
PROBABILISTIC ANALYSIS OF PRONUNCIATION WITH'MAUS'Florian Schiel, Andreas KippInstitut f�ur Phonetik und Sprachliche Kommunikation,Ludwig-Maximilians-Universit�at M�unchenABSTRACTThis paper describes a method to auto-matically detect pronunciation variants inlarge speech corpora within the frame-work of the 'MAUS' project ([1]). 'MAUS'stands for 'Munich Automatic Segment-ation System' and is a general purposetool to automatically label and segmentread and spontaneous German speech intophonetic/phonologic segments. The out-put of MAUS can for example be usedto build probabilistic models of pronun-ciation of 
uent German as re
ected bythe analysed corpus. These models canbe the basis for phonetic investigations orcan be incorporated into classic speech re-cognition algorithms.The paper is organised as follows: The�rst section gives a very short introduc-tion into the main processing principleof MAUS and gives some examples ofthe output of MAUS applied to utter-ances from the Verbmobil corpus. Sec-tion 2 deals very brie
y with the prob-lem of how to evaluate such an output.A method is given that �rst compares theperformance of three human transcriberswith each other and then the performanceof MAUS with each of them. Section 3describes our method for deriving prob-

abilistic pronunciation dictionaries fromthe MAUS output and gives some inter-esting examples from the Verbmobil do-main. The 4th and last section givessome new approaches towards incorpor-ating these models into a new automaticspeech recognition (ASR) approach thatcombines phonetically 'sharper' acousticmodels with the probabilistic modelling ofpronunciation.1. INTRODUCTION TO MAUSThe MAUS system was developed atthe Bavarian Archive for Speech Signals(BAS) to facilitate the otherwise verytime-consuming manual labeling and seg-mentation of speech corpora into phon-etic units. Initially funded by the Ger-man government within the Verbmobil Iproject, MAUS is now further extendedby BAS with the aim to automatically im-prove all BAS speech corpora by meansof complete broad phonetic transcriptionsand segmentations. The basic motivationfor MAUS is the hypothesis that auto-matic speech recognition (ASR) of con-versational speech as well as high quality'concept-to-speech' systems will requirehuge amounts of carefully labelled andsegmented speech data for their success-ful progress.



Traditionally a small part of a speech cor-pus is transcribed and segmented by handto yield bootstrap data for ASR or basicunits for concatenative speech synthesis(e.g. PSOLA). Examples for such corporaare the PhonDat I and II corpus (readspeech) and the Verbmobil corpus (spon-taneous speech). However, since these la-belings and segmentations are done manu-ally, the required time is about 800 timesthe duration of the utterance itself, e.g. tolabel and segment an utterance of 10 seclength a skilled phonetician spends about2 h and 13 min at the computer. It isclear that with such an enormous e�ortit is impossible to annotate large corporalike the Verbmobil corpus with over 33 hof speech. On the other hand large data-bases are needed urgently for empirical in-vestigations on the phonological and lex-ical level.Input to the MAUS system is the digitisedspeech wave and any kind of orthographicrepresentation that re
ects the chain ofwords in the utterance. Optionally theremight be markers for non-speech events aswell, but this is not essential for MAUS.The output of MAUS is a sequence ofphonetic/phonemic symbols from the ex-tended German SAM Phonetic Alphabet([5]) together with the time position withinthe corresponding speech signal.Example:Input:Speech Wave + 'bis morgen wiederhoeren'Output:MAU: 0 479 -1 <p:>MAU: 480 480 0 bMAU: 961 478 0 IMAU: 1440 1758 0 sMAU: 2720 959 1 mMAU: 3680 799 1 O

MAU: 4480 2399 1 6MAU: 6880 2079 1 NMAU: 8960 799 2 vMAU: 9760 959 2 i:MAU: 10720 479 2 dMAU: 11200 2239 2 6MAU: 13440 799 2 hMAU: 14240 639 2 2:MAU: 14880 1439 2 6MAU: 16320 1599 2 nMAU: 17920 1759 -1 <p:>(The output is written as a tier in the newBAS Partitur format. 'MAU:' is a labelto identify the MAUS tier; the �rst integergives the start of the segment in samplescounted from the beginning of the utter-ance; the second integer gives the length ofthe segment in samples; the third numbergives the word order and the �nal stringis the labeling of the segment in extendedGerman SAM-PA. See [10] for a detaileddescription of the BAS Partitur format)MAUS is a three-staged system (see �g.1):In a �rst step the orthographic string ofthe utterance is looked up in a canonicalpronunciation dictionary (e.g. PHON-OLEX, see [8]) and processed into aMarkov chain (represented as a directedacyclic graph) containing all possible al-ternative pronunciations using either a setof data driven microrules or using thephonetic expert system PHONRUL.A microrule set describes possible al-terations of the canonical pronunciationwithin the context of +=� 1 segments to-gether with the probability of such a vari-ant. The microrules are automatically de-rived from manually segmented parts ofthe corpus. Hence, these rules are corpusdependent and contain no a priori know-ledge about German pronunciation. De-pending on the pruning factor (very sel-



Figure 1: The MAUS system - block diagramdom observations are discarded) and thesize of the manually segmented data themicrorule set consists of 500 to 2000 rules.In this paper we use a set of approx. 1200rules derived from 72 manually segmentedVerbmobil dialogs of The Kiel Corpus ofspontaneous Speech ([6]). Details aboutthis method can be found in [1].The expert system PHONRUL consists ofa rule set of over 6000 rules with unlim-ited context. The rules were compiled byan experienced phonetician on the basisof literature and generalised observationsin manually transcribed data. There isno statistical information within this ruleset; all rules are treated with equal prob-ability. PHONRUL is therefore a generic

model and should be considered independ-ent of the analysed speech corpus. A moredetailed description of PHONRUL can befound in [7].The second stage of MAUS is a standardHMM Viterbi alignment where the searchspace is constrained by the directed acyc-lic graph from the �rst stage (see �gure2 for an example). Currently we use theHTK 2.0 as the aligner ([9]) with the fol-lowing preprocessing: 12 MFCCs + logEnergy, Delta, Delta-delta every 10 msec.Models are left-to-right, 3 to 5 states and5 mixtures per state. No tying of paramet-ers was applied to keep the model as sharpas possible. The models were trained tomanually segmented speech only (no em-



Figure 2: Acyclic graph of the utterance "Gott... �ahm... hier..." with possible pronunci-ation variantsbedded re-estimation).The outcome of the alignment is a tran-script and a segmentation of 10 msec ac-curacy, which is quite broad. Therefore ina third stage REFINE the segmentation isre�ned by a rule-based system working onthe speech wave as well as on other �ne-grained features. However, the third stagecannot alter the transcript itself, only theindividual segment boundaries.The general drawback of the MAUS ap-proach is, of course, that MAUS cannotdetect variants that are not 'foreseen' bythe �rst stage of the process. However,we found that using the microrule methodthe vast number of distinct rules are foundafter analyzing a relatively small sub-portion of the whole corpus. This indic-ates that the number of non-canonical pro-nunciations occurring in a certain domainsuch as the Verbmobil corpus is in factlimited and therefore treatable by a lim-ited number of rules.2. EVALUATIONThe output of MAUS can be separatedinto two di�erent classes: the transcript(the chain of symbols) and the correspond-ing segmental information (begin and end

of each segment).Unlike in an ASR task the evaluation ofa phonetic/phonemic segmentation of ar-bitrary utterances has a great disadvant-age: there is no reference. Even very ex-perienced phoneticians will not producethe same segmentation, not even the sametranscript on the same speech wave.We tried to circumvent this general prob-lem by �rst comparing the results of threeexperienced human transcribers on thesame corpus with each other to get a feel-ing for what is possible and set an upperlimit for MAUS. We used standard Dy-namic Programming techniques as usedin ASR evaluations (e.g. [9]) to calcu-late the inter-labeller agreement betweendi�erent transcripts. We found that thecoverage of the three human transcribersranges from 78.8% to 82.6% (on the basisof approx. 5000 segments). We then cal-culated the accuracy for the MAUS out-put with regard to each set of human res-ults and found values ranging from 74.9%to 80.3% using the microrule method and72.5% to 77.2% using PHONRUL. Notsurprisingly, the worst and best coveragewere correlated in all three experiments.This means that if we set the upper limitto the best match within human tran-



scription results (82.6%) and compare thisto the average agreement of MAUS withthese two human transcribers, we'll endup with a relative performance of 97.2%for MAUS. (Note that this relative per-formance measure might be higher than100% at some distant point in the future!)For a more detailed discussion about theproblem of evaluation as well as a more ac-curate analysis of the MAUS output (ap-plied to read speech) please refer to [3].In terms of accuracy of segment boundar-ies the comparison between manual seg-mentations shows a high agreement: onaverage 93% of all corresponding segmentboundaries deviate less than 20msec fromeach other. The average percentage ofcorresponding segment boundaries in aMAUS versus a manual segmentation isonly 84%. This yields a relative perform-ance of 90.3%. We hope that a further im-provement of the third stage of MAUS willincrease these already encouraging res-ults.3. PROBABILISTIC PRONUNCI-ATION MODELAside from the many other uses of theMAUS output for this paper we'll showhow to derive a simple but e�ective prob-abilistic pronunciation model for ASRfrom the data. There are two obviousways to use the MAUS results for this pur-pose:� use direct statistics of the observedvariants� use generalised statistics in form ofmicrorulesIn the following we will discuss both ap-proaches.

3.1. Direct StatisticsSince in the MAUS output each segment isassigned to a word reference level (Parti-tur Format, see [10]), it is quite easyto derive all observed pronunciation vari-ants from a corpus and collect them in aPHONOLEX ([8]) style dictionary. Theanalysis of the training set of the 1996Verbmobil evaluation (volumes 1-5,7,12)led to a collection of approx. 230.000 ob-servations.The following shows a random excerpt ofthe resulting dictionary:terminlichadjt E 6 m i: n l I Ct E 6 m i: n I C 3t @ m i: l I C 3t E 6 m i: n l I C 10t E 6 m i: l I C 1t @ m i: n l I C 7&...Karfreitagnouk a: 6 f r aI t a: kk a: 6 f r aI t a: k 15k a: 6 f r aI t a x 3&...weilparv aI lv a l 11v aI 108v aI l 207&...siebenundzwanzigstenadjz i: b @ n U n t t s v a n t s I C s t @ nz i: b @ n U n s v a n t s I s t @ n 1z i: b m U n s v a n t s I k s t n 2z i: b m U n s v a n s I C s t n 1z i: b m U n s v a n t s I C s t @ n 1z i: m U n s v a n t s s t @ n 1z i: m U n s v a n t s s n 1z i: b m U n s v a n t s s t 1s i: b @ n U n s v a n s I C s t n 1



z i: b @ n U n s v a n s I C s t n 1z i: b @ n U n s v a n t s I s t n 3z i: m U n s v a n t s I s t @ n 1z i: b m U n s v a n s I z n 2i: b m U n s v a n z I z n 1z i: m U n s v a n t s I z n 6z i: m U n s v a n t s I s n 1z i: b m U n s v a s I s t n 1z i: b @ n U n s v a n t s I C s t n 2z i: m U n s v a n s I s n 1z i: m U n s v a n z I k s t @ n 1z i: b m U n s v a n t s I z n 2z i: m U n s v a n t s I s t 2z i: b m U n s v a n t s I s t @ n 2z i: m U n s v a n s I s t n 17z i: m U n s v a n s s t n 1z i: b m U n s v a n s I C s t 1z i: m U n s v a n t s I C s n 1z i: b m U t s v a n t s s t n 1z i: m U n s v a n s I k s t @ n 2z i: b m U n s v a n s I s t n 6z i: b m U n s v a n s I k s t n 1z i: b m U n s v a n s I s t @ n 4z i: m U n s v a n t s I k s t n 6z i: m U n s v a n t s s t n 1z i: m U n s v a n s I z n 1z i: b m U n s v a n s s t n 2z i: b m U t s v a n s I s t n 1z i: m U n s v a s s n 1z i: b @ n U n s v a n t s I k s t n 2z i: m U n s v a n t s I C s t n 9z i: m U n s v a n z I z n 2z i: m U n s v a n t s I s t n 27z i: b m U n s v a n t s s t n 1z i: m U n s v a n z I s t n 5z i: b m U n s v a n s I s n 1z i: m U n s v a n s s n 1z i: m U n s v a n s s t @ n 1z i: b m U n s v a n z I z n 1z i: m U n s v a n t s I C s t @ n 2s i: b m U n s v a n t s I C s t n 1z i: b m U n s v a n t s I C s t n 12z i: m U n s v a n s s t 1z i: m U n s v a n s I C s t n 3z i: m U n s v a n z I s n 1z i: b m U n s v a n t s I s t n 28z i: m U n s v a n s I s t @ n 3z i: b m U n s v a n t s I k s t @ n 1&...Namennoun a: m @ nn a: m 30

n a: m @ n 15&...EssennouQ E s @ n@ s n 2E s n 16E s @ n 6s n 3E s 1Q E s @ n 7Q E s 1Q E s n 21&The above modi�ed PHONOLEX formatis de�ned as follows:<orthography><comma separated list oflinguistic classes><canonical pronunciation><empiric pronunciation> <count>&...Obviously many of the observations arenot frequent enough for a statistical para-meterisation. Therefore we prune thebaseline dictionary in the following way:� Observations with a total count ofless than N per lexical item are dis-carded.� From the remaining observations foreach lexical word L the a-posterioriprobabilities P (V jL) that the vari-ant V was observed are calculated.All variants that have less than M%of the total probability mass are dis-carded.� The remaining variants are re-normalised to a total probabilitymass of 1.0.



Applied to the above example this yieldsthe following more compact statistics(pruning parameters: N=20, M=10):terminlich 0.434783t E 6 m i: n l I Cterminlich 0.130435t E 6 m i: n I Cterminlich 0.304348t @ m i: n l I Cterminlich 0.130435t @ m i: l IKarfreitag 1.000000k a: 6 f r aI t a: kweil 0.342857v aIweil 0.657143v aI lsiebenundzwanzigsten 0.509091z i: b m U n s v a n t s I s t nsiebenundzwanzigsten 0.490909z i: m U n s v a n t s I s t nNamen 0.333333n a: m @ nNamen 0.666667n a: mEssen 0.320000E s nEssen 0.420000Q E s nEssen 0.120000E s @ nEssen 0.140000Q E s @ nwhere the second column contains the a-posteriori probabilities. This form can bedirectly used in a standard ASR systemwith multi pronunciation dictionary likeHTK (version 2.1).3.2. Generalised statisticsThe usage of direct statistics has the dis-advantage that most of the words will bemodelled by only one variant, which inmany cases will be the canonical pronunci-

ation because of lack of data. An easy wayto generalise to less frequent words (or un-seen words) is to use not the statistics ofthe variants itself but the underlying rulesthat were applied during the segmentationprocess of MAUS. Note that this has noth-ing to do with the statistical weights of themicrorules mentioned earlier in this pa-per; it's the number of appliances of theserules that counts. Since there is form-ally no distinction between microrules forsegmentation in MAUS and probabilisticrules for recognition, we can use the sameformat and formalism for this approach asin MAUS. The step-by-step procedure isas follows:A: Derive a set of statistical microrulesfrom a subset of manually segmented dataor use the rule set PHONRUL (see section1).B: Apply this rule set to segment the train-ing corpus and count all appliances of eachrule forming the statistics of the recogni-tion rule set.Note that the recognition rule set mightbe a subset of the PHONRUL/microruleset, although this is very unlikely for thelatter.This approach has the great advantagethat the statistics are more compact (andtherefore robust), independent of the dic-tionary used for recognition (which forsure will contain words that were neverseen in the training set) and general-ise knowledge about pronunciation to un-seen cases. However, the last point maybe a source of uncertainty, since it can-not be foreseen whether the generalisa-tion is valid to all cases where the contextmatches. We cannot be sure that the con-text we are using is su�cient to justify theusage of a certain rule in all places where



this context occurs.4. AUTOMATIC SPEECH RE-COGNITION (ASR)There have been several attempts to in-corporate knowledge about pronunciationinto standard methods for ASR. Most ofthem (with some exceptions, e.g. [4])didn't yield any improvements. Theargument was that the advantage of abetter modelling on the lexical level iseaten up by the fact that the searchspace and/or the dictionary ambivalenceincreases. However, most of the liter-ature did not take into account reliablestatistics (because they were simply notavailable) and used acoustic models thatwere trained using canonical pronunci-ations. Our hypothesis is that an increasein recognition performance can only beachieved if the following two conditionsare satis�ed:1. A reliable statistical model for pro-nunciation (which very likely will beadapted to the task).2. Acoustical models that match themodelling on the lexical level.On this basis we are currently conductingseveral experiments with a standard HTKrecogniser for the 1996 Verbmobil evalu-ation task. In this paper we will only re-port about preliminary results using thedirect statistics approach of section 3.1.A standard recogniser of HTK 2.0 withthe following properties was designed forthe experiment:The speech signal is mean subtracted,emphasised and preprocessed into 12MFCCs + log Energy, Delta, Delta-deltaevery 10 msec. Training and test sets are

de�ned in the 1996 Verbmobil evaluationtask ('Kuer', test corpus: 6555 words).The canonical dictionary contains 840 dif-ferent entries. The language model is asimple bigram calculated exclusively fromthe training set. The acoustic models aremonophone left-to-right HMMs with 3-5 states containing a variable number ofmixtures without tying. We use 46 mod-els from the extended German SAM-PAincluding one model for silence and onemodel for non-speech events.We trained and tested the recogniser withthe same amount of data in two di�erentfashions:� Baseline SystemStandard bootstrapping to manuallylabelled data (1h40) and iterative em-bedded re-estimation (segmental-k-means) using 30h of speech until theperformance on the independent testset converged (note: performance interms of word accuracy, de�ned by(number of words - insertions - re-placements - deletions ) / number ofwords). The re-estimation processused a canonical pronunciation dic-tionary with one pronunciation perlexical entry.The system was tested with the samecanonical dictionary.� MAUS SystemThis system was bootstrapped to onethird of the training corpus (approx.10h of speech) using the MAUS seg-mentation and then iteratively re-estimated (30h of speech) using notthe canonical dictionary but the tran-scripts of the MAUS analysis (notethat the segmental information of theMAUS analysis is NOT used for there-estimation).



The system was tested with theprobabilistic pronunciation model de-scribed in section III.1. usingthe pruning parameters N=20 andM=0%.
Figure 3 shows the performance of bothsystems during the training process. Notethat the MAUS system starts with a muchhigher performance because it was boots-trapped to 10h of MAUS data (comparedto 1h40min of manually labelled data forthe baseline system). After training, theMAUS system converges on a signi�cantlyhigher performance level of 66.35% com-pared to 63.44% of the baseline system.5. CONCLUSIONThe MAUS system can be used e�ectivelyto fully automatically label and segmentread and spontaneous speech corpora intobroad phonetic alphabets. This enables usfor the �rst time to derive statistical mod-els on di�erent processing levels (acoustic,phonetic, lexical) on the basis of very largedatabases. We have shown that the usageof this data can signi�cantly improve ASRon spontaneous speech.The MAUS principle is not language de-pendent (however, the required resourcesare!). Therefore we strongly encouragecolleagues in other European countries toadopt the MAUS principle for their spe-ci�c languages and produce similar re-sources as are currently produced at BASfor the German language. A �rst jointproject (MIGHTY MAUS) for AmericanEnglish and Japanese is scheduled for1998 together with the International Com-puter Science Institute (ICSI), BerkeleyCalifornia, and So�a University, Tokyo.
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