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Abstract

This short note contains an explicit proof of the Dirichlet distribu-
tion being the conjugate prior to the Multinomial sample distribution
as resulting from the general construction method described, e.g., in
Bernardo and Smith (2000). The well-known Dirichlet-Multinomial
model is thus shown to fit into the framework of canonical conjugate
analysis (Bernardo and Smith 2000, Prop. 5.6, p. 273), where the up-
date step for the prior parameters to their posterior counterparts has
an especially simple structure. This structure is used, e.g., in the Im-
precise Dirichlet Model (IDM) by Walley (1996), a simple yet powerful
model for imprecise Bayesian inference using sets of Dirichlet priors
to model vague prior knowledge, and furthermore in other imprecise
probability models for inference in exponential families where sets of
priors are considered.

1 Conjugate Priors, Canonical Construction

Before turning to the proof in the next section, we introduce the relevant
concepts, and give some background on the use of canonically constructed
conjugate priors in imprecise Bayesian inference.

Conjugate priors are an important tool in Bayesian statistics. A prior
is called conjugate (to a certain sample distribution, or likelihood, e.g., the
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Normal, or the Binomial, distribution) if it leads, by updating via Bayes’
Rule, to a posterior that is from the same parametric class as the prior.
Thus, the posterior remains easily tractable, making inferences based on
it straightforward, and the update step is fully described by the change of
parameter values in the conjugate class of parametric distributions.

There are general results regarding the construction of conjugate priors
to a given sample distribution for several general classes of distributions.
Here, we consider the canonical exponential family [1, Def. 4.12, p. 202] class
of sample distributions, which covers a wide range of sample distributions
relevant to statistical practice.1

A sample distribution is said to belong to the canonical exponential fam-
ily if its density or mass function satisfies the decomposition2

f(x|θ)dx ∝ exp
{
〈ψ, τ∗(x)〉 − b(ψ)

}
dx . (1)

Here, ψ ∈ Ψ ⊂ Rq, with q ∈ N>0, is the so-called canonical parameter of the
distribution, being a transformation of the (possibly vectorial) parameter
θ ∈ Θ commonly used. b(ψ) is a scalar function of ψ (or, in turn, of θ),
while τ∗(x) is a function of a single sample x with τ∗(x) ∈ T ⊂ Rq.3

The canonical conjugate prior on ψ can be constructed as [1, p. 272]

p(ψ|n(0), y(0))dψ ∝ exp
{
n(0)

[
〈y(0), ψ〉 − b(ψ)

]}
dψ , (2)

with n(0) and y(0) the parameters by which a certain prior is specified.4 The
domain of y(0) is Y, the interior of the convex hull of T ; the scalar n(0) must
take strictly positive values for the prior to be proper (integrable to 1).

When updating a prior (2) via Bayes’ Rule with an i.i.d. sample of size
n, the posterior parameters y(n) and n(n) are calculated as

y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ(x)

n
, n(n) = n(0) + n . (3)

We may thus denote the posterior p(ψ|x, n(0), y(0)) by p(ψ|n(n), y(n)).
It is the weighted average structure for y(n) in (3) which is the key to a

simple calculus for imprecise Bayesian inference based on sets of conjugate

1The class contains, e.g., the Normal, Multinomial, Poisson, Exponential, and Gamma
sample models.

2〈·, ·〉 denotes the scalar product.
3For an i.i.d. sample x of size n, (1) can be modified by replacing τ∗(x) with τ(x) =∑n
i=1 τ

∗(xi), and b(ψ) with nb(ψ), respectively.
4In our notation, (0) denotes prior parameters; (n) denotes posterior parameters.
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priors. In imprecise Bayesian inference, sets of priors can be considered
in order to model partial or very weak prior knowledge. A convex set of
priors, often called prior credal set, is updated element by element to obtain
the posterior credal set. This procedure can be rigorously justified in the
theoretical framework developed by [4], where it is equivalent to applying
the Generalized Bayes’ Rule [4, §6.4] in a statistical context. When a set
of priors is defined as (the convex hull of) parametric priors p(ψ|n(0), y(0))
where (n(0), y(0)) varies in a set IΠ(0), the corresponding set of posteriors
is given by (the convex hull of) parametric posteriors p(ψ|n(n), y(n)), whose
parameters (n(n), y(n)) are obtained by (3). For fixed n(0), y(n) is linear
in y(0), and thus extreme points of IΠ(0) = n(0) × Y(0) are updated to the
extreme points of the posterior parameter set IΠ(n), making also an imprecise
inference calculus tractable.

The IDM [5] is based on this very calculus in case of the Dirichlet-
Multinomial model, and [2] have first described it for the canonical exponen-
tial family setting in general as presented above. It was further generalized
by the definition of so-called luck-models in [7, 6] to apply also to other
settings.

2 The Proof

In the remainder, we will construct the conjugate prior to the Multinomial
sampling model according to (2), and subsequently show that the resulting
prior is indeed a Dirichlet. The result shown here can, without proof, be
found in [2, Table 1], which tabulates priors constructed for a number of
sample models.5

For the construction, we will represent the Multinomial distribution as
a multivariate Bernoulli. A multivariate Bernoulli is equivalent to a Multi-
nomial distribution with sample size 1, and thus i.i.d. repetitions of a mul-
tivariate Bernoulli distribution lead to the Multinomial distribution.

The density of the multivariate Bernoulli with categories j = 0, 1, . . . , k,
where for the observation vector x with elements xj holds that x ∈ {0, 1}k∩{
x :

∑k
j=1 xj ∈ {0, 1}

}
, and for the parameter vector θ with elements θj

holds θ ∈ (0, 1)k ∩ {θ : 0 <
∑k

j=1 θj < 1} (so θ0 := 1 −∑k
j=1 θj), is as

5However, for the Multinomial sampling model, the table contains a sign error for b(ψ).
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follows:

p(x |θ) =

(
k∏

j=1

θ
xj
j

)(
1−

k∑

j=1

θj

)1−∑k
j=1 xj

= θ0

k∏

j=1

(
θj
θ0

)xj

= exp

{
k∑

j=1

xj ln

(
θj
θ0

)
−
(
− ln(θ0)

)
}
.

With ψ and b(ψ) derived from the sample model as

ψj = ln

(
θj
θ0

)
, j = 1, . . . , k and b(ψ) = − ln(θ0),

the conjugate prior is at first constructed as a density over ψ and then
transformed to a density over θ:

p(ψ |n,y) dψ ∝ exp

{
n

[
k∑

j=1

yj ln

(
θj
θ0

)
−
(
− ln(θ0)

)
]}

dψ

Written as a density over θ, we have

p(θ |n,y) dθ ∝ exp

{
n

[
k∑

j=1

yj ln

(
θj
θ0

)
−
(
− ln(θ0)

)
]}
·
∣∣∣∣det

(
dψ

dθ

)∣∣∣∣ dθ ,

with the the elements of the Jacobian matrix dψ
dθ being

dψi
dθi

=
1

dθi
ln

(
θi

1−∑k
j=1 θj

)
=

1−∑k
j=1 θj

θi
·

1−∑k
j=1 θj + θi

(1−∑k
j=1 θj)

2
=
θ0 + θi
θ0θi

dψh
dθi

=
1

dθi
ln

(
θh

1−∑k
j=1 θj

)
=

1−∑k
j=1 θj

θh
· θh

(1−∑k
j=1 θj)

2
=

1

θ0
, i 6= h

Thus,

det

(
dψ

dθ

)
= det




θ0+θ1
θ0θ1

1
θ0

. . . 1
θ0

1
θ0

θ0+θ2
θ0θ2

. . .
...

...
. . .

. . . 1
θ0

1
θ0

. . . 1
θ0

θ0+θk
θ0θk



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=

(
1

θ0

)k
det




θ0
θ1

+ 1 1 . . . 1

1 θ0
θ2

+ 1
. . .

...
...

. . .
. . . 1

1 . . . 1 θ0
θk

+ 1




∗
=

(
1

θ0

)k k∏

j=1

θ0
θj
·
(

1 +
(
1 . . . 1

)



θ1
θ0

0
. . .

0 θk
θ0







1
...
1



)

=

k∏

j=1

1

θj
·
(

1 +

k∑

i=1

θi
θ0

)
=

(
k∏

j=1

1

θj

)
θ0 +

∑k
i=1 θi

θ0

=

(
k∏

j=1

1

θj

)
1

θ0
=

k∏

j=0

1

θj
,

where equality ∗ holds by the theorem [3, Theorem A 16 (x), Appendix A3,
p. 494], stating that

det(A+ a aT) = det(A)(1 + aTA−1a) if det(A) 6= 0

for all appropriately sized matrices A and column vectors a.

With det
(
dψ
dθ

)
=
∏k
j=0

1
θj

, we get

p(θ |n,y) ∝ exp

{
n

[
k∑

j=1

yj ln

(
θj
θ0

)
−
(
− ln(θ0)

)
]}
·
∣∣∣∣
k∏

j=0

1

θj

∣∣∣∣

= exp

{
n

[
k∑

j=1

yj

(
ln(θj)− ln(θ0)

)
+ ln(θ0)

]
−

k∑

j=0

ln(θj)

}

= exp

{
n

[
k∑

j=1

yj ln(θj) + ln(θ0)

(
1−

k∑

j=1

yj

︸ ︷︷ ︸
=:y0

)]
−

k∑

j=0

ln(θj)

}

= exp

{
n

[
k∑

j=0

yj ln(θj)

]
−

k∑

j=0

ln(θj)

}

= exp

{
k∑

j=0

(n yj − 1) ln(θj)

}
= exp

{
k∑

j=0

ln
(
θ
n yj−1
j

)}
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=
k∏

j=0

θ
n yj−1
j ,

which is the core of a Dirichlet density Dir(n,y) over θ. Therefore, the
Dirichlet distribution is the canonically constructed conjugate prior to the
multivariate Bernoulli. Since i.i.d. repetitions do not interfere with con-
jugacy, the Dirichlet distribution is the canonically constructed conjugate
prior also to the Multinomial distribution.
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