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Abstract

Dynamic generalized linear mixed models are proposed as a regression

tool for nonnormal longitudinal data� This framework is an interesting

combination of dynamic models� by other name state space models�

and mixed models� also known as random e�ect models� The main

feature is� that both time� and unit�speci�c parameters are allowed�

which is especially attractive if a considerable number of units is ob�

served over a longer period� Statistical inference is done by means

of Markov chain Monte Carlo techniques in a full Bayesian setting�

The algorithm is based on iterative updating using full conditionals�

Due to the hierarchical structure of the model and the extensive use

of Metropolis�Hastings steps for updating this algorithm mainly eva�

luates �log�	likelihoods in multivariate normal distributed proposals�

It is derivative�free and covers a wide range of di�erent models� inclu�

ding dynamic and mixed models� the latter with slight modi�cations�

The methodology is illustrated through an analysis of arti�cial binary

data and multicategorical business test data�
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� Introduction

Generalized linear models provide a powerful regression tool for the analysis

of nonnormal cross�sectional responses� To deal with nonnormal longitudi�

nal data� several extensions are proposed� Generalized linear mixed models

Breslow � Clayton� �		�
 Zeger � Karim� �		�� and dynamic generalized li�

near models Fahrmeir� �		�a� are examples of hierarchical models� where in�

dependence assumptions are imposed conditioning on stochastic unit�speci�c

or time�dependent parameters� These models try to meet the requirements

of longitudinal data in di�erent ways� While the �rst approach allows para�

meters to vary over units but not over time� the second does vice versa�

Consider the following situation� Longitudinal data yti� xti� t � �� � � � � T �

i � �� � � � � n� is observed on n units over T time periods� For simplicity� it

is assumed that response yti is univariate� An ordinary generalized linear

model GLM� assumes mutual independence of the y�s� The linear predictor

�ti� which connects covariates xti with the mean h�ti� of responses yti via

the response function h� is

�ti � zTti��

where the design vector zti is formed out of xti� The unknown regression

parameter � is independent of time t and unit i�

However� often there is heterogeneity among units arising from covariate

e�ects varying from one unit to another or due to unobserved unit�speci�c�

covariates� Therefore unit�speci�c parameters� sometimes called random ef�

fects� bi � N��D� are introduced� The linear predictor is extended to

�ti � zTti� � wT
tibi�

Often wti is a subset of zti� The parameter � represents the population ave�

rage e�ect whereas the bi�s represent the unit�speci�c deviations from ��
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This approach is especially attractive if n is large and T is small�

If n is small but T is large a dynamic model is more appropriate� The

idea is to introduce time�varying parameters �t in

�ti � zTti�t�

The temporal variation of these parameters is described in an additional

transition model� This approach allows for trend or seasonal components

as well as for time�varying e�ects of covariates� However� possibly existing

heterogeneity among the units is not taken into account�

In this paper we combine these two approaches� The linear predictor is

extended to

�ti � zTti�t � wT
tibi�

so both time�dependent as well as unit�speci�c parameters are allowed� To

include multivariate models such as cumulative or sequential models for mul�

ticategorical responses a recent survey is given in Fahrmeir � Tutz� �		���

a more general form

�ti � Zti�t � Wtibi

is considered� Here �ti is a vector of dimension q� Since dynamic and mixed

models are combined this framework is called a dynamic generalized linear

mixed model DGLMM�� Note that dynamic models D � �� as well as mi�

xed models �t � �� are special cases of a DGLMM�

For normal data models of this kind have been proposed already e�g�

Hsiao� �	���� whereas corresponding work for nonnormal data is quite rudi�

mentary� This is mainly due to the fact that integrations necessary to com�

pute functionals of the posterior distribution are very di�cult using standard

numerical integration techniques� Alternatively one may try to maximize the

posterior to avoid integration� In fact� the algorithms proposed in Fahrmeir
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�		�a�b� compute the posterior mode and curvature in dynamic generalized

linear models� However� extensions of these methods to the model considered

here su�er from the fact that maximization of both time� and unit�speci�c

parameters has to be done iteratively using back�tting or Gauss�Seidel algo�

rithms� Additional estimation of hyperparameters increases computing time

enormously�

In contrast� the MCMC algorithm proposed here is surprisingly simple�

covering a wide range of models with only minor changes and leading to suf�

�cient exact results in a reasonable amount of time� It allows not only for

posterior mean and covariance estimation but also for estimating the poste�

rior density itself� computing simultaneously credible regions Besag� Green�

Higdon � Mengersen� �		�� and for selecting models based on Bayes factors

Raftery� �		���

Like in Zeger � Karim �		�� and in Carlin� Polsen � Sto�er �		�� a

Bayesian approach is adopted� treating all unknown parameters and hyper�

parameters as random with appropriate prior speci�cation� The algorithm is

based on iterative updating using full conditionals� The main di�erence to

the well known Gibbs sampling algorithm proposed in a related context in

the references above is the use of a Metropolis�Hastings step for updating�

sometimes called �Metropolis within Gibbs�� For a recent survey of MCMC

methods see Tierney �		��� Besag� Green� Higdon � Mengersen �		�� or

Smith � Roberts �		���

Finally the transition model needs some further comments� We use a

vector autoregressive model

�t � �

zX
l��

Fl�t�l � ut� ut � N�� Q� t � z � �� � � � � T ��

F�� � � � � Fz are called transition matrices and are assumed to be known� Q

has to be regular� This is roughly equivalent to the state space approach in
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Fahrmeir �		�a�� where Q is allowed to be singular� For more details on

similarities and di�erences of both transition models see Knorr�Held �		���

This article is organized as follows� Section � introduces dynamic gene�

ralized linear mixed models in a Bayesian formulation� The algorithm for

simulating the numerically intractable� posterior distribution is presented

in Section �� This section also gives a brief discussion of the available point

and interval estimates using samples from the posterior� Section � illustrates

the methodology through an analysis of arti�cial binary response data and an

application to multicategorical business test data� Here several multivariate

versions of DGLMM�s with restrictions on the parameters are discussed� We

summarize our �ndings and outline some further generalizations in Section

��

� Dynamic Generalized Linear Mixed Mo�

dels

Let yti� xti� t � �� � � � � T � i � �� � � � � n� denote the observation of unit i

at time t� where xti � xti�� � � � � xtim�T is the vector of covariates and yti �

yti�� � � � � ytiq�T is the q dimensional response vector� A DGLMM is based on

an observation model for the yti�s�

a random e�ect� model for the bi�s�

and a transition model for �t�s�

The observation model consists of a distributional assumption for yti and

a structural assumption for the mean of yti given parameters �t and bi�

Eytij�t� bi� xti� � hZti�t � Wtibi��

where h � IRq � IRq is a so�called response function� Zti is a q � p�matrix

and Wti is a q � r�matrix� both formed out of xti�
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The unit�speci�c e�ects bi of dimension r are assumed to follow a Gaus�

sian distribution

bi � N��D� i � �� � � � � n�

with mean zero and covariance matrix D�

The parameters �t of dimension p are supposed to vary over time� The

simplest model is a random walk of �rst order but to include important

models like a local linear trend model or a seasonal component� a general

multivariate autoregressive structure

�t � �

zX
l��

Fl�t�l � ut� ut � N�� Q� t � z � �� � � � � T �

is proposed� Using the lag operator L�t� � �t�� and de�ning a matrix

polynomial � F L� � I � F�L � � � � � FzL
z� it may be written shorter as

F L��t � ut� ut � N�� Q��

Di�use priors on the initial values �t � const t � �� � � � � z� complete the

speci�cation� Note that this model de�nition is only reasonable� if all com�

ponents of �t have the same lag z� If di�erent components have di�erent

lags� some formal problems arise for the initial values� In this situation it

is useful to split up �t in independent components and let every component

follow a speci�c autoregressive model� However� these changes are obvious

and omitted here to avoid a non�transparent setting�

A prior speci�cation for the hyperparameters Q and D completes our mo�

del� For D we choose a conjugate prior� the inverted Wishart distribution�

The same is possible for Q� but often the components of ut are assumed to

be independent� so Q is diagonal� Therefore inverse gamma priors� the uni�

variate conjugate analogues� are assumed for the diagonal entries of Q�
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The de�nition of this model is in spirit of a hierarchical model� where

conditional independence is assumed among the following random variables�

ytij�t� bi�D�Q t � �� � � � � T� i � �� � � � � n��

utjQ t � z � �� � � � � T ��

bijD i � �� � � � � n��

D and Q�

Note that until now covariates are assumed to be non�stochastic� To include

past observations as covariates or other stochastic covariates these indepen�

dence assumptions have to be modi�ed appropriately�

� Simulating the Posterior

In this section a general algorithm is proposed for analyzing dynamic gene�

ralized linear mixed models� The MCMC sampling scheme is not a�ected

by changes in the transition model� di�erent distributional assumptions for

the responses or di�erent response functions� It is derivative�free and con�

sists mainly of generating multivariate normal variates and evaluating log��

likelihoods� However� due to this model �exibility� there may exist more

e�cient MCMC procedures for special versions of DGLMM�s� For exam�

ple� convergence of the simulated Markov chain may be better� if updating

� � ��� � � � � �T � is done componentwise rather than cross�sectional wise� but

implementation is much more di�cult� The reader should keep in mind that

the major goal of this section is to present a unifying tool� which works in

our limited experience pretty well for several kinds of models�

The sampling scheme is based on iterative updating using full conditio�

nals� Full conditional densities are shortly denoted by p�tj �� pbij � and

so on� Due to the hierarchical structure of the model� the full conditionals

�



to be considered are

p�tj�s��t� b�Q�D� y� � p�tj�s��t� b�Q� y� t � �� � � � � T ��

pbijbj ��i� ��Q�D� y� � pbij��D� y� i � �� � � � � n��

pQj�� b�D� y� � pQj�� and �nally

pDj�� b�Q� y� � pDjb��

where b� � and y stands for all bi�s� all �t�s and all yti�s� respectively� A

Metropolis�Hastings M�H� step is used for updating the �t�s and the bi�s�

whereas samples from pQj � and pDj � are generated using a Gibbs step�

The algorithm is a hybrid procedure as introduced in Tierney �		�� and

further discussed in the context of updating full conditionals in Besag� Green�

Higdon � Mengersen �		���

��� Updating using full conditionals

Let us start with the full conditional of parameter �t� Applying Bayes�s

theorem we notice that

p�tj � �
nY

i��

pytij�t� bi�p�tj�s ��t� Q��

Because the conditional distribution p�tj�s��t� Q� is Gaussian� the full con�

ditional can be written as

p�tj � �
nY

i��

pytij�t� bi���t
�t��t��

Here ��t
�t��t� � ��t� denotes the density function of the normal distri�

bution N�t��t� with mean �t and covariance matrix �t� These parameters

depend on the current values of Q and of neighboring parameters �s��t� Dif�

ferent transition models result in di�erent formulae for �t and �t� Here we

give two examples� A random walk of �rst order �t � �t�� � ut leads to

N�t��t� �

�������
N�t��� Q� t � ��

N���t�� � �
��t��� Q��� t � �� � � � � T � ��

N�t��� Q� t � T �

�
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A seasonal model �t�z � � � � � �t � ut results in �t � Q�z � �� and

�t � � �t�z � ��t�z�� � � � � � z�t�� � z�t�� � � � � � ��t�z�� � �t�z� �z � ��

for t � z � �� � � � � T � z with slight modi�cations otherwise� In general the

formulae are

���
t �

min�z�T�t�X
j�max�����z�t�

F T
j Q

��Fj

and

�t � ��t

���
min�z�T�t�X

j�max�����z�t�

F T
j Q

��

�
zX

i���i��j

Fi�t�j�i

��	

for t��� � � � �T� A proof is given in Knorr�Held �		���

The M�H update step uses ��t� as proposal density and evaluates the

likelihood at time t

pytj�t� bi� �
nY

i��

pytij�t� bi��

We call ��t � N�t��t� a conditional independence proposal� since it does

not depend on the current value of �t but it does depend on current values

of neighboring �s��t and of Q� This proposal density has some advantages�

First the M�H acceptance probability

	 � min

�
��
p��t j ����t �

p��t j ����t �

�
simpli�es to the ratio of pytj�t� bi�� evaluated at the current value ��t �

stands for �current value�� and at the proposed new value ��t � Secondly the

algorithm shows good performance with an acceptance rate ranging from ���

to ��	 for lots of di�erent data and models� There is no need to tune the

algorithm choosing a di�erent proposal� and the lack of a tuning parameter

here is some kind of relief�

Updating �t consists of two steps�

�� Sample ��t � N�t��t�

	



�� Accept ��t with probability

	 � min

�
��
pytj��t � bi�

pytj��t � bi�

�
�

otherwise leave �t unchanged�

In contrast to this very simple M�H update step a Gibbs step is much more

demanding� For example� the use of ��t� as an envelope function in a rejec�

tion step as proposed in Carlin� Polsen � Sto�er �		�� in a related context

often is unattractive due to very high rejection probabilities for nearly all

kinds of models and data structures� It may work for time series n � ���

but also in this case updating by M�H is much more e�ective� More sophisti�

cated envelope functions often need the knowledge of the mean and curvature

of the full conditional see Zeger � Karim� �		�� or are applicable only to

univariate densities as in the case of adaptive rejection sampling and its ge�

neralizations Gilks � Wild� �		�
 Gilks� �		�
 Gilks� Best � Tan� �		���

Compared to these problems arising by use of a Gibbs step� the proposed

M�H update step is astonishingly simple without any requirements on the

full conditionals like log�concavity etc�

These considerations are completely transferable to the following case of

updating the bi�s� Again� a M�H step is more e�ective and less demanding as

a Gibbs step� proposed in Zeger � Karim �		��� Applying Bayes�s theorem

the full conditional of parameter bi can be written as

pbij � �

TY
t��

pytij�t� bi��bi
 ��D��

In the following the likelihood of unit i is denoted by

pyij�t� bi� �

TY
t��

pytij�t� bi��

Although this full conditional is very similar to p�tj �� an independence

proposal b�i � N��D� often has low acceptance rate� thus performance is
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poor� The main reason for that is� that pbij � may di�er substantially from

�bi
 ��D�� especially for large T � Therefore we use a random walk proposal

b�i � Nb�i � E�� which usually performs better in such situations Tierney�

�		���

Updating the bi�s proceeds as follows�

�� Sample b�i � Nb�i � E�

�� Accept b�i with probability

	 � min

�
��

pyij�t� b
�
i ��b�i 
 ��D�

pyij�t� b�i ��b�i 
 ��D�

�
�

otherwise leave bi unchanged�

Note that 	 is not a�ected by the choice of E� Therefore E can be used as

a tuning parameter to control the acceptance rate� We had good experience

with E � D���

Sometimes restrictions are imposed on components of �t� bi or both� In a

dynamic cumulative model without random e�ects� for example� those com�

ponents of �t� representing the thresholds 
t�� � � � � 
tq have to ful�ll the order

restriction 
t� � 
t� � � � � � 
tq� Such constraints are easily incorporated in

the sampling scheme given above by disregarding those proposals ��t or b�i �

that do not obey the restriction�

Sampling from pQj � and from pDj � is straightforward due to con�

jugate settings� Assuming an inverted Wishart prior D � IWr��B�� the full

conditional is given by

Dj � IWr

�� � n�

�
B�� �

nX
i��

bib
T
i

����A �

Similar results hold for Q� If Q is assumed to be diagonal and all components

of �t have the same lag z� an inverse gamma prior Qjj � IGa� b� results in
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the full conditional

Qjjj � IG

�a � T � z����

�
��b �

TX
t�z��

u�tj

����A �

��� Visiting Schedule

Some considerations have to be made concerning the order in which para�

meters and hyperparameters are updated� It is a natural choice to visit the

blocks ���� � � � � �T  � �b�� � � � � bn � �Q��� � � � � Qpp and �D in a deterministic or�

der� To avoid an arti�cial �drift� as discussed in Besag� Green� Higdon �

Mengersen �		�� the components of the �rst block are visited in random

order� Implementation is easy using the ranks of T uniformly distributed

random variates� The second and the third block are so�called coding sets

Besag� �	��
 Besag� Green� Higdon � Mengersen� �		��� thus deterministic

updating within the blocks is the obvious choice� Of course computation

time can be improved considerably using a parallel implementation�

Concerning the speed of convergence it is helpful to start the iterations

without the bi�s that is bi � �� for let say half of the burn in� Then after

the �t�s reached the population average� the bi�s are added to the sampling

scheme�

��� Estimation Based on Posterior Samples

From a computational point of view� parameter estimates may be divided into

two groups� those� which can be evaluated recursively and those for which

the whole sample has to be stored� This distinction is especially important in

multi�parameter models like the one considered here� since storing all samples

often requires an enormous storage size� Therefore recursively evaluated

estimates� such as the mean and the variance� should be the standard output

of the algorithm� although they might give just a crude characterization of

the posterior� The statistician has to decide� which parameters require more
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sophisticated estimation procedures ranging from several quantile estimates

over simultaneous credible regions up to marginal� density estimation itself�

Then the samples from the parameter of particular interest should be stored

to make the evaluation of those estimates possible�

� Applications

��� Arti�cial data

We generated binary response data Yti � B�� ti� according to the logistic

model

logitti� � �� xti� � �t � bi�

The bi�s were generated from a standard normal distribution� the group in�

dicator xti � xi was set to � for half of the n � �� units and zero for the

remainders� The �t�s were generated following a random walk of �rst order

with initial value �� � �� ��T � Q � diag����� ����� and T � ��� The se�

cond component of the �t�s may be interpreted as a time�dependent group

e�ect� This simple model was chosen to investigate� if the procedure is able

to separate unit�speci�c and time�dependent parameters�

Parameter estimates are the result of a single run of length ������ cycles�

discarding the �rst ����� and using every �th sample thereafter� Expectation

and standard deviation of the priors for all hyperparameters have been set to

the real values� Figure � shows the generated �t�s� posterior mean estimates

and pointwise one standard deviation con�dence bands� Figure � shows the

true bi�s again with posterior mean � one standard deviation con�dence

interval� The �gures indicate that the MCMC procedure gives reasonable

results for this data set� Finally Figure � and � give examples of more

sophisticated estimation methods� see Section ���� Figure � presents the

estimated marginal posterior distribution of the group e�ect� obtained by

applying a kernel estimate to the posterior realizations� �� !� �� ! and 	�

! simultaneous credible regions for the group e�ect are shown in Figure ��
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Figure � �top�� True �t	s 
solid line�� posterior mean estimates 
dashed line� and

pointwise one posterior standard deviation con�dence bands 
dotted lines��

Figure � �bottom�� True bi	s 
�� and posterior mean estimates � one posterior

standard deviation 
��� The units are ordered respective to the mean estimates�

��� Business test data

Fahrmeir �		�a�� Fahrmeir � Nase �		�� and Knorr�Held �		�� analyzed

data from the IFO business test applying a dynamic cumulative model� This

monthly data is based on a questionnaire� answered by n � �� �rms of a

speci�c industrial branch for the years �	�� to �		�� The response variable

�short range production plans� is given in three ordered categories� �decre�

ase�� �no change� and �increase�� Its conditional distribution is assumed to

depend on answers concerning �orders in hand�� �expected development of

the state of business for the next � months� as well as on the production

plans of the previous month� These three questions are also trichotomous
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Figure �� Estimated marginal posterior densities of the group eect p
�t�jy� versus

time t�

leading to �"� dummy variables� denoted by A�� A� orders in hand�� G��

G� expected development of the state of business for the next � months�

and PE�� PE� production plans of the previous month� with �decrease� as

the reference category� The covariate vector xti consists of these six dummy

variables�

To illustrate the �exibility of the model� we will discuss several model

approaches with or without unit�speci�c parameters� They all use the fact�

that a dynamic cumulative model for ordered response in q � � � � ca�

tegories can be embedded in a multivariate DGLM see Fahrmeir � Tutz�

�		�� for more details� through the following speci�cation� Response yti is

multinomially distributed

yti �M��� ti��

��



Figure �� The group eect 
solid line�� �� �� �� � and �� � simultaneous credible

regions�

where yti � �� ��T � �� ��T or �� ��T � if the �rst� second or third category is

observed� respectively� The response function is given by

h�ti� �

�
F �ti��

F �ti��� F �ti��

�
�

where F must have all properties of a distribution function� Here F x� �

��f� � exp�x�g is used leading to dynamic versions of the cumulative logit

model�

Assuming no existence of unit�speci�c heterogeneity and a random walk

of �rst order for all components of �t� we obtain the model

ti � h�ti� � hZti�t�� �t � �t�� � ut�

where the design matrix Zti is given by

Zti �

�
� � xT

ti

� � xT
ti

�
�

Note that the �rst two components of �t represent the threshold parameters


t� and 
t�� They have to follow the restriction 
t� � 
t� for all t�

��



Going one step further� we introduce a category unspeci�c random e�ect

bi� Then the model above is extended to

ti � hZti�t � Wtibi��

where Wti � �� ��T � The threshold restriction 
t� � bi � 
t� � bi for all t and

i boils down to the simpler form given above�

Category�speci�c random e�ects may be more �exible and are easily in�

tegrated by choosing

Wti �

�
� �

� �

�
�

The two components of bi represent the unit�speci�c deviations from the two

threshold parameters 
t� and 
t�� Now the restriction 
t� � bi� � 
t� � bi� for

all t and i cannot be simpli�ed�

A realistic data analysis must assume� that this monthly data shows

strong seasonality with period ��� Although a random walk for both thres�

holds 
t� and 
t� will somehow re�ect a seasonal pattern� a decomposition

into trend and season 
 � � � � is more appropriate� Here we assume a

random walk of �rst order for both trend components and a �exible seasonal

model �t��� � � � �� �t � ut� ut white noise� for both season components� The

design matrix Zti now changes to

Zti �

�
� � � � xT

ti

� � � � xT
ti

�
�

the linear predictor is

�ti �

�
�t� � �t� � bi� � xT

ti
e�t

�t� � �t� � bi� � xT
ti
e�t

�
�

where e�t � �t�� � � � � �tp�T � Formally the transition model is given by

�t � �t�� �t�� �t�� �t�� �t�� � � � � �tp�
T � �

��X
i��

Fi�t�i � ut�

��



Figure 	� Posterior mean estimates 
solid line� and pointwise one posterior stan�

dard deviation con�dence band 
dotted lines� of the seasonal components of the �rst


above� and second threshold parameter�

where F� � diag������������������ � � � ���� and F� � � � � � F�� �

diag����� ����� �� �� � � � � ���

We run the procedure for the latter model with a single run of length

������ cycles� discarding the �rst ����� and using every �th sample thereaf�

ter� We speci�ed the priors for the hyperparameters as follows� expectation

of the inverted Wishart prior for D was set to diag���� ���� with standard

deviation equal to ��� for the diagonal elements� The inverse gamma priors

for the elements of Q had expectation and standard deviation ��� for the

seasonal components and ���� for the others�

Figure � shows the estimated seasonal components within pointwise �

STD con�dence intervals� A strong seasonal pattern can be seen with highs

in spring and in August� whereas the estimates of the two trend parame�

��



Figure 
 �top�� Posterior mean estimates 
solid line� and pointwise one posterior

standard deviation con�dence band 
dotted lines� of the trend components of the �rst

and second threshold parameter�

Figure � �bottom�� Posterior mean estimates of covariate eects�

ters Figure �� are nearly time�constant� Posterior mean estimates of time�

dependent parameters Figure �� correspond to the results in Fahrmeir �

Nase �		�� and Knorr�Held �		��� obtained with di�erent methods and

without unit�speci�c parameters�� Figure � shows �� !� �� ! and 	� !

simultaneous credible regions for those parameters� Only the dummy for

expected increase of �expected development of the state of business for the

next � months� shows a signi�cant temporal variation with a low around

�	��� when a new government was established in Germany� From that time

on the e�ect is increasing and may be interpreted as a growing trust in the

government�

Posterior mean estimates of the unit�speci�c parameters are shown in

Figure 	� where estimates of the �rst and second unit�speci�c e�ect� cor�

�	



Figure �� �� �� �� � and �� � simultaneous credible regions for covariate eects of

PE�� PE�� A�� A�� G� and G��

responding to the �rst and second threshold parameter� are plotted against

each other for all �� �rms� Interestingly� these two e�ects are highly corre�

lated estimated correlation in Q is ������ and the following interpretation

seems to be plausible� Some �rms are more conservative in their answers�

often choosing �no change� for the response variable while others often ans�

wer with the categories �decrease� or �increase�� Finally Figure �� gives

the estimates plotted separately against corresponding estimated standard

deviations� We observe the reasonable� result� that the more the estimates

tend �to the middle� positive for the �rst and negative for the second�� the

more precise they are measured in posterior standard deviation��

��



Figure � Posterior mean estimates of the unit�speci�c parameters �bi� and �bi��

plotted against each other for every unit�

� Concluding Remarks

The major advantage of MCMC as a statistical inference technique is its

provided model �exibility together with implementation simplicity� The ap�

proach in this article is a convincing example for this duality� However� the

�exibility of MCMC is not yet exhausted
 possible extensions of dynamic

generalized linear mixed models include

	 the introduction of time�constant components of �t�

	 the use of robust mixtures of normals for the Gaussian error terms� see

Carlin� Polsen � Sto�er �		���

	 nonlinear models�

	 extensions to spatial data� where the dependence of the now space�

dependent� parameters �t is modelled through Markov random �elds

��



Figure ��� Posterior mean estimate 
horizontal� versus posterior standard deviation

estimate 
vertical� for �rst 
left� and second unit�speci�c parameter�

Besag� York � Mollie� �		�
 Besag� Green� Higdon � Mengersen�

�		���

It seems that nowadays the complexity of statistical models is no longer limi�

ted by the ability of inference techniques but more natural� by the amount

of information given in the data� since too complex models often lead to se�

rious identi�cation problems� It lies in the responsibility of the statistician to

�nd a compromise between parsimony and complexity� However� sensitivity

analysis and model selection by MCMC may help to derive an appropriate

model� For further details see Raftery �		��� Chib �		��� Green �		�� and

Besag� Green� Higdon � Mengersen �		���
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