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Additive� Dynamic and Multiplicative
Regression

Ludwig Fahrmeir� Christian Gieger and Artur Klinger
Institut f�ur Statistik� Universit�at M�unchen

We survey and compare model�based approaches to regression for cross�sectional

and longitudinal data which extend the classical parametric linear model for

Gaussian responses in several aspects and for a variety of settings� Additive mo�

dels replace the sum of linear functions of regressors by a sum of smooth functions�

In dynamic or state space models� still linear in the regressors� coe�cients are

allowed to vary smoothly with time according to a Bayesian smoothness prior�

We show that this is equivalent to imposing a roughness penalty on time�varying

coe�cients� Admitting the coe�cients to vary with the values of other covariates�

one obtains a class of varying�coe�cient models �Hastie and Tibshirani� ���	
� or

in another interpretation� multiplicativemodels� The roughness penalty approach

to non� and semiparametric modelling� together with Bayesian justi�cations� is

used as a unifying and general framework for estimation� The methodological

discussion is illustrated by some real data applications�

�� Introduction

Consider �rst the case of a Gaussian response y which is observed together with

regressors fx�� � � � � xpg� The classical Gaussian linear model assumes

y � �� 
 ��x� 
 � � � 
 �pxp 
 � ����


with the usual assumptions on the error variable ��

In additive models �Hastie and Tibshirani� ����
� some or all of the linear func�

tions �jxj of the covariates are replaced by smooth functions fj�xj
� modelled and

estimated in some nonparametric way� e�g� by kernel and nearest neighborhood

methods or splines� We focus on penalized least�squares methods� which lead to

cubic smoothing splines and related estimators�

Dynamic models are useful for analyzing time series and longitudinal data�

where the variables fy� x�� � � � � xpg are observed over time� In linear dynamic

�



models� some or all of the coe�cients f��� ��� � � � � �pg are allowed to vary over

time and ����
 is modi�ed to

y�t
 � ���t
 
 ���t
x��t
 
 � � � 
 �p�t
xp�t
 
 ��t
 � ����


The time�varying intercept ���t
 is often additively splitted up into a trend com�

ponent m�t
 and a seasonal component s�t
� and sometimes no covariates are

present in the model� In the state space approach to dynamic models �Harvey�

����� West and Harrison� ����
 the parameters or �states� f���t
� � � � � �p�t
g obey

a linear Markovian transition model or� in other words� a Bayesian smoothness

prior� Following Bayesian arguments� the sequence of �states� is estimated by

the well�known linear Kalman �ltering and smoothing algorithms� We show in

Section 	 that this is equivalent to minimizing a penalized least�squares criterion�

so that dynamic modelling methods can also be interpreted as a model�based

semiparametric roughness penalty approach�

If the parameters are allowed to vary with the values of other covariates than

time� say v�� � � � � vp� one arrives at varying coe�cient models

y � ���v�
 
 ���v�
x� 
 � � � 
 �p�vp
xp 
 � � ���	


as introduced by Hastie and Tibshirani ����	
 from the nonparametric point

of view� Since the terms �j�vj
xj in ���	
 may also be interpreted as special

forms of multiplicative interaction between vj and xj� we also say that ���	
 is a

multiplicative regression model�

For non�Gaussian responses y� for example discrete or categorical responses�

generalized linear models extend the linear model ����
 to a much broader class�

However� they still are parametric and retain an essential feature of linear models

by relating the mean Ey to a linear predictor � � ��
��x�
� � �
�pxp via a link

function� Obviously� generalized additive� dynamic and multiplicativemodels can

be de�ned in the same way as before by appropriate modi�cation of ��

Section � describes the models in more detail� accompanied by real data ex�

amples� Estimation by the roughness penalty approach is dealt with in Section

	� and Section � contains applications of the methods to the real data examples�

Section � concludes with some remarks on some topics where further research

would be useful and interesting�

�



�� Generalized regression models

��� Additive models

Consider the common situation of cross�sectional regression analysis with a re�

sponse variable y and a vector x � �x�� � � � � xp
 of covariates� The observations

�yi� xi
� i � �� � � � � n on �y� x
 are assumed to be independent� In the simplest

case of linear Gaussian regression one assumes model ����
� where y is normally

distributed and E��
 � �� var��
 � ��� In other words� the �conditional
 mean

� � E�yjx
 of y is speci�ed as a linear predictor � � �� 
 ��x� 
 � � � 
 �pxp�

Generalized linear models provide a comprehensive parametric framework for

regression analysis with non�Gaussian responses� including categorical and coun�

ted responses� In their original version �e�g� Mc Cullagh and Nelder� ����
�

generalized linear models assume that the distribution of y given x comes from

an exponential family and that the mean � � E�yjx
 is related to the linear

predictor � by a response or link function h in the form

� � h��
 � h��� 
 ��x� 
 � � � 
 �pxp
�

Due to the distributional assumptions the variance function var�yjx
 is then de�

termined by choice of the speci�c exponential family� Commonmodels are logistic

models� with � � exp��
	f� 
 exp��
g and y a binary variable� and log�linear

models with � � exp��
 and y a Poisson variable� Dropping the exponential

family assumption� � may be any reasonable parameter of interest of the like�

lihood or some quasi�likelihood of the observations� as for example in the Cox

model where � parametrizes a part of the hazard function� Also �� � and h

may be multidimensional if the response variable is a vector y � �y�� � � � � yq
� as

for example in multinomial models for multicategorical responses� where yj is a

dummy variable representing category j� Then� generally� a vector of predictors

��j 
 ��jx� 
 � � � 
 �pjxp will be necessary� see e�g� Fahrmeir and Tutz �����a�

ch�	
�

In generalized additive models �Hastie and Tibshirani� ����
 all or a part

of the linear functions �jxj of the regressors are replaced by smooth functions

fj�xj
� so that

� � f��x�
 
 � � � 
 fp�xp
 � ����


or� for example�

� � f��x�
 
 ��x� 
 � � � 
 �pxp � ����


	



if only x� is metrical and x�� � � � � xp are binary� The smooth functions can be mo�

delled by �exible parametric forms� e�g� by piecewise polynomials or orthogonal

series� or nonparametrically� e�g� by using kernel� nearest neighborhood or pena�

lized likelihood methods� In this paper we will focus on penalized least squares

and likelihood methods as a unifying modelling and estimation approach� From

this point of view� the smooth functions fj�
 are unknown� but �xed� It should

be noted� however� that appropriate Bayesian formulations of smoothness lead

to the same estimate� see e�g� Wahba �����
 and Green and Silverman ������

Section 	��
�

Example �� Credit�Scoring Revisited
In credit business banks are interested in estimating the risk that consumers will

pay back their credits as agreed upon by contract or not� The aim of credit�

scoring systems is to model or predict the probability that a client with certain

covariates ��risk factors�
 is to be considered as a potential risk� We will analyze

the e�ect of covariates on the binary response �creditability� by a logit model�

Other tools currently used in credit scoring are �linear
 discriminance analysis�

classi�cation and regression trees� and neural networks�

The data set consists of ���� consumer�s credits from a South German bank�

The response variable of interest is �creditability��which is given in dichotomous

form �y � � for creditworthy� y � � for not creditworthy
� In addition� ��

covariates that are assumed to in�uence creditability were collected� The raw

data are recorded in Fahrmeir and Hamerle ������ see p� 		� �� and p� ��� ��


and are available on electronic �le� In Fahrmeir and Kredler ������ p� ������


and Fahrmeir and Tutz �����a� Ch� �
 a logit model was used to analyze a subset

of these data containing only the following covariates� which are partly metrical

and partly categorical�

X� running account� trichotomous with categories �no running account�

���
� �good running account� ���
� �medium running account� ��less

than ��� DM� � 	 � reference category


X	 duration of credit in months� metrical

X� amount of credit in DM� metrical

X� payment of previous credits� dichotomous with categories �good��

�bad� ��reference category


X� intended use� dichotomous with categories �private� or �professional�

��reference category


X� marital status� with reference category �living alone��

�



Assuming a logit model with linear predictor

� � �� 
 ��X���� 
 ��X���� 
 ��X	 
 ��X� 
 ��X� 
 ��X� 
 ��X�

for the probability pr�y � �jx
 of being �not creditworthy�� one obtains the

following maximum likelihood estimates of the covariate e�ects�

Intercept X���� X���� X	 X� X� X� X�

value ���� ���� ���	� ���	 ���� ����� ����� �����

t�value ���	 	��� ����	 ���� ���� �	��� ����� �	�	�

This leads to the somewhat surprising conclusion that the covariate X� �amount

of credit� has no signi�cant in�uence on the risk� In Section �� the data are

reanalyzed by an additive logit model� with the linear functions ��X	 and ��X�

replaced by smooth functions f��X	
 and f��X�
� The results obtained there

lead to a di�erent conclusion�

��� Dynamic models

Suppose now that the data consist of repeated observations of the response y and�

possibly� a vector x � �x�� � � � � xp
 of covariates at T time points t� 
 t� 
 � � � 


tT � To simplify notation� we write t � f�� � � � � Tg� but equidistant time points are

not a necessary prerequisite�

Linear Gaussian dynamicmodels relate the observations fy�t
� x��t
� � � � � xp�t
g

in additive form� including a trend component m�t
 and perhaps a seasonal com�

ponent s�t
�

y�t
 � m�t
 
 s�t
 
 ���t
x��t
 
 � � � 
 �p�t
xp�t
 
 ��t
 � ���	


where y�t
 is normally distributed� and E ��t
 � �� var ��t
 � ��t � The e�ects

���t
� � � � � �p�t
 may be time�varying or not� If no covariates are present� ���	


reduces to a simple additive structural time series model� where m�t
� s�t
 are

unknown sequences or functions of time� Traditional descriptive methods for

analyzing trends and seasonal components are based on moving averages or the

method of graduation �Whittaker� ���	
� which imposes a certain roughness pen�

alty on the trend function� We follow here the state space approach to structural

time series analysis �e�g� Harvey� ����
� where the observation model ���	
 is

�



supplemented by a linear Gaussian transition model for m�t
� s�t
 and ��t
� Ga�

thering m�t
� s�t
 and ��t
 in a �state� vector ��t
� the general form is

��t
 � F �t
��t� �
 
 ��t
 � t � �� � � � � T ����


with a non�random transition matrix F �t
� Gaussian white noise f�tg with �t �

N��� Qt
 and initial state ���
 � N�a�� Q�
�

Admitting multivariate observations y�t
� the observation model ���	
 may be

rewritten in the form

y�t
 � Z�t
��t
 
 ��t
 � t � �� � � � � T � ����


where Z�t
 is an observation or design matrix of appropriate dimension� reducing

to a design vector z��t
 if y�t
 is scalar� The Gaussian white noise sequence

f��t
 � N����t
g is assumed to be uncorrelated with f��t
g and ���
� Simple

nonstationary models for trend or time�varying e�ects are �rst or second order

random walks

m�t
 � m�t� �
 
 u�t
 � m�t
 � �m�t� �
 �m�t� �
 
 u�t
 ����


with u�t
 � N��� q�t 
� By appropriate de�nition of Z�t
 and F �t
 they can be

put in state space form as well as more complicated seasonal components� see

e�g� Harvey ������ pp� ����	
 and Fahrmeir and Tutz �����a� Section ���
� From

a Bayesian perspective� the transition models ����
� ����
 can be interpreted as

�smoothness priors� for f��t
g or fm�t
� s�t
� ��t
g� In fact it turns out� see

Section 	� that these �smoothness priors� are the Bayesian justi�cation for the

roughness penalty approach�

The obvious modi�cation for observations y�t
 with exponential family densi�

ties are dynamic generalized linear models �e�g� West� Harrison and Migon� �����

Fahrmeir������ Fahrmeir and Tutz� ����a� ch� �
� The observation models ���	


or ����
 are now speci�ed by an exponential family density for y�t
� given ��t


and x�t
� with conditional mean

E�y�t
j��t
� x�t

 � ��t
 � h���t

 � ����


the predictor

��t
 � m�t
 
 s�t
 
 x��t
��t
 resp� ��t
 � Z�t
��t
 ����


and one of the common response functions h� The observation model ����
 is

again supplemented by a linear Gaussian transition model ����
 or ����
�

�



For time series of counts� loglinear Poisson models y�t
j��t
� x�t
 � Po�
�t

�


�t
 � exp���t

 are a standard choice� If the number of counts at t is limited

by n�t
� say� binomial regression models� in particular logit or probit models�

are often appropriate� y�t
j��t
� x�t
 � B�n�t
� ��t

� ��t
 � h���t
 � z��t
��t

�

with h the logistic or standard normal distribution function� For n�t
 � �� this

is a common way for modelling binary time series�

Extensions to time series of multicategorical or multinomial responses proceed

along similar lines� Let k be the number of categories and y�t
 � �y��t
� � � � � yq�t



be a vector of q � k � � dummy variables� with yj�t
 � � if category j has been

observed� yj�t
 � � otherwise� Dynamic categorical response models are speci�ed

by relating response probabilities �j�t
 � pr�yj�t
 � �
� j � �� � � � � q� to a q�

dimensional predictor

��t
 � ����t
� � � � � �q�t


� � Z�t
��t
 � ����


The most common models for ordered categories are dynamic cumulative models�

They can be derived from a threshold mechanism for an underlying linear dynamic

model� The resulting response probabilities are

�j�t
 � F ��j�t

� F ��j���t

 � j � �� � � � � q �����


with linear predictors

�j�t
 � mj�t
 
 x��t
��t
 �

ordered threshold parameters �� � m��t
 
 � � � 
 mq�t
 
 �� a vector ��t
 of

global covariate e�ects� and a known distribution function F � e�g� the logistic one�

The thresholds may also contain additive seasonal components sj�t
� Dynamic

versions of other models for ordered categories discussed e�g� in Fahrmeir and

Tutz �����a� Section 	��
 can be designed with analogous reasoning�

In many applications� more than one individual or object is observed sequen�

tially over time� Let us consider longitudinal or panel data which consist of

observations �yi�t
� xi�t

� i � �� � � � � n� t � �� � � � � T � for a population of n units

observed across time� The state space modelling approach to longitudinal data

allows� in principle� to deal with random e�ects ��states�
 across units and across

time� like stochastic trend and seasonal components� We will con�ne attention

to the case where states are constant across units� In this case it is assumed that

the predictor for observation �yi�t
� xi�t

 is

��i� t
 � m�t
 
 s�t
 
 x�
i�t
��t
 � �����


�



This means that m�t
� s�t
 and ��t
 are population�averaged e�ects over time�

Random e�ects across units could be modelled in additive form� e�g� by

��i� t
 � ��i
 
m�t
 
 x�
i�t
��t
 � �����


together with a Gaussian prior ��i
 � N��� G
�

Example �� IFO business test
The IFO institute for economic research in Munich collects categorical monthly

data of �rms in various industrial branches� The questionnaire contains questions

on expectations and realizations of variables like production� orders in hand�

demand etc� Most answers are in categories like increase �

� decrease ��
� or

no change ��
� Considering all �rms within a certain branch we have categorical

longitudinal data�

We apply a dynamic cumulative model to data collected in the industrial

branch �Steine und Erden�� for the period of January ���� to December �����

Firms in this branch manufacture initial products for the building trade industry�

The response variable is formed by the production plans P �t
� Its conditional

distribution is assumed to depend on the covariates �orders in hand� O�t
 and

�expected business condition� D�t
� and on the production plans P �t � �
 of

the previous month� No interaction e�ects are included� Each trichotomous

variable is described by two �q � �
 dummy variables� with ��� as the reference

category� Thus ����
� ����
 and ����
 stand for the responses �
����� and ����

The relevant dummies for �
� and ��� are shortened by P �t
	� P �t

� etc� Then

a cumulative logistic model with time�varying thresholds m��t
� m��t
 and global

covariate e�ects ���t
 to ���t
 is speci�ed by

pr�P �t
 � �
�
 � h�m��t
 
 ���t
P �t� �
	 
 ���t
P �t� �

 
 ���t
D�t
	


���t
D�t

 
 ���t
O�t
	 
 ���t
O�t


 �

pr�P �t
 � �
�or���
 � h�m��t
 
 ���t
P �t� �
	 
 ���t
P �t� �

 
 ���t
D�t
	


���t
D�t

 
 ���t
O�t
	 
 ���t
O�t


 �

where pr�P �t
 � �
�
 and pr�P �t
 � �
� or ���
 stand for the probability of

increasing and nondecreasing production plans� and h is the logistic distribution

function� The time�varying parametersm��t
�m��t
� ���t
� � � � � ���t
 are modelled

by an eight�dimensional �rst order random walk� More details on this and a

second example can be found in Fahrmeir and Nase �����
�

�



Example �� Dynamic Pair Comparisons for the German Fu	ball�
Bundesliga

In paired comparisons� treatments� players or teams fa�� � � � � ang are compared

with each other in pairs� Let yij denote the observed response when the pair

�ai� aj
 meets� For soccer teams� yij is trichotomous where the categories �� ��

	 stand for �ai wins�� �draw�� �aj wins�� Based on latent random utilities and

thresholds� Tutz �����
 derives the ordinal logistic paired comparison model

pr�yij � �
 � F ��� 
 �i � �j
 �

pr�yij � �
 � F ��� 
 �i � �j
� F ��� 
 �i � �j
 �

pr�yij � 	
 � �� pr�yij � �
 � pr�yij � �
 �

where F is the logistic distribution function� The parameters �i represent the

unobserved �ability� of team ai� The role of thresholds refers to the home court

advantage� In the German Fu ball�Bundesliga teams meet twice within each

season giving each team the home court advantage once� For competing teams

the pair �ai� aj
 implies that the game is played on the home court of ai� The home

court advantage is most obvious in the case where the abilities of teams are equal

i�e� �i � �j� Then the probabilities pr�yij � r
 � F ��r
�F ��r��
 depend only on

the thresholds� Since the teams have equal abilities the probability of response

categories re�ects the home court advantage which of course is speci�c for the

game� In our soccer example it turns out that home court advantage is rather

stable over the years� yielding the thresholds !�� � ���	�� and !�� � ���	�� For

�i � �j that means pr�yij � �
 � ������ pr�yij � �
 � ��	��� pr�yij � 	
 � ������

Therefore a soccer team will beat another team of equal ability on their home

court with probability ����� and will be beaten only with probability ������

Since we analyze results of pair comparisons of soccer teams for the seasons

���� to ����� it is not to be expected that abilities remain constant over time�

Fahrmeir and Tutz �����b
 introduce dynamic models for time�dependent ordered

pair comparisons for responses yij�t
 observed at time t and possibly time�varying

latent thresholds ���t
� ���t
 and abilities �i�t
� �j�t
� The observation model is

then

pr�yij�t
 � �
 � F ����t
 
 �i�t
� �j�t



pr�yij�t
 � �
 � F ����t
 
 �i�t
� �j�t

� F ����t
 
 �i�t
� �j�t

 �

and is supplemented by a transition model� e�g� random walk models� for ���t
�

���t
� �i�t
 and �j�t
�

�



��� Multiplicative models

Dynamic models with predictors ���	
� ����
 or �����
 are commonly interpre�

ted as extensions of �generalized
 linear models with time�varying intercepts and

covariate e�ects� Another way to look at them is to consider time as another�

though special covariate� Then a term xj�t
�j�t
 has the form of a multiplicative

interaction term between the possibly time�varying covariate xj and a smooth

function of the �covariate� time� Admitting other covariates� say v�� v�� � � � � vp�

than time� we arrive at multiplicative models of the form

� � ���v�
 
 ���v�
x� 
 � � � 
 �p�vp
xp � ����	


where terms �j�vj
xj can be seen as a special kind of interaction between vj and

xj� Another way is to look at ����	
 as a model linear in the regressors x�� � � � � xp�

but with parameters changing smoothly with the values of v�� v�� � � � � vp� and

to call it a �varying�coe�cient model�� as introduced by Hastie and Tibshirani

����	
� Although looking apparently special� multiplicative or varying�coe�cient

models are quite general� For �j�vj
 � �j� i�e� constant functions �j�
� one gets

back generalized linear models� for x� � � � � � xp � � additive models and for

v� � v� � � � � � vp � t � time dynamic models� Many other particular models

can be written in the form ����	
� see Hastie and Tibshirani ����	
 and the

discussion following the paper� In the following Example �� we will consider a

speci�c application� In all cases� the unspeci�ed functions �j�
 may be modelled

in various ways� e�g� using kernel methods� penalized least squares and likelihoods�

or other nonparametric approaches as in additive models� or imposing Bayesian

smoothness priors as in dynamic models� In Section 	� we will deal with the

estimation problem under the general framework of roughness penalties�

Example �� Rental tables �
Mietspiegel��
Surveys on rents for lodging� paid according tenancy agreements between let�

ters and tenants of rented �ats or appartments� are conducted regularly in larger

communities or cities� Based on a sample of tenancies� traditional rental tables

contain average rents in form of contingency tables with cells determined by cate�

gories of �oor space� year of construction and perhaps site of the �at� According

to the German �Mieterh"ohungsgesetz�� rental tables may be used to determine

adequate raising of rents�

As an alternative to contingency tables� regression may be a useful tool for

analyzing how rents depend on �oor space� year of construction and factors cha�

racterizing site� type and equipment of the �at� For our example we use a sample

��



of ���� tenancies for �ats in Munich� with �oor space from 	� to ��� square

meters and year of construction between ���� and ����� The response variable

is the net rent� which does not contain operating costs� Covariates are

F �oor space in square meters�

A age �� year of construction
�

S	 site above average� binary� with S	 � � � average as

reference category�

S� site below average� binary� with S� � � � average as

reference category�

H no central heating� binary�

B no bathroom� binary�

L bathroom� with equipment above average�

A linear additive regression model y � � 
 � with

� � �� 
 ��F 
 ��A
 ��S
	 
 ��S

� 
 ��H 
 ��B 
 ��L

will not be adequate since increase or decrease of the average rent � due to

one of the factors age� site or equipment would be independent of �oor space

of the �at� leading to implausible results� Instead� multiplicative models with

interaction terms likeF�H are more realistic� Also it is unclear wether the metrical

covariates F and A can modelled appropriately by linear functions� Therefore� a

multiplicative model with predictor

� � ���F 
 
 F���A
 
 ���F 
S	 
 ���F 
S� 
 ���F 
H 
 ���F 
B 
 ���F 
L

can be useful for exploratory data analysis�

�� Estimation

In this section� the focus is on the roughness penalty approach� Methods for

selecting smoothing parameters are only mentioned and Bayesian posterior mean

estimation will be addressed to only brie�y�

��



��� Penalized least squares

Smoothed estimators of regression curves may be considered as compromises bet�

ween faith with the data and reduced roughness caused by the noise in the data�

This view is made explicit in the construction of smoothing splines� For bivariate

observations �yi� xi
� i � �� � � � � n of the continuous variables �y� x
� the star�

ting point is the following minimization problem� Find the twice continuously

di�erentiable function f�
 that minimizes the penalized sum of squares

nX
i
�

�yi � f�xi


� 
 


bZ
a

f ���u
� du � �	��


where �a� b� contains the covariate values x� 
 � � � 
 xn� The �rst term in �	��


is the residual sum of squares� which is used as a distance function between

data and estimator� The second term penalizes roughness of the function by

taking the integrated squared second derivative
R
f ���u
� du as a global measure

for curvature or roughness� The parameter 
 � � is a smoothing parameter

that controls the trade�o� between smoothness of the curve and faith with the

data� Large values of the smoothing parameter 
 give large weight to the penalty

term� therefore enforcing smooth functions with small variance but possibly high

bias� For rather small 
� the function f�
 will nearly interpolate the data� The

function !f �
 minimizing �	��
 is a natural cubic smoothing spline with knots at

x� 
 � � � 
 xn �Reinsch� ����
� Since cubic splines are actually de�ned by a

�nite number of parameters� the minimization problem with respect to a set of

functions reduces to a �nite�dimensional optimization problem� It can be shown

that minimization of �	��
 is equivalent to minimizing the penalized least�squares

criterion

PS�f
 � �y � f
��y � f
 
 
f �Kf � �	��


where y � �y�� � � � � yn
 are the data and f � �f�x�
� � � � � f�xn

 denotes now the

vector of evaluations of the function f�
� The penalty matrix K has a special

structure and can be written as the product of tridiagonal band matrices� see

e�g� Green and Silverman ������ ch� �
� The minimizer !f of PS�f
 is obtained by

equating the vector of �rst derivatives to zero� This yields the linear smoother

!f � �I 
 
K
��y �	�	


with smoothing matrix S � �I 
 
K
���

��



For computational reasons� !f and the smoothing matrix S are generally not

computed directly by inversion of I 

K �note that S is an full �n�n
�matrix
�

Instead� !f is computed indirectly� e�g� by the Reinsch algorithm�

In �	��
 the distance between data and estimator is measured by a simple

quadratic function� More generally a weighted quadratic distance may be used�

For given diagonal weight matrix W a weighted penalized least squares criterion

is given by

�y � f
�W �y � f
 
 
f �Kf � �	��


The solution is again a cubic smoothing spline� with the vector !f of �tted values

now given by
!f � �W 
 
K
��Wy � �	��


In �	��
 and �	��
� the smoothing parameter was assumed to be known or given�

In practice it is either obtained by a subjective choice or by an automatic data�

driven method� e�g� by minimizing some cross�validation score� see H"ardle �����


for details�

The integrated squared curvature
R
f ���u
� du and the resulting penalty matrix

K are not the only way to penalize roughness of the estimator� Simple roughness

penalties are the sums of squared �rst or second di�erences

D��f
 �
nX
i
�

ff�xi
�f�xi��
g
� � D��f
 �

nX
i
�

ff�xi
��f�xi��

f�xi��
g
�� �	��


If the di�erences xi�xi�� are small and almost equidistant� second di�erences are

good approximations to f ���x
� and the resulting smooth estimate !f is very similar

to a cubic spline� However� the penalty matrices K satisfying f �Kf � D��f
 and

D��f
 are now tridiagonal and pentadiagonal� Using band matrix manipulations�

this makes computation of !f in O�n
 operations quite easy�

For additive models

y � f��x�
 
 � � � 
 fp�xp
 
 �

the penalized sum of squares is generalized to

nX
i
�

wi�yi�f��xi�
� � � ��fp�xip


�

�

Z
f ��
� �u


� du
� � �

p

Z
f ��
p �u


� du � �	��


The minimizing functions are again cubic splines� Parameterizing by the vectors

fj � �fj�x�j
� � � � � fj�xnj

� j � �� � � � � p� �	��
 can be written as the penalized

least squares criterion

�	



PS�f�� � � � � fp
 � �y � f� � � � �� fp

�W �y � f� � � � �� fp
 




�f
�
�K�f� 
 � � � 
 
pf

�
pKpfp �

�	��


whereW � diag�w�� � � � � wn
 and the penalty matricesKj are de�ned analogously

to K� The minimizing functions now satisfy the system of equations��� W 
 
�K� � � � W
���

� � �
���

W � � � W 
 
pKp

���
��� f�

���

fp

��� �

��� Wy
���

Wy

���
or equivalently

f� � �W 
 
�K�
��W �y � f� � � � �� fp

���

���

fp � �W 
 
pKp
��W �y � f� � � � �� fp��
 �

The solutions !f�� � � � � !fp are obtained iteratively by �back�tting�� a Gauss�

Seidel type algorithm� see Buja� Hastie and Tibshirani �����
 and Hastie and

Tibshirani �����
 for details� Automatic choice of the smoothing parameters


�� � � � � 
p� based on cross�validation� is now far more demanding� since it would

require that the diagonal or the trace of the global smoother matrix were available

with reasonable amount of e�ort� It seems that additional research is necessary

here�

A non�iterative and simpler solution avoiding back�tting can be obtained for

semiparametric models ����
 with

�i � f��xi�
 
 ��xi� 
 � � � 
 �pxip � f��xi�
 
 z�i� � i � �� � � � � n �

z�i � �xi�� � � � � xip
 � �� � ���� � � � � �p
� De�ning the design matrix Z � �z�� � � � � zn

��

one obtains
!� � fZ �W �I � S
Zg��Z �W �I � S
y
!f� � S�y � Z !�
 � S � �W 
 
K
��W �

Consider now Gaussian dynamic linear models ����
� ����
� Given the obser�

vations y � �y��
� � � � � y�T 

� estimation of ��t
 is traditionally called �ltering for

t � T and smoothing for t 
 T � Due to the linearity and normality assumptions

in ����
� ����
� the posterior distribution of ��t
 is also Gaussian

��t
jy � N�atjT � VtjT 


��



with posterior mean atjT � E���t
jy
 and posterior covariance matrix VtjT �

E����t
� atjT 
���t
� atjT

�
� Linear Kalman �lters and smoothers provide atjT �

VtjT in a computationally e�cient� recursive way� Very short proofs are based

on Bayesian arguments using conjugate prior�posterior properties of Gaussian

distributions� In the following� we will sketch the lines of argument for a derivation

which corresponds to the historically �rst derivation �Thiele� ����
 and shows that

Kalman �ltering and smoothing is actually equivalent to penalized least squares

estimation�

Consider the joint posterior p��jy
� with � � ����
� ���
� � � � � ��T 

� Since

this posterior is Gaussian� posterior means and posterior modes are equal and can

therefore be obtained by maximizing the posterior density� Repeated application

of Bayes� theorem� thereby making use of the model assumptions and taking

logarithms shows that this maximization is equivalent to minimization of the

penalized least�squares criterion

PS��
 �

TX
t
�

�y�t
� Z�t
��t

����
t �yt � Z�t
��t

 
 ����
 � a�


�Q��
�

����
 � a�
 


TX
t
�

���t
� F �t
��t� �

�Q��
t ���t
� F �t
��t� �



�	��


with respect to �� For simplicity� we have assumed that �t� Qt are nonsingular�

One may� however� drop this assumption�

As an example� consider the model y�t
 � m�t
 
 x�t
��t
 
 ��t
 with in�

dependent second�order random walks for m�t
 and ��t
� Setting 
� � ���	q
�
m�


� � ���	q
�
�� where q

�
m� q

�
� are the variances of the random walk error variables�

and omitting priors for m��
� m���
� ���
� ����
� criterion �	��
 reduces to

PS��
 �
TX
t
�

�y�t
�m�t
� x�t
��t

�


 
�

TX
t
�

�m�t
� �m�t� �
 
m�t� �

�


 
�

TX
t
�

���t
� ���t� �
 
 ��t� �

� �

�	���


Introducing m��m��
� � � � �m�T 

� ������
� � � � � ��T 

�X�diag�x��
� � � � � x�T 



and de�ning the pentadiagonal penalty matrix K appropriately� �	���
 can be

��



rewritten as

PS��
 � �y �m�X�
��y �m�X�
 
 
�m
�Km
 
��

�K� �

which is in complete correspondence to the penalized sum of squares for additive

models� For dynamic models� however� it is more useful to gather m and �

in the �state� vector � and to rewrite �	��
 in matrix notation as follows� To

incorporate initial conditions� we de�ne y��
 �� a�� Z��
 �� I and rede�ne y �

�y��
� � � � � y�T 

� Introducing the �block�
diagonal design matrix

Z �

������
Z��
 � � � �

Z��

���

���
� � �

� � � � Z�T 


������
and the �block�
diagonal weight matrix

W �

������
Q��

� � � � �

���
�

���
���

� � �

� � � � ���
T

������
criterion �	��
 can be rewritten as

PS��
 � �y � Z�
�W �y � Z�
 
 �� #K� � �	���


with a block�tridiagonal and symmetric penalty matrix #K� The minimizer !� of

PS��
 is given by

!� � �Z �WZ 
 #K
��Z �Wy � �	���


Since it is the mode of the Gaussian posterior p��jy
� it coincides with the po�

sterior mean �a�jT � � � � � atjT � � � � � aT jT 
� which is computed by the linear Kalman

�lter and smoother� It computes !� without explicitly inverting Z �WZ 
 #K� by

making e�citient use of its block�banded structure and avoiding any back�tting

iterations� Moreover� as a side product� the block�diagonals VtjT of the smoother

matrix are provided� This is useful� for example� to compute cross�validation

scores for automatic data�driven choice of smoothing parameters� or in Bayesian

terminology� hyperparameters� such as error variances in dynamic models� The

Bayesian view is also useful for de�ning likelihood�based procedures to estimate

hyperparameters� see e�g� Harvey �����
�

��



For multiplicative or varying�coe�cient models ����	
� Hastie and Tibshirani

����	
 propose to estimate the unknown smooth functions ���v�
� � � � � �p�vp
 by

minimization of the penalized least squares criterion

nX
i
�

wi�yi � ���vi�
� ���vi�
xi� � � � �� �p�vip
xip

�



�

Z
���
��u


�du
 � � � 
 
p

Z
���
p �u


�du �

�	��	


Criterion �	��	
 reduces to the criterion �	��
 for additive models by identifying

vi�� � � � � vip in ����	
 with the covariates xi�� � � � � xip in �	��
 and setting xi� �

� � � � xip � � in �	��	
� The criterion is also closely related to the penalized least

squares criteria �	��
 and �	���
 for dynamic models� In �	��
 and �	���
� covaria�

tes v�� � � � � vp are equal the �covariate� time t� and the penalty terms are discrete

time versions of the penalty terms in �	��	
� for example second di�erences in

�	���
 compared to second derivatives in �	��	
�

To derive the estimation algorithm for multiplicative models let us �rst con�

sider a simple Gaussian multiplicative model

yi � ��vi
xi 
 �i� �	���


This model is useful when observations y � �y�� � � � � yn
�� x � �x�� � � � � xn
� and

v�� � � � � vn are metrical� and the ratio yi	xi is assumed to vary smoothly over v�

Let v� 
 � � � 
 vu 
 � � � 
 vU be the uniquely ordered sequence of the vi�s� so a

n� U design matrix Z can be de�ned by its components

Ziu �

�
xi if �yi� xi
 is observed at vu

� else�
�	���


Using parametrization �	���
 with the coe�cients � � ���v�
� � � � � ��vU

�� mo�

del �	���
 is written as y � Z� 
 �� Note� that the resulting weighted penalized

least squares criterion

�y � Z�
�W �y � Z�
 
 
��K�� �	���


with W and K de�ned as above has the same form as for dynamic models in

�	���
� but the design matrix is generally di�erent� Equating the �rst derivatives

of �	���
 to zero yields the equation

Z �WZ� 
 
K� � Z �Wy �	���


��



to obtain the estimations !�� The corresponding �ratio$type� smoothing matrix

projecting y onto Zf is eS � Z�Z �WZ 
 
K
��Z �W � where Z �WZ is a diagonal

matrix� If the �discrete� roughness penalties described in �	��
 are used� equa�

tion �	���
 can again be solved directly by e�cient band$matrix manipulation

algorithms� For smoothing splines� the Reinsch algorithm has to be extended by

some modi�cations to get an O�U
 algorithm for solving �	���
� Details are given

in Klinger ����	
 and Hastie and Tibshirani ����	
� Using an intercept vector

x� � ��� � � � � �
� to build the matrix Z as de�ned in �	���
� one obtains a matrix

Z� which allows simple handling of tied predictor values for related scatterplot

smoothers�

With the formulations stated above� criterion �	��	
 can be written similarly

as for additive models� The weighted penalized least squares criterion

PS���� � � � � �p
 �

�y � Z��� � Z��� � � � �� Zp�p

�W �y � Z��� � Z��� � � � �� Zp�p




��
�
�K��� 
 � � � 
 
p�

�
pKp�p

�	���


yields an analogous system of equations for the minimizing functions ��� � � � � �p

given by

��� Z �
�WZ� 
 
�K� � � � Z �

�WZp

���
� � �

���

Z �
pWZ� � � � Z �

pWZp 
 
pKp

���
��� ��

���

�p

��� �

��� Z �
�Wy
���

Z �
pWy

��� � �	���


Due to the special structure of system �	���
� the back�tting algorithm is again

feasible to compute the solutions !��� � � � � !�p� In each back�tting step a �ratio$

type� smoothing matrix

Zj�
��

j � eSj

	
y �

j��X
h
�

Zh�
��

h �

pX
h
j	�

Zh�
��

h




is applied to actual partial residuals� ���
 denotes the results of the previous

loop and ���
 corresponds to the actual loop� These steps are repeated for j �

�� � � � � p� �� � � � � p� � � � until convergence in ��� � � � � �p�

��



��� Penalized likelihood estimation

Up to constants� the sums of squares in the penalized least squares criteria

�	��
� �	��
 and �	��	
 are identical to the sums of �negative
 Gaussian log�

likelihood contributions of the observations� For generalized additive� dynamic

or multiplicative models� these sums of squares are replaced by the sums of non�

Gaussian log�likelihoods li�yi� �i
 for generalized additive and multiplicative mo�

dels or lt�y�t
� ��t

 for generalized dynamic models� with predictors �i or ��t
 as

in Section �� For generalized additive or multiplicative models� the minimizing

functions are again natural cubic splines and are now obtained by a Fisher scoring

or Gauss�Newton algorithm� This can be written as an iteratively weighted least

squares algorithm� with an inner back�tting loop in each iteration step� applied to

�working� observations� see Hastie and Tibshirani �����
 for generalized additive

models and Klinger ����	
 for generalized multiplicative models�

Similarly� �ltering and smoothing in generalized dynamic models can be car�

ried out by iteratively weighted Kalman �ltering and smoothing algorithms� ap�

plied to working observations �Fahrmeir and Tutz� ����a� ch� �� Fahrmeir and

Wagenpfeil� ����
� The penalized least squares criterion PS ��
 in �	��
 or �	���


is replaced by the penalized log�likelihood criterion

PL ��
 � l��
�
�

�
��K� �

with � and K as in Section 	��� and

l ��
 � �
�

�
����
 � a�
Q

��
� ����
� a�
�

TX
t
�

lt�y�t
� ��t

 �

with individual log�likelihoods lt and linear predictors ��t
 � Z�t
��t
�

We de�ne y � �y��
� � � � � y�T 

 and Z � diag�Z��
� � � � � Z�T 

 as in Section

	��� Furthermore we introduce the vector of expectations

���
 � ����
� ������

� � � � � �T ���T 

 �

with �t���t

 � h�Z�t
��t

� the block diagonal covariance matrix

���
 � diag �Q��������

� � � � ��T ���T 


 �

and the block�diagonal matrix

D��
 � diag �I�D�����

� � � � �DT ���T 


 �

��



where Dt���t

 � �h���t

	�� is the �rst derivative of the response function h��


evaluated at ��t
 � Z�t
��t
� Then the �rst derivative of PL ��
 is given by

u��
 � �PL ��
	�� � Z �D��
�����
�y � ���

 �K� �

The expected information matrix is

U��
 � �E���PL ��
	�����
 � Z �W ��
Z 
K

with the weight matrix W ��
 � D��
�����
D��
� A Fisher�scoring step from

the current iterate ��� say� to the next iterate �� is then

�Z �W ���
Z 
K
��� � ��
 � Z �D���
������
�y � ����

�K�� �

This can be rewritten as

�� � �Z �W ���
Z 
K
��Z �W ���
#y� � �	���


with �working� observation

#y� � D�����
�y � ����

 
 Z�� �

Comparing �	���
 with �	���
� we see that �� can be obtained from the current ite�

rate by applying common linear Kalman �ltering and smoothing to the �working�

observation #y�� In contrast to the iteratively weighted least squares algorithms

for additive or multiplictive models� no inner back�tting loop is necessary� Also�

the block�diagonal of the smoother matrix� which is required for obtaining con�

�dence bands or cross�validated choice of hyperparameters� is obtained directly

from the algorithm�

�� Applications

��� Credit�Scoring Revisited

In section � we applied a logistic regression model with a linear predictor to

analyze consumer�s creditworthiness� The maximum likelihood estimates led to

the surprising conclusion that the variable �amount of credit� has no signi�cant

in�uence on the risk of borrowers not paying back their credits� Alternatively

we treat it as a generalized additive regression problem� regarding X	 ��duration

of credit�
 and X� ��amount of credit�
 as splined variables� This leads to the

additive predictor

� � �� 
 ��X���� 
 ��X���� 
 f��X	
 
 f��X�
 
 ��X� 
 ��X� 
 ��X��

��



Figure ���� Estimated dependence on �duration of credit�

This nonparametric approach avoids the issue of selecting a particular parametric

dependence� e�g� �linearity�� of the response �creditability� on �duration of credit�

and �amount of credit�� The point of view we take is� Let the data show us the

appropriate form by a smooth curve� The analysis gives the following maximum

penalized likelihood estimates of the categorical variables�

Intercept X���� X���� X� X� X�

value ���� ���� ����� ����� ����� �����

In comparison with the linear logistic model the estimated coe�cients change

only slightly� The estimated curves are shown in Figure ��� and Figure ��� �solid

line
� While the variable �duration� is not far away from linearity� the estimate

of �amount of credit� is clearly not linear� The curve shows that not only high

credits but also low credits �below ���� DM
 increase the risk� The smoothing

parameters have been chosen by vision� A data�driven choice of the smoothing

parameters� e�g� by generalized cross�validation� is possible in principle� However�

e�cient computation would be required�

Since the curve of �duration� in the logistic additive model is almost linear� we

reanalyze the data with a logistic semiparametric model of the form ����
� with

predictor

� � �� 
 ��X���� 
 ��X���� 
 ��X	 
 f��X�
 
 ��X� 
 ��X� 
 ��X��

��



Figure ���� Estimated dependence on �amount of credit�

The advantage is that we can avoid the back�tting loop and are able to com�

pute the generalized cross�validation score in a simple way �see Green and Silver�

man� ����� ch��
� Unfortunately the minimization of the cross�validation criterion

yields only a global minimum 
 � �� which corresponds to a very rough estimate

of the variable �amount of credit�� So we have chosen the same smoothing para�

meter as above� We get the estimates of the �xed coe�cients�

Intercept X���� X���� X	 X� X� X�

value ���� ���� ����� ���	 ����� ����� �����

They are again not far away from the estimates of the logistic linear model� The

estimated dependence on �amount of credit� is shown in Figure ��� �dashed line
�

The form is very similar to the logistic additive model�

It seems that the logistic semiparametric model itself is a good model for the

credit scoring data� If someone is interested in getting a parametric model� the

semiparametric model can be used as a starting point for further analysis�

��� IFO business test

In Example �� time�varying thresholds m��t
� m��t
 and covariate e�ects

���t
� � � � � ���t
 were modelled by an eight�dimensional random walk of �rst or�

der� Smoothing estimates of the covariate parameters are displayed in Figure

��



Figure ��	� Covariate e
ects

��	� Apart from the D	�t
$parameter all e�ects are nearly constant in time� An

increase of production plans in the previous month �P	�t� �

 has a high posi�

tive in�uence on current production plans� while the e�ect of P
�t � �
 is still

positive but distinctly smaller� Both e�ects are in agreement with continuity in

planning production� Compared to the e�ects of D	�t
�D
�t
� which are both

clearly positive on the average� the e�ects of increasing or constant orders in

hand �O	�t
� O
�t

 are still positive but surprisingly small� This result� which

is in agreement with previous �ndings� can be explained as follows� The variable

D serves as a substitute for expected demand� For the purpose of short$range

production planning� expected demand is more relevant than current orders at

hand� which are more relevant for current production�

Compared to the remaining e�ects� the parameter ���t
 corresponding to the

increase category D	 of expected development of business has a remarkable tem�

poral variation� It exhibits a clear decline to a minimum at the beginning� and

a distinct increase period coincides with the �rst months of the new German

government in autumn ����� ending with the elections to the German parliament

in ���	� The growing positive e�ect of a positive state of business to the �in�

crease� category of production plans indicates positive reactions of �rms to the

change of government�

In Figure ��� both thresholds �solid line
 exhibit seasonal variation correspon�

�	



Figure ���� Trend parameters

ding to successive years� Threshold parameter m��t
 has peaks� mostly rather

distinct� in December or January� and low values in the summer months� An ex�

planation for this seasonal behaviour� which is not captured by covariate e�ects�

may be the following� Firms in this speci�c branch manufacture initial products

for the building industry� To be able to satisfy the increasing demand for their

products in late winter%early spring� production plans are increased � to 	 months

earlier� This is in agreement with the model� since higher values of m��t
 result

in higher probabilities for increasing production plans� keeping covariate e�ects

�xed� Similarly� decreasing values in spring and low values in summer re�ect the

tendency not to increase an already comparably high level of production any fur�

ther� The ups and downs of the second threshold parameter appear some months

later� Interpretation is analogous and corresponds to seasonal ups and downs in

the tendency of �rms not to change their current production plans� To specify

this seasonal e�ect more explicitly� a seasonal component in trigonometric form

was included additionally� Since seasonal variation is now modelled by these com�

ponents� the trend parameters are now more or less constant in time �dashed line

in Figure ���
�

��



Figure ���� Kalman �lter and smoother for soccer data based on a random walk of �rst

order� Teams are Bayern M
unchen ����� ��FC K
oln �� � ��� VfB Stuttgart �� � ��� ��FC

Kaiserslautern �� � ��� Hamburger SV ����� and Eintracht Frankfurt �� ��

��� Dynamic Pair Comparisons for the German

Fu�ball�Bundesliga

We apply the ordinal logistic paired comparison model of Example 	 to data

for the teams Bayern M"unchen� ��FC K"oln� VfB Stuttgart� ��FC Kaiserslautern�

Hamburger SV and Eintracht Frankfurt for the years ���� to ����� Thresholds

and abilities are modelled by �rst order random walks� For the thresholds the

estimated variances are ����� and ������ That means the thesholds in fact remain

rather stable over years� For the abilities the estimated variances in Q are ������

������ ������ ����� and ������ Figure ��� shows the smoothed abilities for the

six teams based on these estimated hyperparameters� The large variance of the

�rst team ������
 and the �fth team ������
 may also be seen from the picture

which shows strong �uctuation for Bayern M"unchen �team �
 and comparatively

high �uctuation for Hamburger SV �team �
 whereas the other teams are quite

constant� The highs and lows of Bayern M"unchen are in good agreement with the

development� coming and going of important players and coaches� For example

the peak about ����$���� coincides with the most successful years of the team

with Franz Beckenbauer as captain and other important members of the national

team at that time� While still successful in European cup �nals till ����� success

��



Figure ���� Absolute residuals of the unweighted estimation for the tenancy data�

The solid line is the linear regression used to determine the weights� The triangles

correspond to a linear regression for the absolute residuals computed from the weighted

estimation�

was steadily declining in the German national league� eventually leading to a

distinct low when Franz Beckenbauer went to Cosmos New York and others left

the team� It took some time to form a new team which became better and

eventually very successful again in the late ���s� In this later period Hamburger

SV� which had become more and more powerful� and Bayern M"unchen were the

dominating teams in the national soccer league� An alternative analysis with local

linear trend models gives rather similar results� see Fahrmeir and Tutz �����b
�

��� Rental tables

As introduced in Section �� a seven component multiplicative model

y � ���F 

F���A

���F 
S�
���F 
S	
���F 
H
���F 
B
���F 
L
� ����


is suggested to analyse the tenancy survey� Since� in contrast to �oor space �F 
�

the variable age �A
 has no meaningful origin� we use the interaction term F���A


instead of ���F 
A� For penalizing the roughness of each e�ect �j the integrated

squared curvature is applied again�

The smoothing parameters 
�� � � � � 
� for the cubic smoothing splines were se�

lected automatically by an adaptive back�tting algorithm similar to BRUTO as

��



Figure ���� Basic rent depending on �oor space� ���� weighted regression�

� � � unweighted regression�

proposed by Hastie �����
� Each back�tting step is divided into two steps �i
 and

�ii
� In step �i
 the �univariate
 trade$o� parameter 
j is chosen to minimise a

generalized cross$validation score �GCV
 depending on partial residuals within a

given range Ij � �
j�l
� 
j�h
�� In a following step �ii
 the actual smoothing para�

meters 
�� � � � � 
j� � � � � 
� are considered to be �xed and a back�tting algorithm is

applied to update all coe�cients of the model simultaneously� By initialising the

�inner� back�tting in step �ii
 with the estimation result of step �i
� convergence

is usually reached after the �rst or during the second loop� Step �i
 and step

�ii
 are alternated for j � �� � � � � �� � � � � � �� � � � until any convergence criterion in


�� � � � � 
� and ��� � � � � �� is reached� When arrived after a full �outer� loop at the

j�th covariate again� the interval Ij is shifted� depending on the location of the

GCV�minimal 
j in Ij found in the previous loop� Hence the algorithm is capable

to �nd smoothing parameters within a total range ����
� Details of this method

and extensions to the non$Gaussian case are described in Klinger ����	
�

The absolute residuals computed from unweighted penalized least squares esti�

mation shown in Fig� ��� are indicating a heterogeneous error variance depending

on �oor space� Therefore we estimate the coe�cients in two steps� similarly as

in linear models �see e�g� Carroll and Ruppert� ����
� To obtain weights for a

��



component tr�eSj

estimation� unweighted weighted

���F 
 �	����� �	�����

F���A
 ������� �������

���F 
S� ��	���� ��	����

���F 
S	 �����	� �������

���F 
H ������� �������

���F 
B ��	���� ��	����

���F 
L ������� �������

WRSS 	������ 	�	����

Table ���� Traces of the components smoother matrices for the rental�table model�

weighted penalized least squares estimation� a linear regression of the form

jrij � �� 
 ��F 
 �

is applied to the absolute residuals jrij resulting from the unweighted estimation�

The weights used in the �nal estimation are then given by

wi � �!�� 
 !��F 
���

As shown in the two linear regressions in Fig� ��� a further estimation step would

use almost the same weights� and therefore no great di�erences in estimation

results could be expected�

A comparison of the �t to the data by the weighted residual sum of squares

�WRSS
 in Tab� ���� shows that the unweighted estimation with automatically

chosen smoothing parameters has even a slightly better �t� Viewing the trace

of the �ratio$type�$smoothing matrices given in Tab� ��� as an approximation to

�individual� degrees of freedom� the weighted regression seems to compensate the

loss of �t by stronger smoothness restrictions�

The estimated functions for basic rent� depending on �oor space and year of

construction� obtained by weighted and unweighted regression are quite similar

�Fig� ��� and Fig� ���
� An interesting result is the rent reduction for �ats con�

structed in the post�war era during the �����s and the steep ascent for recently

built apartments shown in Fig� ���� For a careful investigation of this fact additio�

nal covariates describing type and equipment of �ats� like renovation or balcony�

would have to be included�

��



Figure ���� Correction of basic rent in DM�m� depending on the year of construction�

���� weighted regression� � � � unweighted regression�

An example for the improvement obtained from weighted regression is given

in Fig� ���� and Fig� ����� For the two terms ���F 
S	 and ���F 
B unweighted

regression leads to no plausible results since the e�ects are expected to increase or

decrease monotonously in �oor space� Interestingly both traces of the component

���F 
B are nearly the same �see Tab� ���
� Therefore the di�erent results shown

in Fig� ���� are due to a reduction of weights for the few bigger �ats without

bathroom�

Advantages of this nonparametric approach can be studied by the in�uence

of no central heating �H
 in Fig� ����� Here it seems that a less e�cient heating

system is more disadvantageous in bigger apartments than in smaller ones� In

addition the discount on site below average in Fig� ��� and on missing bathroom

in Fig� ���� is decreasing less than linearly in �oor space as has to be supposed

by linear regression analysis� For the in�uence due to equipment of bathroom

�L
 automatic selection of smoothing parameters indicates linear e�ects in both

estimates �Fig� ���	
�

��



Figure ���� Reduction on rent for apartments located in sites below average depending

on �oor space� ���� weighted regression� � � � unweighted regression�

Figure ����� Surcharge on rent for apartments located in sites above average depending

on �oor space� ���� weighted regression� � � � unweighted regression�

	�



Figure ����� Reduction on rent for apartments without central heating depending on

�oor space� ���� weighted regression� � � � unweighted regression�

Figure ����� Reduction on rent for apartments without bathroom depending on �oor

space� ���� weighted regression� � � � unweighted regression�

	�



Figure ���	� Surcharge on rent for apartments with luxury �tted bathrooms depending

on �oor space� ���� weighted regression� � � � unweighted regression�

�� Concluding remarks

Due to its �exibility and versatility� the roughness penalty approach provides

a unifying framework for non� and semiparametrically modelling and estimation

in various settings of regression analysis� Dynamic or state space models can

be viewed as Bayesian versions of varying�coe�cient or multiplicative models

if estimation is based on maximization of posterior densities� We conclude by

pointing out some topics for further research�

	 Extensions to multicategorical or multivariate correlated responses� e�g� se�

miparametricmarginal models for clustered data or repeated measurements�

are possible by introducing appropriate �quasi�
likelihoods�

	 Monotonicity or concavity of functions f�x
 can be accounted for by appro�

priate modi�cation of penalty functions�

	 Identi�cation and choice of models needs to be further developed�

	 Still more e�cient algorithms� for example avoiding the back�tting loops�

would be useful� in particular in combination with data�driven selection of

smoothing parameters or hyperparameters�

	�



	 For mixed continuous and discrete covariates� more �exible approaches than

a semiparametric additive model like ����
 should be available� This might

be accomplished by combining the features of classi�cation and regression

trees �CART
 and smoothing techniques�

	 If one is willing to adopt Bayesian formulations in form of state space mo�

dels� full posterior analysis or at least posterior mean estimation will be the

ultimate goal� It seems that Gibbs sampling or related data augmentation

techniques are most promising and general tools for Bayesian estimation�
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