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Abstract

We are dealing with the prediction of forthcoming outcomes of a categorical time series.
We will assume that the evolution of the time series is driven by a covariate process and
by former outcomes and that the covariate process itself obeys an autoregressive law.
Two forecasting methods are presented. The first is based on an integral formula for the
probabilities of forthcoming events and by a Monte Carlo evaluation of this integral. The
second method makes use of an approximation formula for conditional expectations. The
procedures proposed are illustrated by an application to data on forest damages.

Keywords: Forecasting; Categorical Time Series; Regression Model; Cumulative Model;
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1 Introduction

We are concerned with the problem of predicting forthcoming outcomes Y7,; of a categorical
time series Y;, t = 1,2, ..., if the history of the process up to time T was observed.

The evolution of the categorical response variable Y;, where Y; € J = {1,2,...,m}, is assumed
to be driven by

1. an r—dimensional covariate process Z;, t = 1,2,...,
2. the last response Y;_1,

3. a vector summarizing the history before ¢ — 1.

Thus, we are dealing with a transition type of regression model. The conditional probabilities
pri =PV, =7 | Hy)

are modelled in the form h;(n:), where hj, j € J, are response functions, 1, is a regression term
depending on the regressors introduced in (1) to (3) above, and H; comprises the variables

Z171/17 .. '7Zt—17}/t—17Zt'

Special attention is given to a cumulative regression model in the case where Y; is measured on
an ordinal scale.
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To tackle the forecast problem we have to assume that the covariate process Z;, ¢t = 1,2,...,
obeys an own autoregressive law, not influenced by the process Y;, t = 1,2,..., of the response
variables. We will be interested in the [-step predictor of the conditional probabilities p; ;, i.e.

pri(l) = E(prir; | Fr),  Fr = (Hr, Y1)

We will present two forecasting methods. The first is based on a multiple integral formula
for pr;(l) and on its calculation by means of a recursive Monte Carlo algorithm. The second
method is based on an approximation of the form

E(h(nr40) | Fr) = b(IE(r4 | Fr))

and on an recursion formula for E(nry | Fr). We will close with an application of the
forecasting methods to longitudinal data on forest damages. The responses Y; are the levels of
tree damages at time ¢, and the covariates Z; refer to the trees, the site and the soil. From the
observation in the period 1983 to 1992 and with an AR(1)— law for the covariate process we try
to determine the probability vector pr([) for the forthcoming damages (7' = 1992, [ = 1,2,...)
as well as the mean damage values

jir(l) = Zy’ pry(l).

2 Modelling

Let the components of
Pt = (pm, . 7pt,m—1)T

be positive, with a sum less than 1, let the vector response variable
Wy = (Yia, .., Yime1)"
be multinomially distributed with parameters 1 and p; and put
Yim=1—-Ya+...+Yim), Pm=1—(p1+. ..+ Prm-1)

A regression model for categorical time series is defined by

P = h(m), h:IR™ ' - R™! (1)
where the regression term 7; = (7:1,...7t,m_1)" is of the form
N =a; + 7 por; A AWy — BT Z (2)

It comprises as regressors the preceding probability vector p;_1, a ¢— dimensional function A
of the preceding response W;_; and the covariates Z;. Unknown are the parameters

acR™!' 7eR, MeR!, pBelR.



For such transition models see Fahrmeier and Kaufmann (1987), Zeger and Qaqish (1988) and
recent surveys by Fahrmeir and Tutz (1994), Diggle et al (1994). In the case of an ordinal
response it is useful to introduce cumulative probabilities

Pi(j)y = Peat -+ P
as well as the cumulative quantities A(-)(;y and 7, ;). Putting
hi(ne) = F (i) = F (e -1)
model (1),(2) has the form of a cumulative regression model, see McCullagh (1980), namely
Py = FOr)s iy = o)+ 7 peery + A - AWy — 8- 2, (3)

where the a(;) stand in an increasing order, with a,,,) = oo, where I' is a camulative distribution
function and where the parameters are restricted by

7r-p+)\T-A(w)j>0

for all w,j,p = 0,1. The asymptotic theory of model (3) was given in some detail in Pruscha
(1993). Two important special cases concerning A are

L.g=m—1, A(Wy) =W, (lagged dummy variables)

2.q=1, AWy)=Y,=> 75 -Y:; (lagged ordinal variable).
=1

3 Forecasting. The General Set-Up

We adopt the following set-up from time series analysis, see Brockwell and Davies (1987, sec.5.1-
5.5). If Xy, t =1,2,..., is a time series and Fr comprises the information on Xi,..., X7, we
define the [—step predictor, the prediction error and the prediction m.s.e, respectively, by

Xr(l) = (X7, | F7);
Ar(l) = X7y — X (1),
Vr(l) = E(AZ() | Fr).

For M A(oo)— processes Ar(l) and Fr are independent, such that we have V(1) = IE(A%(]))
too. With the short-hand notation

Wr(-) = (- | Fr), Varg() = Ep(- — Er(-)* (4)

we can write

VT(Z) == VELI’T(XT_H). (5)

For regression models (1)-(3) we are firstly interested in forecasting p; ; and then in forecasting

m—1
Zy pri = Y (1= piy).
7=0
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For this reason we put

Fr=WM,... .Y, Zy, ..., Z7)
and -with the definition of IE; and Vary as in (4)- we introduce the [—step predictors

pri(1) = Br(pryry),  jir(l) = Br(pr) =Y j - pry(l)
=1

for pryi; and pryy, respectively. From the equation

prit; = P(Yry =3 | Fryioi, Z141)

we immediately obtain

pri(l) = P(Yry = j | Fr). (6)

Due to (5) the prediction m.s.e. Vp;(I) and Vg ,(I) related to pr () and fiz(l), respectively,
are

Vr (1) = Varr(pryij),  Vru(l) = Vare(prg).

For the rest of the paper we assume that the centered covariate process Z;, t = 1,2,..., follows
an AR(p)-equation of the familiar form

Zt:Rl'Zt—1+---+Rp'Zt—p+et7 t:1,2, (7)

where the r x r - matrices R; fulfil the causality criterion, see Brockwell and Davies (1987,
sec.11.3), and the e; are independently and N (0, X.)-distributed.

4 Monte Carlo Simulation

In a first attempt to solve the forecast problem we will write down a precise expression for
the [— step predictor pr (1) by using a multiple integral, and we will calculate the integral by
means of Monte Carlo simulation. Note that this is not a forecast procedure in the classic sense.
In the usual time series context, a unique path is generated, representing a best approximation
to real forthcoming observations, while here many paths are generated and then averaged.

For the pair of covariates and response at time ¢ let us write @y = (24, 41), Xi = (74, V), and let
us denote by
fT(xT-I-lv <oy TTHI-1, ZT-H)

the conditional density of the regular conditional probability
IP(XT_|_1 € By x {yl}, - ,XT_|_1_1 € Bj_1 x {yl_l}, ZT_|_1 € By | FT)

w.r.t. the measure v = (A x ()!'=! x A, where \ is (only here) the Lebesgue-measure on IR and
¢ the counting measure on J. Then

ﬁT,j(l) = /"‘/fT(xT-l-l?"'7$T+l—172T+l) CPT+1; "
dv(T41y o T4, 2T ), (8)
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where the integration/summation is over (IR" x J)'=! x IR". The right hand side of (8) can now
approximately be calculated by using Monte Carlo methods to generate repeatedly a sequence

(XT+17 SR 7XT-I-1—17 ZT-H)‘

To achieve this the following recursive algorithm is employed:

1. From Fr calculate Z711 according to (7) by drawing an N (0, ie) random vector, 3, being
an estimator of Y,

2. From (Frp, Zr41) calculate
nry1 =a +1-pr + A AYE) = BT Zrpy

and then pry1 = h(nr41)

3. Draw Y7y according to the probability vector prq.

Continue with 1.-3. after increasing T' to T'+ 1. After [ steps we arrive at the vectors 77%).1 and

pgplj_l . K repetitions of this algorithm lead to vectors

k -
Nyg, and pgp_l)_l, k=1,.... K,
then to the averaged vectors n74; and pry;, where we have set a = Ele a® /K, and to
fr; = E;n:lj “pr+1,j- Now 14, pry; and piggg are the Monte Carlo solutions for

nr(l) = Er(nr4),  pr(l) and  jig(l), vesp.
In the application below we will further make use of the prediction m.s.e of fiz(]) estimated by

K

Vi) =Y (il = e /(K = 1), (9)

k=1

5 Approximation Procedure

Our second approach comes closer to the spirit of the classic time series forecasting methods.
We want to gain a predictor for pry; by interchanging conditional expectation and response
function h. Here we have to make use of the predictors of the covariate process Z;. For the
AR(p)-process Z; an [— step predictor of Zpy; will be denoted by 2T(l), see Brockwell and
Davies (1987, sec.11.4). We will now calculate the [— step predictor

pr(l) = Er(h(nr41))

by the approximation formula pr(l) ~ pr(l), where

pr(l) = h(ir(l), (1) = Er(yr). (10)



One successively derives, by using (6) and 2T(l) = Er(Zry),

(1) = a+ 7 pr+ AT A(YE) = BT Zp(1)

nr(l) =a+7-pr(l—1) + Zﬁm(z —DATA(G) = B Ze(D), (11)

J

where pr(l — 1) is approximated by pr({ — 1) = h(fjr({ — 1)) at each step. Thus equation (11)
allows a recursive calculation of 77(1) and -via (10)- of pr(l) ~ pr(l).

We want to give now an estimate BFEFZ)(Z) of the bias

Br(l) = pr(l) — pr(l) = Erh(nr4) — h(ijr(1))

produced by approximation formula (10). To this end we assume that h is twice continuously
differentiable, and we start with the second-order expansions

hi(nrs1) = hi(nr) + B (nr) - 2rg + (2’ - B (nr) - 210/2 + Re(l),

where x7; = nr4; — nr, and with the same expansion for h;(ir (1)), i.e.
hiGir(1) = hi(nr) + By (nr) - dos+ (ra)" - B (nr) - &10/2 + Br(l),

where &7, = nr(l) — nr and Rp(l), ]%T(l) are remainder terms. This leads to
1 1. .
B (1) = 5 Brl(nrs)” - ) - nrsal = 5 e (D7 - () - (1), (12)

In the special case of the cumulative regression model (3) we can simplify formula (12). In fact,
the second-order approximation for the bias Br ;y({) = pr,)(!) — pr.;)(]) amounts to

1
Briy(1) = 5 F" (1) - Vars (42, (13)

Taking as an example the logistic distribution function F'(s) = 1/(1+4€7*), then B(Tsz)(l) turns

out to be positive/negative, if 7, (;) is negative/positive.
Formulas (12) and (13) can be applied to correct the bias of the approximation (10), if estimators
for

Er[(nr+)" - 2 (nr) - nrw]  and Varr(nri),  resp.,

are available. To establish explicit expressions for them seems difficult. Numerically, they can
be gained as by-products of the Monte-Carlo method of sec.4. The approximation method of
this section, however, was introduced to get forecasts without the computer intensive method
of Monte-Carlo simulation.



6 Application

6.1 Forest Damage Data

The cumulative logistic regression model (3) is now applied to three longitudinal data sets on
damages in beech, oak and pine trees, respectively. These data were gathered by Dr.A.Gottlein,
University of Bayreuth, during the last 12 years in a forest district of Spessart (Bavaria). The
damage Y; in the year t was measured on an ordinal scale consisting of m = 8 categories of
needles/leaves lost. The longitudinal structure of the data is determined by the observation
period of 12 years (1983 - 1994) and by N sites (N = 80 beech sites, N = 25 oak sites, N =
14 pine sites). For each site and each year a vector 7Z; of r = 20 covariates were recorded
concerning the trees (age, canopy, stand), the site (gradient, height, exposition), the climate
and the soil (type, moisture, pH-values), see Gottlein and Pruscha (1992) and (1995) for more
details. The parameter of the model were estimated from the longitudinal data by the m.l.
method for each species separately. Concerning the function A we made the special choice
A(Wy) =Y, see special case 2 in sec.2. We further put # = 0. The covariate process Z; is
assumed to be driven by an AR(1)-equation.

6.2 Forecasting

Fixing the outcomes of the years 1983 - 1992 as known, we try to forecast the values of the

He = Z It
j=1

for the years 1993 - 1998, letting the years 1993 and 1994 -for which we have observations- as
control. That is, we put 7' = 10 and we are interested in the [— step predictors pir(l),l =
1,2,...,6. The calculations of the forecasts, leading to the Fig.1, are performed separately for
each of the three species, beech, oak and pine trees, and for each site ¢ = 1,2,..., N, followed

mean damage category

by averaging over the N sites of the species.

First, the Monte Carlo method (MOCA) of sec.4 is applied, with K = 200 repetitions to
calculate fir4; as Monte Carlo solution for jir(l) and the corresponding m.s.e. Vr (1) according
to (9). A 95 per cent confidence interval for the averaged pry; is established by the confidence

fir(l) £/ V(1) - 1.960/ VN

holding approximately for the individual years { =1,2,....,6.

limits

Secondly, the approximation method (APPR) of sec.5 is employed. For all three species the
forecasts fip(l) produced by the MOCA and by the APPR method run very similar over the 6
years 1993 to 1998, with the APPR curve below the MOCA curve. The upward trend of the

pine curve at the end of the observation period is continued in a strongly damped form.

To compare the forecast solutions with the observation data of the years 1986 to 1994, we
include plots for Y; and fi;, where Y; is the observed category, u; = > jp:; is the predicted
mean value at year t (as predicted on the basis of the estimated cumulative regression model)
and the bar means averaging over the N sites of the tree species. Note the lag-effect which is
produced by the term Y;_; in the regression model, especially in the oak data: a zig zag run of
the Y; values becomes apparant in the run of the fi; values with a lag of one year.
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Plots of Observed, Predicted and Forecasted Forest Damages

PINE

3.0

25

2.0

OAK

Averaged Damage Level
15

1.0

0.5

0.0

86 87 838 89 90 91 92 93 94 95 96 97 98 99 100
Year

Figure 1: Observed, predicted and forecasted forest damages

6.3 Some Remarks to Fig.1

Observed, predicted and forecasted damages are shown in Fig.1 separately for three tree species,
beech, oak and pine trees, respectively.

Over the years 1986 to 1994 are plotted
- the OBServed damage category Y; and the predicted mean category p, as predicted from the
ESTIMated cumulative regression model.

Over the years 1993-1998 are plotted
- the forecasted mean category fr(l),l = 1,...,6, as produced by the MOCA and the APPR

methods of sec.4 and sec.5, resp.

All values are averaged values over the N sites of the tree species. Further, at the end of the
forecast curve, a 95 per cent confidence interval for pry; is indicated by an vertical bar, holding
approximately for the last forecast step, i.e for [ = 6.

Acknowledgments: This work is partially supported by the DFG (SFB 386).



References

Brockwell,P.J. and Davis,R.A. (1987). Time Series: Theory and Methods. Springer, N.Y.

Diggle,P.J.,Liang,K.-Y. and Zeger,S.L. (1994). Analysis of Longitudinal Data. Claredon
Press, Oxford.

Fahrmeir,L. and Kaufmann,H. (1987). Regression models for non stationary categorical
time series. Journal of Time Series Analysis, 8, 147-160.

Fahrmeir,L. and Tutz,G. (1994). Multivariate Statistical Modelling Based on Generalized
Linear Models. Springer, N.Y.

Gottlein,A. and Pruscha,H. (1992). Ordinal time series models with application to forest
damage data. In: Lecture Notes in Statistics, 78, Springer, N.Y., 113-118.

Gottlein,A. and Pruscha,H. (1995). Der Einfluss von Topographie, Standort, Klima und
Bestand auf die Entwicklung des Waldzustandes im Bereich Rothenbuch (submitted).

McCullagh,P. (1980). Regression models for ordinal data (with discussion). Journal of the
Royal Statistical Society, Series B, 42, 109-142.

Pruscha,H. (1993). Categorical time series with a recursive scheme and with covariates.
statistics, 24, 43-57.

Zeger,S.L. and Qaqish,B. (1988). Markov regression models for time series: a quasi like-
lihood approach. Biometrika, 44, 1019-1031.

Address of Author

Helmut Pruscha

Mathematisches Institut der Universitat Munchen
Theresienstr. 39

D 80333 Munchen

e-mail: pruscha@rz.mathematik.uni-muenchen.de



