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of prognostic factors relevant to the development of the illness. Statistical anal-
yses within the proportional hazards framework suffer from a lack flexibility due
to stringent model assumptions such as additivity and time-constancy of effects.

In this paper we use tree based models and varying coefficient models to allow

for

time—varying impact on disease development. Questions concerning model and
smoothing—parameter selection are addressed. An analysis of a dataset of breast

cancer patients demonstrates the ability of these methods to reveal additional in-
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1. Introduction

Identification of prognostic factors in medical settings is of high importance,
in particular when trying to determine therapy or treatment. Consider on-
cologic diseases, where identifying patients with a high risk of relapse is
necessary not only because of limited resources, but also to avoid exposing
the low-risk population to the strains and dangers of an adjuvant therapy
like radiation or chemotherapy. Great efforts have been undertaken and are
ongoing both within the medical community as well as in biostatistics to
identify factors relevant to the development of the illness. Survival analy-
ses using the proportional hazards model proposed by Cox (1972) coupled
with Kaplan—Meier survival curves have become the standard procedure to
evaluate the impact of certain factors on disease development.

In practical situations however, problems arise using solely this approach.
Within the proportional hazard modelling framework there is no natural
way to extract subpopulations of different risks. In addition, when com-
mon assumptions such as linearity, additivity and time—constancy of effects
are violated, determination and assessment of risk factors becomes unreli-
able. Often it may not be reasonable to assume that the impact of a factor
remains constant over time or that factor size influences risk in a strictly
linear fashion. Thus alternative approaches are needed to help detect more
complicated relationships.

One way to address the problem of linearity and additivity of effects are
tree based models, which have become a popular additional method of anal-
ysis, due to their ability to naturally and optimally stratify populations into
subgroups with distinctively different prognosis, in the process automatically
identifying relevant prognostic factors and possible low-order interactions. In
addition, the intuitive structure of trees is a powerful tool in communicating
results outside the statistical community.

More recently, models generalizing the proportional hazards model, or

in discrete time situations, approaches using logistic models have been de-



veloped to allow for detection and modelling of nonlinear and time—varying
effects of prognostic factors. These very flexible techniques offer insight into
complicated processes influencing the disease at interest.

We wish to demonstrate that these two different modelling approaches can
be combined to further the understanding of how prognostic factors influence
disease development. In addition to extracting subpopulations with differing
risk expectations we use results of a tree based model to feed optimally
dichotomized covariates into the varying coefficient framework which in turn
is used to analyze disease influencing mechanisms. As with all highly adaptive
modelling approaches care has to be taken when it comes to the question of
model and smoothing parameter selection. Thus, where possible we introduce
data—driven methods to select these parameters.

After reviewing notation in section 2, we describe tree based models
briefly in section 3 and varying coefficient models in more detail in section
4. In section 5, we then analyze a population of 315 post—operative breast

cancer patients using these methods.

2. Data Notation

Survival data usually consist of failure time measurements and additional
covariates which are assumed to influence time to failure. We will assume
that covariate values do not depend on time, although most of the method-
ology discussed here can be adapted to handle time-dependent covariates.
An observation is given as the triple (7,6, X), where T denotes time under
observation, ¢ is the indicator of failure and X = (X, Xo,..., X)) is a vec-
tor of p covariates. Assume U to be the true and possibly unknown time
to failure and let V' denote the true censoring time. Then ¢ is defined as
§ := Ijy<y) and the observed time is taken to be 7' = min(U, V). In the
context of varying—coefficient models, we divide the set of covariates into co-
variates 21, ..., 2, often constructed from basic covariates and a set of metric

covariates Zp41,. .., 2, called effect-modifiers.



3. Tree based models

Most of the recent developments in tree based models go back to the mono-
graph of Breiman, Friedman, Olshen and Stone (1984). Tree based models
rely upon a recursive, binary partitioning of the predictor space X into dis-
junct subspaces to either form groups of elements, called nodes, which are
homogenous with respect to the response variable of interest, or to form
subgroups with maximized between group heterogeneity. This process is re-
peated for the resulting subgroups, until it is determined that further parti-
tioning is not warranted. Nodes which are not split again are called terminal
nodes and form the final subgroups. The result of such an algorithm can be

displayed in a binary tree structure.

3.1. Recursive partitioning

The main component of recursive partitioning algorithms regardless of the
type of response variable is a set S of split inducing binary questions of
the form Is X; € A 7 where ¢ € 1,...,p and A C X. Observe that
S =51USU...US,, where each S; is the set of binary questions concerning
covariate 2 = 1,...,p. For ordered covariates X;, the set of possible questions
reduces to 'Is X; < ¢, with ¢ taking on all values of covariate realizations for
elements in the current node. For unordered covariates, all possible divisions
of categories into two groups must be examined. Each of these questions in-
duce a candidate split s, sending elements belonging to A to the left sibling
node, others to the right.

The other components of recursive partitioning algorithms need to be

adapted to the data situation at hand. They are:

e A goodness of split criterion which is evaluated for all candidate splits
s to determine the best split of a node. Usually, this criterion will mea-

sure the homogeneity of the resulting subgroups of a candidate split



with respect to the response variable, choosing the split which pro-
duces the most homogenous sibling nodes. Alternatively, goodness of
split criteria have been derived which maximize heterogeneity between

subgroups.

e A method to grow right—sized trees. This normally involves enforcing
a minimum node size and a minimum improvement in homogeneity. If
these requirements can’t be met by any of the candidate splits, the node
is labelled terminal, and no further partitioning is attempted for that
node. More flexible and computationally intensive methods usually
referred to as 'pruning’ employing cross—validation and similar in spirit
to forward—selection backward—deletion methods are commonly used

when trees are intended to be used as optimal predictors.

e Methods assigning estimated response values to elements of a terminal
node or summary statistics describing the terminal nodes. In the clas-
sification setting for example this will be the same estimated class for

each element of a terminal node.

As we intend to use recursive partitioning solely for survival data we refer to
Breiman et al. (1984) for a more extensive discussion of these components in

the classification or regression setting.

3.2. Adaptation to survival data

The construction of the set of candidate splits S remains unchanged in the
survival analysis setting. However, to enable recursive partitioning on cen-
sored data, the goodness of split criterion, the method to grow right-sized
trees and the way elements of a terminal node are characterized need to be
adapted to the survival data situation. Extensions of recursive partitioning
to the survival analysis setting can be found in Gordon and Olshen (1985),
Ciampi, Chang, Hogg and McKinney (1987), Segal (1988), Davis and Ander-
son (1989), LeBlanc and Crowley (1992) and LeBlanc and Crowley (1993).



Here we use the two—sample log-rank test as a goodness—of—split criterion
to maximize heterogeneity between resulting subgroups. An optimal parti-
tion is determined for each covariate, while final selection of the best overall
split for a node is deferred until adjusted p—values 7,4 have been calculated
for each of the maximally selected test statistics. P—values are also used in
a formulation of a stopping rule to avoid oversized trees. We use the con-
servative approach of declaring a node terminal if the maximized log-rank
statistic is not significant at a prespecified significance level m,,,,. Taking
into account the fact that we are using maximally selected test statistics, we
use the following permutation techniques to derive adjusted p—values for each
split (see LeBlanc (1990) for details). Let LR, (i,t) be the maximized log—
rank statistic for covariate i at node ¢t. To estimate corresponding p—values
for the optimal split of each covariate, we draw m permutation samples of
the population of node ¢, that is we permute the (7,0) of the individuals

with their covariate vectors X. For each of these permuted samples we max-

imize the log-rank statistics for all covariates ¢ = 1,...,p and thus receive
LRE (i;t) with k € 1,...,m and i = 1,...,p. For an estimate of the

p—values of the original maximized statistics, we use

m
DA LR )2 LR G} } T

i (1) = 1
T () — (1)
We then choose covariate j for which

Tadi () = Z.eglj{l’p}{ﬂ'adj(z)}

to split node t using the cutpoint found by maximizing the log-rank test for
the original population of node t. If 744 (j) < Tmaq the split is performed, oth-
erwise t is declared terminal. Note that in order to receive adjusted p—value
estimates of adequate resolution m must be chosen sufficiently large. The cor-
rection term in (1) assures that the estimate will be conservative and always
at least equal to 1/(m + 1). We intentionally avoid using cross-validation
based pruning methods, as this computationally intensive procedure is of lit-

tle gain when trying to identify covariates with prognostic impact, optimal



cutpoints and low—level interactions. In situations where trees are used as
predictors, it will be desirable to combine p—value adjustments with pruning
techniques.

Finally, to compare and describe the derived subpopulations we use Kaplan—
Meier estimates of cumulative survival. In addition we employ the suggestion
of LeBlanc and Crowley (1992) to estimate a proportionality parameter for
each terminal node with respect to the overall population to compare risk

expectations.

4. Varying—coefficient models

4.1. Logistic models for survival data

Frequently survival data are reported using days or months as time units. In
this context we propose a time discrete survival model with possible failure
failure times 7; € {1,...,S5} and identify the index s with the number of
intervals since an individual has been at risk. To express survival data in

terms of logistic models we introduce the risk indicator

1 individual 7 is at risk in interval s
ri(s) = H{T; > s} =

0 otherwise.
and the failure indicator

1 individual 7 is at risk and fails in interval s

0 otherwise.

yi(s) = 6, I{T; = s} = {

for each time interval s = 1,...,S. For an observed event of individual ¢
during interval 7; we have y;(7;) = 1 and r;(7;) = 1 and for a censored one
yi(T;) = 0 and r;(7;) = 1. Suppose that y;(s) is the outcome of a Bernoulli
experiment in each interval s. It is clear that ‘not at risk’ (r;(s) = 0) implies
‘no failure’ (y;(s) = 0). Conditional probabilities of failure given the risk

indicator and the covariates z;, A\;(s) = P(vi(s) = 1|ri(s), zi,2;), are linked



to a time—varying predictor, in the following written as n;(z;,2;) = is.
Assuming

P(yi(s) = 1ri(s), 2i, :) .
P(yi(s) = 0|ri(s), zi, ;) N

leads to a logistic model for the time—discrete hazard function

log for ri(s) =1

OZZ(S) - P(frz - S|E Z S,Zi,xi)

with

P(yi(s) = 1ri(s), zi,z:) = Ti@)% 2)

= ri(s)a(s).

The standard approach for estimating parameter effects in this model is based
on likelihood inference. Arjas and Haara (1987) give general conditions in
presence of censoring and time—dependent covariates where the full likelihood
of model (2) has the form of a likelihood for standard logistic models. Tt
is highly recommended to use grouped data for computation. Let y;(s)
be the number of observed events in subpopulation h, characterized by a

common covariate vector z, x;, and let r}(s) be the corresponding number

of individuals at risk in s. Then the log-likelihood can be written as

) =2 > n(s)mms — 13 (s) log(1 + exp(nns)), (3)

s=1 hERs

where R, is the set of distinct subpopulations at risk in interval s. Note that

this likelihood is also correct in presence of tied observations.

4.2. Varying coefficients

The generalized linear model approach assumes the predictor to be a linear

function of the covariates

P
=B+ Y Bjznj. (4)

j=1
Parameter estimates are obtained by maximizing (3) over fy, ..., ,. Drop-

ping the time constancy assumption in (4) leads to a dynamic generalized

8



linear model (cf. Fahrmeir and Tutz (1994) ch.8, 9), where coefficients are
allowed to vary over time. In the simplest form we have a semiparametric
time—discrete survival model
p
hs = Bo(s) + Z; Biznj, (5)
j=
where the baseline effect is assumed to be a smooth function and estimated

simultaneously. Extensions to time-varying coefficient models of the form
p
hs = Po(s) + D Bi(s)zns-
i=1

where the relative risk of failure for a certain subpopulation depends on the
basic time scale are straightforward. Since we are not able to assume specific
functional forms for continuous covariates z; ...z, like the concentration of
hormones, we drop the linearity assumption in other directions than time,
too. To avoid the ‘curse of dimensionality’ let us assume additivity of the

varying coefficients
p
hs = Bo(s) + Y Bj(wns)-
j=1

Additive models of this structure are discussed in detail in Hastie and Tibshi-
rani (1990). Combining these two extensions leads to the flexible framework
of varying—coefficient models, introduced by Hastie and Tibshirani (1993).
These models extend the predictor (4) to

p p+q
hs = Bo(s) + Z 2 B;(s) + Z B;(2h;) 2njs (6)
j=1 Jj=p+1

where effects are assumed as a function varying smoothly over the effect—
modifiers time and z;. One may interpret the coefficients in (6) as interac-
tions between covariates and time or between categorical and metrical co-
variates.

The functions 3; are estimated by maximizing a penalized log-likelihood

criterion
p+q

J(Brs s Bprg) = 1) = Z/\]J(ﬁj), (7)

9



where J(f3;) is a roughness penalty, penalizing deviations from smooth func-
tions. For convenience we include time in the set of effect—modifiers and
continue to write ;(x) when referring to a time-varying effect.

It is well known (Green and Silverman (1994)) that the maximizer of j

using the integrated squared curvature

J(%) = [(8)(2)")dz (8)

as penalty function is a natural cubic spline. Though this smoother is very
popular, it is not adequate in a variable selection procedure, because it as-
sumes the two-parametric familiy of all linear functions as ’smoothest’. Con-
sequently at least two parameters are used to describe an effect varying or
not varying. Thus as an alternative we use first order splines with roughness

penalty

Z (ﬂj($8) - ﬁj(xs—l))

s=2 Ty — Ts—1

J(65) = : (9)

for observation points x; < ... < xg to penalize deviations from (time-) con-
stant ;. This penalty allows us to include semiparametric models (5) auto-
matically in the model choice. Following Wahba (1990), Wahba, Wang, Gu,
Klein and Klein (1994) the maximizer of (7) exists and is unique as soon as the
common maximum likelihood estimator restricted to J(f), .., J(Bp+q) =0
can be determined uniquely. For the two smoothers proposed here J(f3;) = 0
corresponds to a non-varying effect 5; when a first order penalty (9) is used
whereas for the second order penalty (8), J(8;) = 0 leads to a coefficient
linear in time or x;. In the context of survival models stronger smoothness
restrictions often become appropriate as time proceeds and only a few indi-
viduals are left in the riskset. Introducing a monotonous time transformation

g(x) for the first order penalty (9) yields

1) = 3= Gits) = Byt 1))

s=2 g(.’L‘s) _g(wsfl)

and the amount of smoothing is controlled by the slope of g(z) determing

the differences g(z;) — g(xs_1).
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Maximizing the penalized likelihood criterion (7) is done iteratively by
a Fisher scoring algorithm which can be written as reweighted penalized
least squares estimation. The penalized least squares problems are again
solved iteratively by a Gauss—Seidel or backfitting algorithm. This procedure

reduces the initial problem to penalized weighted least squares problems

B = argminy_ >~ wp(Gnlws) — 21iB8i(x))* + T (B;) (10)

7 s=1 hERs

for single functions 3;. Let S; be a linear smoothing operator or hat ma-
trix derived from a penalty (8) or (9), which maps the working observation
vector (71(x1) . . . Jirs (z5))' to the ‘smoothed’ estimates 2;/3; corresponding
to (10). Backfitting iterates these operators Sy, ..., Sy, on certain working
observations up to convergence of the solutions. The algorithm is described
in detail in Hastie and Tibshirani (1993) or in Fahrmeir and Klinger (1995)
in the context of event history analysis.

Other survival models which are connected to generalized linear mod-
els like the grouped Cox model or the piecewise exponential model can be
handeled within the same framework. See Klinger (1993) or Fahrmeir and
Klinger (1995) for details.

4.3. Smoothing parameters and variable selection

Generally both choice of smoothing parameters and variable selection may
be carried out by optimizing one global criterion estimating the prediction
error. For varying—coefficient models criteria like generalized cross—validation
(GCV) or Akaike’s Information Criterion (AIC) require the trace of the hat
matrix in the last iteration step, see Hastie and Tibshirani (1990) and Wahba
et al. (1994). Due to the high dimension of the involved matrix inversions
computation is still very time—consuming. For a global optimization this
quantity has to be computed frequently. To overcome computational burdens

we use fast algorithms based on simple heuristics.
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Smoothing parameters

Hastie and Tibshirani (1990) propose to use the traces of the smoothing ma-
trices S; in the final iteration step as ‘effective number of parameters’ or
‘degrees of freedom’ of the smoother and select the smoothing parameters
A0y - - 5 Apyq according to a given ‘number of parameters’. Using our penal-
ties, A; tunes the degrees of freedom from 1, respectively 2 up to the number
of distinct time intervals or datapoints of x;. In order to obtain a proce-
dure for variable selection, one needs a fast automatic algorithm to choose

smoothing parameters. Our proposal is an iterative algorithm based on AIC,
AIC = =2I(n) + 2v, (11)

where v are the degrees of freedom for the model.

The proposed algorithm mimics a statistician who tunes the effective
number of parameters for each coefficient §; seperately. An ‘optimal’ smooth-
ing parameter is found by trading off the goodness of fit measured by the
negative log-likelihood with the degrees of freedom. To estimate only 3;,
consider By, ..., 81, Bj+1s - - -, Botq as ‘known coefficients’ and let 77 be the
predictor composed by those ‘known coefficients’, then the algorithm switches

between
1 Optimization of \;:
A= argmin{—2(n"7 + B;(x;, ;) 2, + 2tr(S;(A;))}, (12)

with tr(S;(A;)) denoting the trace of the smoothing operator used in
the final Fisher scoring iteration, where only ﬁj(, z;);) is estimated and

n~7 is assumed to be known;
and

2 Updating of the coefficients by estimating all parameters in the entire
model simultaneously using the smoothing parameter A\; computed in

step 1.
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These two steps are repeated for j =0,...,p+¢,0,....,p+¢q,0,... until
the traces of the smoothing operators do not change any more. Optimization
in step (1) is carried out by a golden-section search algorithm applied to the
Fisher—scoring procedure. By initializing step (2) with the estimate of step
(1) the algorithm reaches it’s target soon. In our experience this procedure
gives stable results for smoothing parameters in connection with AIC. A
detailed description of this ‘switching’ algorithm and simulation studies are
given in Klinger (1993).

Alternatively, criteria derived from the idea of cross—validation, such as
the generalized cross—validated deviance described in Hastie and Tibshirani
(1990) can be used to estimate smoothing parameters. However in the con-
text of survival models the ‘leaving—one-out’ heuristic for this procedure
would be censoring of an individual or a subpopulation at only one time
interval. This is not reasonable because the information that the individual
is at risk just before and after the censoring is still in the data. Indeed we
observed that the more the data are grouped, the smoother the estimates be-
come. Within a parameter selection procedure this involves different smooth-
ing parameters depending on the ability to group the actual model. AIC is
not sensitive to grouping of data and uses only likelihood criteria which are

also plausible in context of survival data.

Variable selection

Selection between different models is done by AIC, too. Computing the trace
of the hat-matrix in the last Fisher scoring iteration to obtain degrees of free-
dom for the entire model is too time consuming. Instead we proceed as before
and use the traces of the smoothing operators tr(S;();)) to approximate the
effective number of parameters by the sum of these traces. Our selection

criterion is

13



where we choose the model with minimal AIC,,. One may extend (13) to

AICyx = —2l(n) + 7 (qutr(sj(/\j)) + Pj)

where for example 7 is chosen such, that the selection criterion corresponds
to BIC. This extension allows to trade off between complexity in the co-
efficients (smoothness) and complexity of the model (number of covariates
included). The term p; is used, if the corresponding covariate z; results from
an optimized split of the tree based model described previously. For such a
split we set p; = 1 to incorporate the additional degrees of freedom due to
the estimation of the cut—off point.

The selection first proceeds stepwise in a forward manner. One starts
with only the baseline included and estimates a supermodel including one
covariate more and so on. AIC,,; is computed from the estimation result
for each candidate covariate. Since the type of the smoother influences the
result, this is done for the first order smoothing spline using at least one de-
gree of freedom and for the cubic smoothing spline using two or more degrees
of freedom seperately. Interactions are only considered between included co-
variates. The forward selection stops, when no supermodel reaches a lower
AIC,;x. Now all possible models excluding one coefficient are computed,
if one of these submodels has a lower AIC;;x we start a stepwise back-
ward deletion. The backward deletion is repeated until no submodel can be

preferred in the sense of the AIC,;x criterion.

5. Breast cancer study

In 1987, a prospective study on n = 315 post-operative breast cancer pa-
tients was initiated at the department of obstetrics and gynecology of the
Technische Universitat Miinchen in order to reveal and assess prognostic
factors related with relapse. During the course of the study 102 patients

experienced a relapse. Follow-up time ranged from 1 to 88 months with a
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median follow—up of 47 months. In order to identify subpopulations with
different risk expectations, new factors such as the urokinase—type plasmino-
gen activator (uPA) and it’s inhibitor (PAI-1) in the following referred to as
PAT were investigated in addition to classical factors such as age of patient,
number of removed positive lymph—nodes, tumor size and hormone receptor
status. A dichotomized version of the number of removed positive lymph
nodes — ’lymph node status’ was included, indicating absence or presence
of any positive lymph nodes. A complete listing of covariates included in the

analysis can be found in table 1.

5.1. Tree based model

A survival tree was grown on the data using all covariates available to assess
impact on the response ‘time to relapse‘. Parameters of the algorithm were
such that a node was declared terminal if no candidate split resulted in an
adjusted log-rank test statistic significant at the m,,,, = .05 level or if one
of the resulting sibling nodes contained less than 10 individuals. P-value
adjustment was performed using the permutation technique described with
m = 2000 permutations for each split.

Figure 1 shows the resulting tree with 8 splits and 9 terminal nodes. The
node number, covariate used to split the node, corresponding cutpoint and
adjusted p—value are recorded beneath each split. For every terminal node,
the node number, the number of individuals and events and an estimate of
relative risk are recorded. Chosen covariates and cutpoints for each node
are also recorded in table 2. For binary covariates, no cutpoints are given,
instead factor level 0 individuals are sent to the left, level 1 individuals to
the right.

The partitioning process begins by splitting up the entire population accord-
ing to whether the number of removed positive lymph nodes is less than or
greater than 6.5. This result confirms the well known fact that lymph node

status is the factor with the highest prognostic impact on relapse. Before

15



Covariate | Description Range
AGE Age of patient at surgery in | 27.3 — 88.6
years
LYPO Number of removed, posi- | 0 — 40
tive lymph nodes
TUMOR | Tumor size in cm 0.5—15
DHORM | Hormone receptor status 0 = positive
1 = negative
DPR Progesteron receptor status | 0 = positive
1 = negative
DER Estrogen receptor status 0 = positive
1 = negative
UPA urokinase— 0.04 —15.17
type plasminogen activator
(ng/mg protein)
PAI plasminogen activator in- | 0.06 — 248.8
hibitor (ng/mg protein)
MENOP | menopausal status 1 = premenopausal
2 = postmenopausal
3 = perimenopausal
DLYP Lymph node status 0 = node negative

1 = node positive

16

Table 1: Covariates in breast cancer study.




Node || Covariate | Cutpoint
1 LYPO 6.5

2 PAI 27.5

3 DPR binary

4 PAI 14.8

6 LYPO 11.5

8 DLYP binary
14 PAI 8.2

17 PAI 10.4

Table 2: Split data.

p-value adjustment, PAI seems to be the factor with the second highest im-
pact followed by the binary covariate lymph node status DLYP, tumor size
and progesteron receptor status. The situation changes somewhat when the
adjusted p—values are used to rank factor importance. Now both lymph node
status covariates are ahead of progesteron and estrogen receptor status, while
PAT und tumor size drop several ranks. Details can be found in table 3. Ob-
serve that it is not possible to decide between LYPO and DLYP on the basis
of the adjusted p—values alone, as the number of permutations chosen was
not large enough. In such cases one has the option of increasing the number
of permutation samples or reverting back to the original p—values. Here, due
to the great difference in original p—values, LYPO with it’s cutpoint of 6.5
is finally selected as the best root level split. Figure 2 shows the resulting
Kaplan—Meier survival curves for nodes 2 and 3 in contrast to the entire
population.

Optimized cutpoints at node 1 were used to construct dichotomized ver-
sions of covariates to be used in conjunction with the varying coefficient
modelling framework of section 5.2..

Continuing downward from node 3 the algorithm seperates a group of

17
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Figure 1: Graph of tree based model
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Goodness of split

before adjustment | after adjustment
Covariate || cutpoint rank p—value | rank p—value
LYPO 6.5 1 <1071 1 < 0.0005
PAI 27.5 2 <107° 5 0.0005
DLYP binary 3 <1077 2 < 0.0005
TUMOR || 8.25 4 <101 6 0.0010
DPR binary 5 <10~ 3 < 0.0005
UPA 4.4 6 0.00014 8 0.0120
DER binary 7 0.00023 4 < 0.0005
AGE 62.2 8 0.00104 9 0.04450
DHORM || binary 9 0.00355 7 0.0035
MENOP || categorical 10 0.23293 10 0.2870

Table 3: Optimized candidate splits for node 1.

1.0

0.8

P(relapse-free survival)

Root node
rrrrrr LYPO > 65
——- LYPO<65

00 02 04 06

0 20 40 60 80

time since surgery (months)

Figure 2: Partition resulting from root level split.
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high relative risk (RR) patients with negative progesteron receptor status
(RR=5.5) while a further split on LYPO at node 6 reveals a small group
of patients with marginally lower risk (RR=0.83) as compared to the whole
population. On the branch of the tree originating at node 2, where a large
group of lower risk patients was produced by the first split on LYPO, PAI
apparently plays an important role in further determining prognosis. Two
small subpopulations with elevated PAI concentrations and accordingly in-
creased risks are seperated before remaining patients are split based on their
lymph node status at node 8. For a large group of node negative patients
with PAI concentrations less than 8.2, the tree predicts a very low risk of re-
lapse (RR=0.13). The split at node 17 is difficult to explain since it appears
to show a break in the monotony of the relationship between PAI concentra-
tion and risk expectation. This becomes less of a problem when considering
the small size of the originating node. Still, the impact of PAI on the risk of
relapse appears to be a smooth one and the tree is not able to handle it well

by repeatedly splitting off very small subpopulations.
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5.2. Varying—coefficient model

A common way to interpret the hazard function in this application is not
linear in time. More naturally — taking into account decreased prediction
accuracy as time progresses — one looks at hazards per month in the first
year, per quarter in the second and third year and per year later on. In this

context, we use a transformed time grid
{1,...,12,13,...,36,37,...,88} — {1,...,12,12.33,...,20,20.08,...,24.33}.

This grid also helps overcome boundary problems on the right—-hand side
of the time axis where the riskset is small. Here the transformation causes
stronger smoothness restrictions. Estimation results using the transformed
time—scale are compared to estimates based on original time—scale by the
AIC;, criterion.

We start by including dichotomized covariates obtained from the can-
ditate splits of the root node in addition to the original covariates in the
selection process. Table 4 shows results of the first selection step where the
component (LYPO<T) is chosen constant over time. To take into account
that the cut—off point for this covariate was estimated by recursive partition-
ing we add one degree of freedom. The resulting AIC,,x, 1167.4, is still the
lowest and thus (LYPO<T) is selected as first covariate.

The variable selection is continued in table 5. Some coefficients, those
with tr(S;)=1, are included in a (semi-) parametric manner. The selection
stopped after 5 steps. Again, since the covariate (UPA>4.4) results from
an estimated cut—off point, we increase the AIC,; by 2. Neither UPA nor
any other covariate or interaction decreased the selection criterion computed
from the 5 coefficient model. The model choice proceeds with the backward

deletion starting with the model,

n = Bo(s)+ Bi(s)(LYPOeE {1,...,6}) + B(PAI)
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Variable loglikelihood | AIC,, | tr(Sp) | tr(S1) | smoother

1(AGE) -599.9 1211.2 | 3.2282 | 2.4780 | cubic
(1 (PATI) -585.8 1190.1 | 3.1292 | 4.7165 | cubic
(1 (UPA) -597.6 1208.3 | 3.2731 | 3.3341 | first order
G1(s)(PAI> 27.5) -589.9 1188.2 | 3.1838 | 1.0000 | first order
Bi(s)(UPA> 4.4) || -596.9 1202.4 | 3.2723 | 1.0000 | first order
(1(s)DPR -590.5 1192.0 | 3.4613 | 2.0000 | cubic
B1(s)DER -592.8 1196.6 | 3.4609 | 2.0000 | cubic
(1(s) DHORM -593.5 1198.1 | 3.5859 | 2.0000 | cubic
Bi(s)(LYPO=0) || -587.5 1187.1 | 2.9819 | 3.0740 | cubic
Bi(s)(LYPO< 7) || -578.5 1165.4 | 3.2245 | 1.0000 | first order
B1(s)(AGE< 62.25) || -597.4 1203.2 | 3.2267 | 1.0000 | first order

Table 4: First step of variable selection using the optimal first order or cubic

spline.

As can be seen from table 6 none of the submodels indicate better prediction
through their AIC,,, so the model selection process terminates.

Furthermore we checked, whether the used transformation of the time
axis improved the model. Results using smoothers gained by the ‘optimal’
choice from table 4 are given in table 7 in the column ‘optimal, yes’. The
next column lists estimates using only first order splines whereas the last two
columns indicate that the fit becomes worse without the time transformation.
Except [, all estimates recognized the same effects as time—constant and
distributed the degrees of freedom similarly to the included variables. The
time-constant effects (tr(S;)=1) all have approximately the same value in
each of the four estimates. It seems, that the type of the smoother does not
have a big influence on the ‘parametric’ part of the model.

Figure 3 shows the coefficients for the final model using the transformed

time axis and 'optimal’ smoothers. If one is interested in examining how one
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Variable smoother | loglikelihood | AIC,, | tr(S;)
Bi(s)(LYPO< 7) | first order | -578.5 1165.4 | 1.0000
3,(PAI) cubic 561.4 1140.3 | 4.7512
B3(s)(AGE< 62.25) || first order | -553.1 1125.8 | 1.0000
B4(s)DPR cubic -546.2 1116.9 | 2.0000
B5(s)(LYPO=0) | cubic -541.8 1113.0 | 3.0464
Bs(s)(UPA> 4.425) || first order | -540.9 1112.8 | 1.0000

Table 5: Stepwise forward variable selection, chosen covariates and inclusion

criteria.

Variable loglikelihood | AIC,,
B1(s)(LYPOe {1,...,6}) || -556.9 1141.2
(o (PAT) -555.3 1131.0
O5(s)(AGE< 62.25) -550.2 1128.1
B4(s)DPR -544.6 1122.0
B5(s)(LYPO= 0) -546.2 1116.9

Table 6: First step of stepwise backward deletion, exclusion criteria of deleted

coeflicients.
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Smoothers optimal first order optimal first order
Transform. yes no

Variable tr(S;) éj tr(S;) éj tr(S;) éj tr(S;) éj
Bo(s) 2.979 -4.933 | 1.000 -5.003 | 2.976 -4.959 | 1.000 -4.941
B1(s) 1.000 -1.357 | 1.000 -1.388 | 1.000 -1.363 | 1.000 -1.388
B (PAI) 4.704 0.527 | 6.544 0.537 | 4.651 0.542 | 6.615 0.476
Bs(s) 1.000 0.926 | 1.000 0.912 | 1.000 0.912 | 1.000 0.911
Ba(s) 2.000 0.338 | 1.000 0.602 | 2.000 0.245 | 1.000 0.602
Bs(s) 2967 -2.216 | 3.705 -2.146 | 3.037 -2.395| 3.836 -2.227
1() -541.8 -543.8 -544.1 -544.0
AICy, 1113.0 1116.1 1117.5 1116.9

Table 7: Effective number of parameters and mean of estimated coefficients

by using different smoothing operators.

covariate affects the risk when other factors are fixed, log odds ratios may
be calculated as linear combinations of coefficients. Within the final model
the covariate LYPO is divided into three categories: node negative patients,
patients with fewer than 7 positive lymph nodes and patients having 7 or
more positive lymph nodes. Patients with fewer than 7 positive lymph nodes
have a distinctly lower time—constant relative risk. For node negative patients
the risk of experiencing a relapse is still lower, although this phenomena is
clearly time—dependent. Having no positive lymph nodes has an obvious
risk decreasing effect for the first two years, after which it does not seem to
matter much, whether a patient is node negative or has just a few (less than 7)
positive lymph nodes (see figure 3 (b) for details). One interpretation could
be that for node—positive patients with less than 7 positive lymph nodes the
beginning benificial effects of an adjuvant therapy have the effect of slowly
letting risk expectations for these two groups converge. The third entry into

the model, AGE was chosen as time constant with patients younger than
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62.25 years having a relative risk of 2.5 compared to older patients.

As suspected by looking at the tree model the varying coefficient model
confirms that the impact of PAI-1 on the risk of relapse is complicated,
which is reflected in it’s entry into the model as a nonlinear term. The risk
of relapse increases sharply up to PAI-1 concentrations of about 50 ng/mg
protein remaining constant at a high level thereafter.

Progesteron receptor status enters the model as a time-varying effect,
signifying a relative risk of about 5 immediately after surgery for patients
with a negative receptor status. This effect continuously declines until it

disappears about 3-4 years after surgery.

6. Conclusions

Currently, there is a discussion going on in the medical community about
the impact of these analyses on clinical and treatment decisions. Studying
variation over time of the risk associated with these and other factors may
give important insights into their role in tumor cell biology.

Our findings may still be well short of changing clinical practice at the mo-
ment. Lymph node status together with the number of positive nodes have to
be considered first in evaluating the risk of getting a relapse, but in addition,
the absence of steroid hormone receptors and high PAI-1 tumor levels can be
said to be indicators of early disease recurrence. Accordingly, patients fitting
this profile could be enrolled in a tight follow—up schedule during the first
years after primary treatment. Later on, for hormone receptor-negative pa-
tients remaining disease—free during this early period, a less frequent follow—
up might be possible as recurrences tend to be rare. Detailed knowledge of
time—dependent and non-linear risk profiles of prognostic factors will even-
tually enable clinicians to better predict disease recurrence and survival and
to individualize follow—up and therapy.

As illustrated, the two methods proposed offer flexible extensions to the

more conventional survival analysis framework. Tree based models are well
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equipped to detect interactions and their results can immediately be used to
stratify patients into different risk groups. On the other hand, allowing for
time-varying effects and nonlinear associations enables precise and accurate
explanations of influencing mechanisms using models of simple structure.
This attempt to combine the advantages of the two methods can be seen as
first step towards a more refined assessment of prognostic factors. Further
work and practical experience is needed to solve problems of identifiability
and stability when trying to combine these methods into a more tightly woven

framework.
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