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1. Einleitung und Problemstellung

Seit den achtziger Jahren hat sowohl in der Wissenschaft als auch in der Marktfor-
schungspraxis die Verwendung von Strukturgleichungsmodellen mit latenten Variablen
immer starkere Verbreitung gefunden. Strukturgleichungsmodelle stellen mittlerweile
einen Quasi-Standard in der Marketingforschung dar, um auf Basis eines theoretisch
fundierten Hypothesensystems formulierte Ursache-Wirkungs-Beziehungen zwischen
latenten Variablen zu untersuchen.

Neben der Kovarianzstrukturanalyse hat sich mit dem Verfahren der Partiellen Kleins-
ten Quadrate (Partial Least Squares, PLS) in den letzten Jahren eine weitere Methode
zur Schatzung von Strukturgleichungsmodellen etablieren kdnnen (EBERL 2006a, S.
87), die vor allem im deutschsprachigen Raum zunehmend stéarkere Verbreitung findet
(FAssOT 2005, S. 22 ff.).

Eine wichtige Weiterentwicklung der PLS-Pfadmodellierung wurde von HAHN (2002)
vorgestellt. Sie verbindet die Starken der PLS-Methodik mit den Vorteilen der Maxi-
mume-Likelihood-Schéatzung bei der Ableitung von Marktsegmenten mit Hilfe von
Mischverteilungsmodellen.* Dieser so genannte Finite Mixture-PLS (FIMIX-PLS)-
Ansatz ermoglicht eine simultane Schéatzung der Modellparameter bei gleichzeitiger
Ermittlung von Heterogenitét in der Datenstruktur. Allgemein wird der Methodengrup-
pe der Mischverteilungsmodelle eine hohe Relevanz hinsichtlich zukinftiger Anwen-
dungen zur Marktsegmentierung zugesprochen (WEDEL/KAMAKURA 2000, S. 19). Im
Kontext der Erfolgsfaktorenforschung stellen beispielsweise ALBERS und HILDEBRANDT
fest: ,,Im Allgemeinen beobachtet man, dass sich MaBnahmen auf den Erfolg bei unter-
schiedlichen Unternehmen oder anderen Untersuchungseinheiten unterschiedlich auf
den Erfolg auswirken, weil bestimmte situative Faktoren bestehen, fir die es héufig
schwer ist, Beobachtungen zu erhalten. Man muss im Regelfall davon ausgehen, dass
unbeobachtete Heterogenitat in den Daten des Samples gegeben ist. Die Parameterwerte
fir die Wirkungen der einzelnen Konstrukte auf den Erfolg sind deshalb unterschiedlich
fir unterschiedliche Segmente von Untersuchungseinheiten.” (ALBERS/HILDEBRANDT
2006, S. 28) Das von HAHN entwickelte und nachfolgend von RINGLE ET AL. (2005,
2007) und RINGLE (2006) erweiterte FIMIX-PLS-Konzept stellt den ersten Ansatz dar,
Latent-Class-Modelle fir die Struktur zwischen den Konstrukten auf Grundlage von

PLS zu schatzen.?

1vgl. auch HAHN ET AL. (2005).
2 Einen Ansatz zur segmentspezifischen Schatzung von kovarianzstrukturbasierten Strukturgleichungs-
modellen stellen JEDIDI ET AL. (1997a, 1997b) vor.
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Aufgrund der Einbeziehung unbeobachteter Heterogenitat stellt dieser Ansatz eine fle-
xible Mdoglichkeit der Anpassung theoretischer Verteilungen an reale Daten dar und
bildet einen modelltheoretischen Rahmen in der Schatzung von Strukturgleichungsmo-
dellen, welcher es dem Anwender ermdglicht, Segmentierungsstrategien auf Grundlage
von Inferenzstatistiken zu formulieren. Hierdurch kann eine Gutebeurteilung mit Hilfe

statistischer Kriterien vorgenommen werden.

Ein wesentliches Problem bei der Anwendung von Mischverteilungsmodellen ist die
Bestimmung der Anzahl der zugrunde liegenden Segmente, welche a priori unbekannt
ist. Dieses Problem ist duRerst bedeutend, konnte aber noch nicht zufrieden stellend
geldst werden (McLACHLAN/PEEL 2000, S. 175; WEDEL/KAMAKURA 2000, S. 89). Ne-
ben diversen statistischen Testverfahren, die jedoch aufgrund methodischer Probleme
und hoher Rechenintensitit keinen Einzug in Softwareanwendungen gefunden haben
(SARSTEDT 2006, S. 6 f.), wird zur Handhabung dieser Modellselektionsproblematik auf
so genannte Informationskriterien zurtickgegriffen. Dieser heuristische Ansatz ermdg-
licht den Vergleich von Modellen, die unter Zugrundelegung unterschiedlicher Seg-
mentzahlen geschétzt wurden. Ziel ist es, das Modell auszuwéhlen, das die Kullback-
Leibler-Entropie als Differenz zwischen der wahren und der geschatzten Dichtefunktion
minimiert (MCLACHLAN/PEEL 2000, S. 202 f.). Neben der Anpassungsgiite des Modells
in Form des mit minus zwei multiplizierten Log-Likelihoods wird ferner die Modell-
komplexitat in Form eines Korrekturfaktors beriicksichtigt, dessen Ausgestaltung von
der Art des Informationskriteriums abhangt. Neben der gewichteten Parameterzahl fin-
det auch der (logarithmierte) Stichprobenumfang oder die geschétzte Fisher’sche Infor-
mationsmatrix bei einigen Kriterien Bertcksichtigung.

Im Laufe der letzten Jahrzehnte wurde eine Vielzahl solcher Kriterien entwickelt. Auf-
grund der unterschiedlichen Ausgestaltung des Korrekturfaktors weisen die Kriterien
unterschiedliche statistische Eigenschaften und Eignungen zur Modellselektion auf. Um
die Vorteilhaftigkeit der einzelnen Kriterien bei der Anwendung von Mischvertei-
lungsmodellen zu untersuchen, wurden zahlreiche Simulationsstudien mit unterschiedli-
chen Modellpramissen initiiert. Der Fokus dieser Studien lag zunéchst in der Evaluie-
rung der Kriterien im Rahmen eines ,,klassischen* Clustering-Ansatzes. Erst in den letz-
ten Jahren hat sich der Fokus auf die Verknipfungen des Mischverteilungsansatzes mit
multivariaten Analysemethoden, wie beispielsweise Regressions- oder Logit-Modelle
gerichtet. Die folgende Abbildung gibt einen Uberblick tiber die Studien sowie deren

Anwendungsgebiete hinsichtlich des eingesetzten Verfahrens:



Jahr  Autor(en) Modell
1993 B0OzDOGAN Mixture Distribution
1993  CUTLER/WINDHAM Mixture Distribution
1994  SOROMENHO Mixture Distribution
1995 RUSTETAL. Mixture Distribution
1996  CELEUX/SOROMENHO Mixture Distribution
2000 McLACHLAN/NG Mixture Distribution
2001 HAWKINSET AL. Mixture Regression
2003a  ANDREWS/CURRIM Mixture Logit
2003b  ANDREWS/CURRIM Mixture Regression
2006 BRAMEETAL. Mixture Distribution
2006 NYLUNDETAL. Growth Mixture
2006  OLIVEIRA- Mixture Regression
BROCHADO/MARTINS
2006  SARSTEDT Mixture Regression
2006  YANG Mixture Distribution
2007  TOFIGHI/ENDERS Growth Mixture

Tabelle 1: Studien zur Modellselektion in Mischverteilungsmodellen

Bislang wurde keine Untersuchung fur den FIMIX-PLS Ansatz oder vergleichbare ,,Fi-
nite Mixture“-Strukturgleichungsmodell-Ansatze initiiert.
Ziel dieses Beitrags ist es daher, im Rahmen einer Simulationsstudie herauszuarbeiten,
welches Informationskriterium fir die Modellselektion in FIMIX-PLS besonders geeig-
net ist. Dabei gilt es vor allem zu untersuchen, unter welchen Bedingungen welches
Kriterium bessere Ergebnisse liefert als die Ubrigen.
Hierbei werden zum einen die ,,klassischen Informationskriterien berlcksichtigt, wel-
che regelmdRig zur Modellselektion in Marketinganwendungen herangezogen werden
(SARSTEDT 2006, S. 8). Zu dieser Gruppe sind die folgenden Kriterien zu zahlen:

- Akaike’s Information Criterion (AIC) (AKAIKE 1973)

- Bayesian Information Criteria (BIC) (SCHWARZz 1978)

- Consistent AIC (CAIC) (BozDOGAN 1987)

- Modified AIC (AIC3) (BOzZDOGAN 1992)
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Zum anderen werden die folgenden alternativen Informationskriterien herangezogen,
die vor allem in der statistischen Literatur diskutiert werden:

- Minimum Description Length mit Faktor zwei bzw. funf (MDL,, MDLs) (LIANG

1992)

- Hannan-Quinn-Criterion (HQ) (HANNAN/QUINN 1979, S. 190 f.)

- Normalized Entropy Criterion (NEC) (CELEUX/SOROMENHO 1996)

- Classified Likelihood Criterion (CLC) (BIERNACKI/GOVAERT 1997)

- Integrated Completed Likelihood-BIC (ICL-BIC) (BIERNACKI ET AL. 2000)
Fur eine Darstellung der Herleitung, Form und statistischen Eigenschaften der Kriterien

sei auf die angefiihrten Quellen verwiesen.

2. Design der Simulationsstudie

Fir die Spezifizierung des zu untersuchenden Modells werden insgesamt sieben Fakto-
ren manipuliert. Die ersten sechs Faktoren und deren Ausprédgungen orientieren sich
dabei an den Studien von VRIENS ET AL. (1996, S. 77), ANDREWS ET AL. (2002, S. 480)
und ANDREWS/CURRIM (2003a, S. 238). Faktor sieben wurde vor dem Hintergrund der
in der Marketingforschung intensiv geflihrten Diskussion um die korrekte Spezifikation
von Konstrukten einbezogen (vgl. BOLLEN/LENNOX 1991, DIAMANTOPOU-
LOS/WINKLHOFER 2001, EBERL 2006b, ROSSITER 2002).

Faktor 1: Anzahl der Segmente: 2 oder 3

Faktor 2: Anzahl der Beobachtungen: 50, 100 oder 300

Faktor 3: Abstand der Pfadkoeffizienten y: 0,2 oder 0,8

Faktor 4: GroRe des kleinsten Segments: 15% oder 30%

Faktor 5 Varianz des Messfehlers der Indikatoren & und € bzw. der latenten exo-
genen Variablen  : 0,5 oder 1

Faktor 6: Modellkomplexitat: niedrig oder hoch

Faktor 7: Messmodell der latent exogenen Variablen: reflektiv oder formativ

Fur jede mdgliche Kombination der Faktorstufen werden Datensétze generiert. Da sechs
Faktoren mit je zwei Faktorstufen, sowie ein Faktor mit drei Faktorstufen vorliegen,
ergeben sich daraus 2° -3' =192 mdgliche Faktorstufenkombinationen.

Es werden zwei verschiedene Modelle verwendet, wovon eines komplexer ist (27 mani-
feste Variablen (MV), 6 latente Variablen (LV)) als das andere (12 MV, 4 LV). In Ab-
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hangigkeit der in Faktor 6 ausgedriickten Modellkomplexitat variiert die Anzahl der

freien Parameter des Modells. Die folgenden Abbildungen und Tabellen zeigen die

Pfadmodelle der Simulationsstudie und deren Regressionsgleichungen in Matrizen-

schreibweise.
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Abbildung 1: Einfaches Pfadmodell der Simulationsstudie: reflektive Modellspezifikation

Messmodell: Strukturmodell:
X11 0,75 0 0 0 611 Y11
x| |049 0 0 0 S| I om o [=l& & & [*|va
X13 0,56 O 0 0 013 Y31
X21 0 0,53 0 0 621
X22 0 0,66 0 0 E1 622
X3 [=| O 0 0,74 0 |* §2 + | 031
X32 0 0 0,85 0 §3 632
X33 0 0 0,79 0 N1 633
X34 0 0 0,69 0 634
Y11 0 0 0 0,58 €11
Y12 0 0 0 0,82 €12
Y13 0 0 0 0,71 €13

Tabelle 2: Gleichungen des einfachen Pfadmodells in Matrixschreibweise: reflektive Modellspezifikation
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Abbildung 2: Einfaches Pfadmodell der Simulationsstudie: formative Modellspezifikation
Messmodell:
X11
X12
X13
3 07504905 0 O O O O O O 0 O X21 €
& 0 0 0 053 066 O 0 0 0 0 0 0 X22 G2
& |=| O 0 0 0 0 0,74 0,85 0,79 069 O 0 0 |*|xa|*+|Cs
Vi1 0 0 0 0 0 0 0 0 0 058 0 0 X32 €11
Y12 0 0 0 0 0 0 0 0 0 o 082 0 X33 €12
Y13 0 0 0 0 0 0 0 0 0 0 0 0,71 X34 €13
M
N
N4
Strukturmodell:
Y11
|m |:| &1 &2 83 | * Y21
Y31

Tabelle 3: Gleichungen des einfachen Pfadmodells in Matrixschreibweise: formative Modellspezifikation
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Abbildung 3: Komplexes Pfadmodell der Simulationsstudie: reflektive Modellspezifikation

Messmodell: Strukturmodell:
X | (074 0 O 0 0 O Bi11 3
X12 043 O 0 0 0 0 012 ‘m =|Y11 0 va1 Va1 |+|&2
X13 0,71 0 0 0 0 0 013 N2 0 v Va2 VYa &
Xo1 0 082 0 0 0 0 021 &
X22 0 0,83 0 0 0 0 02
Xo3 0 0,71 0 0 0 0 623
Xo4 0 0,71 0 0 0 0 624
X25 0 0,70 0 0 0 0 625
X26 0 0,79 0 0 0 0 626
Xor 0 077 0 0 0 0 Bo7
Xog 0 0,78 0 0 0 0 623
X29 0 0,82 0 0 0 0 O29
X31 0 0 0,71 0 0 0 §1 631
X32 0 0 0,57 0 0 0 §2 632
X33 [_| O 0O 0,78 O 0 0 |«| & + 033
X34 0 0 0,66 0 0 0 §4 O34
X414 0 0 0 0,76 0 0 N4 041
Xa2 0 0 0 0,68 0 0 N2 642
X43 0 0 0 0,67 0 0 643
X44 0 0 0 0,76 0 0 644
X45 0 0 0 080 O 0 Q45
Vi O 0 0 0 071 O €11
Va2 O 0 0 0 08 0 €12
Y13 0 0 0 0 079 O €13
Y4 0 0 0 0 0,73 0 €14
Vor O 0 0O 0 0 080 £21
Y22 0 0 0 0 0 0,70 €22

Tabelle 4: Gleichungen des komplexen Pfadmodells in Matrixschreibweise
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Abbildung 4: Komplexes Pfadmodell der Simulationsstudie: formative Modellspezifikation
0,74X11+0,43X12+0,71X13 <1
0,82x51+0,83%25+0,71X03+0,7 1X24+0,70X25+0,79X06+0,77X27+0,78%25+0,82X09 (o
0,71X31+0,57X32+0,78X33+0,66X34 (3
0,76X41+O,68X42+0,67X43+0,76X44+0,80X45 (4
0,71n, L | e
0,85n4 €12
0,79n4 €13
0,73n4 €14
0,80n; €21
0,70n; €22
Strukturmodell:

&1

Y 0 va1 Va1 | « | &

Y22 Y32 Ya2 &3

&

Tabelle 5: Gleichungen des komplexen Pfadmodells in Matrixschreibweise
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Die Pfadkoeffizienten der beiden Messmodelle wurden in Anlehnung an bereits durch-
geflihrte PLS-Schatzungen festgelegt. Die Pfadkoeffizienten des Strukturmodells fur
das kleinste Segment mit 15% oder 30% Anteil am Datensatz (Faktor 4)° wurden zufal-
lig erzeugt. Die Pfadkoeffizienten des oder der anderen Segmente (Faktor 1) sind Ab-
weichungen davon um 0,2 oder 0,8 (Faktor 3). In welche Richtung diese Abweichung
geschieht, wurde ebenfalls zufallig entschieden, wobei sichergestellt wurde, dass die
Auspragungen der Pfadkoeffizienten stets im Intervall [-1;1] liegen. Zudem wurde die
Anzahl der Beobachtungen tber drei Stufen mit den Auspragungen 50, 100 und 300
variiert (Faktor 2). Durch die Einbeziehung niedriger Stichprobenumfénge sollte dem
haufig zitierten Vorteil von PLS-Schétzungen, auch bei Vorliegen niedriger Beobach-
tungszahlen eine hohe Ergebnisqualitat zu liefern, Rechnung getragen werden (vgl.
HomMBURG/KLARMANN 2006, S. 733 f.).

Im Falle einer reflektiven Spezifikation des Messmodells der latent exogenen Variablen
(Faktor 7), wurden zunéchst die Ausprédgungen der latent exogenen Variablen auf
Grundlage einer Normalverteilung bestimmt. Die Werte der Indikatoren des Messmo-
dells der latenten exogenen Variablen x; von Individuum i setzen sich aus dem Wert der
betreffenden latenten exogenen Variablen, multipliziert mit den Pfadkoeffizienten des
Messmodells sowie einem normalverteilten Fehlerterm mit Varianz 0,5 oder 1 (Faktor
5) zusammen. Analog hierzu setzen sich die Werte der latenten endogenen Variablen
aus der mit den Pfadkoeffizienten des Strukturmodells gewichteten Summe der Auspra-
gungen der latenten exogenen Variablen zusammen. Hieraus erfolgt die Berechnung der
Auspragungen der Indikatorvariablen y; innerhalb des Messmodells der latent endoge-
nen Variablen.

Bei Vorliegen einer formativen Modellspezifikation wurden zunéchst die Indikatorwerte
des Messmodells der latenten exogenen Variablen auf Grundlage einer Normalvertei-
lung bestimmt und nachfolgend die Auspragungen der latenten exogenen Variablen
durch eine Linearkombination der zugehdrigen Items bestimmt. Da bei einer formativen
Modellspezifikation Fehlerterme nur auf Ebene der Latenten existieren (EBERL 2004,
S.8), wurde auf die latenten exogenen Variablen ein normalverteilter Fehlerterm mit
Varianz 0,5 oder 1 (Faktor 5) aufaddiert. Die Berechnung der Auspragungen der laten-
ten endogenen Variablen sowie der zugehdrigen Indikatoren erfolgte analog zum reflek-

tiven Modell.

* Bei drei Segmenten sind die anderen beiden Segmente jeweils gleich groR, also entweder 42,5%

oder 35%.

* Ebenso wie im reflektiven Messmodell wurde der Fehlerterm der latenten endogenen Variablen auf Null
gesetzt.
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2.1. Modellschatzung

Die Modellberechnung erfolgte mit Hilfe von smartpls (RINGLE ET AL. 2005), dem ers-
ten grafischen Anwendungsprogramm zur Schétzung von Strukturgleichungsmodellen,
das sowohl den einfachen PLS-, als auch den FIMIX-Algorithmus abbildet.

Die Modellschéatzung erfolgte fir jeden Datensatz fur s=1,...,4 Segmente. Um eine

frihzeitige Konvergenz zu verhindern, wurde der FIMIX-Algorithmus erst dann ab-
gebrochen, wenn entweder die Verbesserung & des In(L) unter dem Schwellenwert
0,001 lag oder die Maximalzahl von 1.000 Iterationen erreicht wurde. Fast ausschliel3-
lich wurde dabei das Maximum an lterationen unterschritten, meist fiihrte das ¢ -

Kriterium zum Abbruch.

Aufgrund der Abhangigkeit des mit dem EM-Algorithmus gefundenen Optimums von
der Startpartition wurde der Algorithmus entsprechend der Empfehlung von Wu (1983,
S. 102) mit einer von der geschatzten Segmentzahl abhéngigen Anzahl von Replikatio-
nen durchlaufen. Fur die Segmentzahlen s =2;3 wurden acht Replikationen, fir die
Segmentzahl s =4 aufgrund der gréReren Streuung des In(L) zehn Replikationen ge-
wahlt. Der Beste dieser acht bzw. zehn In(L)-Werte wurde lbernommen. Aus diesen
In(L)-Werten wurden im Weiteren die Werte der Informationskriterien AIC, AlCs, BIC,
CAIC, MDL,, MDLs, HQ, NEC, CLC und ICL-BIC errechnet.

Die zur Berechnung der Informationskriterien bendtigte Anzahl der freien Parameter k
im FIMIX-PLS-Ansatz ergibt sich aus (HAHN ET AL. 2002, S. 254):

k=(K-1)+K-R+K-Q (1)

mit: K = Aktuelle Anzahl der Klassen

R = Anzahl der Pradiktorvariablen in den Regressionen des Strukturmodells

Q= Anzahl der endogenen Variablen

Daraus ergeben sich fir die beiden Modelle folgende k :

Anzahl der Klassen K

1 2 3 4 5
Einfaches Modell | 4 9 14 19 24
KomplexesModell | 8 | 17 | 26 | 35 | 44

Tabelle 6: Anzahl der freien Parameter
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2.2. Bewertung der Schatzer

Fur jede Faktorstufe wird berechnet, in wie viel Prozent der Félle ein Kriterium erfolg-
reich war bzw. unter- oder tberschétzt hat. Die Performanz der Segmentierungskriterien
wird anhand der Trefferquote gemessen. Bei der endgultigen Bewertung der Kriterien
wird ein Unterschitzen der wahren Segmentzahl gegeniiber einem Uberschatzen bevor-
zugt. Grund dafiir ist, dass die geschatzten Parameter beim Uberschatzen groRere Fehler
aufweisen als beim Unterschétzen. Eine Erklirung dafiir kénnte sein, dass beim Uber-
schatzen zeitweise extrem kleine Segmente mit instabilen Parametern gebildet werden
(ANDREWS/CURRIM 2003a, S. 239). Dies gilt insbesondere fur kleine Datensatze sowie
schlecht getrennte Segmente (CUTLER/WINDHAM 1993, S. 154).

Das Ergebnis der Simulationsstudie ist in Tabelle 7 dargestellt. Die Werte stellen die
Mittelwerte der prozentualen Trefferquoten bzw. der Quoten von Unter- und Uberschat-
zung einer jeden Faktorstufe tber alle moglichen Auspréagungen aller Stufen der Gbrigen

Faktoren dar.’

Die hochste Erfolgsrate mit 46% weist das CAIC auf, gefolgt von BIC und ICL-BIC mit
uber 40% und AIC3;, MDL, sowie HQ mit Werten von 40%. Trefferquoten um die 30%
und niedriger erzielen AIC und CLC. NEC und MDLs zeigen nur in knapp jedem fiinf-
ten Fall das richtige Modell an und schneiden damit am schlechtesten ab.

Die beiden MDL-Kriterien weisen mit einer Underfittingquote von 74% (MDLs) bzw.
54% (MDL,) eine ausgepragte Tendenz zum Unterschatzen der wahren Segmentzahl
auf, gefolgt von den tendenziell ebenfalls stark unterschatzenden Kriterien CAIC und
ICL-BIC mit jeweils knapp Uber 40%. Die geringsten Werte in diesem Bereich weisen
die beiden Kriterien AIC und CLC auf.

Eine klare Tendenz zum Uberschatzen der wahren Anzahl der Segmente weisen die drei
Kriterien CLC, NEC und AIC mit Overfittingquoten von tber 40% auf. Im Gegensatz
hierzu resultiert die starke Overfitting-Tendenz der MDL-Kriterien in entsprechend ge-
ringen Overfittingquoten (MDL,: 05% und MDLs: 04%). Eine vergleichsweise geringe

Tendenz zum Uberschitzen weist zudem das Kriterium ICL-BIC auf (15%).

> Aufgrund von Rundungen summieren sich nicht alle Werte auf 100 Prozent.



AlC AIC3 BIC CAIC MDL, MDLs HQ NEC CLC  ICL-BIC | Gesamt
U F O UFOUFOUTFOUTFOUFOUTFOUTFOUTFOUTFTO| UFO

Faktor 1 2 30 41 29|34 46 19|41 46 13|44 47 09|52 43 05|68 28 04|34 47 19|00 31 69|27 32 42|45 44 10| 37 41 22
3 20 24 56 |26 33 41|35 43 22|42 45 13|59 36 05(81 16 03|27 33 40|68 14 18|22 24 54|39 41 20| 42 31 27

50 16 25 59 |25 31 44(33 36 31|42 38 20|61 28 11|84 09 07|21 31 48(36 25 39|13 15 73|37 34 30| 37 27 36

Faktor 2 100 27 31 4132 36 32|43 41 16|48 44 09|61 36 03|82 15 03|34 36 30|34 20 45(24 26 50|48 38 13| 43 32 24
300 32 41 27 |34 52 14|38 57 05|39 57 04|45 55 01|57 42 01|37 53 10|31 23 46|36 44 20|41 55 03| 39 48 13

Eaktor 3 02 38 25 38|46 29 26|57 32 11(62 32 06|75 22 03|92 07 01|46 30 24 (34 31 35|35 23 42|61 29 10| 55 26 20
08 13 40 47 |15 51 34|19 57 24(24 60 16|36 57 07|57 37 06|15 51 35(33 15 52|14 33 54|23 56 20| 25 46 30

Eaktor 4 15% 22 38 40 |28 44 28|33 48 18(40 48 11|52 43 05|72 23 05|28 45 27 (32 19 48|21 32 46|38 47 16| 37 39 24
30% 28 28 45|32 35 32|43 41 17|46 44 10|59 36 05|77 21 03|33 35 32|35 26 39|27 24 49|47 38 15| 43 33 25

Eaktor 5 05 19 35 46|23 43 34(28 53 20|32 56 12|46 48 06|67 28 05|22 44 33|35 19 46|18 31 52|32 52 17| 32 41 27
1 31 30 39|38 37 26(48 36 15|54 36 10|65 31 04|81 16 03|39 36 26|32 27 41|31 26 44|53 33 14| 47 31 22

Fakior 6 Medrig 40 28 32 |45 30 25|51 32 17|53 34 13|63 33 04|82 17 02|44 32 24(32 27 41(41 26 34|55 31 15| 51 29 21
hoch 10 37 53 |16 49 35|25 57 18|33 58 09|48 46 06|67 28 06|17 48 35|35 19 46|08 31 61|30 54 16| 29 43 29

Faktor 7 reflektiv. 16 34 49 |19 45 35|27 52 22|29 55 16|41 52 08|61 32 07|20 46 34|36 16 48|13 27 60|28 51 21| 29 41 30
formativ 34 31 35 |41 34 24|49 38 13|57 37 06|70 28 02|87 13 01|41 34 25|32 30 39|35 30 35|56 34 09| 50 31 19

Gesamt 25 33 42 30 40 30 38 45 17 43 46 11 55 40 05 74 22 04 31 40 29 34 23 43 24 28 48 42 42 15| 40 36 25

Tabelle 7: Treffer (F, fitting), Unterschatzung (U, underfitting) und Uberschatzung (O, overfitting) der Informationskriterien in Abhangigkeit von den Faktorstufen in Prozent
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Betrachtet man die Trefferquoten bezlglich der verschiedenen Faktorauspragungen,
stellt man fest, dass die Trefferquote mit 41% im 2-Segmente-Fall hoher war als im 3-
Segmente Fall (31%) (Faktor 1). Wahrend der Untersuchung hat sich gezeigt, dass ins-
besondere im komplexeren Modell bei wenigen Beobachtungen die wahre Segmentan-
zahl drei sehr oft (iberschatzt wird. Mit steigender Beobachtungszahl wird der wahre
Wert zunehmend haufiger getroffen. Im Falle von zwei Segmenten ist diese Tendenz
zwar auch erkennbar, es wird aber auch bei wenigen Beobachtungen schon oft getroffen.
Dieser Eindruck l&sst sich auch in den Quoten von Faktor 2 ablesen. Mit zunehmender
Anzahl von Beobachtungen erhoht sich die Trefferquote von 27% auf 48% zu Lasten
der Overfittingquote, die von 36% auf 13% zuriickgeht. Die Underfittingquote, die in
den Faktorstufen um die 40% schwankt, scheint weitgehend unabhéngig von der Anzahl
der Beobachtungen zu sein.
Wenig uberraschend ist auch das Ergebnis von Faktor 3. Wahrend bei einem groRen
Segmentabstand in etwa der Hélfte der Félle richtig gewéhlt wird, geschieht dies bei
kleinem Abstand nur in 26% der Félle. Es Uberrascht nicht, dass der grof3e Abstand zur
Uberschatzung neigt (30%), da die so geschaffene gréRere ,,Ausdehnung® der Daten
dazu fuhrt, dass zwischen den — entfernten — wahren Segmenten weitere Segmente iden-
tifiziert werden. Analog dazu wird bei kleinem Abstand oft unterschéatzt (55%), weil die
nah beisammen liegenden segmentspezifischen Verteilungen als eine Verteilung ange-
sehen werden.
Die GroRe des kleinsten Segmentes (Faktor 4) scheint hingegen kaum einen Einfluss
auf die Bewertungsqualitat der Informationskriterien zu haben. Treffer- (~36%), Under-
(~40%) und Overfittingquote (~24%) liegen jeweils nahezu gleich auf. Normalerweise
waére bei einem kleinen Segment ein Unterschédtzen zu vermuten, da es aufgrund seiner
geringen GrofRe nicht erkannt und in die anderen Segmente ,,eingegliedert® wird.
Faktor 5 indessen bringt das erwartete Ergebnis. Ist die Fehlervarianz groR, konnen die
Segmente nicht klar voneinander unterschieden werden, da sich die Werte zu sehr tiber-
lagern und somit haufig angenommen wird, dass sie einer Verteilung entstammen. An-
statt der richtigen Segmentanzahl (31%) wird wesentlich Ofter eine zu kleine Segment-
anzahl gewahlt (47%). Bei einem geringen Fehler wird die wahre Anzahl an Segmenten
haufig getroffen (41%). Kommt es zu einer Fehlschétzung, so resultiert diese eher in
einer Unterschatzung (32%).
Die Ergebnisse bei Faktor 6 stehen im Zusammenhang mit der ,,Consistency at Large“,
wonach eine latente Variable umso besser erklért wird, je mehr erklarende Variablen ihr
zur Verfligung stehen (WoLD 1982, S. 25). Entsprechend weist das komplexe Modell
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mit 27 Indikatoren bessere Werte auf als das einfache Modell mit lediglich zwolf mani-
festen Variablen. Die Trefferquote des komplexen Modells liegt mit 43% Uber der des
einfachen Modells (29%). AuBerdem kann man erkennen, dass das Modell mit wenigen
freien Parametern zur Unterschatzung (51%) tendiert.

Die Spezifikation des verwendeten Messmodells der latent exogenen Variablen (Faktor
7) hat einen deutlichen Einfluss auf die Performanz der Kriterien. Wahrend im reflekti-
ven Fall eine Trefferquote von 41% erreicht wurde, liegt diese im formativen Fall ledig-
lich bei 31%.

Vor dem Hintergrund der Simulationsergebnisse scheint das MDLs—Kriterium aufgrund
der schlechtesten Trefferquote und der hdochsten Underfittingguote ungeeignet zur Be-
stimmung der Segmentzahl. Ebenso erscheinen die Kriterien NEC und CLC aufgrund
der niedrigen Trefferquoten und ausgeglichenen Under- und Overfittingquoten als we-
nig vorteilhaft.

Ein Vorteil der beiden MDL-Kriterien liegt im enorm kleinen Uberschatzungsrisiko, das
mit gerade einmal knapp 5% mit Abstand am geringsten ist. Im Gegensatz zu MDLs
weist MDL, mit 40% eine vergleichsweise hohe Trefferquote auf, so dass dieses Krite-
rium von Nutzen ist, wenn eine Uberschatzung unter allen Umstanden vermieden wer-
den soll.

Die beiden Kriterien AIC3; und HQ weisen eine sehr ahnliche Performanz auf. Treffer-,
Under- und Overfittingquoten unterscheiden sich unabhangig vom Faktor um hochstens
vier Prozentpunkte. Da die Kriterien zwar hohe Gesamttrefferquoten aufweisen (40%),
aber auch hohe Uberschitzungsquoten (~30%), sind auch diese beiden Kriterien nicht
vorteilhaft zur Bestimmung der richtigen Segmentanzahl.

Als néchstes bietet sich ein Vergleich der drei Kriterien BIC, CAIC und ICL-BIC an,
die eine vergleichsweise hohe Trefferquote und relativ niedrige Overfittingquoten (<
20%) aufweisen. Doch vor allem durch die bessere Trefferquote bei kleinen Stichproben
sowie der besten aller Gesamttrefferquoten (46%) ist das CAIC gegeniber den anderen

Kriterien zu bevorzugen.

Doch welche Empfehlungen lassen sich daraus flr die Praxis ableiten? Ein Problem ist,
dass lediglich zwei der Faktoren durch den Anwender beeinflusst bzw. beobachtet wer-
den kénnen. Zum einen kann er die StichprobengroRe bestimmen und zum anderen

kennt er die Komplexitét des zugrunde liegenden Pfadmodells.
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Hinsichtlich dieser beiden Faktoren ist ersichtlich, dass sowohl tUber die Faktorstufen-
kombinationen von Faktor 2 (,,Anzahl der Beobachtungen®) als auch Faktor 6 (,,Mo-

dellkomplexitat®) das CAIC-Kriterium die hdchsten Trefferquoten aufweist.

3. Fazit

Im Rahmen der durchgefuhrten Simulationsstudie konnte mit dem CAIC ein Kriterium
identifiziert werden, das die tbrigen Kriterien in nahezu allen Faktorstufenkombinatio-
nen dominiert. Als vorteilhaft erweist sich dieses Kriterium insbesondere auch bei der
Verwendung von Modellen mit geringen Beobachtungszahlen sowie formativen Mess-
modellen, bei deren Schatzung der PLS-Ansatz als vorteilhaft angesehen wird bzw. eine
Schétzung erst ermdglicht.

Die Studie ist damit sowohl aus forschungstheoretischer, als auch praktischer Sicht von
Relevanz da die Ergebnisse dem Anwender eine konkrete Entscheidungshilfe bereitstel-
len. Hierdurch konnte. die Anwendbarkeit des Ansatzes verbessert werden.

Gleichwohl muss festgehalten werden, dass die durchschnittliche Trefferquote mit 46%,
sowie einem Minimum von 32% und einem Maximum von 57% Uber alle Faktorstufen
eher schwach zu bewerten ist. Liegen dem Anwender a priori Informationen hinsichtlich
konkurrierender bzw. zu erwartender Modelle vor, so kann je nach Einschatzung der
jeweiligen Modellwahrscheinlichkeiten eine Abkehr von einer datengetriebenen Mo-

dellselektion sinnvoll sein.®

Weitere Forschungsarbeit wird sich auf die Analyse der Auswirkungen der verschiede-
nen Faktorstufen auf die Performanz der Kriterien konzentrieren. Durch die Durchfih-
rung einer bindren logistischen Regression, deren abhangige Variable den Modellselek-
tionserfolg abbildet, soll der Einfluss der Faktorstufen auf die Modellselektion mit Hilfe

inferenzstatistischer Methoden genauer beleuchtet werden.

® Fir eine Darstellung der Verwendung von Chance Models zur Bewertung von Trefferquoten von Mo-
dellselektionskriterien bei VVorliegen von a priori Informationen, vgl. SARSTEDT (2006, S. 13 f.).



16

4. Literaturverzeichnis

AKAIKE, H. (1973): Information Theory and an Extension of the Maximum Likelihood
Principle, in: KoTz, S.; JOHNSON, N. L. [Hrsg.]: Breakthroughs in Statistics 1, Springer
Verlag, New York 1992, S. 610-624.

ALBERS, S.; HILDEBRANDT, L. (2006): Methodische Probleme bei der Erfolgsfaktoren-
forschung — Messfehler, formative versus reflektive Indikatoren und die Wahl des
Strukturgleichungs-Modells, in: Zeitschrift fur betriebswirtschaftliche Forschung, Aus-
gabe 58, Februar 2006, S. 2-33.

ANDREWS, R.; CURRIM, I. (2003a): A Comparison of Segment Retention Criteria for
Finite Mixture Logit Models, in: Journal of Marketing Research, Vol. 40, S. 235-243.

ANDREWS, R.; CURRIM, I. (2003b): Retention of Latent Segments in Regression-based
Marketing Models, in: International Journal of Research in Marketing, Vol. 20, S. 315-
321.

ANDREWS, R. L.; AINSLE, A.; CURRIM, I. S. (2002): An Empirical Comparison of Logit
Choice Models with Discrete Versus Continuous Representations of Heterogeneity, in:
Journal of Marketing Research, Vol. 39, November 2002, No. 4, S. 479-487.

BIERNACKI, C.; GOVAERT, G. (1997): Using the classification likelihood to choose the
number of clusters, in: Computing Science and Statistics, Vol. 29, 1997, No. 2, S. 451-
457.

BIERNACKI, C.; CELEUX, G.; GOVAERT, G. (2000): Assessing a Mixture Model for Clus-
tering with the Integrated Completed Likelihood, in: IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 22, 2000, No. 7, S. 719-725.

BOLLEN, K. A.; LENNOX, R. (1991): Conventional Wisdom in Measurement: A Struc-
tural Equation Perspective, in: Psychological Bulletin, VVol. 110, No. 4, 1991, S. 375-
384.



17
BozDOGAN, H. (1987): Model selection and Akaike’s Information Criterion (AIC): The
general theory and its analytical extensions, in: Psychometrika, Vol. 52, 1987, No. 3, S.
345-370.

BozDoGAN, H. (1992): Choosing the Number of Component Clusters in the Mixture-
Model Using a New Informational Complexity Criterion of the Inverse-Fisher Informa-
tion Matrix, in: OpITz, O.; LAUSEN, B.; KLAR, R. [Hrsg.]: Information and Classifica-

tion: Concepts, Methods and Applications, Springer Verlag, Berlin, Heidelberg 1993.

BozDOGAN, H. (1993): Choosing the Number of Component Clusters in the Mixture-
Model using a New Information Complexity Criterion of the Inverse-Fisher Information
Matrix, in: OPITZ, O.; KLAR, R. [Hrsg.]: Information and Classification, Heidelberg,

S. 40-54.

BRAME, R.; NAGIN, D. S.; WASSERMAN, L. (2006): Exploring Some Analytical Charac-
teristics of Finite Mixture Models, in: Journal of Quantitative Criminology, Vol. 22,
S. 31-59.

CELEUX, G.; SOROMENHO, G. (1996): An Entropy Criterion for Assessing the Number
of Clusters in a Mixture Model, in: Journal of Classification, VVol. 13, 1996, S. 195-212.

CUTLER, A.; WINDHAM, M. P. (1993): Information-based Validity Functionals for Mix-
ture Analysis, in: BozDOGAN, H. [Hrsg.]: Proceedings of the first US-Japan Conference
on Frontiers of Statistical Modelling, Amsterdam, S. 149-170.

DIAMANTOPOULOS, A.; WINKLHOFER, H. M. (2001): Index Construction with Formative
Indicators: An Alternative to Scale Development, in: Journal of Marketing Research,
Vol. 38, No. 2, S. 269-277.

EBERL, M. (2004): Formative und reflektive Indikatoren im Forschungsprozess: Ent-
scheidungsregeln und die Dominanz des reflektiven Modells, in: Schriften zur Empiri-

schen Forschung und Quantitativen Unternehmensplanung, Heft 19 / 2004.

EBERL, M. (2006a): Unternehmensreputation und Kaufverhalten. Methodische Aspekte
komplexer Strukturmodelle, Wiesbaden 2006.



18
EBERL, M. (2006b): Formative und reflektive Konstrukte und die Wahl des Struktur-
gleichungsverfahrens. Eine statistische Entscheidungshilfe, in: Die Betriebswirtschaft
(DBW), 66. Jg., Heft 6, S. 651-668.

FAssoTT, G. (2005): Die PLS-Pfadmodellierung: Entwicklungsrichtungen, Moglichkei-
ten, Grenzen, in: BLIEMEL, F.; EGGERT, A.; FASSOTT, G.; HENSELER, J. [Hrsg.]: Hand-
buch PLS-Pfadmodellierung: Methode, Anwendung, Praxisbeispiele, Verlag Schéffer-
Poeschel, Stuttgart 2005, S. 19-29.

HAHN, C. (2002): Segmentspezifische Kundenzufriedenheitsanalyse: Neue Ansatze zur

Segmentierung von Mérkten, Deutscher Universitats-Verlag, Wiesbaden 2002.

HAHN, C.; JOHNSON, M.D.; HERRMANN, A.; HUBER, F. (2002): Capturing Customer Het-
erogeneity using a Finite Mixture PLS Approach, in: Schmalenbach Business Review,
Vol. 54, Juli 2002, S. 243-269.

HAHN, C.; JOHNSON, M. D.; HERRMANN, A.; HUBER, F. (2005): Capturing Customer Het-
erogeneity using a Finite Mixture PLS Approach, in: BLIEMEL, F.; EGGERT, A.; FAs-
SOTT, G.; HENSELER, J. [Hrsg.]: Handbuch PLS-Pfadmodellierung: Methode, An-
wendung, Praxisbeispiele, Verlag Schaffer-Poeschel, Stuttgart 2005, S. 161-180.

HANNAN, E. J.; QUINN, B. G. (1979): The Determination of the Order of an Autoregres-
sion, in: Journal of the Royal Statistical Society. Series B, Vol. 41, S. 255-284.

HAWKINS, D. S.; ALLEN, D. M.; STROMBERG, A. J. (2001): Determining the Number of
Components in Mixtures of Linear Models, in: Computational Statistics & Data Analy-
sis, Vol. 38, S. 15-48.

HOMBURG, C.; KLARMANN, M. (2006): Die Kausalanalyse in der empirischen betriebs-
wirtschaftlichen Forschung - Problemfelder und Anwendungsempfehlungen, in: Die
Betriebswirtschaft (DBW), 66. Jg., Heft 6, S. 727-748.

JEDIDI, K.; JAGPAL, H. S.; DESARBO, W. S. (1997a): Finite-Mixture Structural Equation
Models for Response-Based Segmentation and Unobserved Heterogeneity, in: Market-
ing Science, Vol. 16, 1997, No.1, S. 39-59.



19
JeEDIDI, K.; JAGPAL, H. S.; DESARBO, W. S. (1997b): STEMM: A General Finite Mixture
Structural Equation Model, in: Journal of Classification, Vol. 14, 1997, S. 23-50.

LIANG, Z. (1992): Parameter estimation of finite mixture using the EM-Algorithm and
information criteria with applications to medical image processing, in: IEEE: Nuclear
Science, Vol. 39, 1992, No. 4, S. 11-26.

MCLACHLAN, G. J.; NG, S. K. (2000): A Comparison of some Information Cri-
teria for the Number of Components in a Mixture Model, Technical Report,
Brisbane Department of Mathematics, University of Queensland.

MCLACHLAN, G. J.; PEEL, D. (2000): Finite Mixture Models, John Wiley & Sons, New
York et al. 2000.

NYLUND, K. L.; ASPAROUHOV, T.; MUTHEN, B. O. (2006): Deciding on the Number of
Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simu-
lation Study, White Paper, elektronisch verdffentlicht. [URL]:
http://www.statmodel.com/download/LCA_tech1l nylund_v83.pdf [Stand: 18. Marz
2007].

OLIVEIRA-BROCHADO, A.; MARTINS, F. V. (2006): Examining the Segment Retention
Problem for the “Group Satellite” Case, FEP Working Papers, No. 220, elektronisch
veroffentlicht. [URLY]:
http://www.fep.up.pt/investigacao/workingpapers/06.07.04_WP220 brochadomartins.p
df [Stand: 18. Mérz 2007].

RINGLE, C. M.; WENDE, S.; WILL, A. (2005): SmartPLS 2.0 (M3) beta:

www.smartpls.de.

RINGLE, C. M.; WENDE, S.; WILL, A. (2005): Customer segmentation with FIMIX-PLS,
in: ALWA, T.; CASANOVAS, J.; VINZI, V. E.; MORRINEAU, A.; TENENHAUS, M. [Hrsg.]:
Proceedings of the 4th International Symposium on PLS and Related Methods, Decisia,
Paris, S. 507-514.



20
RINGLE, C. M. (2006): Segmentation for Path models and Unsobserved Heterogeneity:
The Finite Mixture Partial Least Squares Approach, Research Papers on Marketing and
Retailing, No. 35, elektronisch veroffentlicht [URL]:
http://www.ibl-unihh.de/RP035.pdf [Stand: 18. Marz 2007].

RINGLE, C. M.; WENDE, S.; WILL, A. (2007): The finite mixture partial least squares ap-
proach, in: VINzI, V. E.; CHIN, W. W.; HENSELER, J.; WANG, H. [Hrsg.]: Handbook of
Partial Least Squares: Concepts, Methods and Applications in Marketing and Related
Fields, SPRINGER, Berlin et al., erscheint demndchst.

ROSSITER, J. R. (2002): The C-OAR-SE Procedure for Scale Development in Market-
ing, in: International Journal of Research in Marketing, VVol. 19, No. 4, 2002, S. 305-
335.

RusT, R. T.; SIMESTER, D.; BRODIE, R. J.; NILIKANT, V. (1995): Model Selection Crite-
ria: An Investigation of Relative Accuracy, Posterior Probabilities and Combinations of
Criteria, in: Management Science, Vol. 41, No. 2, S. 322-333.

SARSTEDT, M. (2006): Sample- and Segment-size specific Model Selection in Mixture
Regression Analysis. A Monte Carlo Simulation study, in: LMU Discussion Papers,
2006-08, elektronisch veroffentlicht. [URL]: http://epub.ub.uni-
muenchen.de/archive/0001252/01/2006_08_OMU _sarstedt.pdf [Stand: 18. Marz 2007].

SOROMENHO, G. (1994): Comparing Approaches for Testing the Number of Compo-

nents in a Finite Mixture Model, in: Computational Statistics, Vol. 9, S. 65-78.

TOFIGHI, D.; ENDERS, C. K. (2007): Identifying the Correct Number of Classes in
Growth Mixture Models, in: HANCOCK, G. R.; SAMUELSON, K. M. [Hrsg.]: Advances in

Latent Variable Mixture Models, Greenwhich, im Druck.

VRIENS, M.; WEDEL, M.; WIiLMS, T. (1996): Metric Conjoint Segmentation Methods: A
Monte Carlo Comparison, in: Journal of Marketing Research, Vol. 33, Februar 1996,
No. 1, S. 73-85.



21
WEDEL, M.; KAMAKURA, W. A. (2000): Market Segmentation: Conceptual and Meth-

odological Foundations, Kluwer Academic Publishers, 2. Auflage, Boston et al. 2000.

WoLD, H. (1982): Soft Modeling: The Basic Design and Some Extensions, in: JORE-
SKOG, K. G.; WoLD, H. [Hrsg.]: Systems under indirect observation: Causality — Struc-
ture — Prediction, Part 11, North-Holland Publishing, Amsterdam et al. 1982, S. 1-54.

YANG, C. (2006): Evaluating Latent Class Analysis in Qualitative Phenotype Identifica-
tion, in: Computational Statistics & Data Analysis, Vol. 50, S. 1090-1104.



