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Summary

Data�driven hyperparameter estimation or automatic choice of the smooth�
ing parameter is of great importance� especially in the applications� This
article presents and compares three methods for hyperparameter estima�
tion in the framework of exponential family state space models� First� we
motivate and derive a formula for an approximative likelihood� and an alter�
native� yet mathematical equivalent� expression proves to be a generalized
version of a proposal in Durbin and Koopman ����	
� Second� the EM�type
algorithm suggested in Fahrmeir ����	
 is restated here for reasons of com�
parison and third� the idea of cross�validation proposed by Kohn and Ansley
�����
 for linear state space models is extended to the present context� in
particular for multicategorical and multidimensional responses� Finally� we
compare the three methods for hyperparameter estimation by applying each
on three real data sets�

Keywords� Approximative likelihood� choice of the smoothing parameter�
cross�validation� EM�type algorithm� penalized likelihood� posterior mode
smoothing�



	

� Introduction

An important and general tool for modelling time series observations yt at
discrete time t � �� 	� � � � � T with 
xed or stochastic covariates xt is the state
space approach� To estimate the unobservable structural parameters �t in
the framework of exponential state space models by posterior mode smoo�
thing� a penalized log likelihood criterion can be maximized equivalently�
Therefor Fahrmeir ����	
 proposed the generalized extended Kalman 
lter
and smoother �GKFS
 combined with an EM�type algorithm for hyperpa�
rameter estimation� and� as an alternative� Fahrmeir and Wagenpfeil �����

present an iteratively weighted Kalman 
lter and smoother �IWKFS
� Varian�
ces within the penalized log likelihood criterion play� from a nonparametric
point of view� the role of smoothing parameters� Data�driven estimation of
these hyperparameters is an essential problem� especially in real data appli�
cations� For illustration� let us consider the following example�

Figure �� Tokyo rainfall data� Data points�

Figure � displays the number of occurences of rainfall in the Tokyo area
for each calendar day during the years ���������� With �t as the probability
of occurence of rainfall on calendar day t� t � �� � � � � ���� Kitagawa �����




�

chose the following dynamic binomial logit model�

yt �

�
B��� �t
� t � �� �February 	�

B�	� �t
� t �� ��

�

�t � h��t
 � exp��t
�� � exp��t
�

�t�� � �t � �t� �t � N��� q
� �� � N�a�� q�
�

so that �t � probability �rain on day t
 is parametrized by �t� Here� a�� q�
and q are unknown hyperparameters� Setting a� � ������ q� � ������ and
q � ��� 
xed� Figure 	 shows corresponding estimates ��t � h�atj���
 based
on �GKFS
 together with the data points� The estimation is rough and
adjusted to the data� Retaining a� and q� as above and using q � ������ the
estimates �a�j���� a�j���� � � � � atj���� � � � � a���j���


� obtained with �GKFS
 yield
an extremely smooth data�
t� displayed in Figure �� Comparison of Figure
	 with Figure � shows that q acts as a smoothing parameter�

Figure 	� Tokyo rainfall data� Rough 
t�

This example illustrates the necessity of procedures for data�driven hyper�
parameter estimation� In particular� automatically choosen hyperparameters
can be a useful starting point for further subjective selections�

In larger simulation studies� Kohn and Ansley �����
 compare the perfor�
mance of the marginal likelihood estimate with generalized cross�validation
GCV and cross�validation CV for Gaussian stae space models� The result is
that the marginal likelihood estimate yields often better results than GCV�
and GCV itself is better or equal than CV�



�

Figure �� Tokyo rainfall data� Smooth 
t�

In this paper� after restating the concept of penalized likelihood estima�
tion for notational purposes in Section 	� we describe three methods for hy�
perparameter estimation in the framework of exponential family state space
models� The approximative likelihood approach as direct Bayesian variant
is motivated and derived in Section ���� We give a rigorous proof to show
that our version is a generalization of a proposal from Durbin and Koopman
����	
 allowing for the use of non�natural link functions� The EM�type algo�
rithm as indirect Bayesian method is given in Section ��	� In Section ���� the
idea of cross�validation as nonparametric approach is extended to the pre�
sent exponential family state space context� At this stage� a very useful and
from the numerical point of view very desirable property of the estimation
procedures �GKFS
 and �IWKFS
 become apparent� Both algorithms give
direct access to the diagonal blocks of the inverse Fisher information matrix�
yielding to an e�cient computation of the trace of the smoother matrix�

To compare and illustrate the properties of these data�driven methods
for hyperparameter estimation empirically� real data applications from the
literature are given in Section ��

� Penalized likelihood estimation

Our basis for modelling discrete�valued time series observations yt � IRr� t �
�� 	� � � �� T � is the exponential family state space model� Thus we specify
the observation model for yt given the states �t � IRp by the density of a



�

r�dimensional distribution of the natural exponential family type�

ytj�t � p�ytj�t
 � ct�yt
 expf�
�
tyt � bt��t
g� �	��


where �t� the natural parameter� is a function of 	t � Zt�t� and ct��
 and
bt��
 are known functions� Zt is a q � r design�matrix� maybe dependent
on covariates xt or also on past responses y�� � � � � yt��� In the latter case
densities� means etc� are to be understood conditionally� By the properties
of exponential families the mean and variance functions are then

E �ytj�t
 � 
t��t
 � �bt��t
���t�

var �ytj�t
 � �t��t
 � ��bt��t
���t��
�
t�

As in static generalized linear models GLM�s the mean 
t is linked to the
linear predictor 	t � Zt�t by


t � h�Zt�t
� �	�	


where h � IRr � IRr is an appropriate response function� The exponential
family assumption �	��
 together with the mean speci
cation �	�	
 is our
observation model� Note that for the classical linear state space model� �	��

and �	�	
 specialize to

ytj�t � N�	t � Zt�t� Rt
 �	��


where Rt � var �ytj�t
 is the covariance matrix of yt given �t and h��
 the
identity function� The observation model is supplemented by a Gaussian
transition model with Markov property for �t�

�tj�t�� � N�Ft�t��� Qt
� t � �� � � � � T �	��


with transition matrix Ft � IRp�p� initial state �� � N�a�� Q�
� We sum�
marize the hyperparameters a�� Q�� Qt in the vector 
� Let 
 be 
xed and
known for the moment�

The exponential family state space model �	��
� �	�	
� �	��
 covers many
well�known time series models� cf� Fahrmeir and Tutz �����
 chapter �� In
this framework we want to estimate the unobservable states �t via penalized
likelihood estimation which could be motivated by posterior mode smoothing
outlined in Fahrmeir and Wagenpfeil �����
� With � � ���

�� �
�
�� � � � � �

�
T 


�� the
penalized likelihood estimate a � IRm�m � �T � �
p� is de
ned as

a �� argmax
�

fPL��
g � �	��


where

PL � IRm � IR� PL��
 ��
TX
t��

lt��t
 �
TX
t��

ln p��tj�t��
 � ln p���
 �	��




�

is the penalized log likelihood function with lt��t
 �� ln p�ytj�t
 for � � t � T
and the densities from �	�	
 and �	��
� Note that PL��
 in �	��
 reduces to
a quadratic function for the linear Gaussian state space model �	��
� �	��
�

To see the connection between hyperparameters in the framework of state
space models and smoothing parameters in nonparametric regression� let us
regard the simple case where� in addition� p � �� Qt � q � IR for � � t � T
and Q� � q� � IR� Then PL��
 specializes to

PL��
 � �
�

	

TX
t��

�yt � Zt�t

�R��

t �yt � Zt�t


�
�

	q

TX
t��

��t � Ft�t��

� �

�

	q�
��� � a�


��

From a Bayesian point of view� the 
rst term is the log likelihood and the
second part acts as a smoothness prior de
ned by the transition model �	��

for f�tg with variances q and q�� If we hold a nonparametric viewpoint� we
may consider f�tg not as random variables but as a sequence of unknown
states or parameters� Then the 
rst part in PL��
 measures the goodness
of 
t obtained by Zt�t via weighted euclidean distances and the second one
penalizes roughness of the 
t� The hyperparameters q and q� play the role
of smoothing parameters� The problem of hyperparameter estimation is con�
sidered in chapter ��

To compute the penalized likelihood estimate a � IRm in the general case�
i�e� in the framework of our exponential family state space model� we have
to solve �	��
� A numerical solution of the nonlinear programming problem
involved in �	��
 could be obtained by various algorithms from optimization
theory� To denote one explicit Fisher scoring step in compact matrix no�
tation� the following abbreviations are introduced� the observation vector�
augmented by a��

y� � �a��� y
�
�� � � � � y

�
T 
�

the vector of expectations augmented by ���


��
� � f��
�� 


�
����
� � � � � 


�
T ��T 
g �


t��t
 � h�Zt�t
� the block�diagonal covariance matrix

���
 � diag fQ�� �����
� � � � � �T ��T 
g �

the block�diagonal design matrix

Z � diag �I� Z�� � � � � ZT 
�

with I � IRp�p as the unit matrix and the block�diagonal matrix

H��
 � diag fI�H����
� � � � �HT ��T 
g �



�

where Ht��t
 � �h�	t
��	 is the 
rst derivative of the response function h�	


evaluated at 	t � Zt�t� Then the score function of
PT

t�� lt��t
 is

s��
 � Z �H��
�����
 fy � 
��
g �

and the block�diagonal �expected
 information matrix

S��
 � Z�W ��
Z

with the weight matrix

W ��
 � diag
�
Q��
� �W����
� � � � �WT ��T 


�
�� H��
�����
H���
� �	��


De
ning the symmetric and block�tridiagonal penalty matrix M easily ob�
tained from �	��
� �	��
� as

M ��

�
�������

M�� M�� �
M�� M�� M��

M��
� � �

� � �

� � �
� � � MT���T

� MT�T�� MT�T

�
������	

where

Mt���t �� M �
t�t��� � � t � T�

M�� �� F �
�Q

��
� F �

��

Mtt �� Q��
t � F �

t��Q
��
t�� � Ft��� � � t � T�

MT�� �� ��

Mt���t �� �F �
tQ

��
t � � � t � T�

the 
rst derivative of PL��
 in �	��
 is

u��
 � �PL��
��� � s��
�M�

and the block�tridiagonal expected information matrix is

U ��
 � �E
�
��PL��
������

�
� S��
 �M� �	��


A single Fisher�scoring step from the current iterate �� � ����� �
�
�� � � � � �

�
T 


� �
IRm� say� to the next iterate �� � ����� �

�
�� � � � � �

�
T 


� � IRm is then

U ���
��� � ��� � u���
�

This can be rewritten as

�� � fU ��
g��
Z�W ���
�y



��
�

�	��




�

with �working� observation

�y


��
�
��
�
a��� �y���

�
�
� � � � � �yT ��

�
T 

��

��
�
H�����


�� �
y � 
���


�
� Z���

To solve �	��
 in a numerical e�cient way� that is without explicitly inverting
the block�tridiagonal expected information matrix U ��
� Fahrmeir and Wa�
genpfeil �����
 propose the �working Kalman 
lter and smoother�� In the fol�
lowing algorithm� atjt� Vtjt� atjt��� Vtjt��� atjT � VtjT denote numerical approxi�
mations to 
ltered� predicted and smoothed values of �t and corresponding
approximate error covariance matrices�

Working Kalman �lter and smoother �WKFS�

Initialization� a�j� � a�� V�j� � Q��

For t � �� � � � � T �

prediction step� atjt�� � Ftat��jt���

Vtjt�� � FtVt��jt��F
�
t � Qt� �	���


correction step a
� atjt � atjt�� �Kt

�
�yt��

�
t 
� Ztatjt��

�
�

Vtjt � Vtjt�� �KtZtVtjt���

with Kalman gain Kt � Vtjt��Z
�
t

�
ZtVtjt��Z

�
t �W��

t ���t 

���

�

For smoothing one may use the classical 
xed interval smoother�

For t � T� ���� � �

at��jT � at��jt��� Bt�atjT � atjt��
�

Vt��jT � Vt��jt�� �Bt�VtjT � Vtjt��
B
�
t� where

Bt � Vt��jt��F
�
tV

��
tjt�� �	���


or any other computationally more e�cient version� The result is �� �
�a��jT � a

�
�jT � � � � � a

�
T jT 


� � IRm� Note that� underlying the linear Gaussian state

space model �	��
� �	��
� �� � a� and a � IRm is also the posterior mean
estimate since posterior modes and means coincide in the normal distribution
case� Furthermore �WKFS
 reduces to the classical linear Kalman 
lter and
smoother in Kalman gain form� Setting �yt��

�
t 
 � H�

t��
�
t 
�yt��

�
t 
 and supposing

that Ht��
�
t 
 is regular� we may rewrite the correction step of �WKFS
 as

correction step b
� atjt � atjt���Kt

�
�yt��

�
t 
 �H �

t��
�
t 
Ztatjt��

�
�

Vtjt � Vtjt�� �KtH
�
t��

�
t 
ZtVtjt�� �	��	


with Kalman gain Kt � Vtjt��Z
�
tHt��

�
t 

�
H�
t��

�
t 
ZtVtjt��Z

�
tHt��

�
t 


��t��
�
t 

���

�	���


To solve the nonlinear programmingproblem �	��
 we have to iterate �WKFS

yielding �IWKFS
 as proposed in Fahrmeir and Wagenpfeil �����
�



�

Iteratively weighted Kalman �lter and smoother
�IWKFS��

Initialization� Compute �� � �a��jT � a
�
�jT � � � � � a

�
T jT 


� with �GKFS
 from

Fahrmeir ����	
�

Set iteration index k � � �

Step �� Starting with �k� compute �k�� by application of �WKFS
�

Step 	� If a convergence criterion is ful
lled� e�g� �k�� is very close to �k�
STOP� else set k � k � � and go to Step ��

� Three methods for hyperparameter estima�

tion

So far we assumed the vector of hyperparameters 
 to be 
xed and known�
In the following we describe three methods for data�driven hyperparameter
estimation in the framework of our exponential family state space model�

��� Approximative likelihood

In the following we motivate and derive an approximative formula for the
likelihood p�y�
 with y� � �y��� � � � � y

�
T 


�� which proves to be a generalization
of a proposal from Durbin and Koopman ����	
 allowing for the use of non�
narutal link functions� For natural link functions our formula can be regarded
as an alternative� however mathematical equivalent� expression to Durbin and
Koopman�s proposal�

The idea for derivation is as follows� The joint density of � and y� is

p��� y�
 � p�y�
p��jy�
� ����


Let the numerical solution a�

 �� f�a��T �

� �a��T �

� � � � � �aT�T �

g
�
� IRm of

�	��
 be obtained with �GKFS
 or �IWKFS
� Approximating p��jy�
 by the
normal distribution with expectation a�

 and variance V �

 where

V ���

 �� �E

�
�� ln pfa�

� y�g

�����



����	
� �E

�
�� lnpfa�

jy�g

�����



� ���	


we get

p��jy�
 	
�

�	�
m��
p
detfV �

g

exp

�
�
�

	
f�� a�

g�V ���

f�� a�

g



�

Considering p��jy�
 as a function of �� we have

p fa�

jy�g 	
�

�	�
m��
p
detfV �

g

� ����




��

����
 and ����
 yield

p�y�
 	 f�

 �� �	�
m�� �detfV �

g���� pfa�

� y�g� ����


where f�

 is the approximative likelihood function� Note that for the linear
Gaussian state space model f�

 � p�y�
�

The aim is to maximize the approximative likelihood f�

 in ����
 with

respect to 
� Therefore we give explicit formulae for �detfV �

g���� and
pfa�

� y�g� Repeated application of Bayes� theorem� using �	��
� �	�	
� �	��

and further independence assumptions� cf� Fahrmeir and Tutz �����
 chapter
�� yields

ln p fa�

� y�g � ln
n
�	�
�m��

o
� ln�detQ�


���� �

�
TX
t��

ln�detQt

���� � PLfa�

g ����


with the penalized log likelihood PL��
 from �	��
 and the densities from
�	��
� �	��
�

PLfa�

g �
TX
t��

ltf�at�

g �
�

	
f�a��

 � a�g

�Q��
� f�a��

 � a�g

�
�

	

TX
t��

f�at�

 � Ft�at���

g
�Q��

t f�at�

 � Ft�at���

g�����


Lemma � in Appendix A shows that

fdetV �

g��� �

�
detQ�

TY
t��

Gt�



����

� ����


withGt�

 �� detVtjt det�I�F
�
tV

���
tjt��FtV

�
t��jt��
� � � t � T � where Vtjt and

Vtjt�� are numerical approximations to 
ltered and predicted approximate
error covariance matrices obtained from �GKFS
 or �IWKFS
� Considering
����
� ����
 and ����
� the approximative likelihood is thus

f�

 �
TY
t��

n
det�Qt


���� det�Vtjt

��� det�I � F �

tV
���
tjt��FtV

�
t��jt��


���
o

exp�PLfa�

g��

Durbin and Koopman ����	
 give a di�erent yet mathematical equivalent ex�
pression for fdetV �

g���� The following formula ����
 is more general than
the original version of Durbin and Koopman ����	
 as we do not presume
the natural link function well�known from static GLM�s�

fdetV �

g��� �

�
detQ�

TY
t��

At�



����

����




��

withAt�

 �� det�Qt
 detf�t��
�
t 
g detfH

�
t��

�
t 
ZtVtjt��Z

�
tHt��

�
t 
��t��

�
t 
g

���
� � t � T � Note that �t��

�
t 
 � Ht��

�
t 
� t � �� � � � � T� if h � IRr � IRr is the

natural response function� that is the inverse of the natural link function�
and then we have Durbin and Koopman�s formula� Supposing that Ft and
Zt� � � t � T � are regular� Appendix B gives the proof that ����
 and ����

coincide� Considering ����
� ����
 and ����
� the approximative likelihood is
then

f�

 �
TY
t��

h
det

�
�t��

�
t 

����

det
�
H�
t��

�
t 
ZtVtjt��Z

�
tHt��

�
t 
 ��t��

�
t 

�����

i
exp�PLfa�

g��

The maximization of f�

 with respect to 
 can be achieved by various al�
gorithms� In our test examples we used the BFGS algorithm decribed e�g� in
Gill� Murray and Wright �����
�

��	 EM
type algorithm

An indirect Bayesian method for estimation of unknown hyperparameters
summarized in 
 is the EM algorithm proposed by Dempster� Laird and
Rubin �����
� Considering y� as the observable but incomplete data and
�y��� ��
� as the non�observable� however complete data� the idea is to compute
the conditional expectation of the log likelihood given the observations and
the current iterate 
�k	

E
�

j
�k	

�
�� E

�
ln p��� y��

jy�� 
�k	

�
�

The next iterate 
�k��	 is obtained as the maximizer of E



j
�k	

�
with re�

spect to 
� In the linear Gaussian state space context this optimization
problem can be solved analytically� More details are given in Goss �����
�
For the exponential family state space model �	��
� �	�	
� �	��
� Fahrmeir
����	
 suggests to replace posterior expectations by posterior modes atjT ob�
tained from �GKFS
 or �IWKFS
� Moreover� as VtjT are the diagonal blocks
of U����
 in ��
� cf� Fahrmeir and Kaufmann �����
� covariance matrices
may be replaced by VtjT from �GKFS
 or �IWKFS
 yielding the following
formulae for the

EM�type algorithm�

�� Choose starting values Q��	� Q
��	
� � a

��	
� and set iteration index k � ��

	� Smoothing� Compute a�k	tjT � V
�k	
tjT � t � �� ���� T by �GKFS
 or �IWKFS
�

with unknown parameters replaced by their current estimatesQ�k	� Q
�k	
� �

a
�k	
� �



�	

�� EM step� Compute Q�k��	� Q
�k��	
� � a

�k��	
� by

a
�k��	
� � a

�k	
�jT

Q
�k��	
� � V

�k	
�jT

Q�k��	 �
�

T

TX
t��

��
a
�k	
tjT

� Fta
�k	
t��jT

��
a
�k	
tjT

� Fta
�k	
t��jT

��
� V

�k	
tjT

�FtB
�k	
t V

�k	
tjT � V

��k	
tjT B

��k	
t F �

t � FtV
�k	
t��jTF

�
t

i

with B
�k	
t de
ned as in �	���
�

�� If some termination criterion is reached� STOP� else set k � k � � and
go to 	�

Note that the EM�type algorithm jointly estimates the structural and hyper�
structural parameters � and 
�

��� Cross
validation

A further� nonparametric way for hyperparameter estimation is to adjust
the principle of cross�validation proposed by Kohn and Ansley �����
 for
linear state space models and mentioned in Hastie and Tibshirani �����
�
Fahrmeir and Tutz ������ Chapter �
 for static generalized additive models
to the present situation� Let now a�

 �� f�a��T �

� � � � � �aT�T�

g

� � IRm�p be
the �approximative
 solution of �	��
 obtained with �GKFS
 or �IWKFS
 for

xed 
� Adopting the idea of cross�validation from static generalized linear
models to �dynamic
 exponential family state space models and weighting the
Pearson residuals as in the generalized cross�validation criterion� we arrive at
the generalized cross�validation function

GCV �

 �
�

T

TX
t��

�
yt � h

�
Zt�atjT �



���
���
t

�
�atjT �



� �
yt � h

�
Zt�atjT �



��
f�� tr �S�
�Tg

� �

����

where S� is the smoother or hat matrix� The trace of the smoother matrix
tr �S�
 can be computed as follows� Considering �	��
� the estimated weighted
linear predictor is

�W �fa�

g����Za�

 � �W �fa�

g����Z�Ufa�

g���Z��Wfa�

g���� �

��W �fa�

g�����yfa�

g� �����


As the approximate error covariance matrices VtjT � t � �� � � � � T � conveniently
and without extra computational e�ort obtained with �GKFS
 or �IWKFS
�
are the diagonal blocks of the inverse Fisher information matrix �Ufa�

g���



��

�cf� Fahrmeir and Kaufmann� ����
 and suppressing the information connec�
ted with p���
� we get from �����


S� �

�
��

�W �
�f�a�jT �

g�

���Z�V�jTZ
�
��W�f�a�jT �

g�

��� 

� � �


 �W �
Tf�aT jT �

g�

���ZTVT jTZ
�
T �WTf�aT jT �

g�

���

�
�	�

Thus tr �S�
 �
PT

t�� tr
�
�W �

tf�atjT �

g�
���ZtVtjTZ

�
t�Wtf�atjT �

g�

���
�
� To

maximize GCV�

 in ����
 with respect to 
 we used in our test examples
the BFGS algorithm with numerical di�erentiation� However� any nonlinear
programming method from optimization theory can be used in principle�

� Comparison of the three methods

In the following we give an empirical comparison of the three methods for
hyperparameter estimation described above�

��� Tokyo rainfall data

Figure �� Tokyo rainfall data� GCV�function�

We come back to the example of daily rainfall data from the introduction�
The dynamic binomial logit model supplemented with a randomwalk of order
� for the parameter process is retained�

yt �

�
B��� �t
� t � �� �February 	�

B�	� �t
� t �� ��

�

�t � h��t
 � exp��t
�� � exp��t
�

�t�� � �t � �t� �t � N��� q
� �� � N�a�� q�
�



��

Figure �� Tokyo rainfall data� Computed with �GKFS
 and �q � ����	

With a� � ������ q� � ������ as in the introduction� Figure � displays
the GCV�function dependent on q� The computed estimate is �q � ����	� The
EM�type algorithm and maximizing the approximative likelihood f�

 yield
the same result� What strikes is the slow convergence rate of the EM�type
algorithm in comparison to the other methods� Figure � shows the estimates
��t � h�atj���
 computed with �GKFS
 and �q � ����	� The 
t is smoother
than in Figure � and rougher than in Figure 	�

��	 Advertising data

West� Harrison andMigon �����
 analyzed weekly counts yt of the number
of people� out of a sample of n � ��� who give a positive response to the
advertisement of a chocolate bar� As a measure of advertisement in uence� an
�adstock coe�cient� serves as a covariate xt� Our framework for estimation
is the following dynamic binomial logit model� with

yt � B ���� �t
� �t � h��t � xt�t
� �t�� � �t � �t�

with �t � ��t� �t

� and cov �t � diag �q�� q�
� The EM�type algorithm yields

�q� � ������ and �q� � ������� whereas the result from the GCV�criterion is
di�erent� �q� � ��������	 and �q� � �����	���

Figure � displays the smoothed estimates ��t obtained with �GKFS
 and
EM�type algorithm� The 
t for GCV� however� shows no remarkable di�e�
rences� The estimation of �q� and �q� with the approximative likelihood failed
due to numerical problems during the optimization procedure�



��

Figure �� Advertising data� Computed with �GKFS
 and EM�type algorith

Figure �� Phone calls� GCV�function
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��� Phone calls

The data� analyzed in West� Harrison and Migon �����
� consist in counts
of phone calls� registrated within successive periods of �� minutes� at the
University of Warwick� from Monday� September �� ���	� ���� to Sunday�
September �	� ���	� 	���� � We analyze the data with a dynamic loglinear
Poisson model�

yt � Po �exp��t

� 
t � exp��t


�t � �t�� � �t� �t � N �a�� q
� �� � N ��� q�
�

Figure �� Phone calls� Computed with �IWKFS
 and �q � ����

The EM�type algorithm with �IWKFS
 yields the following hyperpara�
meter estimates� �q� � �������a� � ������ and �q � ����� With GCV the same
estimated �q is obtained as can be seen from Figure � displaying the GCV�
function dependent on q� Figure � shows the corresponding 
t computed with
�IWKFS
 in combination with the data points� The result is adjusted to the
data and provides only moderate smoothing� Maximizing the approximative
likelihood yields di�erent estimates� �q � ������ or �q � ������� dependent on
the starting value of q� Figure �� computed with �IWKFS
 and �q � �������
shows a quite smooth estimation without neglecting the cyclical structure of
the data�



��

Figure �� Phone calls� Computed with �IWKFS
 and �q � ������

Conclusion

The EM�type algorithm is a very robust method for hyperparameter esti�
mation� However� convergence is slow and sometimes the result seems to
depend on the starting point and on the value of the stopping accuracy�
Thus estimation algorithms with a higher rate of convergence should be a
point of further research� The GCV�criterion as well as maximizing the ap�
proximative likelihood could be an alternative since these methods use the
convergence rate of nonlinear programming algorithms� In most situations
of our study GCV worked well� whereas hyperparameter estimation with the
approximative likelihood often ran into numerical problems for multidimen�
sional 
� Summarizing we could say� EM is robust but slow� GCV and
approximative likelihood are faster if they work�
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Appendix A

Lemma ��
Let Vtjt and Vtjt�� denote numerical approximations to 
ltered and predicted
approximate error covariance matrices obtained with �GKFS
 or �IWKFS
�
Then

det V �

 � detQ� �

TY
t��

detVtjt �
T��Y
t��

det
�
I � F �

t��V
���
t��jtFt��V

�
tjt

�
�

Proof�
Since the normalizing terms in ����
 are independent of �� �	��
 and ���	

show that V ���

 � Ufa�

g� Furthermore Ufa�

g can be uniquely facto�
rized according to Fahrmeir and Kaufmann �����
 into

Ufa�

g � LDL�

with lower triangular matrix L �

�
����

I �
�B�

� I
� � �

� � �

� �B�
T I

�
���	 � Bt from �	���
�

� � t � T� I � IRp�p as the unit matrix� D � diag �D�� D�� � � � � DT 
�

D��
t � Vtjt � Bt��Vt��jtB

�
t��� � � t � T � �� D��

T � VT jT � �A��


Vtjt� � � t � T � from �	��	
 and Vtjt��� � � t � T � from �	���
� Although Vtjt
and Vtjt�� can be regarded as functions of 
� we suppress this dependence
for notational convenienc� Thus

det V �

 � detU��fa�

g �
�

detUfa�

g

det�L	��
�

�QT
t�� detDt

�
TY
t��

detD��
t

�A��	
� det VT jT

T��Y
t��

det


Vtjt � Bt��Vt��jtB

�
t��

�
Bt from �����	

� det VT jT

T��Y
t��

n
det Vtjt det

�
I� F �

t��V
���
t��jtFt��V

�
tjt

�o

V�j��Q�

� detQ�

TY
t��

detVtjt

T��Y
t��

det
�
I� F �

t��V
���
t��jtFt��V

�
tjt

�
�

Appendix B

To show that ����
 and ����
 in Chapter ��� coincide� we have to proof

Gt�

 � At�

 for � � t � T� �B��
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assuming that Ft and Zt� � � t � T � are regular� Therefor we use

FtV
�
t��jt�� � �Vtjt�� �Qt


�F
���
t �B�	


obtained from �	���
� Moreover we need

det
�
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�
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t 
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�
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�� det�Qt
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To proof �B��
 we use the de
nition of Gt�

 and get
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