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1. Einleitung und Problemstellung 
Seit den achtziger Jahren hat sowohl in der Wissenschaft als auch in der Marktfor-

schungspraxis die Verwendung von Strukturgleichungsmodellen mit latenten Variablen 

immer stärkere Verbreitung gefunden. Strukturgleichungsmodelle stellen mittlerweile 

einen Quasi-Standard in der Marketingforschung dar, um auf Basis eines theoretisch 

fundierten Hypothesensystems formulierte Ursache-Wirkungs-Beziehungen zwischen 

latenten Variablen zu untersuchen. 

Neben der Kovarianzstrukturanalyse hat sich mit dem Verfahren der Partiellen Kleins-

ten Quadrate (Partial Least Squares, PLS) in den letzten Jahren eine weitere Methode 

zur Schätzung von Strukturgleichungsmodellen etablieren können (EBERL 2006a, S. 

87), die vor allem im deutschsprachigen Raum zunehmend stärkere Verbreitung findet 

(FASSOT 2005, S. 22 ff.). 

Eine wichtige Weiterentwicklung der PLS-Pfadmodellierung wurde von HAHN (2002) 

vorgestellt. Sie verbindet die Stärken der PLS-Methodik mit den Vorteilen der Maxi-

mum-Likelihood-Schätzung bei der Ableitung von Marktsegmenten mit Hilfe von 

Mischverteilungsmodellen. 1  Dieser so genannte Finite Mixture-PLS (FIMIX-PLS)-

Ansatz ermöglicht eine simultane Schätzung der Modellparameter bei gleichzeitiger 

Ermittlung von Heterogenität in der Datenstruktur. Allgemein wird der Methodengrup-

pe der Mischverteilungsmodelle eine hohe Relevanz hinsichtlich zukünftiger Anwen-

dungen zur Marktsegmentierung zugesprochen (WEDEL/KAMAKURA 2000, S. 19). Im 

Kontext der Erfolgsfaktorenforschung stellen beispielsweise ALBERS und HILDEBRANDT 

fest: „Im Allgemeinen beobachtet man, dass sich Maßnahmen auf den Erfolg bei unter-

schiedlichen Unternehmen oder anderen Untersuchungseinheiten unterschiedlich auf 

den Erfolg auswirken, weil bestimmte situative Faktoren bestehen, für die es häufig 

schwer ist, Beobachtungen zu erhalten. Man muss im Regelfall davon ausgehen, dass 

unbeobachtete Heterogenität in den Daten des Samples gegeben ist. Die Parameterwerte 

für die Wirkungen der einzelnen Konstrukte auf den Erfolg sind deshalb unterschiedlich 

für unterschiedliche Segmente von Untersuchungseinheiten.“ (ALBERS/HILDEBRANDT 

2006, S. 28) Das von HAHN entwickelte und nachfolgend von RINGLE ET AL. (2005, 

2007) und RINGLE (2006) erweiterte FIMIX-PLS-Konzept stellt den ersten Ansatz dar, 

Latent-Class-Modelle für die Struktur zwischen den Konstrukten auf Grundlage von 

PLS zu schätzen.2 

                                                 
1 Vgl. auch HAHN ET AL. (2005). 
2 Einen Ansatz zur segmentspezifischen Schätzung von kovarianzstrukturbasierten Strukturgleichungs-
modellen stellen JEDIDI ET AL. (1997a, 1997b) vor. 
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Aufgrund der Einbeziehung unbeobachteter Heterogenität stellt dieser Ansatz eine fle-

xible Möglichkeit der Anpassung theoretischer Verteilungen an reale Daten dar und 

bildet einen modelltheoretischen Rahmen in der Schätzung von Strukturgleichungsmo-

dellen, welcher es dem Anwender ermöglicht, Segmentierungsstrategien auf Grundlage 

von Inferenzstatistiken zu formulieren. Hierdurch kann eine Gütebeurteilung mit Hilfe 

statistischer Kriterien vorgenommen werden.  

 

Ein wesentliches Problem bei der Anwendung von Mischverteilungsmodellen ist die 

Bestimmung der Anzahl der zugrunde liegenden Segmente, welche a priori unbekannt 

ist. Dieses Problem ist äußerst bedeutend, konnte aber noch nicht zufrieden stellend 

gelöst werden  (MCLACHLAN/PEEL 2000, S. 175; WEDEL/KAMAKURA 2000, S. 89). Ne-

ben diversen statistischen Testverfahren, die jedoch aufgrund methodischer Probleme 

und hoher Rechenintensität keinen Einzug in Softwareanwendungen gefunden haben 

(SARSTEDT 2006, S. 6 f.), wird zur Handhabung dieser Modellselektionsproblematik auf 

so genannte Informationskriterien zurückgegriffen. Dieser heuristische Ansatz ermög-

licht den Vergleich von Modellen, die unter Zugrundelegung unterschiedlicher Seg-

mentzahlen geschätzt wurden. Ziel ist es, das Modell auszuwählen, das die Kullback-

Leibler-Entropie als Differenz zwischen der wahren und der geschätzten Dichtefunktion 

minimiert (MCLACHLAN/PEEL 2000, S. 202 f.). Neben der Anpassungsgüte des Modells 

in Form des mit minus zwei multiplizierten Log-Likelihoods wird ferner die Modell-

komplexität in Form eines Korrekturfaktors berücksichtigt, dessen Ausgestaltung von 

der Art des Informationskriteriums abhängt. Neben der gewichteten Parameterzahl fin-

det auch der (logarithmierte) Stichprobenumfang oder die geschätzte Fisher’sche Infor-

mationsmatrix bei einigen Kriterien Berücksichtigung. 

Im Laufe der letzten Jahrzehnte wurde eine Vielzahl solcher Kriterien entwickelt. Auf-

grund der unterschiedlichen Ausgestaltung des Korrekturfaktors weisen die Kriterien 

unterschiedliche statistische Eigenschaften und Eignungen zur Modellselektion auf. Um 

die Vorteilhaftigkeit der einzelnen Kriterien bei der Anwendung von Mischvertei-

lungsmodellen zu untersuchen, wurden zahlreiche Simulationsstudien mit unterschiedli-

chen Modellprämissen initiiert. Der Fokus dieser Studien lag zunächst in der Evaluie-

rung der Kriterien im Rahmen eines „klassischen“ Clustering-Ansatzes. Erst in den letz-

ten Jahren hat sich der Fokus auf die Verknüpfungen des Mischverteilungsansatzes mit 

multivariaten Analysemethoden, wie beispielsweise Regressions- oder Logit-Modelle 

gerichtet. Die folgende Abbildung gibt einen Überblick über die Studien sowie deren 

Anwendungsgebiete hinsichtlich des eingesetzten Verfahrens: 
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Jahr Autor(en) Modell 

1993 BOZDOGAN Mixture Distribution 

1993 CUTLER/WINDHAM Mixture Distribution 

1994 SOROMENHO Mixture Distribution 

1995 RUST ET AL. Mixture Distribution 

1996 CELEUX/SOROMENHO Mixture Distribution 

2000 MCLACHLAN/NG Mixture Distribution 

2001 HAWKINS ET AL. Mixture Regression 

2003a ANDREWS/CURRIM Mixture Logit  

2003b ANDREWS/CURRIM Mixture Regression 

2006 BRAME ET AL. Mixture Distribution 

2006 NYLUND ET AL. Growth Mixture 

2006 OLIVEIRA-

BROCHADO/MARTINS 

Mixture Regression 

2006 SARSTEDT Mixture Regression 

2006 YANG Mixture Distribution 

2007 TOFIGHI/ENDERS Growth Mixture 

Tabelle 1: Studien zur Modellselektion in Mischverteilungsmodellen 

 

Bislang wurde keine Untersuchung für den FIMIX-PLS Ansatz oder vergleichbare „Fi-

nite Mixture“-Strukturgleichungsmodell-Ansätze initiiert.  

Ziel dieses Beitrags ist es daher, im Rahmen einer Simulationsstudie herauszuarbeiten, 

welches Informationskriterium für die Modellselektion in FIMIX-PLS besonders geeig-

net ist. Dabei gilt es vor allem zu untersuchen, unter welchen Bedingungen welches 

Kriterium bessere Ergebnisse liefert als die Übrigen.  

Hierbei werden zum einen die „klassischen“ Informationskriterien berücksichtigt, wel-

che regelmäßig zur Modellselektion in Marketinganwendungen herangezogen werden 

(SARSTEDT 2006, S. 8). Zu dieser Gruppe sind die folgenden Kriterien zu zählen:  

- Akaike’s Information Criterion (AIC) (AKAIKE 1973) 

- Bayesian Information Criteria (BIC) (SCHWARZ 1978) 

- Consistent AIC (CAIC) (BOZDOGAN 1987)  

- Modified AIC (AIC3) (BOZDOGAN 1992) 
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Zum anderen werden die folgenden alternativen Informationskriterien herangezogen, 

die vor allem in der statistischen Literatur diskutiert werden: 

- Minimum Description Length mit Faktor zwei bzw. fünf (MDL2, MDL5) (LIANG 

1992) 

- Hannan-Quinn-Criterion (HQ) (HANNAN/QUINN 1979, S. 190 f.) 

- Normalized Entropy Criterion (NEC) (CELEUX/SOROMENHO 1996)  

- Classified Likelihood Criterion (CLC) (BIERNACKI/GOVAERT 1997) 

- Integrated Completed Likelihood-BIC (ICL-BIC) (BIERNACKI ET AL. 2000) 

Für eine Darstellung der Herleitung, Form und statistischen Eigenschaften der Kriterien 

sei auf die angeführten Quellen verwiesen. 

 

2. Design der Simulationsstudie 
Für die Spezifizierung des zu untersuchenden Modells werden insgesamt sieben Fakto-

ren manipuliert. Die ersten sechs Faktoren und deren Ausprägungen orientieren sich 

dabei an den Studien von VRIENS ET AL. (1996, S. 77), ANDREWS ET AL. (2002, S. 480) 

und ANDREWS/CURRIM (2003a, S. 238). Faktor sieben wurde vor dem Hintergrund der 

in der Marketingforschung intensiv geführten Diskussion um die korrekte Spezifikation 

von Konstrukten einbezogen (vgl. BOLLEN/LENNOX 1991, DIAMANTOPOU-

LOS/WINKLHOFER 2001, EBERL 2006b, ROSSITER 2002). 

 

Faktor 1: Anzahl der Segmente: 2 oder 3 

Faktor 2: Anzahl der Beobachtungen: 50, 100 oder 300 

Faktor 3: Abstand der Pfadkoeffizienten γ: 0,2 oder 0,8 

Faktor 4:  Größe des kleinsten Segments: 15% oder 30% 

Faktor 5 Varianz des Messfehlers der Indikatoren δ und ε bzw. der latenten exo-

genen Variablen ζ : 0,5 oder 1 

Faktor 6:   Modellkomplexität: niedrig oder hoch  

Faktor 7: Messmodell der latent exogenen Variablen: reflektiv oder formativ 

 

Für jede mögliche Kombination der Faktorstufen werden Datensätze generiert. Da sechs 

Faktoren mit je zwei Faktorstufen, sowie ein Faktor mit drei Faktorstufen vorliegen, 

ergeben sich daraus 19232 16 =⋅  mögliche Faktorstufenkombinationen.  

Es werden zwei verschiedene Modelle verwendet, wovon eines komplexer ist (27 mani-

feste Variablen (MV), 6 latente Variablen (LV)) als das andere (12 MV, 4 LV). In Ab-
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hängigkeit der in Faktor 6 ausgedrückten Modellkomplexität variiert die Anzahl der 

freien Parameter des Modells. Die folgenden Abbildungen und Tabellen zeigen die 

Pfadmodelle der Simulationsstudie und deren Regressionsgleichungen in Matrizen-

schreibweise. 

 

 
Abbildung 1: Einfaches Pfadmodell der Simulationsstudie: reflektive Modellspezifikation 

 
 
 Messmodell:            Strukturmodell: 

x11  0,75 0 0 0    δ11        γ11

x12  0,49 0 0 0    δ12  η1 = ξ1 ξ2 ξ3 * γ21

x13  0,56 0 0 0    δ13        γ31

x21  0 0,53 0 0    δ21         
x22  0 0,66 0 0 ξ1  δ22         
x31 = 0 0 0,74 0 * ξ2 + δ31         
x32  0 0 0,85 0 ξ3  δ32         
x33  0 0 0,79 0 η1  δ33         
x34  0 0 0,69 0    δ34         
y11  0 0 0 0,58    ε11         
y12  0 0 0 0,82    ε12         
y13  0 0 0 0,71    ε13         

Tabelle 2: Gleichungen des einfachen Pfadmodells in Matrixschreibweise: reflektive Modellspezifikation 
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Abbildung 2: Einfaches Pfadmodell der Simulationsstudie: formative Modellspezifikation 

 
 
 

Messmodell:          
               x11   
               x12   
               x13   
ξ1  0,75 0,49 0,56 0 0 0 0 0 0 0 0 0  x21  ζ1

ξ2  0 0 0 0,53 0,66 0 0 0 0 0 0 0  x22  ζ2

ξ3 = 0 0 0 0 0 0,74 0,85 0,79 0,69 0 0 0 * x31 + ζ3

y11  0 0 0 0 0 0 0 0 0 0,58 0 0  x32  ε11

y12  0 0 0 0 0 0 0 0 0 0 0,82 0  x33  ε12

y13  0 0 0 0 0 0 0 0 0 0 0 0,71  x34  ε13

               η1   
               η1   
               η1   
                  

Strukturmodell:            
      γ11            
η1 = ξ1 ξ2 ξ3 * γ21            
      γ31            

Tabelle 3: Gleichungen des einfachen Pfadmodells in Matrixschreibweise: formative Modellspezifikation 
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Abbildung 3: Komplexes Pfadmodell der Simulationsstudie: reflektive Modellspezifikation 

 
 Messmodell:       Strukturmodell: 

x11  0,74 0 0 0 0 0    δ11         ξ1

x12  0,43 0 0 0 0 0   δ12  η1 γ11 0 γ31 γ41 ξ2

x13  0,71 0 0 0 0 0   δ13  η2 
= 

0 γ22 γ32 γ42
*

ξ3

x21  0 0,82 0 0 0 0    δ21         ξ4

x22  0 0,83 0 0 0 0    δ22          
x23  0 0,71 0 0 0 0    δ23          
x24  0 0,71 0 0 0 0    δ24          
x25  0 0,70 0 0 0 0    δ25          
x26  0 0,79 0 0 0 0    δ26          
x27  0 0,77 0 0 0 0    δ27          
x28  0 0,78 0 0 0 0    δ28          
x29  0 0,82 0 0 0 0    δ29          
x31  0 0 0,71 0 0 0 ξ1  δ31          
x32  0 0 0,57 0 0 0 ξ2  δ32          
x33 0 0 0,78 0 0 0 ξ3 δ33          
x34 

= 
0 0 0,66 0 0 0 

*
ξ4 

+
δ34          

x41  0 0 0 0,76 0 0 η1  δ41          
x42  0 0 0 0,68 0 0 η2  δ42          
x43  0 0 0 0,67 0 0    δ43          
x44  0 0 0 0,76 0 0    δ44          
x45  0 0 0 0,80 0 0    δ45          
y11  0 0 0 0 0,71 0    ε11          
y12  0 0 0 0 0,85 0    ε12          
y13  0 0 0 0 0,79 0    ε13          
y14  0 0 0 0 0,73 0    ε14          
y21  0 0 0 0 0 0,80    ε21          
y22  0 0 0 0 0 0,70    ε22          

Tabelle 4: Gleichungen des komplexen Pfadmodells in Matrixschreibweise 
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Abbildung 4: Komplexes Pfadmodell der Simulationsstudie: formative Modellspezifikation 

 

 Messmodell:        
ξ1  0,74x11+0,43x12+0,71x13  ζ1 
ξ2  0,82x21+0,83x22+0,71x23+0,71x24+0,70x25+0,79x26+0,77x27+0,78x28+0,82x29  ζ2 
ξ3  0,71x31+0,57x32+0,78x33+0,66x34  ζ3 
ξ4  0,76x41+0,68x42+0,67x43+0,76x44+0,80x45  ζ4 
y11 0,71η1 ε11 
y12 

= 
0,85η1 

+ 
ε12 

y13  0,79η1  ε13 
y14  0,73η1  ε14 
y21  0,80η2  ε21 
y22  0,70η2  ε22 

Strukturmodell: 
       ξ1 
η1 γ11 0 γ31 γ41 ξ2 
η2 

= 
0 γ22 γ32 γ42 

* 
ξ3 

       ξ4 

Tabelle 5: Gleichungen des komplexen Pfadmodells in Matrixschreibweise 
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Die Pfadkoeffizienten der beiden Messmodelle wurden in Anlehnung an bereits durch-

geführte PLS-Schätzungen festgelegt. Die Pfadkoeffizienten des Strukturmodells für 

das kleinste Segment mit 15% oder 30% Anteil am Datensatz (Faktor 4)3 wurden zufäl-

lig erzeugt. Die Pfadkoeffizienten des oder der anderen Segmente (Faktor 1) sind Ab-

weichungen davon um 0,2 oder 0,8 (Faktor 3). In welche Richtung diese Abweichung 

geschieht, wurde ebenfalls zufällig entschieden, wobei sichergestellt wurde, dass die 

Ausprägungen der Pfadkoeffizienten stets im Intervall [-1;1] liegen. Zudem wurde die 

Anzahl der Beobachtungen über drei Stufen mit den Ausprägungen 50, 100 und 300 

variiert (Faktor 2). Durch die Einbeziehung niedriger Stichprobenumfänge sollte dem 

häufig zitierten Vorteil von PLS-Schätzungen, auch bei Vorliegen niedriger Beobach-

tungszahlen eine hohe Ergebnisqualität zu liefern, Rechnung getragen werden (vgl. 

HOMBURG/KLARMANN 2006, S. 733 f.).  

Im Falle einer reflektiven Spezifikation des Messmodells der latent exogenen Variablen 

(Faktor 7), wurden zunächst die Ausprägungen der latent exogenen Variablen auf 

Grundlage einer Normalverteilung bestimmt. Die Werte der Indikatoren des Messmo-

dells der latenten exogenen Variablen xi von Individuum i  setzen sich aus dem Wert der 

betreffenden latenten exogenen Variablen, multipliziert mit den Pfadkoeffizienten des 

Messmodells sowie einem normalverteilten Fehlerterm mit Varianz 0,5 oder 1 (Faktor 

5) zusammen. Analog hierzu setzen sich die Werte der latenten endogenen Variablen 

aus der mit den Pfadkoeffizienten des Strukturmodells gewichteten Summe der Ausprä-

gungen der latenten exogenen Variablen zusammen. Hieraus erfolgt die Berechnung der 

Ausprägungen der Indikatorvariablen yi innerhalb des Messmodells der latent endoge-

nen Variablen. 

Bei Vorliegen einer formativen Modellspezifikation wurden zunächst die Indikatorwerte 

des Messmodells der latenten exogenen Variablen auf Grundlage einer Normalvertei-

lung bestimmt und nachfolgend die Ausprägungen der latenten exogenen Variablen 

durch eine Linearkombination der zugehörigen Items bestimmt. Da bei einer formativen 

Modellspezifikation Fehlerterme nur auf Ebene der Latenten existieren (EBERL 2004, 

S.8), wurde auf die latenten exogenen Variablen ein normalverteilter Fehlerterm mit 

Varianz 0,5 oder 1 (Faktor 5) aufaddiert.4 Die Berechnung der Ausprägungen der laten-

ten endogenen Variablen sowie der zugehörigen Indikatoren erfolgte analog zum reflek-

tiven Modell. 

                                                 
3 Bei drei Segmenten sind die anderen beiden Segmente jeweils gleich groß, also entweder 42,5%  
oder 35%.  
4 Ebenso wie im reflektiven Messmodell wurde der Fehlerterm der latenten endogenen Variablen auf Null 
gesetzt. 
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2.1. Modellschätzung 

Die Modellberechnung erfolgte mit Hilfe von smartpls (RINGLE ET AL. 2005), dem ers-

ten grafischen Anwendungsprogramm zur Schätzung von Strukturgleichungsmodellen, 

das sowohl den einfachen PLS-, als auch den FIMIX-Algorithmus abbildet. 

Die Modellschätzung erfolgte für jeden Datensatz für 4,...,1=s  Segmente. Um eine 

frühzeitige Konvergenz zu verhindern, wurde der FIMIX-Algorithmus erst dann ab-

gebrochen, wenn entweder die Verbesserung ε  des ln(L) unter dem Schwellenwert 

0,001 lag oder die Maximalzahl von 1.000 Iterationen erreicht wurde. Fast ausschließ-

lich wurde dabei das Maximum an Iterationen unterschritten, meist führte das ε -

Kriterium zum Abbruch.  

 

Aufgrund der Abhängigkeit des mit dem EM-Algorithmus gefundenen Optimums von 

der Startpartition wurde der Algorithmus entsprechend der Empfehlung von WU (1983, 

S. 102) mit einer von der geschätzten Segmentzahl abhängigen Anzahl von Replikatio-

nen durchlaufen. Für die Segmentzahlen 3;2=s  wurden acht Replikationen, für die 

Segmentzahl 4=s  aufgrund der größeren Streuung des ln(L) zehn Replikationen ge-

wählt. Der Beste dieser acht bzw. zehn ln(L)-Werte wurde übernommen. Aus diesen 

ln(L)-Werten wurden im Weiteren die Werte der Informationskriterien AIC, AIC3, BIC, 

CAIC, MDL2, MDL5, HQ, NEC, CLC und ICL-BIC errechnet.  

Die zur Berechnung der Informationskriterien benötigte Anzahl der freien Parameter k  

im FIMIX-PLS-Ansatz ergibt sich aus (HAHN ET AL. 2002, S. 254): 

 

   QKRKKk ⋅+⋅+−= )1(      (1) 

 

mit: =K  Aktuelle Anzahl der Klassen 

=R  Anzahl der Prädiktorvariablen in den Regressionen des Strukturmodells 

 =Q  Anzahl der endogenen Variablen  

 

Daraus ergeben sich für die beiden Modelle folgende :k  

  

 

 

 

Tabelle 6: Anzahl der freien Parameter 

 Anzahl der Klassen K 
 1 2 3 4 5 

Einfaches Modell 4 9 14 19 24 
Komplexes Modell 8 17 26 35 44 
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2.2. Bewertung der Schätzer 

Für jede Faktorstufe wird berechnet, in wie viel Prozent der Fälle ein Kriterium erfolg-

reich war bzw. unter- oder überschätzt hat. Die Performanz der Segmentierungskriterien 

wird anhand der Trefferquote gemessen. Bei der endgültigen Bewertung der Kriterien 

wird ein Unterschätzen der wahren Segmentzahl gegenüber einem Überschätzen bevor-

zugt. Grund dafür ist, dass die geschätzten Parameter beim Überschätzen größere Fehler 

aufweisen als beim Unterschätzen. Eine Erklärung dafür könnte sein, dass beim Über-

schätzen zeitweise extrem kleine Segmente mit instabilen Parametern gebildet werden 

(ANDREWS/CURRIM 2003a, S. 239). Dies gilt insbesondere für kleine Datensätze sowie 

schlecht getrennte Segmente (CUTLER/WINDHAM 1993, S. 154). 

Das Ergebnis der Simulationsstudie ist in Tabelle 7 dargestellt. Die Werte stellen die 

Mittelwerte der prozentualen Trefferquoten bzw. der Quoten von Unter- und Überschät-

zung einer jeden Faktorstufe über alle möglichen Ausprägungen aller Stufen der übrigen 

Faktoren dar.5  

 

Die höchste Erfolgsrate mit 46% weist das CAIC auf, gefolgt von BIC und ICL-BIC mit 

über 40% und AIC3, MDL2 sowie HQ mit Werten von 40%. Trefferquoten um die 30% 

und niedriger erzielen AIC und CLC. NEC und MDL5 zeigen nur in knapp jedem fünf-

ten Fall das richtige Modell an und schneiden damit am schlechtesten ab.  

Die beiden MDL-Kriterien weisen mit einer Underfittingquote von 74% (MDL5) bzw. 

54% (MDL2) eine ausgeprägte Tendenz zum Unterschätzen der wahren Segmentzahl 

auf, gefolgt von den tendenziell ebenfalls stark unterschätzenden Kriterien CAIC und 

ICL-BIC mit jeweils knapp über 40%. Die geringsten Werte in diesem Bereich weisen 

die beiden Kriterien AIC und CLC auf. 

Eine klare Tendenz zum Überschätzen der wahren Anzahl der Segmente weisen die drei 

Kriterien CLC, NEC und AIC mit Overfittingquoten von über 40% auf. Im Gegensatz 

hierzu resultiert die starke Overfitting-Tendenz der MDL-Kriterien in entsprechend ge-

ringen Overfittingquoten (MDL2: 05% und MDL5: 04%). Eine vergleichsweise geringe 

Tendenz zum Überschätzen weist zudem das Kriterium ICL-BIC auf (15%). 

                                                 
5 Aufgrund von Rundungen summieren sich nicht alle Werte auf 100 Prozent. 



 

  AIC AIC3  BIC CAIC MDL2 MDL5 HQ NEC CLC ICL-BIC Gesamt 
  U F O U F O U F O U F O U F O U F O U F O U F O U F O U F O U F O 
                                   

2 30 41 29 34 46 19 41 46 13 44 47 09 52 43 05 68 28 04 34 47 19 00 31 69 27 32 42 45 44 10 37 41 22 Faktor 1 
3 20 24 56 26 33 41 35 43 22 42 45 13 59 36 05 81 16 03 27 33 40 68 14 18 22 24 54 39 41 20 42 31 27 

                                   
                                   

50 16 25 59 25 31 44 33 36 31 42 38 20 61 28 11 84 09 07 21 31 48 36 25 39 13 15 73 37 34 30 37 27 36 
100 27 31 41 32 36 32 43 41 16 48 44 09 61 36 03 82 15 03 34 36 30 34 20 45 24 26 50 48 38 13 43 32 24 Faktor 2 
300 32 41 27 34 52 14 38 57 05 39 57 04 45 55 01 57 42 01 37 53 10 31 23 46 36 44 20 41 55 03 39 48 13 

                                   
                                   

0,2 38 25 38 46 29 26 57 32 11 62 32 06 75 22 03 92 07 01 46 30 24 34 31 35 35 23 42 61 29 10 55 26 20 Faktor 3 
0,8 13 40 47 15 51 34 19 57 24 24 60 16 36 57 07 57 37 06 15 51 35 33 15 52 14 33 54 23 56 20 25 46 30 

                                   
                                   

15% 22 38 40 28 44 28 33 48 18 40 48 11 52 43 05 72 23 05 28 45 27 32 19 48 21 32 46 38 47 16 37 39 24 Faktor 4 
30% 28 28 45 32 35 32 43 41 17 46 44 10 59 36 05 77 21 03 33 35 32 35 26 39 27 24 49 47 38 15 43 33 25 

                                   
                                   

0,5 19 35 46 23 43 34 28 53 20 32 56 12 46 48 06 67 28 05 22 44 33 35 19 46 18 31 52 32 52 17 32 41 27 Faktor 5 
1 31 30 39 38 37 26 48 36 15 54 36 10 65 31 04 81 16 03 39 36 26 32 27 41 31 26 44 53 33 14 47 31 22 

                                   
                                   

niedrig 40 28 32 45 30 25 51 32 17 53 34 13 63 33 04 82 17 02 44 32 24 32 27 41 41 26 34 55 31 15 51 29 21 Faktor 6 
hoch 10 37 53 16 49 35 25 57 18 33 58 09 48 46 06 67 28 06 17 48 35 35 19 46 08 31 61 30 54 16 29 43 29 

                                   
                                   
Faktor 7 reflektiv 16 34 49 19 45 35 27 52 22 29 55 16 41 52 08 61 32 07 20 46 34 36 16 48 13 27 60 28 51 21 29 41 30 
 formativ 34 31 35 41 34 24 49 38 13 57 37 06 70 28 02 87 13 01 41 34 25 32 30 39 35 30 35 56 34 09 50 31 19 
                                   
Gesamt  25 33 42 30 40 30 38 45 17 43 46 11 55 40 05 74 22 04 31 40 29 34 23 43 24 28 48 42 42 15 40 36 25 

Tabelle 7: Treffer (F, fitting), Unterschätzung (U, underfitting) und Überschätzung (O, overfitting) der Informationskriterien in Abhängigkeit von den Faktorstufen in Prozent 
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Betrachtet man die Trefferquoten bezüglich der verschiedenen Faktorausprägungen, 

stellt man fest, dass die Trefferquote mit 41% im 2-Segmente-Fall höher war als im 3-

Segmente Fall (31%) (Faktor 1). Während der Untersuchung hat sich gezeigt, dass ins-

besondere im komplexeren Modell bei wenigen Beobachtungen die wahre Segmentan-

zahl drei sehr oft überschätzt wird. Mit steigender Beobachtungszahl wird der wahre 

Wert zunehmend häufiger getroffen. Im Falle von zwei Segmenten ist diese Tendenz 

zwar auch erkennbar, es wird aber auch bei wenigen Beobachtungen schon oft getroffen. 

Dieser Eindruck lässt sich auch in den Quoten von Faktor 2 ablesen. Mit zunehmender 

Anzahl von Beobachtungen erhöht sich die Trefferquote von 27% auf 48% zu Lasten 

der Overfittingquote, die von 36% auf 13% zurückgeht. Die Underfittingquote, die in 

den Faktorstufen um die 40% schwankt, scheint weitgehend unabhängig von der Anzahl 

der Beobachtungen zu sein.  

Wenig überraschend ist auch das Ergebnis von Faktor 3. Während bei einem großen 

Segmentabstand in etwa der Hälfte der Fälle richtig gewählt wird, geschieht dies bei 

kleinem Abstand nur in 26% der Fälle. Es überrascht nicht, dass der große Abstand zur 

Überschätzung neigt (30%), da die so geschaffene größere „Ausdehnung“ der Daten 

dazu führt, dass zwischen den – entfernten – wahren Segmenten weitere Segmente iden-

tifiziert werden. Analog dazu wird bei kleinem Abstand oft unterschätzt (55%), weil die 

nah beisammen liegenden segmentspezifischen Verteilungen als eine Verteilung ange-

sehen werden.  

Die Größe des kleinsten Segmentes (Faktor 4) scheint hingegen kaum einen Einfluss 

auf die Bewertungsqualität der Informationskriterien zu haben. Treffer- (~36%), Under- 

(~40%) und Overfittingquote (~24%) liegen jeweils nahezu gleich auf. Normalerweise 

wäre bei einem kleinen Segment ein Unterschätzen zu vermuten, da es aufgrund seiner 

geringen Größe nicht erkannt und in die anderen Segmente „eingegliedert“ wird.  

Faktor 5 indessen bringt das erwartete Ergebnis. Ist die Fehlervarianz groß, können die 

Segmente nicht klar voneinander unterschieden werden, da sich die Werte zu sehr über-

lagern und somit häufig angenommen wird, dass sie einer Verteilung entstammen. An-

statt der richtigen Segmentanzahl (31%) wird wesentlich öfter eine zu kleine Segment-

anzahl gewählt (47%). Bei einem geringen Fehler wird die wahre Anzahl an Segmenten 

häufig getroffen (41%). Kommt es zu einer Fehlschätzung, so resultiert diese eher in 

einer Unterschätzung (32%). 

Die Ergebnisse bei Faktor 6 stehen im Zusammenhang mit der „Consistency at Large“, 

wonach eine latente Variable umso besser erklärt wird, je mehr erklärende Variablen ihr 

zur Verfügung stehen (WOLD 1982, S. 25). Entsprechend weist das komplexe Modell 
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mit 27 Indikatoren bessere Werte auf als das einfache Modell mit lediglich zwölf mani-

festen Variablen. Die Trefferquote des komplexen Modells liegt mit 43% über der des 

einfachen Modells (29%). Außerdem kann man erkennen, dass das Modell mit wenigen 

freien Parametern zur Unterschätzung (51%) tendiert. 

Die Spezifikation des verwendeten Messmodells der latent exogenen Variablen (Faktor 

7) hat einen deutlichen Einfluss auf die Performanz der Kriterien. Während im reflekti-

ven Fall eine Trefferquote von 41% erreicht wurde, liegt diese im formativen Fall ledig-

lich bei 31%.  

 

Vor dem Hintergrund der Simulationsergebnisse scheint das MDL5–Kriterium aufgrund 

der schlechtesten Trefferquote und der höchsten Underfittingquote ungeeignet zur Be-

stimmung der Segmentzahl. Ebenso erscheinen die Kriterien NEC und CLC aufgrund 

der niedrigen Trefferquoten und ausgeglichenen Under- und Overfittingquoten als we-

nig vorteilhaft. 

Ein Vorteil der beiden MDL-Kriterien liegt im enorm kleinen Überschätzungsrisiko, das 

mit gerade einmal knapp 5% mit Abstand am geringsten ist. Im Gegensatz zu MDL5 

weist MDL2 mit 40% eine vergleichsweise hohe Trefferquote auf, so dass dieses Krite-

rium von Nutzen ist, wenn eine Überschätzung unter allen Umständen vermieden wer-

den soll. 

Die beiden Kriterien AIC3 und HQ weisen eine sehr ähnliche Performanz auf. Treffer-, 

Under- und Overfittingquoten unterscheiden sich unabhängig vom Faktor um höchstens 

vier Prozentpunkte. Da die Kriterien zwar hohe Gesamttrefferquoten aufweisen (40%), 

aber auch hohe Überschätzungsquoten (~30%), sind auch diese beiden Kriterien nicht 

vorteilhaft zur Bestimmung der richtigen Segmentanzahl. 

Als nächstes bietet sich ein Vergleich der drei Kriterien BIC, CAIC und ICL-BIC an, 

die eine vergleichsweise hohe Trefferquote und relativ niedrige Overfittingquoten (< 

20%) aufweisen. Doch vor allem durch die bessere Trefferquote bei kleinen Stichproben 

sowie der besten aller Gesamttrefferquoten (46%) ist das CAIC gegenüber den anderen 

Kriterien zu bevorzugen. 

 

Doch welche Empfehlungen lassen sich daraus für die Praxis ableiten? Ein Problem ist, 

dass lediglich zwei der Faktoren durch den Anwender beeinflusst bzw. beobachtet wer-

den können. Zum einen kann er die Stichprobengröße bestimmen und zum anderen 

kennt er die Komplexität des zugrunde liegenden Pfadmodells.  
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Hinsichtlich dieser beiden Faktoren ist ersichtlich, dass sowohl über die Faktorstufen-

kombinationen von Faktor 2 („Anzahl der Beobachtungen“) als auch Faktor 6 („Mo-

dellkomplexität“) das CAIC-Kriterium die höchsten Trefferquoten aufweist.  

 

3. Fazit 
Im Rahmen der durchgeführten Simulationsstudie konnte mit dem CAIC ein Kriterium 

identifiziert werden, das die übrigen Kriterien in nahezu allen Faktorstufenkombinatio-

nen dominiert. Als vorteilhaft erweist sich dieses Kriterium insbesondere auch bei der 

Verwendung von Modellen mit geringen Beobachtungszahlen sowie formativen Mess-

modellen, bei deren Schätzung der PLS-Ansatz als vorteilhaft angesehen wird bzw. eine 

Schätzung erst ermöglicht.  

Die Studie ist damit sowohl aus forschungstheoretischer, als auch praktischer Sicht von 

Relevanz da die Ergebnisse dem Anwender eine konkrete Entscheidungshilfe bereitstel-

len. Hierdurch konnte. die Anwendbarkeit des Ansatzes verbessert werden.  

Gleichwohl muss festgehalten werden, dass die durchschnittliche Trefferquote mit 46%, 

sowie einem Minimum von 32% und einem Maximum von 57% über alle Faktorstufen 

eher schwach zu bewerten ist. Liegen dem Anwender a priori Informationen hinsichtlich 

konkurrierender bzw. zu erwartender Modelle vor, so kann je nach Einschätzung der 

jeweiligen Modellwahrscheinlichkeiten eine Abkehr von einer datengetriebenen Mo-

dellselektion sinnvoll sein.6  

 

Weitere Forschungsarbeit wird sich auf die Analyse der Auswirkungen der verschiede-

nen Faktorstufen auf die Performanz der Kriterien konzentrieren. Durch die Durchfüh-

rung einer binären logistischen Regression, deren abhängige Variable den Modellselek-

tionserfolg abbildet, soll der Einfluss der Faktorstufen auf die Modellselektion mit Hilfe 

inferenzstatistischer Methoden genauer beleuchtet werden. 

 

 

 

 

 

 

 
                                                 
6 Für eine Darstellung der Verwendung von Chance Models zur Bewertung von Trefferquoten von Mo-
dellselektionskriterien bei Vorliegen von a priori Informationen, vgl. SARSTEDT (2006, S. 13 f.). 
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