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Abstract

The Random Forest (RF) algorithm by Leo Breiman has become a
standard data analysis tool in bioinformatics. It has shown excellent
performance in settings where the number of variables is much larger
than the number of observations, can cope with complex interaction
structures as well as highly correlated variables and returns measures
of variable importance. This paper synthesizes ten years of RF devel-
opment with emphasis on applications to bioinformatics and compu-
tational biology. Special attention is given to practical aspects such
as the selection of parameters, available RF implementations, and im-
portant pitfalls and biases of RF and its variable importance measures
(VIMs). The paper surveys recent developments of the methodology
relevant to bioinformatics as well as some representative examples of
RF applications in this context and possible directions for future re-
search.

∗Corresponding author. Email: boulesteix@ibe.med.uni-muenchen.de.
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1 Introduction

In only ten years, the Random Forest (RF) [6] algorithm has evolved to
a standard data analysis tool in bioinformatics. By “bioinformatics”, we
mean the application of computer science and information technology to
the field of biology and medicine. RF methodology is used to address two
main classes of problems: to construct a prediction rule for a supervised
learning problem and to assess and rank variables with respect to their abil-
ity to predict the response. The latter is done by considering the so-called
variable importance measures (VIMs) that are automatically computed for
each predictor within the random forest algorithm. In particular, RF VIMs
are believed to successfully identify predictors involved in interactions, i.e.
predictors which can predict the response only in association with one or
several other predictor(s). After sensible validation, the resulting prediction
rule can then be applied, for instance, in clinical practice [42]. As far as
these two tasks (prediction and predictor assessment) are concerned, RF of-
fers specific features that makes it attractive for bioinformatics applications.
It can cope with high-dimensional data (the so-called “n � p curse”) and
can even be applied in difficult settings with highly correlated predictors. It
is not based on a particular stochastic model and can also capture non-linear
association patterns between predictors and response. It does not require
the user to specify a model underlying the data. Considering the complexity
of modern high-throughput “omics” data, these features are usually consid-
ered as important advantages in this context.
This paper synthesizes ten years of RF development with emphasis on bioin-
formatics and computational biology. Special attention is given to practical
aspects such as the selection of parameters in the RF algorithm to provide
helpful guidelines for applications. Essential pitfalls and shortcomings of RF
and its VIMs are discussed as well as alternative approaches to circumvent
these problems. For more theoretical details and reviews covering other as-
pects of RF, we refer to the literature. For example, Malley et al. [48] depict
the theory in a broad context, Goldstein et al. [32] describe in detail the RF
algorithm and its applications to genetic epidemiology, Chen et al. [18] give
an extensive overview of applications of recursive partitioning to bioinfor-
matics, and Verikas et al. [76] survey RF applications and their performance
in comparison with other methods in a more general context. This paper
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is structured as follows. After a short overview of the main RF variants,
available implementations of RF and parameter choice issues are briefly re-
viewed. The paper then surveys recent developments of the methodology in
bioinformatics as well as some representative examples of RF applications
in this context.

2 Random forest variants and parameters

2.1 Random forests and conditional inference forests

RF is a classification and regression method based on the aggregation of
a large number of decision trees. Specifically, it is an ensemble of trees
constructed from a training data set and internally validated to yield a pre-
diction of the response given the predictors for future observations. There
are several variants of RF which are characterized by 1) the way each indi-
vidual tree is constructed, 2) the procedure used to generate the modified
data sets on which each individual tree is constructed, 3) the way the predic-
tions of each individual tree are aggregated to produce a unique consensus
prediction.

The general functioning of the RF algorithm is depicted in Figure 1.
In the original RF method suggested by Breiman et al. [8], each tree is a
standard Classification or Regression Tree (CART) that uses the so-called
Decrease of Gini Impurity (DGI) as a splitting criterion and selects the
splitting predictor from a randomly selected subset of predictors (the subset
is different at each split). Each tree is constructed from a bootstrap sample
drawn with replacement from the original data set, and the predictions of
all trees are finally aggregated through majority voting. This version of RF
is implemented in most of the available software described below.

An important feature of RF is its out-of-bag (OOB) error. Each obser-
vation is an OOB observation for some of the trees, i.e. it was not used to
construct them and can thus be considered as an internal validation data
set for these trees. The OOB error of the RF is simply the average error
frequency obtained when the observations from the data set are predicted
using the trees for which they are OOB. Through this internal validation, the
error estimation is less optimistic and usually considered as a good estimator
of the error expected for independent data.

Although this is by far the most widely applied version, this standard
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Figure 1: Random Forest Algorithm

RF method has an important pitfall. In the split selection process, predic-
tors may be favored or disfavored depending on their scale of measurement
or, in the case of categorical predictors, on their number of categories. This
is described below in more detail. The alternative class of decision trees
developed by Hothorn et al. [36] and Strobl et al. [68] addresses this issue
through the principle of conditional hypothesis testing. The forests built
based on these trees are correspondingly denoted as conditional inference
forests (CIF). At each split, each candidate predictor is globally tested for
its association with the response and a p-value is computed. This p-value
is conditional, which means that it reflects the probability to obtain such a
high (or a higher) association with the response given the marginal distribu-
tions of the response and of the considered predictor. Hence, in CIF splitting
is based on an essentially unbiased splitting criterion that automatically ad-
justs for different marginal distributions of the predictors and thus does not
share the above pitfall. In addition to standard regression and classification
problems, the CIF methodology also directly addresses the case of censored
survival response variables.
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2.2 Gini importance vs. permutation importance

The standard RF computes two different VIMs for each predictor: the Gini
VIM and the permutation VIM, see Goldstein et al. [32] for a detailed
overview. In a few words, the Gini VIM of a predictor of interest is the
sum of the DGI criteria of the splits that are based on this predictor, scaled
by the total number of trees in the forest. An “important” predictor is
often selected for splitting and yields a high DGI when selected, leading to
a high Gini VIM. In contrast, the permutation VIM is directly based on the
prediction accuracy rather than on the splitting criterion. It is defined as the
difference between the OOB error resulting from a data set obtained through
random permutation of the predictor of interest and the OOB error resulting
from the original data set. Permutation of an “important” predictor is
expected to increase the OOB error, leading to a high permutation VIM.

While the permutation VIM is more frequently used in practice, the
question of the choice of the VIM type and the properties of these VIMs
are still subjects of current research. The CIF algorithm, that does not
use the decrease of Gini impurity as a splitting criterion, computes only
the permutation VIM. If all predictors are non-informative to the prediction
problem at hand, they are expected to have equally low VIMs. Any pattern
that deviates from this indicates a systematic bias. Unfortunately, VIMs de-
rived from standard RF and – to a lesser extent – from CIF are (sometimes
strongly) biased in many scenarios. Due to a bias, a non-informative pre-
dictor with positively biased VIM may seemingly outperform a moderately
informative predictor with negative bias. Hence, systematic biases should
be avoided whenever possible, because they may lead to erroneous rankings
of the predictors.

Biases of the Gini VIM

The perhaps most obvious bias primarily affects the Gini VIM in RF and
is related to the number of candidate splits in predictors. A categorical
predictor with K categories yields 2K−1 − 1 possible splits, while a metric
predictor without ties yields n − 1 candidate splits (with n denoting the
sample size). The more candidate splits, the more likely it is that at least
one of them yields a good splitting criterion – by chance. Hence, RF selects
predictors with many categories or metric predictors more often in the tree
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building process than predictors with few categories [68]. This so-called
“selection bias” transfers directly into a “Gini VIM bias”, since the Gini
VIM grows with its occurrence of a predictor in the trees. Moreover, even
if there were no selection bias (i.e. if all predictors were selected equally
frequently, for instance because only one candidate predictor is considered
at each split), the Gini VIM would be biased since it is directly computed
from the Gini criterion itself, which is on average larger for predictors with
more categories.

The selection bias at work in RF, however, does not lead to a bias of
the permutation VIM. The reason for this is that the permutation VIM
is based on the decrease of accuracy resulting from permutation for OOB
observations. Even if non-informative predictors with many candidate splits
are selected more often due to the selection bias, they have no chance to
improve the average OOB accuracy, and thus do not receive higher VIMs.
The higher frequency of selection of predictors with many candidate splits,
however, results in a higher variance of the permutation VIM. Finally, let
us point out that CIF uses an unbiased splitting criterion and avoids both
the systematic bias and the increased variance for predictors with many
candidate splits.

A similar bias is also observed in the case of predictors with the same
number of categories but different category sizes [55, 4]. In genetic epidemi-
ology, non-informative single nucleotide polymorphisms (SNPs) with large
minor allele frequency (MAF) are systematically favored by the Gini VIM
over non-informative SNPs with small MAF, potentially yielding misleading
rankings of the candidate SNPs. The use of the permutation VIM, that is
much less affected by this type of bias, is thus recommended in the case of
SNPs with very different MAFs. Correlation between predictors may also
induce a bias [57]. If all predictors are non-informative, predictors that are
highly correlated with some of the other predictors tend to receive smaller
VIMs than uncorrelated predictors. This effect affects both permutation
and Gini VIM, but is particularly pronounced for the Gini VIM [57].

Cases where Gini VIM may be preferred

The bias affecting the Gini VIM is related to the type of the predictors.
In a case where all predictors are continuous without ties and mutually
uncorrelated, the Gini VIM is not expected to be biased. It can even identify
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informative predictors more accurately than permutation VIM in specific
cases. The first case where the permutation VIM may partly fail is when the
response class is a categorical variable with strongly unbalanced categories.
This may happen, e.g., when much more controls than cases are considered
in an epidemiological study. In this case, the majority class (the control
class in our example) is predicted for almost all terminal nodes, no matter
whether the predictors are permuted or not. Hence, the OOB error is not
expected to be strongly affected by permutation, and permutation VIMs
are expected to approximate zero for all predictors and to be unreliable. A
discussion on how to handle unbalanced data is given below. The second
case where Gini VIM is expected to yield better results is when the signal-
to-noise ratio is low (see [32] and references therein). This may be related
to the higher instability of the permutation VIM [13].

2.3 Parameters in bioinformatics applications

This section describes the main parameters in RF and CIF and gives tenta-
tive recommendations for their choice in bioinformatics applications.

2.3.1 Number of trees

The number of trees in the forest should quite generally increase with the
number of candidate predictors, so that each predictor has enough oppor-
tunities to be selected. If we have, say, 20,000 predictors (for instance gene
expressions) in the data set, the number of trees should by no way be set to
the default value of 500. Roughly speaking, it should be chosen such that
two independent runs of the “random algorithm” yield very similar results.
It is recommended to try several increasing values and to stop increasing as
soon as the measures of interest (such as prediction error or VIM) stabilize.
Note that a smaller number of trees might yield the same prediction accu-
racy as a larger number but less reliable VIMs [32]. To conclude, note that
the number of trees is not a real parameter in the sense that a larger value
always yields more reliable results than a smaller one.

Number of candidate predictors

In contrast, the number of candidate predictors considered at each split is
a real parameter in the sense that its optimal value depends on the data
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at hand. On the one hand, the default value
√
p for classification and p/3

for regression (with p as the total number of predictors) recommended by
Breiman [6] might be too small, especially in the presence of a large number
of noise predictors. That is because, in this case, it often happens that
all
√
p resp. p/3 randomly selected predictors are non-informative, yielding

inaccurate trees. On the other hand, in a scenario with many informative
predictors with different strengths, a small value might “give a chance” to
predictors with moderate effects that would otherwise have been masked by
stronger predictors. If the value is small, predictors with moderate effects
sometimes happen to be the best out of the selected candidate predictors
and may contribute to prediction.

2.3.2 Size of the trees

The parameters controlling the size of the trees should also be seen as tuning
parameters, but their influence on the results is expected to be lower than the
influence of the number of parameters selected at each split. Moreover, they
are not known to introduce a systematic VIM bias in favor of a particular
type of predictors. There are several parameters that can be used to control
the size of trees, for example the minimal size that a node should have to
be split, the maximal number of layers or a threshold value for the splitting
criterion.

2.3.3 Size of terminal nodes

Although they are also related to tree size, the parameters controlling the
minimal size of the terminal nodes are treated separately because they may
introduce any systematic bias, especially in the context of genetic associa-
tion studies. A large value may prevent the selection of those categorical
predictors that have, say, a large and a small category. That is because the
small category would yield a too small terminal node. Even if it is selected
as the best predictor according to the splitting criterion, such a predictor
would be excluded because it yields a terminal node smaller than the pre-
specified size. Our advice is to set this parameter to a small value and to
rather control the size of the trees using the parameters discussed in the
previous section.
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2.3.4 Resampling scheme

A RF option that is often ignored is the resampling scheme of the observa-
tions on which a tree is built. Trees are built based on bootstrap samples
drawn with or without replacement. Strobl et al. [68] show that the op-
tion with replacement leads to a VIM bias in favor of predictors with many
categories even if the trees are built using an unbiased criterion. Sampling
without replacement eliminates this bias. Since there is to our knowledge no
inconvenience in the use of subsampling instead of bootstrap sampling, we
recommend to systematically use sampling without replacement. The size of
the subsamples is then an additional parameter, which can for example be
set to 0.632 in analogy with the average proportion of observations included
in a bootstrap sample drawn with replacement [68].

2.3.5 Summary

Except for the number of trees that should be as large as computationally
feasible and sampling without replacement, the other parameters can be
selected based on the OOB error frequency, as suggested by Goldstein et
al. [32]. RF are built using different parameter values (or combinations of
parameter values) successively, and for each RF the OOB error frequency
is computed. The (combination of) parameter value(s) yielding the lowest
error is then selected. However, it needs to be kept in mind that this tuning
of parameters increases the necessity of externally validating the resulting
prediction rule [43].

3 Implementations and example code

3.1 Implementations

A brief overview of available RF implementations is given in Table 1, while
more details can be found in Table 2. In addition, a variant of RF han-
dling censored survival outcome as response is available in the R package
randomSurvivalForest [38]. In some implementations, RF is one tool
among many others, which can be a drawback. The documentation and
the available tuning parameters may be very sparse with the consequence
that users with limited programming knowledge have no clear insight into
the framework and capability of the offered RF application. A summary
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Name RF only MT System Code

ALGLIB [3] no no Win/Unix C++
cforest function in R
package party [37]

no yes all C++/S

FastRandomForest [71] yes yes all∗ Java
Orange [22] no no Win/Unix/Mac C++/Python
PARF - Parallel RF Al-
gorithm [75]

yes yes all∗ F90

Random forest [9] yes no all∗ F77
Randomforest-matlab
[39]

yes no all∗ C/C++/

randomForest-R pack-
age [45]

no yes all C++/S

Random Jungle [64] yes yes† Win/Unix C++
RT-Rank [53] yes yes Unix∗ C++/Python
Waffles [28] no no Win/Unix/Mac C++
Weka 3 [33] no no all∗ Java

Table 1: Overview of random forest implementations. RF only - indicates
whether this is a program only for RF analysis (yes) or part of a broader soft-
ware package (no), MT - Multithreading ability, ∗provided that a compiler
is available; †only for UNIX machines available
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of important arguments for the R packages randomForest and cforest is
shown in Tables 3 and 4.

Table 2: Features and short descriptions of random forest
implementations listed in Table 1.

Name Description Main features

ALGLIB Portable open source anal-
ysis and data processing
library including random
decision forest variants as
modifications of RF. Un-
til now only classification
is possible.

Standard tuning parameters
are available (NTrees equals
ntree and NFeatures equals
mtry). Moreover the size of
the part of the training can
be controlled. Further options
are limited.

cforest function
in R package
party

Implements the CIF
methodology, i.e. uses
conditional inference trees
as base learners; strongly
differs from other RF
implementations.

Many tuning parameters (see
Table 4).

FastRandomForestRe-implementation of RF
in Weka environment to
achieve speed and memory
optimization.

Add-on to Weka 3 for fast RF
implementation adding multi-
threading to RF and improv-
ing speed and memory usage.
Only classification so far.

Orange Open source data visu-
alization software with a
GUI. Different data analy-
sis tools can be selected by
drag and drop of a widget
tool approach.

Many available tuning param-
eters, e.g.: number of trees,
number of features, and pa-
rameters controlling the tree
size. By now only classifica-
tion is available.

PARF Command line open
source RF implementation
for multiple threading.
Linkage with gnuplot is
also provided enabling
visualization of the
generated outcome.

Many tuning parameters.
Options to control the grow-
ing of the forest, the analysis
of the training data, and
the data classification and
regression.
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Name Description Main features

Random forest Original code by Breiman
and Cutler. All other RF
implementations refer to
this original source.

Many tuning parameters.
Slow F77 code. Newer
implementation offering mul-
tithreading. Classification
and regression possible.

Randomforest-
matlab

MATLAB and stand-alone
implementation of Andy
Liaw’s R package ran-
domForest.

Classification and regression
is practicable and nearly all
tuning parameters like in the
corresponding R package are
available.

randomForest-R
package

Based on the original code
by Breiman and Cutler;
implements variable im-
portances and proximity
measures.

Many tuning parameters (see
Table 3).

Random Jungle Implements all features of
the reference implementa-
tion randomForest such
as various tuning param-
eters, prediction of new
data sets using previ-
ously grown forests, sam-
ple proximities and impu-
tation. Additionally im-
plements backward vari-
able elimination.

Different VIMs, conditional
inference forests, prediction
and different types of CART.
User-defined tuning parame-
ters. Special version allowing
the analysis of genomic data
in a memory sparing way.

RT-Rank Open source project for
various machine learning
algorithms including gra-
dient boosting, RF and
IGBRT (Initialized Gra-
dient Boosted Regression
Trees) as a novel approach.

Originated from the “Yahoo
Learning to Rank Challenge”.
Only standard tuning pa-
rameters (e.g. number of
trees and number of candidate
splitting predictors).
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Parameter Acronym Default
(classification
resp. regression)

No. of trees ntree 500
No. of candidate predictors mtry

√
p resp. p/3

Maximum no. of terminal nodes maxnodes not restricted
Minimum size of terminal nodes nodesize 1 resp. 5
Resampling scheme replace TRUE

Table 3: Important arguments to the function randomForest from the R
package randomForest.

Name Description Main features

Waffles Licensed under the GNU
Lesser General Public Li-
cense, uses a command
line interface and addi-
tionally offers a graphical
wizard tool; can be com-
piled across many plat-
forms and provides many
supervised learning meth-
ods, data transformation
etc.

Includes the regression and
classification algorithm by
Breiman with slight adjust-
ments by the developer.

Weka 3 Collection of machine
learning algorithms se-
lectable from a GUI.
Contains many data tools
for clustering, classifica-
tion and visualization. For
the usage of RF the exten-
sion FastRandomForest is
recommended.

Only classification trees (re-
gression trees not yet pro-
vided). Few usable tuning pa-
rameters. Difficult access to
the RF documentation.
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Parameter Acronym Default

No. of trees ntree 500
No. of candidate predictors mtry 5
P-value threshold mincriterion 0.95
Minimum size of node to be split minsplit 20
Maximal no. of layers maxdepth not restricted
Minimum size of terminal nodes minbucket 7
Resampling scheme replace TRUE

Table 4: Important arguments to the function cforest from the R package
party .

3.2 Example code

The following RF example consists of two parts: an example code using the
R package randomForest and an example code using the Random Jungle
implementation [64]. The authors assume that the reader is familiar with
R including the installation of additional packages and the general data
processing. Readers are referred to the web project Quick-R (http://www.
statmethods.net/) for a brief insight to the R statistical software. The
“Breast Cancer Wisconsin (Original) Data Set” [49] from the UCI repository
(http://archive.ics.uci.edu/ml/) is used as an example data set. It
includes n = 699 observations and nine predictors. The response variable
(class) is binary (benign versus malignant).

3.2.1 Example code 1: RF in R package randomForest

The randomForest call automatically distinguishes between a classification
and a regression RF based on the type of the response variable. A response
of type factor leads to a classification RF while a numeric response leads
to a regression RF. See Figure 2 for the visualized results of RF.

library(randomForest)

cancerDfRaw <- read.table("http://archive.ics.uci.edu/ml/machine-

learning-databases/breast-cancer-wisconsin/breast-cancer-

wisconsin.data", sep = ",", header = FALSE)

names(cancerDfRaw) <- c("ID", "clumpThickness", "uniSize",

"uniShape", "adhesion", "cellSize", "nucleiBare",

"chromatin", "nucleiNormal", "mitoses", "class")

cancerDf <- cancerDfRaw[,-1] # remove ID
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## do classification

cancerDf$class <- as.factor(cancerDf$class)

classRFCancer <- randomForest(class~.,

data=cancerDf, mtry=3, ntree=500)

## do regression (not recommended)

cancerDf$class <- as.numeric(cancerDf$class)

regRFCancer <- randomForest(class~.,

data=cancerDf, mtry=3, ntree=500)

## get importance measurements

impClass <- as.data.frame(classRFCancer$importance)

impReg <- as.data.frame(regRFCancer$importance)

3.2.2 Example code 2: Random Jungle

The Random Jungle example is plugged into the R environment to provide
better data handling. A compiled version of Random Jungle can be down-
loaded from the project page http://randomjungle.de for several oper-
ating systems. The help pages of Random Jungle give a full overview of
the available features and can be called using rjungle -h. In the following
example we use again the data set prepared as in example code 1. The
following code can be used to perform the same analysis.

write.table(cancerDf, file = rjungleInFile, # get rid of index

row.names = FALSE, quote = FALSE) # and quotes

rjungle <- file.path("to/rjungle/executable")

rjungleCMD <- paste(rjungle,

"--file", rjungleInFile,

"--treetype 1", # 1 = classification

# 3 = regression

"--ntree 500", # number of grown trees

"--mtry 3", # number of used features

"-v", # verbose; nicer output

"-D class", # response variable name

"--outprefix", rjungleOut)

try(system(rjungleCMD)) # send command string to system and

# handle error-recovery
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Figure 2: Variable importance of the example data set. The plot includes
the ordered results of impClass and impReg of example 1. Mean decrease
in Gini refers to classification, MSE to the regression mode. Note that both
modes occasional deliver the same order of the variables and range of values.
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4 Recent developments in bioinformatics

4.1 Dealing with correlated predictors

The problem of correlated predictors and how they are/should be handled
by RFs has given place to a large body of literature in the last few years.
While correlation between predictors does not usually have much influence
on prediction accuracy, VIMs can be strongly affected. In some applications
it might make sense to circumvent this issue at the data level by selecting
one or few representative predictor(s) out of a block of strongly correlated
predictors, a procedure referred as ‘LD pruning’ in genetic epidemiology.
However, the results typically depend on the sample size, and to reduce
the data set to strictly independent variables is not desired. Then, in most
applications there will be some residual correlation that has to be handled
at the algorithmic level.

In the context of SNP data analysis, Nicodemus and Malley [57] point
out that the Gini VIM systematically favors uncorrelated SNPs over strongly
correlated SNPs even if all SNPs are non-informative. They consequently
recommend the use of the permutation VIM. Nicodemus et al. [58] explore
the behavior of the permutation VIM in the presence of correlated predictors
in an extensive simulation study based on data generated from the logistic
regression model. They conclude that predictors highly correlated with in-
fluential predictors but not having an own direct effect on the response are
ranked higher than uncorrelated predictors and thus may be difficult to
distinguish from truly influential predictors. This may either be seen as an
advantage (if all these correlated predictors are potentially interesting) or as
an inconvenience (if one is interested in the conditional effect of a particular
predictor in a multivariate modeling perspective). Strobl et al. [67] take the
second perspective and modify the permutation VIM such that the effect
of a predictor is adjusted for other predictors through a computationally
intensive conditional permutation procedure, while Meng et al. [51] take
the opposite point of view and suggest to scale the VIM by the number of
trees in which the corresponding predictor is used for splitting instead of
scaling by the total number of trees. The latter procedure tends to increase
the VI of highly correlated predictors that act as surrogates of each other
and appear in the trees less often than if taken individually.
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4.2 Testing variable importance

VIMs provide a ranking of predictors. However, in the standard form they
say nothing about the significance of top-ranked predictors. VIMs always
output a ranking - even if all predictors are useless to the prediction problem.
Several attempts have been made in the literature to construct statistical
tests for variable importance of similar nature as tests performed in the
regression framework. Breiman and Cutler [7] suggest a straightforward
testing approach based on a Z-score computed as the permutation VIM
divided by σ̂/

√
ntree, where σ̂ stands for the standard deviation of the

VIMs over the trees and ntree is the number of trees. However, Strobl and
Zeileis [69] demonstrate in an extensive simulation study that the power of
this straightforward test strongly depends on the ntree parameter and on
the sample size, and that its power is zero for large sample sizes and small
ntree – a very undesirable feature for a statistical test. A fundamental
problem of this test is that its null-hypothesis is not clearly stated.

Complex permutation-based testing approaches are discussed by Wang et
al. [77] and Altmann et al. [1]. In the latter paper, usual VIMs – no matter
if biased or not – are calculated for each predictor using the original data
set. The null distribution of the VIM is derived empirically by computing
VIMs for a large number of data sets obtained by randomly permuting the
response. The p-value is then computed as the fraction of permuted data
sets yielding a more extreme VI. This method was originally developed to
correct biased VIMs, but it can also be applied to any VIM for testing
purposes or for variable selection. A similar permutation strategy is applied
by Wang et al. [77] to an alternative VIM defined as the maximal conditional
χ2 statistic over all nodes of the forest that use the considered predictor.
Note that in case of a very large number of predictors, e.g. in genome-wide
association studies, permutation testing is computationally demanding and
may require the use of parallel computing techniques.

4.3 Handling unbalanced data

Like many other machine learning algorithms the standard RF may perform
poorly in case of extremely unbalanced class distributions. Here, the pre-
diction accuracy for the majority gets a higher priority than the prediction
accuracy for the minority class. In an extreme case where the minority class
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makes up, e.g., only 5%, it could happen that the majority class is always
predicted by the RF, yielding a prediction error of 5%. Unbalance of class
distributions can be handled at different levels: at the data level and at the
algorithmic level. At the data level over-sampling the minority class and/or
down-sampling the majority class, respectively, have been considered in sev-
eral papers to balance the class distribution. For example, Chen et al. [16]
suggest a method denoted as ‘Balanced RFs’. Each tree is built based on a
data set combining a bootstrap sample from the minority class and a random
sample from the majority class of the same size. At the algorithmic level a
common approach for handling unbalanced data is cost-sensitive learning,
where misclassification of the minority class is assigned a higher cost. Chen
et al. [16] introduce a variant of the RF method based on this idea, the so
called ‘Weighted RF’. A weight is specified for each class and used for the
computation of the Gini criterion and in the voting procedure.

4.4 Predictors involved in interactions

VIMs computed from RF turn out to identify SNPs involved in interactions
(epistasis) as top-ranking with better accuracy than many other methods in-
cluding logistic regression. This good performance is documented in several
independent comparison studies implementing different simulation settings
[26, 54, 73, 17]. In these studies, however, standard VIMs (either Gini or
permutation) are used to rank the SNPs. The performance is thus essen-
tially limited by the fact that a predictor must have at least a moderate main
effect to be selected for splitting. Interacting predictors that both have no
main effect thus have poor chance to receive a high VIM. A further draw-
back of RF in this context is that, although interaction effects are implicitly
taken into account by RF, the standard VIM does not provide any informa-
tion about the nature of potential interactions, i.e. whether predictors have
an effect in combination with other predictors and if yes with which. The
original Fortran code of RF implements a specific VIM for assessing pairs of
variables, but the developers of the code state that caution is required when
interpreting the results, and this VIM fails to identify true interactions in
the wide simulation by Chen et al. [17].

A simple graphical method which might help to identify predictors in-
volved in interactions consists in plotting the RF VIMs (which may also
capture interaction effects) against a standard univariate statistic, see e.g.
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[61]. Predictors having an effect on the response only in combination with
other predictors are expected to be ranked higher by the RF VIM than
with univariate statistics. Tang et al. [74] propose a specific VIM-based
method for detecting gene-gene interactions which could easily be general-
ized to the detection of any interacting predictors. The procedure consists
in computing VIMs of all SNPs i) based on the original data set and ii)
after random permutation of some of the SNPs. A SNP that interacts with
permuted SNPs is expected to have a lower VI after permutation, because
permutation destroys both the main effect of the permuted SNPs and their
interactions with other SNPs. In contrast, Bureau et al. [11] suggest to
permute values of possibly interacting predictors together when calculating
the permutation VIM. The resulting VIMs contain the combined effect and
might be helpful for exploring interaction structures. Finally, some authors
apply a two-stage approach [40, 50]. In the first step, a subset of potentially
interesting predictors is extracted using RF. In the second step specific anal-
yses are performed on this subset to identify interactions using so-called B
statistics based on Bayesian factors [40] or Bayesian network analyses [50].

4.5 Random forests and variable selection

When used as a prediction method, the random forest algorithm is some-
times embedded into complex model selection approaches. Recursive vari-
able selection methods constructing a random forest at each iteration have
been proposed by Svetnik et al. [72] in the context of Quantitative Structure-
Activity Relationship (QSAR) modeling and by Dı́az-Uriarte, R. and De
Andrès [24] for gene expression data analysis. At each iteration, the sub-
set of considered predictors is updated by eliminating a certain fraction of
predictors with the lowest VIM. The optimal subset is then the subset yield-
ing the smallest error frequency [24] or the smallest area under the curve
[14]. An alternative variable selection approach based on a nested collection
of random forests is described in Genuer et al. [29]. Again, it needs to
be emphasized that the resulting model with selected variables needs to be
externally validated.
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5 RF applications in bioinformatics: some exam-

ples

In this section we give a few examples of bioinformatics applications of RF.
In most of these applications, the true relationship between response and
predictors is complex and the predictors are strongly correlated, hence the
attractiveness of RFs. Most studies do not apply one single method but
several methods because each method has its own strengths and weaknesses
and a combination of those will provide best insight into complex diseases
[34].

A major field of application of RFs is genetic epidemiology, specifically
large-scale genetic association studies. The response is typically a phenotype
of interest, either categorical (e.g. diseased/healthy) or quantitative. The
predictors are genetic markers, often SNPs that can be seen as predictors
with two or three categories. RFs yield both a prediction tool and a ranking
of the SNPs with respect to their classification ability. They have been
considered in tens of bioinformatics papers [81, 62, 80, 2, 44] and biomedical
applications [12, 46, 10, 56, 78, 15, 70, 47] including genome-wide studies
[63, 79, 31, 64, 51]. In the application of RFs to genome-wide association
data, the focus has been on different features of the algorithm. Whereas
some used RFs to identify candidate regions similar to standard analyses
[31], others focused on the detection of gene-gene interactions [46]. In a
third group of applications, the resulting genetic regions are not of interest
in themselves; instead, a prediction model is built using hundreds of SNPs at
a time [19]. Although all of these approaches are very promising, validation
of the results is still mostly lacking [41]. As a consequence, if regions were
identified that had not been detected using standard approaches, this is yet
difficult to interpret.

Other applications include prediction of patient outcome from high-
dimensional gene expression data [24, 66, 5] or proteomic mass spectra
classification [30, 52], where patients are instances and their outcome is
the response to be predicted. Another class of applications deals with the
prediction of molecule properties based on sequence information, e.g. the
prediction of replication capacity based on HIV-1 sequence variation [65],
prediction of C-to-U edited sites in plant mitochondrial DNA based on sur-
rounding nucleotides [20], or the assessment of the relation between rifampin
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resistance and amino acid sequence [21]. In these applications, instances are
molecules and the response to be predicted is a property of interest. An early
overview on the use of RFs in QSAR modeling is given in Svetnik et al. [72].
A further field where RFs have been successfully applied is ecology. Garzón
et al. [27], Evans and Cushman [25], Cutler et al. [23] and Hernandez et
al. [35] predict the presence of a species from climatic and topographic vari-
ables and Peters et al. [60] show that RF performs well in the prediction
of vegetation types from environmental variables. Perdiguero-Alonso et al.
[59] used RF to classify fish populations based on parasites as a marker for
population assignment.

6 Conclusion

RF has become a major analysis tool in many fields of bioinformatics and
will most probably remain relevant in the future due to its high flexibility, its
in-built variable importance measures, and its attractive and understandable
principle. RF has raised much enthusiasm in various fields of application
and generated a vast amount of computational literature in the last ten
years. However, RF approaches still have to face a number of challenges.
They produce “odd unexpected results” in some specific cases, e.g. a bias
depending on the type of the predictor. It is likely that further biases and
problems will be discovered in the next years. The advantage of RF - absence
of a specific underlying stochastic model - is also an inconvenience in the
sense that i) it is difficult to understand what exactly happens in this deep
jungle, and ii) RF does not fit in the statistical framework we are used to
(including p-values, confidence intervals, etc). Both issues might be better
understood in the future through consideration of the algorithm from a
statistical point of view, possibly including the formulation of the method
in terms of parameters and tests. Additional practical aspects could be
addressed in future research such as the challenge of “reproducibility” –
in a broad sense. RF involves several random components: the bootstrap
samples/or subsamples on which each tree is built, and the random subset
of candidate predictors considered at each split. Is it possible to reproduce
exactly the same forest using another implementation? How stable are the
results obtained in different runs? How sensitive is RF against small changes
of the parameter values? How should we choose parameter values or, in case
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of OOB-based tuning, how should we define the candidate parameter values?
In a nutshell, RF most often yields very satisfying results, but how “random”
are its results? These issues will have to be addressed for RF to be used
beyond explorative studies.
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