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Abstract

We are dealing with the prediction of forthcoming outcomes of a categorical time series�

We will assume that the evolution of the time series is driven by a covariate process and

by former outcomes and that the covariate process itself obeys an autoregressive law�

Two forecasting methods are presented� The �rst is based on an integral formula for the

probabilities of forthcoming events and by a Monte Carlo evaluation of this integral� The

second method makes use of an approximation formula for conditional expectations� The

procedures proposed are illustrated by an application to data on forest damages�

Keywords� Forecasting� Categorical Time Series� Regression Model� Cumulative Model�
Monte Carlo Method� Forest Damage Data

� Introduction

We are concerned with the problem of predicting forthcoming outcomes YT�l of a categorical
time series Yt� t � �� �� � � �� if the history of the process up to time T was observed�

The evolution of the categorical response variable Yt� where Yt � J � f�� �� � � � �mg� is assumed
to be driven by

�� an r�dimensional covariate process Zt� t � �� �� � � ��

�� the last response Yt���

�� a vector summarizing the history before t� ��

Thus� we are dealing with a transition type of regression model� The conditional probabilities

pt�j � IP	Yt � j j Ht


are modelled in the form hj	�t
� where hj� j � J � are response functions� �t is a regression term
depending on the regressors introduced in 	�
 to 	�
 above� and Ht comprises the variables

Z�� Y�� � � � � Zt��� Yt��� Zt�

Special attention is given to a cumulative regression model in the case where Yt is measured on
an ordinal scale�

�A version of this paper will appear in the Proceedings Volume of the ��th International Workshop on

Statistical Modelling� Innsbruck�����

�



To tackle the forecast problem we have to assume that the covariate process Zt� t � �� �� � � ��
obeys an own autoregressive law� not in�uenced by the process Yt� t � �� �� � � � � of the response
variables� We will be interested in the l�step predictor of the conditional probabilities pt�j� i�e�


pT�j	l
 � IE	pT�l�j j FT 
� FT � 	HT � YT 
�

We will present two forecasting methods� The �rst is based on a multiple integral formula
for 
pT�j	l
 and on its calculation by means of a recursive Monte Carlo algorithm� The second
method is based on an approximation of the form

IE	h	�T�l
 j FT 
 � h	IE	�T�l j FT 



and on an recursion formula for IE	�T�l j FT 
� We will close with an application of the
forecasting methods to longitudinal data on forest damages� The responses Yt are the levels of
tree damages at time t� and the covariates Zt refer to the trees� the site and the soil� From the
observation in the period ���� to ���� and with an AR	�
� law for the covariate process we try
to determine the probability vector 
pT 	l
 for the forthcoming damages 	T � ����� l � �� �� � � �

as well as the mean damage values


�T 	l
 �
mX
j��

j � 
pT�j	l
�

� Modelling

Let the components of
pt � 	pt��� � � � � pt�m��


T

be positive� with a sum less than �� let the vector response variable

Wt � 	Yt��� � � � � Yt�m��

T

be multinomially distributed with parameters � and pt and put

Yt�m � � � 	Yt�� � � � � � Yt�m��
� pt�m � � � 	pt�� � � � � � pt�m��
�

A regression model for categorical time series is de�ned by

pt � h	�t
� h � IRm�� � IRm�� 	�


where the regression term �t � 	�t��� � � ��t�m��
T is of the form

�t�j � �j � � � pt���j � �T ��	Wt��
j � 	T � Zt� 	�


It comprises as regressors the preceding probability vector pt��� a q� dimensional function �
of the preceding response Wt�� and the covariates Zt� Unknown are the parameters

� � IRm��� � � IR� � � IRq� 	 � IRr�

�



For such transition models see Fahrmeier and Kaufmann 	����
� Zeger and Qaqish 	����
 and
recent surveys by Fahrmeir and Tutz 	����
� Diggle et al 	����
� In the case of an ordinal
response it is useful to introduce cumulative probabilities

pt��j� � pt�� � � � � � pt�j

as well as the cumulative quantities �	�
�j� and �t��j�� Putting

hj	�t
 � F 	�t��j�
� F 	�t��j���


model 	�
�	�
 has the form of a cumulative regression model� see McCullagh 	����
� namely

pt��j� � F 	�t��j�
� �t��j� � ��j� � � � pt����j� � �T � �	Wt��
�j� � 	T � Zt� 	�


where the ��j� stand in an increasing order� with ��m� � �� where F is a cumulative distribution
function and where the parameters are restricted by

� � p � �T � �	w
j 
 �

for all w� j� p � �� �� The asymptotic theory of model 	�
 was given in some detail in Pruscha
	����
� Two important special cases concerning � are

�� q � m� �� �	Wt
 � Wt� 	lagged dummy variables


�� q � �� �	Wt
 � Yt �
mP
j��

j � Yt�j 	lagged ordinal variable
�

� Forecasting� The General Set�Up

We adopt the following set�up from time series analysis� see Brockwell and Davies 	����� sec�����
���
� If Xt� t � �� �� � � � � is a time series and FT comprises the information on X�� � � � �XT � we
de�ne the l�step predictor� the prediction error and the prediction m�s�e� respectively� by


XT 	l
 � IE	XT�l j FT 
�

�T 	l
 � XT�l � 
XT 	l
�

VT 	l
 � IE	��
T 	l
 j FT 
�

For MA	�
� processes �T 	l
 and FT are independent� such that we have VT 	l
 � IE	��
T 	l



too� With the short�hand notation

IET 	�
 � IE	� j FT 
� VarT 	�
 � IET 	� � IET 	�

� 	�


we can write
VT 	l
 � VarT 	XT�l
� 	�


For regression models 	�
�	�
 we are �rstly interested in forecasting pt�j and then in forecasting
the derived quantity

�t �

mX
j��

j � pt�j �

m��X
j��

	� � pt��j�
�

�



For this reason we put
FT � 	Y�� � � � � YT � Z�� � � � � ZT 


and �with the de�nition of IET and VarT as in 	�
� we introduce the l�step predictors


pT�j	l
 � IET 	pT�l�j
� 
�T 	l
 � IET 	�T�l
 �
mX
j��

j � 
pT�j	l


for pT�l�j and �T�l� respectively� From the equation

pT�l�j � IP	YT�l � j j FT�l��� ZT�l


we immediately obtain

pT�j	l
 � IP	YT�l � j j FT 
� 	�


Due to 	�
 the prediction m�s�e� VT�j	l
 and VT��	l
 related to 
pT�j	l
 and 
�T 	l
� respectively�
are

VT�j	l
 � VarT 	pT�l�j
� VT��	l
 � VarT 	�T�l
�

For the rest of the paper we assume that the centered covariate process Zt� t � �� �� � � � � follows
an AR	p
�equation of the familiar form

Zt � R� � Zt�� � � � � � Rp � Zt�p � et� t � �� �� � � � 	�


where the r � r � matrices Ri ful�l the causality criterion� see Brockwell and Davies 	�����
sec�����
� and the et are independently and N	���e
�distributed�

� Monte Carlo Simulation

In a �rst attempt to solve the forecast problem we will write down a precise expression for
the l� step predictor 
pT�j	l
 by using a multiple integral� and we will calculate the integral by
means of Monte Carlo simulation� Note that this is not a forecast procedure in the classic sense�
In the usual time series context� a unique path is generated� representing a best approximation
to real forthcoming observations� while here many paths are generated and then averaged�

For the pair of covariates and response at time t let us write xt � 	zt� yt
� Xt � 	Zt� Yt
� and let
us denote by

fT 	xT��� � � � � xT�l��� zT�l


the conditional density of the regular conditional probability

IP	XT�� � B� � fy�g� � � � �XT�l�� � Bl�� � fyl��g� ZT�l � Bl j FT 


w�r�t� the measure � � 	�� �
l��� �� where � is 	only here
 the Lebesgue�measure on IRr and
� the counting measure on J � Then


pT�j	l
 �

Z
� � �

Z
fT 	xT��� � � � � xT�l��� zT�l
 � pT�l�j �

�d�	xT��� � � � � xT�l��� zT�l
� 	�


�



where the integration�summation is over 	IRr�J
l��� IRr� The right hand side of 	�
 can now
approximately be calculated by using Monte Carlo methods to generate repeatedly a sequence

	XT��� � � � �XT�l��� ZT�l
�

To achieve this the following recursive algorithm is employed�

�� From FT calculate ZT�� according to 	�
 by drawing an N	�� 
�e
 random vector� 
�e being
an estimator of �e

�� From 	FT � ZT��
 calculate

�T�� � � � � � pT � �T � �	YT 
� 	T � ZT��

and then pT�� � h	�T��


�� Draw YT�� according to the probability vector pT���

Continue with ����� after increasing T to T � �� After l steps we arrive at the vectors �
���
T�l and

p
���
T�l � K repetitions of this algorithm lead to vectors

�
�k�
T�l and p

�k�
T�l� k � �� � � � �K�

then to the averaged vectors ��T�l and �pT�l� where we have set �a �
PK

k�� a
�k�
K� and to

��T�l �
Pm

j�� j � �pT�l�j� Now ��T�l� �pT�l and ��T�l are the Monte Carlo solutions for


�T 	l
 � IET 	�T�l
� 
pT 	l
 and 
�T 	l
� resp�

In the application below we will further make use of the prediction m�s�e of 
�T 	l
 estimated by


VT��	l
 �
KX
k��

	��k�T�l � ��T�l

�
	K � �
� 	�


� Approximation Procedure

Our second approach comes closer to the spirit of the classic time series forecasting methods�
We want to gain a predictor for pT�l by interchanging conditional expectation and response
function h� Here we have to make use of the predictors of the covariate process Zt� For the
AR	p
�process Zt an l� step predictor of ZT�l will be denoted by 
ZT 	l
� see Brockwell and
Davies 	����� sec�����
� We will now calculate the l� step predictor


pT 	l
 � IET 	h	�T�l



by the approximation formula 
pT 	l
 � �pT 	l
� where

�pT 	l
 � h	
�T 	l

� 
�T 	l
 � IET 	�T�l
� 	��


�



One successively derives� by using 	�
 and 
ZT 	l
 � IET 	ZT�l
�


�T 	�
 � � � � � pT � �T � �	YT 
� 	T � 
ZT 	�


� � �


�T 	l
 � � � � � 
pT 	l � �
 �
X
j


pT�j	l � �
�T�	j
� 	T � 
ZT 	l
� 	��


where 
pT 	l � �
 is approximated by �pT 	l � �
 � h	
�T 	l � �

 at each step� Thus equation 	��

allows a recursive calculation of 
�T 	l
 and �via 	��
� of 
pT 	l
 � �pT 	l
�

We want to give now an estimate B���
T 	l
 of the bias

BT 	l
 � 
pT 	l
� �pT 	l
 � IETh	�T�l
� h	
�T 	l



produced by approximation formula 	��
� To this end we assume that h is twice continuously
di�erentiable� and we start with the second�order expansions

hj	�T�l
 � hj	�T 
 � h�j	�T 
 � xT�l � 	xT�l

T � h��j 	�T 
 � xT�l
� � RT 	l
�

where xT�l � �T�l � �T � and with the same expansion for hj	
�T 	l

� i�e�

hj	
�T 	l

 � hj	�T 
 � h�j	�T 
 � 
xT�l � 	
xT�l

T � h��j 	�T 
 � 
xT�l
� � 
RT 	l
�

where 
xT�l � 
�T 	l
� �T and RT 	l
� 
RT 	l
 are remainder terms� This leads to

B
���
T�j	l
 �

�

�
IET �	�T�l


T � h��j 	�T 
 � �T�l � �

�

�T 	l
T � h��j 	�T 
 � 
�T 	l
� 	��


In the special case of the cumulative regression model 	�
 we can simplify formula 	��
� In fact�
the second�order approximation for the bias BT��j�	l
 � 
pT��j�	l
� �pT��j�	l
 amounts to

B
���
T��j�	l
 �

�

�
F ��	�T��j�
 �VarT 	�T�l��j�
� 	��


Taking as an example the logistic distribution function F 	s
 � �
	� � e�s
� then B
���
T��j�	l
 turns

out to be positive�negative� if �T��j� is negative�positive�

Formulas 	��
 and 	��
 can be applied to correct the bias of the approximation 	��
� if estimators
for

IET �	�T�l

T � h��j 	�T 
 � �T�l and VarT 	�T�l��j�
� resp��

are available� To establish explicit expressions for them seems di!cult� Numerically� they can
be gained as by�products of the Monte�Carlo method of sec��� The approximation method of
this section� however� was introduced to get forecasts without the computer intensive method
of Monte�Carlo simulation�

�



� Application

��� Forest Damage Data

The cumulative logistic regression model 	�
 is now applied to three longitudinal data sets on
damages in beech� oak and pine trees� respectively� These data were gathered by Dr�A�G"ottlein�
University of Bayreuth� during the last �� years in a forest district of Spessart 	Bavaria
� The
damage Yt in the year t was measured on an ordinal scale consisting of m � � categories of
needles�leaves lost� The longitudinal structure of the data is determined by the observation
period of �� years 	���� � ����
 and by N sites 	N � �� beech sites� N � �� oak sites� N �
�� pine sites
� For each site and each year a vector Zt of r � �� covariates were recorded
concerning the trees 	age� canopy� stand
� the site 	gradient� height� exposition
� the climate
and the soil 	type� moisture� pH�values
� see G"ottlein and Pruscha 	����
 and 	����
 for more
details� The parameter of the model were estimated from the longitudinal data by the m�l�
method for each species separately� Concerning the function � we made the special choice
�	Wt
 � Yt� see special case � in sec��� We further put � � �� The covariate process Zt is
assumed to be driven by an AR	�
�equation�

��� Forecasting �t

Fixing the outcomes of the years ���� � ���� as known� we try to forecast the values of the
mean damage category

�t �
mX
j��

jpt�j

for the years ���� � ����� letting the years ���� and ���� �for which we have observations� as
control� That is� we put T � �� and we are interested in the l� step predictors 
�T 	l
� l �
�� �� � � � � �� The calculations of the forecasts� leading to the Fig��� are performed separately for
each of the three species� beech� oak and pine trees� and for each site i � �� �� � � � � N � followed
by averaging over the N sites of the species�

First� the Monte Carlo method 	MOCA
 of sec�� is applied� with K � ��� repetitions to
calculate ��T�l as Monte Carlo solution for 
�T 	l
 and the corresponding m�s�e� 
VT��	l
 according
to 	�
� A �� per cent con�dence interval for the averaged �T�l is established by the con�dence
limits


�T 	l
�
q


VT��	l
 � �����

p
N

holding approximately for the individual years l � �� �� � � � � ��

Secondly� the approximation method 	APPR
 of sec�� is employed� For all three species the
forecasts 
�T 	l
 produced by the MOCA and by the APPR method run very similar over the �
years ���� to ����� with the APPR curve below the MOCA curve� The upward trend of the
pine curve at the end of the observation period is continued in a strongly damped form�

To compare the forecast solutions with the observation data of the years ���� to ����� we
include plots for �Yt and ��t� where Yt is the observed category� �t �

P
jpt�j is the predicted

mean value at year t 	as predicted on the basis of the estimated cumulative regression model

and the bar means averaging over the N sites of the tree species� Note the lag�e�ect which is
produced by the term Yt�� in the regression model� especially in the oak data� a zig zag run of
the �Yt values becomes apparant in the run of the ��t values with a lag of one year�

�
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Plots of Observed, Predicted and Forecasted Forest Damages
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Figure �� Observed� predicted and forecasted forest damages

��� Some Remarks to Fig��

Observed� predicted and forecasted damages are shown in Fig�� separately for three tree species�
beech� oak and pine trees� respectively�

Over the years ���� to ���� are plotted
� the OBServed damage category Yt and the predicted mean category �t� as predicted from the
ESTIMated cumulative regression model�

Over the years ��������� are plotted
� the forecasted mean category 
�T 	l
�l � �� � � � � �� as produced by the MOCA and the APPR
methods of sec�� and sec��� resp�

All values are averaged values over the N sites of the tree species� Further� at the end of the
forecast curve� a �� per cent con�dence interval for �T�l is indicated by an vertical bar� holding
approximately for the last forecast step� i�e for l � ��
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