

time, is asymptotically optimal under heavy traffic conditions).

Clearly, simple bidding mechanisms with one-shot bids placed upon arrival

cannot implement schemes where willingness to pay varies endogenously. We

focus here on a simple auction, but even for this mechanism the derivation of

bidding equilibria turns out to be complex since the bid of a customer with type

t depends on the entire distribution of queuing time for a type t rather than

solely on the expected queuing time (as is the case with linear cost functions -

see Appendix B).

Let the distribution of queuing time in a non-preemptive SPT [LPT] disci-

pline for a customer with processing time t be given by the density function

wS (t, ·) [wL (t, ·)]. To start with, assume that the SPT discipline is imple-
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mentable in a symmetric equilibrium, i.e. that all customers bid according to

the same, strictly decreasing, equilibrium bidding function bS (t). The expected

waiting cost of customer i with type t who pretends being of type bt is given by
CK

¡
t,bt¢ := Z ∞

0

C
¡
t+ et¢wK ¡bt,et¢det , K = S,L

Hence we have

Ui
¡
t,bt¢ = V −CK ¡t,bt¢− bK ¡bt¢ , K = S,L.

A candidate for a (differentiable) equilibrium bidding function has to fulfill the

necessary condition: ∂
∂btUi ¡t,bt¢¯̄̄bt=t = 0. Moreover this condition is sufficient3

if, in addition, we have

∂2

∂t ∂btUi ¡t,bt¢ = −∂
2CK

¡
t,bt¢

∂t ∂bt ≥ 0 for all t,bt
For the SPT discipline, the above condition says that the effect of an increase in

processing time t on expected cost has to be lower if a customer is placed more

to the end of the queue (i.e. pretends to have a higher type). Intuitively, this

holds if the cost function is concave. If the cost function is convex, we expect the

opposite to hold: ∂2

∂t ∂bt R∞0 C
¡
t+ et¢wS ¡bt,et¢det ≥ 0 for all t, bt. This implies the

non-existence of a bidding equilibrium that implements the SPT-discipline in

the convex case. In that case, we obtain that
∂2CL(t,bt)
∂t ∂bt ≤ 0 for all t, bt , and that

the LPT-discipline is implemented in equilibrium (as in the static scheduling

problem of Kittsteiner and Moldovanu [2003]).

We can now summarize our findings. We assume that CK
¡
t,bt¢ < ∞, that

it is twice continuously differentiable, and we define

CK,2
¡
t,bt¢ := ∂CK

¡
t,bt¢

∂bt
3As shown in McAfee [1991] , it suffices to show that ∂

∂bt∂tiUi
¡
ti, bt¢ ≥ 0 for all bt, ti.
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Theorem 1 1. If the cost function C is concave, the following equilibrium

bidding function that is decreasing in processing time implements the LPT

discipline in steady state:

bS (t) =

Z t

t

CS,2 (x, x) dx. (1)

Moreover, there can be no monotonically increasing equilibrium bidding

function, which implies that the LPT discipline cannot be implemented in

this case.

2. If the cost function C is convex, the following equilibrium bidding function

that is increasing in processing time implements the LPT discipline in

steady state:

bL (t) =

Z t

t

CL,2 (x, x) dx. (2)

Moreover, there can be no monotonically decreasing equilibrium bidding

function, which implies that the SPT discipline cannot be implemented in

this case.

Proof. We give the argument for concave C. The convex case is analogous.

Sufficient conditions for a strictly decreasing function bS (t) to be an equilibrium

are given by:

1. bS
¡
t
¢
= 0 , since a customer with a processing time of t never gets priority

and therefore bids zero.

2. ∂
∂btUi ¡t,bt¢¯̄̄bt=t = 0 and

3. ∂
∂t ∂btUi ¡t,bt¢ = −∂2CS(t,bt)

∂t ∂bt ≥ 0 for all t, bt.
The conditions

∂

∂btUi ¡t,bt¢
¯̄̄̄
bt=t = −CS,2 (t, t)−

d

dt
bS (t) = 0
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and bS
¡
t
¢
= 0 are clearly satisfied by the definition of the bidding function

in (1). Consider two customers i, j with processing times ti < tj . Since in all

possible states of the system i always gets priority over j , i0s waiting time

distribution first-order stochastically dominates j0s waiting time distribution.

Since C is strictly concave, we obtain that :

∂

∂t

Z ∞
0

C
¡
t+ et¢wS ¡ti,et¢ det > ∂

∂t

Z ∞
0

C
¡
t+ et¢wS ¡tj ,et¢ det.

This implies that
∂2CS(t,bt)
∂t ∂bt < 0 as desired.

Assume now that there exists a strictly increasing equilibrium bidding func-

tion eb that implements the LPT discipline. The necessary first order conditioneUi,2 ¡t,bt¢ := ∂
∂bt eUi ¡t,bt¢ = −CL,2 ¡t,bt¢ − d

dt
eb (t) = 0 must be satisfied for bt = t

(a.e.). Note that eb (t) has to be continuous, since otherwise a type just above a
gap could improve his payoff by lowering the bid. Henceeb has to be differentiable
a.e., and because of the first order condition, in fact everywhere. Analogously

to the above calculations, we get that ∂2

∂t ∂bt eUi ¡t,bt¢ < 0. Hence for bt > t we haveZ bt
t

Z t

x

∂2

∂z ∂x
eUi (z, x) dzdx > 0⇒

Z bt
t

heUi,2 (t, x)− eUi,2 (x, x)i dx > 0
⇒ eUi ¡t,bt¢−fUi (t, t) > Z bt

t

U2 (t, x) dx > 0

This shows that eb cannot be an equilibrium bidding function.

In general, it is impossible to derive a closed-form solution for the distribu-

tion of waiting time in either the SPT or the LPT discipline, but it is possible

to derive Laplace-transforms. The moments of the distribution with densities

wS and wL can be derived from their Laplace transforms, and, as a conse-

quence, equilibrium bidding functions in models with polynomial cost functions

can be derived in closed form. This is demonstrated below for the quadratic

(i.e., convex) cost function. The Laplace transforms of wK (t, ·) , K = S,L, are

w∗K (t, s) :=
R∞
0 e−setwK ¡t,et¢ det .

Lemma 2 1. The Laplace transform w∗S (t, s) for a type-t customer in the

14



SPT discipline is given by

w∗S (t, s) =
1

s

"Ã
1− λ

Z t

t

xdF (x)

!
(s+ λF (t) (1− gS (t, s)))

+λ (1− F (t))
Ã
1− 1

1− F (t)
Z t

t

e−(s+λF (t)(1−gS(t,s)))xdF (x)

!#

where gS (t, ·) is implicitly given by gS (t, s) = 1
F (t)

R t
t
e−(s+λF (t)(1−gS(t,s)))xdF (x) .

2. The Laplace transform w∗L (t, s) of type-t customer in the LPT discipline

is given by

w∗L (t, s) =
1

s

"Ã
1− λ

Z t

t

xdF (x)

!
(s+ λ (1− F (t)) (1− gL (t, s)))

+λF (t)

µ
1− 1

F (t)

Z t

t

e−(s+λ(1−F (t))(1−gL(t,s)))xdF (x)
¶¸

where gL (t, ·) is implicitly given by

gL (t, s) =
1

1− F (t)
Z t

t

e−(s+λ(1−F (t))(1−gL(t,s)))xdF (x) .

Proof. See Appendix A.

Example 3 Assume that C (t) = 1
2 t
2. We denote by WL (t) the actual waiting

time of type t customer in the LPT queue, and by E [WL (t)] and E
£
W 2
L (t)

¤
its first and second moments, respectively. The expected waiting cost of a type t

who pretends being of type bt is given by
1

2

Z ∞
0

¡
t+ et¢2wL ¡bt,et¢ det = 1

2
t2 + tE

£
WL

¡bt¢¤+ 1
2
E
£
W 2
L

¡bt¢¤ .
Hence, we have

CL,2 (x, x) = x
d

dt
E [WL (t)]

¯̄̄̄
t=x

+
1

2

d

dt
E
£
W 2
L (t)

¤¯̄̄̄
t=x

.

and we obtain

bL (t) = −
Z t

t

x
d

dt
E [WL (t)]

¯̄̄̄
t=x

dx− 1
2

¡
E
£
W 2
L (t)

¤−E £W 2
L (t)

¤¢
. (3)
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The moments of WL (t) are obtained by differentiation of w∗L (t, s) as follows:

E [WL (t)] = − d

ds
w∗L (t, s)

¯̄̄̄
s=0

, E
£
W 2
L (t)

¤
=

d2

ds2
w∗L (t, s)

¯̄̄̄
s=0

.

The calculations are tedious (but straightforward), and we only sketch them here.

By differentiation it can be shown that:

d

ds
gL (t, 0) = −

1
1−F (t)

R t
t
xdF (x)

1− λ
R t
t xdF (x)

;

d2

ds2
gL (t, 0) =

1
1−F (t)

R t
t x

2dF (x)³
1− λ

R t
t
xdF (x)

´3 ;
d3

ds3
gL (t, 0) = − 1

1− F (t)

 R t
t x

3dF (x)³
1− λ

R t
t xdF (x)

´4 + 3λ
³R t

t
x2dF (x)

´2
³
1− λ

R t
t xdF (x)

´5
 .

Using the above expressions, we calculate d
dsw

∗
L (t, s)

¯̄
s=0

and d2

ds2w
∗
L (t, s)

¯̄̄
s=0

by applying l’Hopital’s rule twice and three times, respectively. After combining

terms we obtain

d

ds
w∗L (t, s)

¯̄̄̄
s=0

= − Q0³
1− λ

R t
t xdF (x)

´2
where Q0 :=

1
2λ
R t
t
x2dF (x) denotes the average remaining processing time of

the customer who is currently in service (see Appendix B for the derivation).

Note that this calculation confirms a well known result for linear costs (see

equation 7 in Appendix B). We also obtain:

d2

ds2
w∗L (t, s)

¯̄̄̄
s=0

=
1

3

λ
R t
t
x3dF (x)³

1− λ
R t
t
xdF (x)

´3 + 12 λ
2
R t
t
x2dF (x)

R t
t
x2dF (x)³

1− λ
R t
t
xdF (x)

´4 .
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The bidding function becomes now:

bL (t) = 2Q0λ

Z t

t

x2

1− λ
R t
x ydF (y)

dF (x) +
1

2

¡
E
£
W 2
L (t)

¤−E £W 2
L (t)

¤¢
= 2Q0λ

Z t

t

x2

1− λ
R t
x ydF (y)

dF (x)

+
1

6

λ
R t
t x

3dF (x)³
1− λ

R t
t xdF (x)

´3 + 14 λ2
³R t

t x
2dF (x)

´2
³
1− λ

R t
t xdF (x)

´4
−1
6

λ
R t
t
x3dF (x)³

1− λ
R t
t
xdF (x)

´3 − 14 λ
2
R t
t
x2dF (x)

R t
t
x2dF (x)³

1− λ
R t
t
xdF (x)

´4 .

The figure displays bL for a uniform distribution of processing times on the

interval [0, 1] , and for λ = 1.
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By continuity, we can infer from the linear case (see Appendix B) that the

SPT discipline is approximately efficient [whereas the LPT discipline is approx-

imately anti-efficient] if the curvature of the cost function is small. Also because

of continuity, we obtain from the linear case that, as long as the curvature of

the cost function is small, revenue is higher if the cost function is concave and

the SPT discipline is implemented compared to the case where it is convex and

the LPT discipline is implemented.
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In the present framework, the service provider cannot implement the SPT

discipline if the cost function is convex (for a different situation and result

see Section 5). Note that an effective artificial restriction of bids leads here

to pooling: customers with different processing times submit the same bid,

and thus they cannot be distinguished by their processing time as necessary

for SPT (For example, Kittsteiner and Moldovanu [2003] analyze the effect of a

bid-cap in a static scheduling problem with interdependent costs, and show that

a bid cap can increase efficiency if costs are convex.) In the model of Tilt and

Balachandran [1979] LCFS is more naturally implemented since customers who

observe a larger queue have a higher willingness to pay for priority (since then

it is more likely that they face competitors who also observed a large queue and

bid high). On the other hand, if the set of bids is restricted so that all customers

submit the same bid, they are served according to FCFS.

4 Endogenous Participation

In this section we relax the assumption that all types prefer to queue. We assume

that customers derive a value Vi = V > 0 from processing, and that some prefer

not to queue in equilibrium since the value V is too low to compensate for

expected waiting costs.

We conduct the analysis to the case of concave or linear cost functions C (t) ,

and comment at the end of the section on the convex case.

We will show that, in a symmetric equilibrium that implements the SPT

discipline, there exists a cut-off type t∗ such that only customers with a pro-

cessing time t ≤ t∗ decide to queue. This relies on the fact that the expected
costs (consisting of waiting costs and payments) are increasing in t.

If only customers with processing time t≤ t ≤ t∗ queue, the arrival rate of
queuing customers is F (t∗)λ, and their processing times are distributed accord-

ing to F (t) /F (t∗) , t≤ t ≤ t∗, on the interval [0, t∗].We denote by wt∗S the den-
sity of the distribution of the queuing time in a (non-preemptive) SPT discipline

where only customers with processing time t≤ t ≤ t∗ queue. The expected queu-
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ing time depends now on t∗ since we have a non-preemptive queue-discipline,

where the (expected) remaining processing time of the currently processed job

(upon arrival) depends on t∗. Define

Ct
∗
S

¡
t,bt¢ := Z ∞

0

C
¡
t+ et¢wt∗S ¡bt,et¢ det

We assume that Ct
∗
S

¡
t,bt¢ <∞, that it is twice continuously differentiable, and

denote:

Ct
∗
S,1

¡
t,bt¢ := ∂Ct

∗
S

¡
t,bt¢

∂t
, Ct

∗
S,2

¡
t,bt¢ := ∂Ct

∗
S

¡
t,bt¢

∂bt
Theorem 4 There exists a type t∗ such that the following strategy is a symmet-

ric equilibrium: customers with processing time t > t∗ do not queue, whereas

customers with processing time t ≤ t∗ queue and submit bids according to

b∗S (t) =
Z t∗

t

Ct
∗
S,2 (x, x) dx.

The marginal type t∗ is uniquely defined by

V = Ct
∗
S (t

∗, t∗) .

Proof. The derivation of the bidding function for t ≤ t∗ is the same as in

Theorem 1. The interim utility of a customer i with type t ≤ t∗ who is acting
as if he were of type bt ≤ t∗ in the candidate equilibrium is given by

U∗i
¡
t,bt¢ = V −Ct∗S ¡t,bt¢− Z t∗

bt Ct
∗
S,2 (x, x) dx.

Hence, we have d
dtU

∗
i (t, t) = −Ct

∗
S,1 (t, t) < 0 and U

∗
i (t
∗, t∗) = 0, which shows

that customers with t < t∗ are better-off by queuing. A customer with type

t > t∗ who is acting as if he were of type bt ≤ t∗ receives a strictly lower utility
than a customer with type t∗ who is acting as if he was of type bt. Since a
customer with type t∗ cannot receive a strictly positive utility, a customer with

type t > t∗ prefers not to queue. Since Ct
∗
S (t

∗, t∗) is strictly increasing in t∗, we

obtain that t∗ is uniquely defined.

The next result shows that the customers’ participation decisions are not

necessarily efficient: the equilibrium cut-off level t∗ is different from the socially

optimal cut-off level.
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Corollary 5 Let topt be the cut-off level leading to efficient participation in the

SPT queue, i.e.,

topt := argmax
t

Z t

t

¡
V −CtS(x, x)

¢
f (x) dx,

then topt ≤ t∗.

Proof. The statement follows from the fact that we have V = Ct
∗
S (t

∗, t∗).

Hence, for t ≥ t∗ we obtain:
d

dt

Z t

t

¡
V −CtS(x, x)

¢
f (x) dx

=
¡
V −CtS (t, t)

¢
f (t)−

Z t

t

dCtS(x, x)

dt
f (x) dx < 0.

Thus, topt, the maximizer of
R t
t (V −CtS(x, x)) f (x) dx, must be to the left

of t∗.

The intuition for the above result is that a participating customer with type

t∗ imposes a negative externality on all customers who have a lower processing

time, and arrive while this customer’s job is being processed. There is also a

positive externality on certain customers arriving after his job is processed: for

example, assume that two customers arrive consecutively while a third one is

processed. Assume that the first arriving customer has a long processing time,

while his follower has a short processing time. The externality on the customer

who arrives last might be overall positive, since he will be served before his

predecessor, which is not the case if the machine was idle upon arrival of the

first customer.

By deciding on participation, customers do not internalize the externalities

they impose on future arrivals. The inefficiency is caused by the non-preemptive

priority rule. The argument is similar to the one in Naor [1969] where customers

are served on a FCFS basis. This point has also been made in a related model

by Hassin and Haviv [2002].

The analysis for convex costs is similar. The main difference is that the

marginal participating type need not be uniquely defined, and that he submits
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a non-zero bid since he is given priority over all customers that participate but

have shorter processing time. This implies that the participation decision is

even more inefficient since the marginal type exerts a negative externality on all

participating customers (and not only on those arriving while he is served).

5 Monitoring and Ex-Post Payments

In many realistic situations it is technically feasible to monitor the processing

of the jobs, and therefore to ex-post determine processing times. Thus, it seems

that the service provider can gain complete control on bidders’ incentives by

conditioning payments on the ex-post observed processing times (e.g., by im-

posing large fines or interrupting service in case bidders have ”lied”). Besides

the possible inefficiencies induced by the cost of monitoring and administering

interruptions and fines, there sometimes is a contractual problem with such

schemes: at least a part of the transfer (that controls for incentives) needs to be

paid after service is completed. Hence, the service provider faces the risk of cus-

tomers defaulting on their payments. In large systems with many anonymous

customers (e.g., job processing via the internet), this risk is real and potentially

large. This is why we first analyzed mechanisms that do not rely on monitoring

and ex-post payments.

We now analyze a simple bidding mechanism based on ex-post payments,

and compare it to the scheme analyzed above. The main question is of course

whether our previous insights continue to play a role.

The model is as follows: upon arrival at the queue, customer i bids a price

for one unit of processing time, and after service he pays this price times (the

perfectly monitored) processing time ti. Priority is given over all other customers

(waiting in the queue or arriving while the customer queues) that submitted

lower bids.

Assume that all but customer i bid according to a (strictly) decreasing func-

tion ebS. Then, the expected utility of customer i with type t who bids ebS ¡bt¢ is
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given by

Ui
¡
t,bt¢ = V − Z ∞

0

C
¡
t+ et¢wS ¡bt,et¢ det−ebS ¡bt¢ t.

There are now two main effects that influence willingness to pay:

1. As in the previous sections, willingness to pay, depends on processing time:

If the cost function is concave [convex], the cost of waiting one more time

unit is decreasing [increasing] in the processing time.

2. In addition, given a fixed ex-ante bid per unit of time, the ex-post payment

necessarily increases in processing time, and therefore it is less costly for

a customer with a lower processing time to increase his bid.

If the cost function is concave, these two effects work in the same direction,

and bids are decreasing in the processing time. If the cost function is convex,

the two described effects have different signs, and the form of bidding depends

then on their relative magnitude. In this context, it is important to recall that

the cost of waiting one more time unit is independent of own processing time

for linear cost functions (see also Appendix B). Hence in this case the first

effect is nil, and bids will necessarily be decreasing in processing time. Thus,

we cannot anymore implement the LPT discipline if the cost function is linear

and the symmetric equilibrium implements the (efficient) SPT discipline. By

continuity, the equilibrium continues to implement the SPT discipline if the cost

function is not ”too convex” (i..e, if the first effect is small).

Theorem 6 1. If the cost function C fulfills the following condition

bt ∂
∂t
CS,2

¡
t,bt¢ ≤ CS,2 ¡bt,bt¢ for all t, bt (4)

then the following equilibrium bidding function that is decreasing in pro-

cessing time implements the SPT discipline:

ebS (t) = Z t

t

1

x
CS,2 (x, x) dx. (5)
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Moreover, there can be no monotonically increasing equilibrium bid-

ding function, implying that the LPT discipline cannot be implemented in

this case.

2. If the cost function C fulfills the following condition

bt ∂
∂t
CL,2

¡
t,bt¢ ≤ CL,2 ¡bt,bt¢ for all t, bt

then the following equilibrium bidding function that is increasing in pro-

cessing time implements the LPT discipline:

ebL (t) = Z t

t

1

x
CL,2 (x, x) dx.

Moreover, there can be no monotonically decreasing equilibrium bidding

function, implying that the SPT discipline cannot be implemented in this

case.

Proof. The proof is similar to proof of Theorem 1. We only sketch here part

1. The necessary condition

∂

∂btUi ¡t,bt¢
¯̄̄̄
bt=t = −CS,2 (t, t)− t

d

dt
ebS (t) = 0

is clearly fulfilled by the definition of the bidding function in (5). In addition

we have

∂2

∂t ∂btUi ¡t,bt¢ = − ∂

∂t
CS,2

¡
t,bt¢+ 1bt CS,2 ¡bt,bt¢

and therefore ∂2

∂t ∂btUi ¡t,bt¢ ≥ 0 for all t,bt follows from (4). If C is concave

[linear] we have that ∂
∂tCS,2

¡
t,bt¢ < [=] 0 and therefore (4) is satisfied. Assume

now that there exists a strictly increasing equilibrium bidding function eb that
implements the LPT discipline. Since for such a bidding function we have

that ∂2

∂t ∂bt eUi ¡t,bt¢ = − ∂
∂tCL,2

¡
t,bt¢− t ddteb (t) < 0 we can show (see the proof of

Theorem 1) that eb (t) cannot be optimal for a type t customer.
If cost functions are convex but close to linear, then, by continuity, the SPT

discipline will be close to being welfare-maximizing. In conjunction with Theo-

rem 1, the above result shows, for this case, that a welfare maximizing service
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provider prefers to let payments depend on actual service time4. Interestingly,

revenue is lower in the auction scheme with ex-post payments (as long as the

SPT discipline is implemented):Z t

t

tebS (t) f (t) dt =

Z t

t

Z t

t

t

x
CS,2 (x, x) dxf (t) dt

<

Z t

t

Z t

t

CS,2 (x, x) dxf (t) dt =

Z t

t

bS (t) f (t) dt.

Since an increase in bids is more costly for customers with high processing time,

the auction format with ex-post payments handicaps such bidders. Hence, there

is less competition for positions in the queue, resulting in lower revenue. It can

readily be verified that this argument remains valid if the service provider asks

customer i to pay p (ti) b, where p is increasing in (monitored) processing time,

and where b is the bid of i. Conversely, if the cost function is sufficiently concave,

the service provider could ask for a payment p (ti) b ,where p is decreasing. This

increases the competition from customers with high processing time, and also

increases revenue.

Example 7 Assume that C (t) = 1
2 t
2. We denote by E [WS (t)] and E

£
W 2
S (t)

¤
the first and second moments of the distribution of waiting time of a type t

customer in the SPT queue. E [WS (t)] and E
£
W 2
S (t)

¤
are derived by the method

described in Lemma 2 and Example 3. With Q0 :=
1
2λ
R t
t
x2dF (x) , we obtain

that

E [WS (t)] =
Q0³

1− λ
R t
t
xdF (x)

´2 ,
E
£
W 2
S (t)

¤
=

1

3

λ
R t
t x

3dF (x)³
1− λ

R t
t xdF (x)

´3 + 12 λ
2
R t
t x

2dF (x)
R t
t x

2dF (x)³
1− λ

R t
t xdF (x)

´4 .

Since

CS,2
¡
t,bt¢ = t d

dx
E [WS (x)]

¯̄̄̄
x=bt +

1

2

d

dx
E
£
W 2
S (x)

¤¯̄̄̄
x=bt

4Moreover, such a scheme eliminates the LPT equilibrium for the linear cost functions (see

Appendix B)

24



condition (4) reduces to 1
2

d
dxE

£
W 2
S (x)

¤¯̄
x=bt ≥ 0 for all bt , which is satisfied by

inspection. With bids that reflect payments per unit of time we can now imple-

ment the SPT discipline, whereas only the LPT discipline was implementable

when bids reflected total price. Let us compare the two auction formats and

the effects induced by the change in discipline: The expected waiting cost of a

customer in the SPT and LPT disciplines isZ t

t

Z ∞
0

1

2

¡
t+ et¢2wK ¡et, t¢ detf (t) dt

=
1

2

Z t

t

t2f (t) dt+

Z t

t

tE [WK (t)] f (t) dt+
1

2

Z t

t

E
£
W 2
K (t)

¤
f (t) dt

for K = S,L. Since
R t
t tE [WL (t)] f (t) dt =

R t
t tE [WS (t)] f (t) dt , the dif-

ference in average waiting costs between the SPT and the LPT discipline is

∆C = 1
2

R t
t
E
£
W 2
S (t)

¤
f (t) dt − 1

2

R t
t
E
£
W 2
L (t)

¤
f (t) dt. The SPT discipline is

more efficient than the LPT discipline if and only if ∆C is negative. A-priori,

this condition seems to depend on the distribution of processing times F, and

we do not know whether it generally holds. Numerical calculations for several

different cdf ’s F suggest that we have lower expected waiting costs for the SPT

discipline. Furthermore, for these cdf’s we find that the revenue of the ser-

vice provider is higher if bids reflect payments per unit of time instead of total

payments.

6 Concluding Remarks

We analyzed a queuing system where customers are privately informed about

their processing time, and we derived the endogenous queue-disciplines that

result from equilibrium bidding behavior in simple auction schemes. The main

equilibrium properties were driven by the curvature of the cost function, and

by the ability of the service provider to monitor and collect payments ex-post.

More realistic models that better fit actual situations will have to take into

account the interplay of strategic effects caused by asymmetric information on

several dimensions such as job value, processing time, due date, etc...Moreover,
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one would like to understand the effects of queue observability and slot trading.

But it should be clear that analytical results will be hard to come by in these

more complex models. Introducing the possibility of reneging in our model does

not change results for concave or linear cost functions since the marginal cost

of waiting one more time unit is then non-increasing in queuing time and since

the waiting costs already incurred by a customer at any point of time time is

sunk. Thus no reneging occurs once a customer has joined the queue. If costs

are convex, a customer may decide to leave the queue if his expected additional

waiting cost exceed his value for the service. In equilibrium, such behavior

is anticipated by arriving customers and will be incorporated in their bids (it

actually reduces their waiting time). Nevertheless, since the marginal cost of

waiting one more time unit still increases in own processing time, we expect that

the auction described in section 3 continues to implement the LPT discipline

(with reneging of some customers). Even if we modify the auction format so

that only actually served customers have to pay their bid, we expect that this

central result continues to hold (even though it is then more difficult to compute

equilibria).

In our model the SPT-discipline [LPT-discipline] is approximately efficient

[anti-efficient] when the curvature of the cost function is not ”too large”. The

existence of mechanisms that implement better disciplines for arbitrary strictly

increasing cost functions remains an open question. To our knowledge, there

does not even exist a general algorithm that exactly solves the allocation prob-

lem in a model with complete information, not to mention the question of its

implementability by realistic mechanisms. For the case of convex but almost lin-

ear cost functions, a random allocation of priority (or, say, the FCFS discipline)

improves upon the LPT-discipline.

To some extent, our results generalize to the case where the designer can

interrupt the actual job, start another, and resume the interrupted one with-

out cost (preemptive queues). The derivation of bidding equilibria in this case

is analogous to the one presented here (what changes are the formulas for the

distribution of queuing times). As long as bidding functions are strictly mono-
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tonic, the service provider can indeed infer the customers’ actual processing

times from their bids. This is needed in order to implement the Shortest Re-

maining Processing Time discipline if costs are concave (or the LRPT discipline

if they are convex). In addition, for the concave case, we can get efficient par-

ticipation decisions in equilibrium. This is due to the fact that the marginal

type who is indifferent between participating and reneging does not exert any

externalities. We focused here on an environment without preemption since, for

most applications, a cost-free interruption of job processing seems unrealistic.

7 Appendix A: Laplace Transforms

Proof of Lemma 2: We only provide a sketch of the proof. The derivation

follows and adapts the arguments used by Schrage and Miller [1966] and by

Conway et al [1967], section 8-6 . We restrict attention to the case of the LPT

discipline (the SPT case is very similar).

Assume that arriving customers are allocated to three different priority

classes: The highest priority class (class A) consists of all customers with pro-

cessing time above t2 >t; The next highest class (class B) contains all customers

with processing time in [t2, t1) ; The remaining types are in the lowest priority

class (class C). When a job is finished, the first job from the highest priority

class (that is non-empty at that point of time) is processed next. The discipline

within each class is FCFS. From the perspective of a class B customer, all class

C and class B customers arriving after him are the same. Furthermore, a class

B customer’s waiting time does not depend on the queuing discipline within

classes A and C. Upon arrival, a class B customer faces either an empty system

or one of three different types of cycles. A type A and B cycle starts when a

class A or B customer arrives at an idle machine; a class C cycle starts whenever

a class C customer’s job is started. Each cycle lasts until the machine is empty

of class A and B customers. Conway et. al show how to compute the Laplace

transform of the waiting time associated with each cycle, and the steady-state

probabilities of each cycle. Hence, one can compute the Laplace transform of
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(unconditional) waiting time as the weighted sum of the Laplace transforms

associated with the cycles. For our model, this yields:

w∗L (t1, t2, s) ="Ã
1− λ

Z t

t

xdF (x)

!
(s+ λ (1− F (t2)) (1− gL (t1, t2, s)))

+λF (t1)

µ
1− 1

F (t1)

Z t1

t

e−(s+λ(1−F (t2))(1−gL(t1,t2,s)))xdF (x)
¶¸
/·

s+ (F (t2)− F (t1))
µ

1

F (t2)− F (t1)
Z t2

t1

e−(s+λ(1−F (t2))(1−gL(t1,t2,s)))xdF (x)− 1
¶¸
,

where

gL (t1, t2, s) =
1

1− F (t2)
Z t

t2

e−(s+λ(1−F (t2))(1−gL(t1,t2,s)))xdF (x) .

The result follows by taking the limit t2 → t1 = t. Q.E.D.

8 Appendix B: Linear costs

Throughout this section we assume that C (t) = ct, c ∈ R+. We show that both
the LPT and SPT disciplines can result from equilibrium bidding in the auction

where customers make ex-ante payments. The main intuition is that differences

in the willingness to pay for priority do not depend on own processing time,

but only on the expected queuing time. Therefore the profits from reducing

expected queuing time by one time unit is the same for all types, and is exactly

reflected by their bids.

The following Lemma, due to Phipps [1956], gives the expected queuing

time for a customer with processing time ti in the non-preemptive SPT and

LPT disciplines. By Q0 we denote the average remaining processing time of

the customer who is currently in service. As in Phipps [1956], we have that

Q0 =
λ
2

R t
t x

2f (x) dx. Here is the argument: If a customer enters the queue

while another customer with processing time t is in service, the expected time

of entry is 1
2 t. The probability that the new customer indeed arrives in this
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situation is λtf(t). Q0 is obtained by averaging over t. (Note that this average

contains zeroes for times when no one is in service).

Lemma 8 (Phipps [1956]) The average queuing time of a customer with pro-

cessing time t in the SPT discipline is given by

QS (t) =
Q0³

1− λ
R t
t
xf (x) dx

´2 . (6)

The average queuing time of a customer with processing time t in the LPT

discipline is given by

QL (t) =
Q0³

1− λ
R t
t xf (x) dx

´2 . (7)

The analysis of Theorem 1 carries over to the linear case. Since we have that

CK
¡
t,bt¢ = t+QK ¡bt¢ , the following holds:

Theorem 9 Assume that cost functions are linear.

1. The SPT discipline is implemented by the following equilibrium bidding

function that is decreasing in processing time :

bS (t) = c
¡
QS

¡
t
¢−QS (t)¢ .

2. The LPT discipline is implemented by the following equilibrium bidding

function that is increasing in processing time:

bL (t) = c (QL (t)−QL (t)) . (8)

Note that, for t1 6= t2, the difference in bids precisely reflects the difference
in expected costs due to queuing:

bS (t2)− bS (t1) = c (QS (t1)−QS (t2)) .

It is interesting to note that customers do not care about which equilibrium is

played: their expected utility is the same in both equilibria: Vi−cti−cQS
¡
t
¢
=
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Vi − cti − cQL (t) . This means that all efficiency losses due to higher waiting
costs are exactly reflected in the bids, and it implies that the revenue in the

LPT equilibrium is lower than in the SPT equilibrium5.

In the linear case it is somewhat arbitrary to make bids dependent on pro-

cessing time since the willingness to pay does not depend on own processing

time. Consequently, equilibrium bids may depend on processing time in a non-

monotonic way (or can even depend on other sources of private information that

are uncorrelated with processing time). Consider for example any measurable

one-to-one function k :
£
t, t
¤→ £

k, k
¤
. We can implement a queue-discipline in

which a customer with processing time ti is given priority over all customers

with processing time t such that k (t) < k (ti). Define the average queuing

time of a customer with processing time ti for the described queue-discipline

as eQ (k (ti)), and assume that all customers other than i bid according to the
increasing bidding function

eb (k (t)) = c³ eQ ¡k¢− eQ (k (t))´ .
As before, bids exactly reflect the decrease in expected waiting cost vis-a-vis

the type who submits the lowest bid. Every bid in the range of eb results in the
same payoff and, in particular, eb is an equilibrium bidding function.
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