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Additive, Dynamic and Multiplicative
Regression

Ludwig Fahrmeir, Christian Gieger and Artur Klinger
Institut fur Statistik, Universitat Minchen

We survey and compare model-based approaches to regression for cross-sectional
and longitudinal data which extend the classical parametric linear model for
Gaussian responses in several aspects and for a variety of settings. Additive mo-
dels replace the sum of linear functions of regressors by a sum of smooth functions.
In dynamic or state space models, still linear in the regressors, coefficients are
allowed to vary smoothly with time according to a Bayesian smoothness prior.
We show that this is equivalent to imposing a roughness penalty on time-varying
coefficients. Admitting the coefficients to vary with the values of other covariates,
one obtains a class of varying-coefficient models (Hastie and Tibshirani, 1993), or
in another interpretation, multiplicative models. The roughness penalty approach
to non- and semiparametric modelling, together with Bayesian justifications, is
used as a unifying and general framework for estimation. The methodological

discussion is illustrated by some real data applications.

1. Introduction

Consider first the case of a Gaussian response y which is observed together with

regressors {x1,...,2,}. The classical Gaussian linear model assumes
y=po+ i+ ...+ By, + ¢ (1.1)

with the usual assumptions on the error variable ¢.

In additive models (Hastie and Tibshirani, 1990), some or all of the linear func-
tions 3;x; of the covariates are replaced by smooth functions f;(x;), modelled and
estimated in some nonparametric way, e.g. by kernel and nearest neighborhood
methods or splines. We focus on penalized least-squares methods, which lead to
cubic smoothing splines and related estimators.

Dynamic models are useful for analyzing time series and longitudinal data,

where the variables {y,x1,...,2,} are observed over time. In linear dynamic



models, some or all of the coefficients {5, #1,...,3,} are allowed to vary over
time and (1.1) is modified to

y(t) = Pot) + Bu(t)aa(t) + .. + Bp(1)ay(t) + (1) (1.2)

The time-varying intercept Go(%) is often additively splitted up into a trend com-
ponent m(t) and a seasonal component s(¢), and sometimes no covariates are
present in the model. In the state space approach to dynamic models (Harvey,
1989; West and Harrison, 1989) the parameters or ‘states’ {3o(t), ..., 5,(1)} obey
a linear Markovian transition model or, in other words, a Bayesian smoothness
prior. Following Bayesian arguments, the sequence of ‘states’ is estimated by
the well-known linear Kalman filtering and smoothing algorithms. We show in
Section 3 that this is equivalent to minimizing a penalized least-squares criterion,
so that dynamic modelling methods can also be interpreted as a model-based
semiparametric roughness penalty approach.

If the parameters are allowed to vary with the values of other covariates than

time, say v, ..., v,, one arrives at varying coefficient models

y = Bo(vo) + Bi(vi)er + ...+ By(vp)w, + €, (1.3)

as introduced by Hastie and Tibshirani (1993) from the nonparametric point
of view. Since the terms ;(v;)x; in (1.3) may also be interpreted as special
forms of multiplicative interaction between v; and z;, we also say that (1.3) is a
multiplicative regression model.

For non-Gaussian responses y, for example discrete or categorical responses,
generalized linear models extend the linear model (1.1) to a much broader class.
However, they still are parametric and retain an essential feature of linear models
by relating the mean Ey to a linear predictor n = o+ 121 +. ..+ By, via a link
function. Obviously, generalized additive, dynamic and multiplicative models can
be defined in the same way as before by appropriate modification of 5.

Section 2 describes the models in more detail, accompanied by real data ex-
amples. Estimation by the roughness penalty approach is dealt with in Section
3, and Section 4 contains applications of the methods to the real data examples.
Section 5 concludes with some remarks on some topics where further research

would be useful and interesting.



2. Generalized regression models

2.1 Additive models

Consider the common situation of cross-sectional regression analysis with a re-
sponse variable y and a vector x = (x1,...,x,) of covariates. The observations
(yi,zi), ¢ = 1,...,n on (y,x) are assumed to be independent. In the simplest
case of linear Gaussian regression one assumes model (1.1), where y is normally
distributed and F(¢) = 0, var(e) = o?. In other words, the (conditional) mean
i = E(y|z) of y is specified as a linear predictor n = o + frx1 + ... + Bpap.
Generalized linear models provide a comprehensive parametric framework for
regression analysis with non-Gaussian responses, including categorical and coun-
ted responses. In their original version (e.g. Mc Cullagh and Nelder, 1989),
generalized linear models assume that the distribution of y given x comes from
an exponential family and that the mean y = F(y|x) is related to the linear

predictor n by a response or link function & in the form

p="h(n)=h(Bo+ Brw1+ ...+ Bpa,).

Due to the distributional assumptions the variance function var(y|x) is then de-
termined by choice of the specific exponential family. Common models are logistic
models, with ¢ = exp(n)/{1 + exp(n)} and y a binary variable, and log-linear
models with ¢ = exp(n) and y a Poisson variable. Dropping the exponential
family assumption,  may be any reasonable parameter of interest of the like-
lihood or some quasi-likelihood of the observations, as for example in the Cox
model where 1 parametrizes a part of the hazard function. Also u, n and h
may be multidimensional if the response variable is a vector y = (y1,...,y,), as
for example in multinomial models for multicategorical responses, where y; is a
dummy variable representing category j. Then, generally, a vector of predictors
Bo; + Bijer + ... + Bpix, will be necessary, see e.g. Fahrmeir and Tutz (1994a,
ch.3).

In generalized additive models (Hastie and Tibshirani, 1990) all or a part
of the linear functions 3;x; of the regressors are replaced by smooth functions
fi(x;), so that

n=filz)+...+ folzp), (2.1)

or, for example,

n = filz1) + fazzs + ... + Bpzp, (2.2)



if only 1 is metrical and x4, ..., z, are binary. The smooth functions can be mo-
delled by flexible parametric forms, e.g. by piecewise polynomials or orthogonal
series, or nonparametrically, e.g. by using kernel, nearest neighborhood or pena-
lized likelihood methods. In this paper we will focus on penalized least squares
and likelihood methods as a unifying modelling and estimation approach. From
this point of view, the smooth functions f;() are unknown, but fixed. It should
be noted, however, that appropriate Bayesian formulations of smoothness lead
to the same estimate, see e.g. Wahba (1978) and Green and Silverman (1994,
Section 3.8).

Example 1: Credit-Scoring Revisited

In credit business banks are interested in estimating the risk that consumers will
pay back their credits as agreed upon by contract or not. The aim of credit-
scoring systems is to model or predict the probability that a client with certain
covariates (“risk factors”) is to be considered as a potential risk. We will analyze
the effect of covariates on the binary response “creditability” by a logit model.
Other tools currently used in credit scoring are (linear) discriminance analysis,
classification and regression trees, and neural networks.

The data set consists of 1000 consumer’s credits from a South German bank.
The response variable of interest is “creditability”,which is given in dichotomous
form (y = 0 for creditworthy, y = 1 for not creditworthy). In addition, 20
covariates that are assumed to influence creditability were collected. The raw
data are recorded in Fahrmeir and Hamerle (1984, see p. 334 ff. and p. 751 ff.)
and are available on electronic file. In Fahrmeir and Kredler (1984, p. 285-86)
and Fahrmeir and Tutz (1994a, Ch. 2) a logit model was used to analyze a subset
of these data containing only the following covariates, which are partly metrical

and partly categorical:

X1 running account, trichotomous with categories “no running account”
(=1), “good running account” (=2), “medium running account” (“less
than 200 DM” = 3 = reference category)

X3 duration of credit in months, metrical

X4 amount of credit in DM, metrical

X5 payment of previous credits, dichotomous with categories “good”,
“bad” (=reference category)

X6 intended use, dichotomous with categories “private” or “professional”
(=reference category)

X8 marital status, with reference category “living alone”.
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Assuming a logit model with linear predictor

for the probability pr(y = 1|z) of being “not creditworthy”, one obtains the

following maximum likelihood estimates of the covariate effects:

Intercept  X1[1] X1[2] X3 X4 X5 X6 X8
value 0.01 0.62 -1.32  0.03 0.00 -0.98 -0.46 -0.54
t-value 0.03 3.55 -6.53 445 0.86 -3.89 -2.90 -3.38

This leads to the somewhat surprising conclusion that the covariate X4 “amount
of credit” has no significant influence on the risk. In Section 4, the data are
reanalyzed by an additive logit model, with the linear functions #3X3 and 3,X4
replaced by smooth functions f3(X3) and f4(X4). The results obtained there

lead to a different conclusion.

2.2 Dynamic models

Suppose now that the data consist of repeated observations of the response y and,
possibly, a vector @ = (x1,...,x,) of covariates at T time points t; <1y < ... <
t7. To simplify notation, we write ¢ € {1,...,T}, but equidistant time points are
not a necessary prerequisite.

Linear Gaussian dynamic models relate the observations {y(¢), z1(%),. .., x,(¢)}
in additive form, including a trend component m(t) and perhaps a seasonal com-

ponent s(t):

y(t) = m(t) + (1) + Sr()ar(t) + ...+ Bp(t)ap(1) +e(1), (2.3)

where y(t) is normally distributed, and E¢e(t) = 0, vare(t) = of. The effects
Ba(t), ..., B3,(t) may be time-varying or not. If no covariates are present, (2.3)
reduces to a simple additive structural time series model, where m(t), s(t) are
unknown sequences or functions of time. Traditional descriptive methods for
analyzing trends and seasonal components are based on moving averages or the
method of graduation (Whittaker, 1923), which imposes a certain roughness pen-
alty on the trend function. We follow here the state space approach to structural

time series analysis (e.g. Harvey, 1989), where the observation model (2.3) is



supplemented by a linear Gaussian transition model for m(t), s(t) and (?). Ga-

thering m(t), s(t) and () in a ‘state’ vector a(t), the general form is
a(t) = F(t)alt—1)4+ &), t=1,...,T (2.4)

with a non-random transition matrix F'(¢), Gaussian white noise {&} with & ~
N(0,Q;) and initial state a(0) ~ N(ag, Qo).
Admitting multivariate observations y(t), the observation model (2.3) may be

rewritten in the form
y(t)=Z(t)alt)+e(t), t=1,...,T, (2.5)

where Z(1) is an observation or design matrix of appropriate dimension, reducing
to a design vector z/(t) if y(¢) is scalar. The Gaussian white noise sequence
{e(t) ~ N(0,%;)} is assumed to be uncorrelated with {£(¢)} and «(0). Simple
nonstationary models for trend or time-varying effects are first or second order

random walks
m(t)=m(t—1)+u(t), m(t)=2m(t—1)—m( —2)+ u(t) (2.6)

with u(t) ~ N(0,¢?). By appropriate definition of Z(¢) and F(t) they can be
put in state space form as well as more complicated seasonal components, see
e.g. Harvey (1989, pp. 40-43) and Fahrmeir and Tutz (1994a, Section 8.1). From
a Bayesian perspective, the transition models (2.4), (2.6) can be interpreted as
‘smoothness priors” for {a(t)} or {m(t), s(t), #(t)}. In fact it turns out, see
Section 3, that these ‘smoothness priors’ are the Bayesian justification for the
roughness penalty approach.

The obvious modification for observations y(¢) with exponential family densi-
ties are dynamic generalized linear models (e.g. West, Harrison and Migon, 1985;
Fahrmeir,1992; Fahrmeir and Tutz, 1994a, ch. 8). The observation models (2.3)
or (2.5) are now specified by an exponential family density for y(¢), given a(t)

and (1), with conditional mean
E(y(nla(t), 2(1)) = u(t) = h(n(1)) (2.7)
the predictor
2(1) = m() + () + ' (DB() resp. (1) = Z(D)a() (2.8)

and one of the common response functions h. The observation model (2.7) is

again supplemented by a linear Gaussian transition model (2.4) or (2.6).

6



For time series of counts, loglinear Poisson models y(t)|a(t), x(t) ~ Po(A(t)),
A(t) = exp(n(t)) are a standard choice. If the number of counts at ¢ is limited
by n(t), say, binomial regression models, in particular logit or probit models,
are often appropriate: y(t)|a(t), x(t) ~ B(n(t),n(t)); n(t) = h(n(t) = '(t)a(t)),
with A the logistic or standard normal distribution function. For n(¢) = 1, this
is a common way for modelling binary time series.

Extensions to time series of multicategorical or multinomial responses proceed
along similar lines. Let k be the number of categories and y(t) = (y1(%), ..., y,(%))
be a vector of ¢ = k — 1 dummy variables, with y;(¢) = 1 if category j has been
observed, y;(t) = 0 otherwise. Dynamic categorical response models are specified
by relating response probabilities 7;(t) = pr(y;(t) = 1), j = 1,...,¢, to a ¢-

dimensional predictor

n(t) = (m(t),..,ng(1))" = Z(t)e(t) . (2.9)

The most common models for ordered categories are dynamic cumulative models.
They can be derived from a threshold mechanism for an underlying linear dynamic

model. The resulting response probabilities are

mi(t) = F(nj(1)) = F(nja (1)), J=1....4q (2.10)

with linear predictors

ni(t) = m;(t) + 2'(1)B(1),
ordered threshold parameters —oo = mg(t) < ... < my(t) < oo, a vector 3(t) of
global covariate effects, and a known distribution function F', e.g. the logistic one.
The thresholds may also contain additive seasonal components s;(¢). Dynamic
versions of other models for ordered categories discussed e.g. in Fahrmeir and
Tutz (1994a, Section 3.4) can be designed with analogous reasoning.

In many applications, more than one individual or object is observed sequen-
tially over time. Let us consider longitudinal or panel data which consist of
observations (y;(t), x;(t)), ¢ =1,...,n,t =1,...,T, for a population of n units
observed across time. The state space modelling approach to longitudinal data
allows, in principle, to deal with random effects (‘states’) across units and across
time, like stochastic trend and seasonal components. We will confine attention
to the case where states are constant across units. In this case it is assumed that

the predictor for observation (y;(t), x;(t)) is

n(i.) = m(1) + s(1) + L(DB(1). (2.11)



This means that m(t), s(¢) and 3(t) are population-averaged effects over time.

Random effects across units could be modelled in additive form, e.g. by

n(i1) = () + m(1) + 24(1)B(1) (2.12)

together with a Gaussian prior (i) ~ N(0,G).

Example 2: IFO business test

The TFO institute for economic research in Munich collects categorical monthly
data of firms in various industrial branches. The questionnaire contains questions
on expectations and realizations of variables like production, orders in hand,
demand etc. Most answers are in categories like increase (4), decrease (—), or
no change (=). Considering all firms within a certain branch we have categorical
longitudinal data.

We apply a dynamic cumulative model to data collected in the industrial
branch “Steine und Erden”, for the period of January 1980 to December 1990.
Firms in this branch manufacture initial products for the building trade industry.

The response variable is formed by the production plans P(t). Its conditional
distribution is assumed to depend on the covariates “orders in hand” O(t) and
“expected business condition” D(t), and on the production plans P(t — 1) of
the previous month. No interaction effects are included. Each trichotomous

”

variable is described by two (¢ = 2) dummy variables, with “—" as the reference

category. Thus (1,0), (0,1) and (0,0) stand for the responses “+7 “=" and “-".
The relevant dummies for “+” and “=" are shortened by P(¢)*, P(¢)=, etc. Then
a cumulative logistic model with time-varying thresholds mq(¢), mz(t) and global
covariate effects 31() to fB¢(t) is specified by

prP(t) ="47) = h(ma(t) + B()P(t = )T + Bo(t) P(t — 1)T + Ba(t) D(1)"
+B1(1)D(1)T + B5(HO(1)T + Ba(1)O(1)7),
h(ma(t) + Bi(t)P(t = 1)T + Bo(t) P(t — 1) + B5(t) D(t) "
+B4(1) D)™ + Bs(1)O(1) T + Be(1)O()7) ,

>
~
e
=
Il
T
@]
b
|
Il

where pr(P(t) = ‘47) and pr(P(t) = ‘4’ or ‘=’) stand for the probability of
increasing and nondecreasing production plans, and h is the logistic distribution
function. The time-varying parameters my(t), ma(t), 51(t), ..., Bs(t) are modelled
by an eight-dimensional first order random walk. More details on this and a

second example can be found in Fahrmeir and Nase (1994).



Example 3: Dynamic Pair Comparisons for the German Fufiball-
Bundesliga.

In paired comparisons, treatments, players or teams {ai,...,a,} are compared
with each other in pairs. Let y;; denote the observed response when the pair
(ai,a;) meets. For soccer teams, y;; is trichotomous where the categories 1, 2,
3 stand for “a; wins”, “draw”, “a; wins”. Based on latent random utilities and

thresholds, Tutz (1986) derives the ordinal logistic paired comparison model

priyi;=1) = F(h+o; —a;),
pr(yi; =2) = Fl+ 0, —aj) — F(0 + o; — a;),
priyi; =3) = 1—pr(y; =1) —pr(y; =2),

where F' is the logistic distribution function. The parameters «; represent the
unobserved “ability” of team a;. The role of thresholds refers to the home court
advantage. In the German Fuflball-Bundesliga teams meet twice within each
season giving each team the home court advantage once. For competing teams
the pair (a;, a;) implies that the game is played on the home court of a;. The home
court advantage is most obvious in the case where the abilities of teams are equal
i.e. a; = aj. Then the probabilities pr(y;; = r) = F(0,) — F'(6,_1) depend only on
the thresholds. Since the teams have equal abilities the probability of response
categories reflects the home court advantage which of course is specific for the
game. In our soccer example it turns out that home court advantage is rather
stable over the years, yielding the thresholds 0, = —0.358 and 6, = 1.039. For
a; = a; that means pr(y;; = 1) = 0.411, pr(y; = 2) = 0.328, pr(y;; = 3) = 0.261.
Therefore a soccer team will beat another team of equal ability on their home
court with probability 0.411 and will be beaten only with probability 0.261.

Since we analyze results of pair comparisons of soccer teams for the seasons
1966 to 1987, it is not to be expected that abilities remain constant over time.
Fahrmeir and Tutz (1994b) introduce dynamic models for time-dependent ordered
pair comparisons for responses y;;(t) observed at time ¢ and possibly time-varying
latent thresholds 61(%), 02(¢) and abilities «;(), a;(¢). The observation model is
then

) = F(0i(l) + ai(t) — a;(1))

pryi(t) =1
2) = F(02() + ailt) — a;(t)) = F(0i(t) + ci(t) — a;(1))

pr(yi; (1)

and is supplemented by a transition model, e.g. random walk models, for 6,(t),

0s(1), ci(t) and ().



2.3 Multiplicative models

Dynamic models with predictors (2.3), (2.9) or (2.11) are commonly interpre-
ted as extensions of (generalized) linear models with time-varying intercepts and
covariate effects. Another way to look at them is to consider time as another,
though special covariate. Then a term a;(¢)3;(¢) has the form of a multiplicative
interaction term between the possibly time-varying covariate x; and a smooth
function of the ‘covariate’ time. Admitting other covariates, say wvg,v1,...,v,,

than time, we arrive at multiplicative models of the form

1= Bo(vo) + Si(vi)ar + ... + Bp(vy)ay, (2.13)

where terms (;(v;)x; can be seen as a special kind of interaction between v; and
xj. Another way is to look at (2.13) as a model linear in the regressors 1, ..., 2,
but with parameters changing smoothly with the values of vg,vy,...,v,, and
to call it a ‘varying-coefficient model’, as introduced by Hastie and Tibshirani
(1993). Although looking apparently special, multiplicative or varying-coefficient
models are quite general: For 3;(v;) = 3;, i.e. constant functions 3;(), one gets
back generalized linear models, for 1 = ... = z, = 1 additive models and for
vg = v1 = ... = v, =t = time dynamic models. Many other particular models
can be written in the form (2.13), see Hastie and Tibshirani (1993) and the
discussion following the paper. In the following Example 4, we will consider a
specific application. In all cases, the unspecified functions 3;() may be modelled
in various ways, e.g. using kernel methods, penalized least squares and likelihoods,
or other nonparametric approaches as in additive models, or imposing Bayesian
smoothness priors as in dynamic models. In Section 3, we will deal with the

estimation problem under the general framework of roughness penalties.

Example 4: Rental tables (“Mietspiegel”)
Surveys on rents for lodging, paid according tenancy agreements between let-
ters and tenants of rented flats or appartments, are conducted regularly in larger
communities or cities. Based on a sample of tenancies, traditional rental tables
contain average rents in form of contingency tables with cells determined by cate-
gories of floor space, year of construction and perhaps site of the flat. According
to the German “Mieterhohungsgesetz”, rental tables may be used to determine
adequate raising of rents.

As an alternative to contingency tables, regression may be a useful tool for
analyzing how rents depend on floor space, year of construction and factors cha-

racterizing site, type and equipment of the flat. For our example we use a sample
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of 1969 tenancies for flats in Munich, with floor space from 30 to 120 square
meters and year of construction between 1890 and 1989. The response variable

is the net rent, which does not contain operating costs. Covariates are

I floor space in square meters,

A age (= year of construction),

St site above average, binary, with ST = 0 = average as
reference category,

S~ site below average, binary, with S~ = 0 = average as
reference category,

H  no central heating, binary,

B no bathroom, binary,

L bathroom, with equipment above average.

A linear additive regression model y = n + ¢ with

n=po+ 5 F+ A+ B3ST 4 B4ST + BsH + 3sB + 3L

will not be adequate since increase or decrease of the average rent 7 due to
one of the factors age, site or equipment would be independent of floor space
of the flat, leading to implausible results. Instead, multiplicative models with
interaction terms like F'H are more realistic. Also it is unclear wether the metrical
covariates I’ and A can modelled appropriately by linear functions. Therefore, a

multiplicative model with predictor
N = Bi(F) + FBo(A) + Ba(F)ST + Bu(F)S™ + Bs(F)H + Bs(F) B + Bo(F) L

can be useful for exploratory data analysis.

3. Estimation

In this section, the focus is on the roughness penalty approach. Methods for
selecting smoothing parameters are only mentioned and Bayesian posterior mean

estimation will be addressed to only briefly.
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3.1 Penalized least squares

Smoothed estimators of regression curves may be considered as compromises bet-
ween faith with the data and reduced roughness caused by the noise in the data.
This view is made explicit in the construction of smoothing splines. For bivariate
observations (y;, #;), ¢ = 1,...,n of the continuous variables (y,x), the star-
ting point is the following minimization problem: Find the twice continuously

differentiable function f() that minimizes the penalized sum of squares

n

> (i = fla) + )\/f”(u)Qdu, (3.1)

=1

where [a, b] contains the covariate values ¥y < ... < x,. The first term in (3.1)
is the residual sum of squares, which is used as a distance function between
data and estimator. The second term penalizes roughness of the function by
taking the integrated squared second derivative | f”(u)?du as a global measure
for curvature or roughness. The parameter A > 0 is a smoothing parameter
that controls the trade-off between smoothness of the curve and faith with the
data: Large values of the smoothing parameter A give large weight to the penalty
term, therefore enforcing smooth functions with small variance but possibly high
bias. For rather small A, the function f() will nearly interpolate the data. The
function f() minimizing (3.1) is a natural cubic smoothing spline with knots at
1 < ... < x, (Reinsch, 1967). Since cubic splines are actually defined by a
finite number of parameters, the minimization problem with respect to a set of
functions reduces to a finite-dimensional optimization problem. It can be shown
that minimization of (3.1) is equivalent to minimizing the penalized least-squares

criterion
PS(N)=Ww—=Hy—-H+A'KS, (3.2)
where y = (y1,...,yn) are the data and f = (f(x1),..., f(x,)) denotes now the

vector of evaluations of the function f(). The penalty matrix K has a special
structure and can be written as the product of tridiagonal band matrices, see
e.g. Green and Silverman (1994, ch. 2). The minimizer fof PS(f) is obtained by

equating the vector of first derivatives to zero. This yields the linear smoother
f =+ XK)y (3.3)

with smoothing matrix S = (I + AK)™!,

12



For computational reasons, f and the smoothing matrix S are generally not
computed directly by inversion of I + AK (note that S is an full (n x n)-matrix).
Instead, f is computed indirectly, e.g. by the Reinsch algorithm.

In (3.2) the distance between data and estimator is measured by a simple
quadratic function. More generally a weighted quadratic distance may be used.
For given diagonal weight matrix W a weighted penalized least squares criterion
is given by

(y =Wy =)+ AfKf. (3.4)
The solution is again a cubic smoothing spline, with the vector f of fitted values
now given by

f=(W+AK)" "Wy, (3.5)

In (3.2) and (3.4), the smoothing parameter was assumed to be known or given.
In practice it is either obtained by a subjective choice or by an automatic data-
driven method, e.g. by minimizing some cross-validation score, see Hardle (1990)
for details.

The integrated squared curvature [ f”(u)? du and the resulting penalty matrix
K are not the only way to penalize roughness of the estimator. Simple roughness

penalties are the sums of squared first or second differences

Z{f flric)}, Da(f Z{f —2f(xiz1)+ f(wi2)}*. (3.6)

If the differences x; —x;_1 are small and almost equidistant, second differences are
good approximations to f”(x), and the resulting smooth estimate f is very similar
to a cubic spline. However, the penalty matrices K satisfying f'K f = Dy(f) and
Ds(f) are now tridiagonal and pentadiagonal. Using band matrix manipulations,
this makes computation of f in O(n) operations quite easy.

For additive models

y=filz)+ ...+ fplzp) +¢

the penalized sum of squares is generalized to

n

Zwi(yi—fl(wil)— (i) —I—)\l/ Vdut...+ )\, /f” Vdu. (3.7)

=1

The minimizing functions are again cubic splines. Parameterizing by the vectors
fi = (fi(a1)),-. ., filxn;))y g = 1,...,p, (3.7) can be written as the penalized

least squares criterion
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PS(flv"'vfp) = (y_fl__fp)/w(y_fl__fp)—l— (38)
+MAK 4.+ Apf;[(pfp,

where W = diag(wy, ..., w,) and the penalty matrices K; are defined analogously

to K. The minimizing functions now satisty the system of equations

w e WHAK, fo Wy
or equivalently
fii = WHME)" Wy —fo—...— [,)
o= (W MK W= fim = fy).

The solutions fl,...,fp are obtained iteratively by ‘backfitting’, a Gauss-
Seidel type algorithm, see Buja, Hastie and Tibshirani (1989) and Hastie and
Tibshirani (1990) for details. Automatic choice of the smoothing parameters
A1, ..., A, based on cross-validation, is now far more demanding, since it would
require that the diagonal or the trace of the global smoother matrix were available
with reasonable amount of effort. It seems that additional research is necessary
here.

A non-iterative and simpler solution avoiding backfitting can be obtained for

semiparametric models (2.2) with
i = fl(xil) + ﬂ?xﬂ +...+ 6pxip = fl(xil) + Zzlﬂv 1= 17 RN

zh=(xizy ..o xip), 3 = (P2, ..., Bp). Defining the design matrix 7 = (z1,...,2,),

K3

one obtains

>

= {ZW{I-8S)Z}y ' ZW(I - S)y
fi = Sly—23), S = (W+IK)"'W.
Consider now Gaussian dynamic linear models (2.4), (2.5). Given the obser-
vations y = (y(1),...,y(T)), estimation of «a(?) is traditionally called filtering for

t =T and smoothing for ¢t < T'. Due to the linearity and normality assumptions
in (2.4), (2.5), the posterior distribution of a(?) is also Gaussian

a(t)ly ~ N(Gtm Vt|T)

14



with posterior mean a,7 = E(a(t)|y) and posterior covariance matrix Vyr =
E((a(t) — ayr)(a(t) — ayr)’). Linear Kalman filters and smoothers provide ayr,
Vir in a computationally efficient, recursive way. Very short proofs are based
on Bayesian arguments using conjugate prior-posterior properties of Gaussian
distributions. In the following, we will sketch the lines of argument for a derivation
which corresponds to the historically first derivation (Thiele, 1880) and shows that
Kalman filtering and smoothing is actually equivalent to penalized least squares
estimation.

Consider the joint posterior p(a|y), with a = ((0),a(1),...,a(T)). Since
this posterior is Gaussian, posterior means and posterior modes are equal and can
therefore be obtained by maximizing the posterior density. Repeated application
of Bayes’ theorem, thereby making use of the model assumptions and taking
logarithms shows that this maximization is equivalent to minimization of the

penalized least-squares criterion

PS(a) = Z(y(t) — Z(t)a() S (ye — Z(t)a(t)) + (a(0) — ao) Qg™
=l , (3.9)
(a(0) — ao) + Z(a(t) — F(t)a(t —=1))Q; (alt) — F(t)a(t — 1))

with respect to a. For simplicity, we have assumed that ¥, (); are nonsingular.
One may, however, drop this assumption.

As an example, consider the model y(t) = m(t) + x(¢)3(t) + (¢) with in-
dependent second-order random walks for m(¢) and S(t). Setting \; = o2/¢2,,
Ay = a2/ q%, where ¢2 , qé are the variances of the random walk error variables,
and omitting priors for m(0), m(—1), 3(0), #(—1), criterion (3.9) reduces to

PS(a) = Y (y(t) —m(t) — 2(1)B(t))’
+ MY (m(t) = 2m(t — 1)+ m(t - 2))° (3.10)
+ Ay (B(t) = 26(t = 1) + B(t - 2))*.

Introducing m=(m(1),....,m(7T)), 5=(5(1),...,5(T)), X=diag(x(1),...,2(T))
and defining the pentadiagonal penalty matrix K appropriately, (3.10) can be

15



rewritten as
PSa)=(y—m—XB3)(y—m—XB)+ Mm'Km+ \6'K3,

which is in complete correspondence to the penalized sum of squares for additive
models. For dynamic models, however, it is more useful to gather m and
in the ‘state’ vector a and to rewrite (3.9) in matrix notation as follows: To
incorporate initial conditions, we define y(0) := ag, Z(0) := [ and redefine y =
(y(0),...,y(T)). Introducing the (block-)diagonal design matrix

and the (block-)diagonal weight matrix

Qal e 0

W = 7
0 Nt
criterion (3.9) can be rewritten as
PS(a) = (y—Zoz)'W(y—Zoz)—l—o/[{'oz, (3.11)

with a block-tridiagonal and symmetric penalty matrix K. The minimizer & of
PS(a) is given by
b= (ZWZ+K)'ZWy. (3.12)

Since it is the mode of the Gaussian posterior p(aly), it coincides with the po-
sterior mean (agr, ..., ayr, ..., arr), which is computed by the linear Kalman
filter and smoother. It computes & without explicitly inverting Z’'WZ + K, by
making efficitient use of its block-banded structure and avoiding any backfitting
iterations. Moreover, as a side product, the block-diagonals Vjr of the smoother
matrix are provided. This is useful, for example, to compute cross-validation
scores for automatic data-driven choice of smoothing parameters, or in Bayesian
terminology, hyperparameters, such as error variances in dynamic models. The
Bayesian view is also useful for defining likelihood-based procedures to estimate

hyperparameters, see e.g. Harvey (1989).
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For multiplicative or varying-coefficient models (2.13), Hastie and Tibshirani
(1993) propose to estimate the unknown smooth functions By(vo),. .., 5,(v,) by

minimization of the penalized least squares criterion

n

> wilyi = Bolvio) = Bu(vi)wa — ... = Bylvip)wip)”
(3.13)

h +A0/ﬁg(u)2du+...+Ap/ﬁ;’(u)2du.

Criterion (3.13) reduces to the criterion (3.7) for additive models by identifying
Vigy -« -, Vip 10 (2.13) with the covariates w;1,..., 2, in (3.7) and setting x;; =
... =y = 11in (3.13). The criterion is also closely related to the penalized least
squares criteria (3.9) and (3.11) for dynamic models: In (3.9) and (3.11), covaria-
tes v, ..., v, are equal the ‘covariate’ time ¢, and the penalty terms are discrete
time versions of the penalty terms in (3.13), for example second differences in
(3.10) compared to second derivatives in (3.13).

To derive the estimation algorithm for multiplicative models let us first con-

sider a simple Gaussian multiplicative model

Y = ﬂ(vz)xz + €. (314)
This model is useful when observations y = (y1,...,y.), © = (21,...,2,) and
v1,...,0, are metrical, and the ratio y;/x; is assumed to vary smoothly over v.
Let vy <...<w, <...<wvy be the uniquely ordered sequence of the v;’s, so a

n X U design matrix Z can be defined by its components

7. - { x; if (v, ;) is observed at v, (3.15)

0 else.

Using parametrization (3.15) with the coefficients 5 = (f(v1),. .., B(vy))’, mo-
del (3.14) is written as y = Z3 + . Note, that the resulting weighted penalized

least squares criterion

(y = ZB)W(y = ZB) + \B'K 3, (3.16)

with W and K defined as above has the same form as for dynamic models in
(3.11), but the design matrix is generally different. Equating the first derivatives
of (3.16) to zero yields the equation

ZWZB+NKB = 7'Wy (3.17)
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to obtain the estimations B The corresponding ‘ratio—type’ smoothing matrix
projecting y onto Z f is S = Z(Z'WZ + AK)"'Z'W, where Z'W Z is a diagonal
matrix. If the ‘discrete’ roughness penalties described in (3.6) are used, equa-
tion (3.17) can again be solved directly by efficient band—matrix manipulation
algorithms. For smoothing splines, the Reinsch algorithm has to be extended by
some modifications to get an O(U) algorithm for solving (3.17). Details are given
in Klinger (1993) and Hastie and Tibshirani (1993). Using an intercept vector
zo = (1,...,1)" to build the matrix Z as defined in (3.15), one obtains a matrix
Zo which allows simple handling of tied predictor values for related scatterplot
smoothers.

With the formulations stated above, criterion (3.13) can be written similarly

as for additive models. The weighted penalized least squares criterion

PS(Bo,....0,) =
(y — ZoBo— Z1Bv — ... = ZpBp) Wy — ZoBo — Z1B1 — - .. — Zp3y) (3.18)
+X0B6Kofo + ...+ A8 Ky

yields an analogous system of equations for the minimizing functions 3,....f,
given by
: - : L = : . (3.19)
ZW Zy o LW Z,+ ALK B, Z Wy

Due to the special structure of system (3.19), the backfitting algorithm is again
feasible to compute the solutions Bo, e ,Bp. In each backfitting step a ‘ratio—

type’ smoothing matrix
J-1 P
)3 1 0
28" =5, (y—§jzhﬂ,§>— > Zhﬁ,S))
h=0 h=j7+1

is applied to actual partial residuals, 3(°) denotes the results of the previous
loop and B corresponds to the actual loop. These steps are repeated for j =

1,....p,1,...,p,... until convergence in fy, ..., 3,.
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3.2 Penalized likelihood estimation

Up to constants, the sums of squares in the penalized least squares criteria
(3.7), (3.9) and (3.13) are identical to the sums of (negative) Gaussian log-
likelihood contributions of the observations. For generalized additive, dynamic
or multiplicative models, these sums of squares are replaced by the sums of non-
Gaussian log-likelihoods I;(y;, n;) for generalized additive and multiplicative mo-
dels or I;(y(t),n(t)) for generalized dynamic models, with predictors n; or n(t) as
in Section 2. For generalized additive or multiplicative models, the minimizing
functions are again natural cubic splines and are now obtained by a Fisher scoring
or Gauss-Newton algorithm. This can be written as an iteratively weighted least
squares algorithm, with an inner backfitting loop in each iteration step, applied to
‘working’ observations, see Hastie and Tibshirani (1990) for generalized additive
models and Klinger (1993) for generalized multiplicative models.

Similarly, filtering and smoothing in generalized dynamic models can be car-
ried out by iteratively weighted Kalman filtering and smoothing algorithms, ap-
plied to working observations (Fahrmeir and Tutz, 1994a, ch. 8; Fahrmeir and
Wagenpfeil, 1994). The penalized least squares criterion PS («) in (3.9) or (3.11)
is replaced by the penalized log-likelihood criterion

1
PL(a)=1(a)— 50/[&’@,

with o and K as in Section 3.1, and

L) = 5 (a(0) — a0)Q5"(a(0) ~ a0 Zzt

with individual log-likelihoods [; and linear predictors n(t) = Z(t)a(t).
We define y = (y(0),...,y(T)) and Z = diag(Z(0),...,Z(T)) as in Section

3.1. Furthermore we introduce the vector of expectations
pler) = (2(0), pa(a(l)), ..., pr(a(T)),
with g (a(t)) = h(Z(t)a(1)), the block diagonal covariance matrix
Y(a) = diag (Qo, Y1(a(1)), ..., Er(a(T))),
and the block-diagonal matrix
D(a) = diag (I, Di(a(1)),..., Dr(a(T))),
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where D;(a(t)) = 0h(n(t))/0n is the first derivative of the response function h(n)
ty=2

evaluated at n( (t)a(t). Then the first derivative of PL («) is given by

u(a) = OPL(a)/da = Z'D(a)X Ha)(y — p(a)) — Ka.
The expected information matrix is
Ula) = —E(@QPL (a)/0add’) = Z'W(a)Z + K

with the weight matrix W(a) = D(a)X 7! (a)D(«). A Fisher-scoring step from

the current iterate o, say, to the next iterate o' is then
(ZW(a")Z + K)(al — ) = Z'D(a®)57 (") (y — pla®)) — Ka.
This can be rewritten as
ol = (Z'W(a)Z + K)' Z'W (a°)3°, (3.20)
with “working” observation
g" =DM (a")(y — p(a”)) + Za".

Comparing (3.20) with (3.12), we see that o' can be obtained from the current ite-
rate by applying common linear Kalman filtering and smoothing to the “working”
observation ¢°. In contrast to the iteratively weighted least squares algorithms
for additive or multiplictive models, no inner backfitting loop is necessary. Also,
the block-diagonal of the smoother matrix, which is required for obtaining con-
fidence bands or cross-validated choice of hyperparameters, is obtained directly

from the algorithm.

4. Applications

4.1 Credit-Scoring Revisited

In section 2 we applied a logistic regression model with a linear predictor to
analyze consumer’s creditworthiness. The maximum likelihood estimates led to
the surprising conclusion that the variable ‘amount of credit’ has no significant
influence on the risk of borrowers not paying back their credits. Alternatively
we treat it as a generalized additive regression problem, regarding X3 (‘duration
of credit’) and X4 (‘amount of credit’) as splined variables. This leads to the
additive predictor

n=fo+ S X1 + BX1[2] + f5(X3) + fa(X4) + B5X5 + B6 X6 + G X8.
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Figure 4.1: Estimated dependence on ‘duration of credit’

This nonparametric approach avoids the issue of selecting a particular parametric
dependence, e.g. ‘linearity’, of the response ‘creditability’ on ‘duration of credit’
and ‘amount of credit’. The point of view we take is: Let the data show us the
appropriate form by a smooth curve. The analysis gives the following maximum

penalized likelihood estimates of the categorical variables:

Intercept  XI1[1] X1[2] X5 X6 X8
value 0.77 0.65 -1.19 -0.91 -0.49 -0.59

In comparison with the linear logistic model the estimated coefficients change
only slightly. The estimated curves are shown in Figure 4.1 and Figure 4.2 (solid
line). While the variable ‘duration’ is not far away from linearity, the estimate
of ‘amount of credit’ is clearly not linear. The curve shows that not only high
credits but also low credits (below 4000 DM) increase the risk. The smoothing
parameters have been chosen by vision. A data-driven choice of the smoothing
parameters, e.g. by generalized cross-validation, is possible in principle. However,
efficient computation would be required.

Since the curve of ‘duration’ in the logistic additive model is almost linear, we
reanalyze the data with a logistic semiparametric model of the form (2.2), with

predictor
n=Po+ 51 X1[1] + B2 X1[2] + B3 X3 + fa(X4) + 85 X5 + 56 X6 + P X8.
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Figure 4.2: Estimated dependence on ‘amount of credit’

The advantage is that we can avoid the backfitting loop and are able to com-
pute the generalized cross-validation score in a simple way (see Green and Silver-
man, 1994, ch.4). Unfortunately the minimization of the cross-validation criterion
yields only a global minimum A = 0, which corresponds to a very rough estimate
of the variable ‘amount of credit’. So we have chosen the same smoothing para-

meter as above. We get the estimates of the fixed coefficients:

Intercept  X1[1] X1[2] X3 X5 X6 X8
value 0.02 0.66 -1.24 0.03 -0.82 -0.50 -0.52

They are again not far away from the estimates of the logistic linear model. The
estimated dependence on ‘amount of credit’ is shown in Figure 4.2 (dashed line).
The form is very similar to the logistic additive model.

It seems that the logistic semiparametric model itself is a good model for the
credit scoring data. If someone is interested in getting a parametric model, the

semiparametric model can be used as a starting point for further analysis.
4.2 TFO business test

In Example 2, time-varying thresholds mq(t), msy(t) and covariate effects
Bi(t), ..., Bs(t) were modelled by an eight-dimensional random walk of first or-

der. Smoothing estimates of the covariate parameters are displayed in Figure
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Figure 4.3: Covariate effects

4.3. Apart from the D*(¢)—parameter all effects are nearly constant in time. An
increase of production plans in the previous month (P*(¢ — 1)) has a high posi-
tive influence on current production plans, while the effect of P=(t — 1) is still
positive but distinctly smaller. Both effects are in agreement with continuity in
planning production. Compared to the effects of D*(t), D=(¢), which are both
clearly positive on the average, the effects of increasing or constant orders in
hand (O*(¢),0=(t)) are still positive but surprisingly small. This result, which
is in agreement with previous findings, can be explained as follows: The variable
D serves as a substitute for expected demand. For the purpose of short-range
production planning, expected demand is more relevant than current orders at
hand, which are more relevant for current production.

Compared to the remaining effects, the parameter 33(¢) corresponding to the
increase category D7 of expected development of business has a remarkable tem-
poral variation. It exhibits a clear decline to a minimum at the beginning, and
a distinct increase period coincides with the first months of the new German
government in autumn 1982, ending with the elections to the German parliament
in 1983. The growing positive effect of a positive state of business to the “in-
crease” category of production plans indicates positive reactions of firms to the
change of government.

In Figure 4.4 both thresholds (solid line) exhibit seasonal variation correspon-
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Figure 4.4: Trend parameters

ding to successive years. Threshold parameter mq(¢) has peaks, mostly rather
distinct, in December or January, and low values in the summer months. An ex-
planation for this seasonal behaviour, which is not captured by covariate effects,
may be the following: Firms in this specific branch manufacture initial products
for the building industry. To be able to satisty the increasing demand for their
products in late winter/early spring, production plans are increased 2 to 3 months
earlier. This is in agreement with the model, since higher values of mq(t) result
in higher probabilities for increasing production plans, keeping covariate effects
fixed. Similarly, decreasing values in spring and low values in summer reflect the
tendency not to increase an already comparably high level of production any fur-
ther. The ups and downs of the second threshold parameter appear some months
later. Interpretation is analogous and corresponds to seasonal ups and downs in
the tendency of firms not to change their current production plans. To specify
this seasonal effect more explicitly, a seasonal component in trigonometric form
was included additionally. Since seasonal variation is now modelled by these com-
ponents, the trend parameters are now more or less constant in time (dashed line

in Figure 4.4).
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Figure 4.5: Kalman filter and smoother for soccer data based on a random walk of first
order. Teams are Bayern Miinchen (—), 1.FC Kéln (- - ), VIB Stuttgart (---), 1.FC
Kaiserslautern (- - -), Hamburger SV (—e—) and Eintracht Frankfurt (- -)

4.3 Dynamic Pair Comparisons for the German
Fufiball-Bundesliga

We apply the ordinal logistic paired comparison model of Example 3 to data
for the teams Bayern Miinchen, 1.FC Koln, VIB Stuttgart, 1.FC Kaiserslautern,
Hamburger SV and Eintracht Frankfurt for the years 1966 to 1987. Thresholds
and abilities are modelled by first order random walks. For the thresholds the
estimated variances are 0.001 and 0.008. That means the thesholds in fact remain
rather stable over years. For the abilities the estimated variances in () are 0.124,
0.006, 0.005, 0.002 and 0.027. Figure 4.5 shows the smoothed abilities for the
six teams based on these estimated hyperparameters. The large variance of the
first team (0.124) and the fifth team (0.027) may also be seen from the picture
which shows strong fluctuation for Bayern Miinchen (team 1) and comparatively
high fluctuation for Hamburger SV (team 5) whereas the other teams are quite
constant. The highs and lows of Bayern Miinchen are in good agreement with the
development, coming and going of important players and coaches. For example
the peak about 1970-1972 coincides with the most successful years of the team
with Franz Beckenbauer as captain and other important members of the national

team at that time. While still successful in European cup finals till 1974, success
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Figure 4.6: Absolute residuals of the unweighted estimation for the tenancy data.
The solid line is the linear regression used to determine the weights. The triangles
correspond to a linear regression for the absolute residuals computed from the weighted

estimation.

was steadily declining in the German national league, eventually leading to a
distinct low when Franz Beckenbauer went to Cosmos New York and others left
the team. It took some time to form a new team which became better and
eventually very successful again in the late 80’s. In this later period Hamburger
SV, which had become more and more powerful, and Bayern Miinchen were the
dominating teams in the national soccer league. An alternative analysis with local

linear trend models gives rather similar results, see Fahrmeir and Tutz (1994b).
4.4 Rental tables
As introduced in Section 2, a seven component multiplicative model
y = Bi(F)+FBo( A)+Bo(F)S™+Ba(F) ST+ B5(F)H + Bs(F) B+ Bo(F) L+¢ (0.1)

is suggested to analyse the tenancy survey. Since, in contrast to floor space (F),
the variable age (A) has no meaningful origin, we use the interaction term F'35( A)
instead of #y(F)A. For penalizing the roughness of each effect 3; the integrated
squared curvature is applied again.

The smoothing parameters Ay, ..., A7 for the cubic smoothing splines were se-

lected automatically by an adaptive backfitting algorithm similar to BRUTO as
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Figure 4.7: Basic rent depending on floor space. (——— weighted regression,

— — — unweighted regression)

proposed by Hastie (1989). Each backfitting step is divided into two steps (i) and
(ii). In step (i) the (univariate) trade—off parameter A; is chosen to minimise a
generalized cross—validation score (GCV) depending on partial residuals within a
given range I; = [A;(1), Aj(R)]. In a following step (ii) the actual smoothing para-
meters Ay, ..., A;, ..., A7 are considered to be fixed and a backfitting algorithm is
applied to update all coefficients of the model simultaneously. By initialising the
‘inner’ backfitting in step (ii) with the estimation result of step (i), convergence
is usually reached after the first or during the second loop. Step (i) and step
(ii) are alternated for j =1,...,7,1...,7,... until any convergence criterion in
M,..., A7 and By, ..., 37 is reached. When arrived after a full ‘outer’ loop at the
j-th covariate again, the interval I; is shifted, depending on the location of the
GCV-minimal A; in [; found in the previous loop. Hence the algorithm is capable
to find smoothing parameters within a total range (0, 00). Details of this method
and extensions to the non—Gaussian case are described in Klinger (1993).

The absolute residuals computed from unweighted penalized least squares esti-
mation shown in Fig. 4.6 are indicating a heterogeneous error variance depending
on floor space. Therefore we estimate the coefficients in two steps, similarly as

in linear models (see e.g. Carroll and Ruppert, 1988). To obtain weights for a
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component tr(.5;)

estimation: | unweighted | weighted
pi(F) 13.0486 | 13.0885
FBy(A) 6.05547 | 5.66461
Bs(F)S~ 2.31410 | 2.35575
Ba(F)ST 6.07736 | 2.00000
Bs(F)H 4.61022 | 4.18226
Be(F)B 2.35605 | 2.35024
Bz(F)L 2.00000 | 2.00000
WRSS 3122.76 | 3131.46

Table 4.1: Traces of the components smoother matrices for the rental-table model.

weighted penalized least squares estimation, a linear regression of the form
75| = 0 + 1L + €

is applied to the absolute residuals |r;| resulting from the unweighted estimation.

The weights used in the final estimation are then given by
wi = Go+ )

As shown in the two linear regressions in Fig. 4.6 a further estimation step would
use almost the same weights, and therefore no great differences in estimation
results could be expected.

A comparison of the fit to the data by the weighted residual sum of squares
(WRSS) in Tab. 4.1, shows that the unweighted estimation with automatically
chosen smoothing parameters has even a slightly better fit. Viewing the trace
of the ‘ratio-type’—smoothing matrices given in Tab. 4.1 as an approximation to
‘individual’ degrees of freedom, the weighted regression seems to compensate the
loss of fit by stronger smoothness restrictions.

The estimated functions for basic rent, depending on floor space and year of
construction, obtained by weighted and unweighted regression are quite similar
(Fig. 4.7 and Fig. 4.8). An interesting result is the rent reduction for flats con-
structed in the post-war era during the 1950’s and the steep ascent for recently
built apartments shown in Fig. 4.8. For a careful investigation of this fact additio-
nal covariates describing type and equipment of flats, like renovation or balcony,

would have to be included.
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Figure 4.8: Correction of basic rent in DM/m? depending on the year of construction.

(——— weighted regression, — — — unweighted regression)

An example for the improvement obtained from weighted regression is given
in Fig. 4.10 and Fig. 4.12. For the two terms S4(F')S™ and Ss(F') B unweighted
regression leads to no plausible results since the effects are expected to increase or
decrease monotonously in floor space. Interestingly both traces of the component
Bs(F')B are nearly the same (see Tab. 4.1). Therefore the different results shown
in Fig. 4.12 are due to a reduction of weights for the few bigger flats without
bathroom.

Advantages of this nonparametric approach can be studied by the influence
of no central heating (H) in Fig. 4.11. Here it seems that a less efficient heating
system 1s more disadvantageous in bigger apartments than in smaller ones. In
addition the discount on site below average in Fig. 4.9 and on missing bathroom
in Fig. 4.12 is decreasing less than linearly in floor space as has to be supposed
by linear regression analysis. For the influence due to equipment of bathroom
(L) automatic selection of smoothing parameters indicates linear effects in both
estimates (Fig. 4.13).
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Figure 4.9: Reduction on rent for apartments located in sites below average depending

on floor space. (——— weighted regression, - — — unweighted regression)
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Figure 4.10: Surcharge on rent for apartments located in sites above average depending

on floor space. (——— weighted regression, - — — unweighted regression)
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Figure 4.11: Reduction on rent for apartments without central heating depending on

floor space. (——— weighted regression, — — — unweighted regression)
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Figure 4.12: Reduction on rent for apartments without bathroom depending on floor

space. (——— weighted regression, — — — unweighted regression )
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Figure 4.13: Surcharge on rent for apartments with luxury fitted bathrooms depending

on floor space. (——— weighted regression, - — — unweighted regression)

5. Concluding remarks

Due to its flexibility and versatility, the roughness penalty approach provides
a unifying framework for non- and semiparametrically modelling and estimation
in various settings of regression analysis. Dynamic or state space models can
be viewed as Bayesian versions of varying-coefficient or multiplicative models
if estimation is based on maximization of posterior densities. We conclude by

pointing out some topics for further research.

o Extensions to multicategorical or multivariate correlated responses, e.g. se-
miparametric marginal models for clustered data or repeated measurements,

are possible by introducing appropriate (quasi-)likelihoods.

e Monotonicity or concavity of functions f(x) can be accounted for by appro-

priate modification of penalty functions.
o Identification and choice of models needs to be further developed.

o Still more efficient algorithms, for example avoiding the backfitting loops,
would be useful, in particular in combination with data-driven selection of

smoothing parameters or hyperparameters.
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e For mixed continuous and discrete covariates, more flexible approaches than
a semiparametric additive model like (2.2) should be available. This might
be accomplished by combining the features of classification and regression
trees (CART) and smoothing techniques.

o If one is willing to adopt Bayesian formulations in form of state space mo-
dels, full posterior analysis or at least posterior mean estimation will be the
ultimate goal. It seems that Gibbs sampling or related data augmentation

techniques are most promising and general tools for Bayesian estimation.
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