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Summary

A major issue in the analysis of diseases is the identi�cation and assessment

of prognostic factors relevant to the development of the illness� Statistical anal�

yses within the proportional hazards framework su�er from a lack �exibility due

to stringent model assumptions such as additivity and time�constancy of e�ects�

In this paper we use tree based models and varying coe�cient models to allow

for detectability of prognostic factors with possibly nonadditive	 nonlinear and

time�varying impact on disease development� Questions concerning model and

smoothing�parameter selection are addressed� An analysis of a dataset of breast

cancer patients demonstrates the ability of these methods to reveal additional in�

sight into the disease in�uencing mechanisms�
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�� Introduction

Identi�cation of prognostic factors in medical settings is of high importance�

in particular when trying to determine therapy or treatment� Consider on�

cologic diseases� where identifying patients with a high risk of relapse is

necessary not only because of limited resources� but also to avoid exposing

the low�risk population to the strains and dangers of an adjuvant therapy

like radiation or chemotherapy� Great e�orts have been undertaken and are

ongoing both within the medical community as well as in biostatistics to

identify factors relevant to the development of the illness� Survival analy�

ses using the proportional hazards model proposed by Cox ��	
�� coupled

with Kaplan�Meier survival curves have become the standard procedure to

evaluate the impact of certain factors on disease development�

In practical situations however� problems arise using solely this approach�

Within the proportional hazard modelling framework there is no natural

way to extract subpopulations of di�erent risks� In addition� when com�

mon assumptions such as linearity� additivity and time�constancy of e�ects

are violated� determination and assessment of risk factors becomes unreli�

able� Often it may not be reasonable to assume that the impact of a factor

remains constant over time or that factor size inuences risk in a strictly

linear fashion� Thus alternative approaches are needed to help detect more

complicated relationships�

One way to address the problem of linearity and additivity of e�ects are

tree based models� which have become a popular additional method of anal�

ysis� due to their ability to naturally and optimally stratify populations into

subgroups with distinctively di�erent prognosis� in the process automatically

identifying relevant prognostic factors and possible low�order interactions� In

addition� the intuitive structure of trees is a powerful tool in communicating

results outside the statistical community�

More recently� models generalizing the proportional hazards model� or

in discrete time situations� approaches using logistic models have been de�
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veloped to allow for detection and modelling of nonlinear and time�varying

e�ects of prognostic factors� These very exible techniques o�er insight into

complicated processes inuencing the disease at interest�

We wish to demonstrate that these two di�erent modelling approaches can

be combined to further the understanding of how prognostic factors inuence

disease development� In addition to extracting subpopulations with di�ering

risk expectations we use results of a tree based model to feed optimally

dichotomized covariates into the varying coe�cient framework which in turn

is used to analyze disease inuencing mechanisms� As with all highly adaptive

modelling approaches care has to be taken when it comes to the question of

model and smoothing parameter selection� Thus� where possible we introduce

data�driven methods to select these parameters�

After reviewing notation in section �� we describe tree based models

briey in section � and varying coe�cient models in more detail in section

�� In section �� we then analyze a population of ��� post�operative breast

cancer patients using these methods�

�� Data Notation

Survival data usually consist of failure time measurements and additional

covariates which are assumed to inuence time to failure� We will assume

that covariate values do not depend on time� although most of the method�

ology discussed here can be adapted to handle time�dependent covariates�

An observation is given as the triple �T� ��X�� where T denotes time under

observation� � is the indicator of failure and X � �X�� X�� � � � � Xp� is a vec�

tor of p covariates� Assume U to be the true and possibly unknown time

to failure and let V denote the true censoring time� Then � is de�ned as

� �� IfU�V g and the observed time is taken to be T � min�U� V �� In the

context of varying�coe�cient models� we divide the set of covariates into co�

variates z�� � � � � zp often constructed from basic covariates and a set of metric

covariates xp��� � � � � xq called e�ect�modi�ers�
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�� Tree based models

Most of the recent developments in tree based models go back to the mono�

graph of Breiman� Friedman� Olshen and Stone ��	���� Tree based models

rely upon a recursive� binary partitioning of the predictor space X into dis�

junct subspaces to either form groups of elements� called nodes� which are

homogenous with respect to the response variable of interest� or to form

subgroups with maximized between group heterogeneity� This process is re�

peated for the resulting subgroups� until it is determined that further parti�

tioning is not warranted� Nodes which are not split again are called terminal

nodes and form the �nal subgroups� The result of such an algorithm can be

displayed in a binary tree structure�

���� Recursive partitioning

The main component of recursive partitioning algorithms regardless of the

type of response variable is a set S of split inducing binary questions of

the form �Is Xi � A �� where i � �� � � � � p and A � X� Observe that

S � S��S�� � � ��Sp� where each Si is the set of binary questions concerning

covariate i � �� � � � � p� For ordered covariates Xi� the set of possible questions

reduces to �Is Xi � c�� with c taking on all values of covariate realizations for

elements in the current node� For unordered covariates� all possible divisions

of categories into two groups must be examined� Each of these questions in�

duce a candidate split s� sending elements belonging to A to the left sibling

node� others to the right�

The other components of recursive partitioning algorithms need to be

adapted to the data situation at hand� They are�

� A goodness of split criterion which is evaluated for all candidate splits

s to determine the best split of a node� Usually� this criterion will mea�

sure the homogeneity of the resulting subgroups of a candidate split
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with respect to the response variable� choosing the split which pro�

duces the most homogenous sibling nodes� Alternatively� goodness of

split criteria have been derived which maximize heterogeneity between

subgroups�

� A method to grow right�sized trees� This normally involves enforcing

a minimum node size and a minimum improvement in homogeneity� If

these requirements can�t be met by any of the candidate splits� the node

is labelled terminal� and no further partitioning is attempted for that

node� More exible and computationally intensive methods usually

referred to as �pruning� employing cross�validation and similar in spirit

to forward�selection backward�deletion methods are commonly used

when trees are intended to be used as optimal predictors�

� Methods assigning estimated response values to elements of a terminal

node or summary statistics describing the terminal nodes� In the clas�

si�cation setting for example this will be the same estimated class for

each element of a terminal node�

As we intend to use recursive partitioning solely for survival data we refer to

Breiman et al� ��	��� for a more extensive discussion of these components in

the classi�cation or regression setting�

���� Adaptation to survival data

The construction of the set of candidate splits S remains unchanged in the

survival analysis setting� However� to enable recursive partitioning on cen�

sored data� the goodness of split criterion� the method to grow right�sized

trees and the way elements of a terminal node are characterized need to be

adapted to the survival data situation� Extensions of recursive partitioning

to the survival analysis setting can be found in Gordon and Olshen ��	����

Ciampi� Chang� Hogg and McKinney ��	�
�� Segal ��	���� Davis and Ander�

son ��	�	�� LeBlanc and Crowley ��		�� and LeBlanc and Crowley ��		���
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Here we use the two�sample log�rank test as a goodness�of�split criterion

to maximize heterogeneity between resulting subgroups� An optimal parti�

tion is determined for each covariate� while �nal selection of the best overall

split for a node is deferred until adjusted p�values �adj have been calculated

for each of the maximally selected test statistics� P�values are also used in

a formulation of a stopping rule to avoid oversized trees� We use the con�

servative approach of declaring a node terminal if the maximized log�rank

statistic is not signi�cant at a prespeci�ed signi�cance level �max� Taking

into account the fact that we are using maximally selected test statistics� we

use the following permutation techniques to derive adjusted p�values for each

split �see LeBlanc ��		�� for details�� Let LRmax�i� t� be the maximized log�

rank statistic for covariate i at node t� To estimate corresponding p�values

for the optimal split of each covariate� we draw m permutation samples of

the population of node t� that is we permute the �T� �� of the individuals

with their covariate vectors X� For each of these permuted samples we max�

imize the log�rank statistics for all covariates i � �� � � � � p and thus receive

LRk
max�i� t� with k � �� � � � � m and i � �� � � � � p� For an estimate of the

p�values of the original maximized statistics� we use

�adj�i� �

mP
k��
fIfLRk

max�i�t��LRmax�i�t�gg� �

m � �
� ���

We then choose covariate j for which

�adj�j� � min
i�f������pg

f�adj�i�g

to split node t using the cutpoint found by maximizing the log�rank test for

the original population of node t� If �adj�j� � �max the split is performed� oth�

erwise t is declared terminal� Note that in order to receive adjusted p�value

estimates of adequate resolutionmmust be chosen su�ciently large� The cor�

rection term in ��� assures that the estimate will be conservative and always

at least equal to ���m � ��� We intentionally avoid using cross�validation

based pruning methods� as this computationally intensive procedure is of lit�

tle gain when trying to identify covariates with prognostic impact� optimal
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cutpoints and low�level interactions� In situations where trees are used as

predictors� it will be desirable to combine p�value adjustments with pruning

techniques�

Finally� to compare and describe the derived subpopulations we use Kaplan�

Meier estimates of cumulative survival� In addition we employ the suggestion

of LeBlanc and Crowley ��		�� to estimate a proportionality parameter for

each terminal node with respect to the overall population to compare risk

expectations�

�� Varying�coe	cient models

���� Logistic models for survival data

Frequently survival data are reported using days or months as time units� In

this context we propose a time discrete survival model with possible failure

failure times Ti � f�� � � � � Sg and identify the index s with the number of

intervals since an individual has been at risk� To express survival data in

terms of logistic models we introduce the risk indicator

ri�s� � IfTi � sg �

��
�

� individual i is at risk in interval s

� otherwise�

and the failure indicator

yi�s� � �iIfTi � sg �

��
�

� individual i is at risk and fails in interval s

� otherwise�

for each time interval s � �� � � � � S� For an observed event of individual i

during interval Ti we have yi�Ti� � � and ri�Ti� � � and for a censored one

yi�Ti� � � and ri�Ti� � �� Suppose that yi�s� is the outcome of a Bernoulli

experiment in each interval s� It is clear that �not at risk� �ri�s� � �� implies

�no failure� �yi�s� � ��� Conditional probabilities of failure given the risk

indicator and the covariates zi� �i�s� � P�yi�s� � �jri�s�� zi� xi�� are linked






to a time�varying predictor� in the following written as 	is�zi� xi� � 	is�

Assuming

log
P�yi�s� � �jri�s�� zi� xi�

P�yi�s� � �jri�s�� zi� xi�
� 	is for ri�s� � �

leads to a logistic model for the time�discrete hazard function


i�s� � P �Ti � sjTi � s� zi� xi�

with
P�yi�s� � �jri�s�� zi� xi� � ri�s�

exp��is�
��exp��is�

� ri�s�
i�s��
���

The standard approach for estimating parameter e�ects in this model is based

on likelihood inference� Arjas and Haara ��	�
� give general conditions in

presence of censoring and time�dependent covariates where the full likelihood

of model ��� has the form of a likelihood for standard logistic models� It

is highly recommended to use grouped data for computation� Let y�h�s�

be the number of observed events in subpopulation h� characterized by a

common covariate vector zh� xh� and let r�h�s� be the corresponding number

of individuals at risk in s� Then the log�likelihood can be written as

l�	� �
SX
s��

X
h�Rs

y�h�s�	hs � r�h�s� log�� � exp�	hs��� ���

where Rs is the set of distinct subpopulations at risk in interval s� Note that

this likelihood is also correct in presence of tied observations�

���� Varying coe�cients

The generalized linear model approach assumes the predictor to be a linear

function of the covariates

	h � �� �
pX

j��

�jzhj� ���

Parameter estimates are obtained by maximizing ��� over ��� � � � � �p� Drop�

ping the time constancy assumption in ��� leads to a dynamic generalized
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linear model �cf� Fahrmeir and Tutz ��		�� ch��� 	�� where coe�cients are

allowed to vary over time� In the simplest form we have a semiparametric

time�discrete survival model

	hs � ���s� �
pX

j��

�jzhj� ���

where the baseline e�ect is assumed to be a smooth function and estimated

simultaneously� Extensions to time�varying coe�cient models of the form

	hs � ���s� �
pX

j��

�j�s�zhj�

where the relative risk of failure for a certain subpopulation depends on the

basic time scale are straightforward� Since we are not able to assume speci�c

functional forms for continuous covariates x� � � � xq� like the concentration of

hormones� we drop the linearity assumption in other directions than time�

too� To avoid the �curse of dimensionality� let us assume additivity of the

varying coe�cients

	hs � ���s� �
pX

j��

�j�xhj��

Additive models of this structure are discussed in detail in Hastie and Tibshi�

rani ��		��� Combining these two extensions leads to the exible framework

of varying�coe�cient models� introduced by Hastie and Tibshirani ��		���

These models extend the predictor ��� to

	hs � ���s� �
pX

j��

zhj�j�s� �
p�qX

j�p��

�j�xhj�zhj� ���

where e�ects are assumed as a function varying smoothly over the e�ect�

modi�ers time and xj� One may interpret the coe�cients in ��� as interac�

tions between covariates and time or between categorical and metrical co�

variates�

The functions �j are estimated by maximizing a penalized log�likelihood

criterion

j���� � � � � �p�q� � l�	��
p�qX
j��

�jJ��j�� �
�

	



where J��j� is a roughness penalty� penalizing deviations from smooth func�

tions� For convenience we include time in the set of e�ect�modi�ers and

continue to write �j�x� when referring to a time�varying e�ect�

It is well known �Green and Silverman ��		��� that the maximizer of j

using the integrated squared curvature

J��j� �
Z
��j�x�

����dx ���

as penalty function is a natural cubic spline� Though this smoother is very

popular� it is not adequate in a variable selection procedure� because it as�

sumes the two�parametric familiy of all linear functions as �smoothest�� Con�

sequently at least two parameters are used to describe an e�ect varying or

not varying� Thus as an alternative we use �rst order splines with roughness

penalty

J��j� �
TX
s��

��j�xs�� �j�xs����
�

xs � xs��
� �	�

for observation points x� � � � � � xS to penalize deviations from �time�� con�

stant �j� This penalty allows us to include semiparametric models ��� auto�

matically in the model choice� Following Wahba ��		��� Wahba� Wang� Gu�

Klein and Klein ��		�� the maximizer of �
� exists and is unique as soon as the

common maximum likelihood estimator restricted to J����� � � � � J��p�q� � �

can be determined uniquely� For the two smoothers proposed here J��j� � �

corresponds to a non�varying e�ect �j when a �rst order penalty �	� is used

whereas for the second order penalty ���� J��j� � � leads to a coe�cient

linear in time or xj� In the context of survival models stronger smoothness

restrictions often become appropriate as time proceeds and only a few indi�

viduals are left in the riskset� Introducing a monotonous time transformation

g�x� for the �rst order penalty �	� yields

J��j� �
TX
s��

��j�xs�� �j�xs����
�

g�xs�� g�xs���

and the amount of smoothing is controlled by the slope of g�x� determing

the di�erences g�xs�� g�xs����
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Maximizing the penalized likelihood criterion �
� is done iteratively by

a Fisher scoring algorithm which can be written as reweighted penalized

least squares estimation� The penalized least squares problems are again

solved iteratively by a Gauss�Seidel or back�tting algorithm� This procedure

reduces the initial problem to penalized weighted least squares problems

��j � argmin
�j

SX
s��

X
h�Rs

whs��yh�xs�� zhj�j�xs��
� � J��j� ����

for single functions �j� Let Sj be a linear smoothing operator or hat ma�

trix derived from a penalty ��� or �	�� which maps the working observation

vector ��y��x�� � � � �yRS
�xS��

� to the �smoothed� estimates zhj ��j corresponding

to ����� Back�tting iterates these operators S�� � � � � Sp�q on certain working

observations up to convergence of the solutions� The algorithm is described

in detail in Hastie and Tibshirani ��		�� or in Fahrmeir and Klinger ��		��

in the context of event history analysis�

Other survival models which are connected to generalized linear mod�

els like the grouped Cox model or the piecewise exponential model can be

handeled within the same framework� See Klinger ��		�� or Fahrmeir and

Klinger ��		�� for details�

���� Smoothing parameters and variable selection

Generally both choice of smoothing parameters and variable selection may

be carried out by optimizing one global criterion estimating the prediction

error� For varying�coe�cient models criteria like generalized cross�validation

�GCV� or Akaike�s Information Criterion �AIC� require the trace of the hat

matrix in the last iteration step� see Hastie and Tibshirani ��		�� and Wahba

et al� ��		��� Due to the high dimension of the involved matrix inversions

computation is still very time�consuming� For a global optimization this

quantity has to be computed frequently� To overcome computational burdens

we use fast algorithms based on simple heuristics�
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Smoothing parameters

Hastie and Tibshirani ��		�� propose to use the traces of the smoothing ma�

trices Sj in the �nal iteration step as �e�ective number of parameters� or

�degrees of freedom� of the smoother and select the smoothing parameters

��� � � � � �p�q according to a given �number of parameters�� Using our penal�

ties� �j tunes the degrees of freedom from �� respectively � up to the number

of distinct time intervals or datapoints of xj� In order to obtain a proce�

dure for variable selection� one needs a fast automatic algorithm to choose

smoothing parameters� Our proposal is an iterative algorithm based on AIC�

AIC � ��l�	� � ��� ����

where � are the degrees of freedom for the model�

The proposed algorithm mimics a statistician who tunes the e�ective

number of parameters for each coe�cient �j seperately� An �optimal� smooth�

ing parameter is found by trading o� the goodness of �t measured by the

negative log�likelihood with the degrees of freedom� To estimate only �j�

consider ��� � � � � �j��� �j��� � � � � �p�q as �known coe�cients� and let 	�j be the

predictor composed by those �known coe�cients�� then the algorithm switches

between

� Optimization of �j�

�j � argminf��l�	�j � ��j�xj� �j��zhj � �tr�Sj��j��g� ����

with tr�Sj��j�� denoting the trace of the smoothing operator used in

the �nal Fisher scoring iteration� where only ��j�� xj�j� is estimated and

	�j is assumed to be known�

and

� Updating of the coe�cients by estimating all parameters in the entire

model simultaneously using the smoothing parameter �j computed in

step ��
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These two steps are repeated for j � �� � � � � p� q� �� � � � � p� q� �� � � � until

the traces of the smoothing operators do not change any more� Optimization

in step ��� is carried out by a golden�section search algorithm applied to the

Fisher�scoring procedure� By initializing step ��� with the estimate of step

��� the algorithm reaches it�s target soon� In our experience this procedure

gives stable results for smoothing parameters in connection with AIC� A

detailed description of this �switching� algorithm and simulation studies are

given in Klinger ��		���

Alternatively� criteria derived from the idea of cross�validation� such as

the generalized cross�validated deviance described in Hastie and Tibshirani

��		�� can be used to estimate smoothing parameters� However in the con�

text of survival models the �leaving�one�out� heuristic for this procedure

would be censoring of an individual or a subpopulation at only one time

interval� This is not reasonable because the information that the individual

is at risk just before and after the censoring is still in the data� Indeed we

observed that the more the data are grouped� the smoother the estimates be�

come� Within a parameter selection procedure this involves di�erent smooth�

ing parameters depending on the ability to group the actual model� AIC is

not sensitive to grouping of data and uses only likelihood criteria which are

also plausible in context of survival data�

Variable selection

Selection between di�erent models is done by AIC� too� Computing the trace

of the hat�matrix in the last Fisher scoring iteration to obtain degrees of free�

dom for the entire model is too time consuming� Instead we proceed as before

and use the traces of the smoothing operators tr�Sj��j�� to approximate the

e�ective number of parameters by the sum of these traces� Our selection

criterion is

AICM � ��l�	� � �

�
�p�qX
j��

tr�Sj��j��

�
A � ����
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where we choose the model with minimal AICM � One may extend ���� to

AICMX � ��l�	� � 

�
�p�qX
j��

tr�Sj��j�� � �j

�
A

where for example  is chosen such� that the selection criterion corresponds

to BIC� This extension allows to trade o� between complexity in the co�

e�cients �smoothness� and complexity of the model �number of covariates

included�� The term �j is used� if the corresponding covariate zj results from

an optimized split of the tree based model described previously� For such a

split we set �j � � to incorporate the additional degrees of freedom due to

the estimation of the cut�o� point�

The selection �rst proceeds stepwise in a forward manner� One starts

with only the baseline included and estimates a supermodel including one

covariate more and so on� AICM is computed from the estimation result

for each candidate covariate� Since the type of the smoother inuences the

result� this is done for the �rst order smoothing spline using at least one de�

gree of freedom and for the cubic smoothing spline using two or more degrees

of freedom seperately� Interactions are only considered between included co�

variates� The forward selection stops� when no supermodel reaches a lower

AICMX � Now all possible models excluding one coe�cient are computed�

if one of these submodels has a lower AICMX we start a stepwise back�

ward deletion� The backward deletion is repeated until no submodel can be

preferred in the sense of the AICMX criterion�


� Breast cancer study

In �	�
� a prospective study on n � ��� post�operative breast cancer pa�

tients was initiated at the department of obstetrics and gynecology of the

Technische Universit�at M�unchen in order to reveal and assess prognostic

factors related with relapse� During the course of the study ��� patients

experienced a relapse� Follow�up time ranged from � to �� months with a
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median follow�up of �
 months� In order to identify subpopulations with

di�erent risk expectations� new factors such as the urokinase�type plasmino�

gen activator �uPA� and it�s inhibitor �PAI��� in the following referred to as

PAI were investigated in addition to classical factors such as age of patient�

number of removed positive lymph�nodes� tumor size and hormone receptor

status� A dichotomized version of the number of removed positive lymph

nodes � �lymph node status� was included� indicating absence or presence

of any positive lymph nodes� A complete listing of covariates included in the

analysis can be found in table ��

���� Tree based model

A survival tree was grown on the data using all covariates available to assess

impact on the response �time to relapse�� Parameters of the algorithm were

such that a node was declared terminal if no candidate split resulted in an

adjusted log�rank test statistic signi�cant at the �max � ��� level or if one

of the resulting sibling nodes contained less than �� individuals� P�value

adjustment was performed using the permutation technique described with

m � ���� permutations for each split�

Figure � shows the resulting tree with � splits and 	 terminal nodes� The

node number� covariate used to split the node� corresponding cutpoint and

adjusted p�value are recorded beneath each split� For every terminal node�

the node number� the number of individuals and events and an estimate of

relative risk are recorded� Chosen covariates and cutpoints for each node

are also recorded in table �� For binary covariates� no cutpoints are given�

instead factor level � individuals are sent to the left� level � individuals to

the right�

The partitioning process begins by splitting up the entire population accord�

ing to whether the number of removed positive lymph nodes is less than or

greater than ���� This result con�rms the well known fact that lymph node

status is the factor with the highest prognostic impact on relapse� Before
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Covariate Description Range

AGE Age of patient at surgery in

years

�
��� ����

LYPO Number of removed� posi�

tive lymph nodes

�� ��

TUMOR Tumor size in cm ���� ��

DHORM Hormone receptor status � � positive

� � negative

DPR Progesteron receptor status � � positive

� � negative

DER Estrogen receptor status � � positive

� � negative

UPA urokinase�

type plasminogen activator

�ng mg protein�

����� ����


PAI plasminogen activator in�

hibitor �ng mg protein�

����� �����

MENOP menopausal status � � premenopausal

� � postmenopausal

� � perimenopausal

DLYP Lymph node status � � node negative

� � node positive

Table �� Covariates in breast cancer study�

��



Node Covariate Cutpoint

� LYPO ���

� PAI �
��

� DPR binary

� PAI ����

� LYPO ����

� DLYP binary

�� PAI ���

�
 PAI ����

Table �� Split data�

p�value adjustment� PAI seems to be the factor with the second highest im�

pact followed by the binary covariate lymph node status DLYP� tumor size

and progesteron receptor status� The situation changes somewhat when the

adjusted p�values are used to rank factor importance� Now both lymph node

status covariates are ahead of progesteron and estrogen receptor status� while

PAI und tumor size drop several ranks� Details can be found in table �� Ob�

serve that it is not possible to decide between LYPO and DLYP on the basis

of the adjusted p�values alone� as the number of permutations chosen was

not large enough� In such cases one has the option of increasing the number

of permutation samples or reverting back to the original p�values� Here� due

to the great di�erence in original p�values� LYPO with it�s cutpoint of ���

is �nally selected as the best root level split� Figure � shows the resulting

Kaplan�Meier survival curves for nodes � and � in contrast to the entire

population�

Optimized cutpoints at node � were used to construct dichotomized ver�

sions of covariates to be used in conjunction with the varying coe�cient

modelling framework of section �����

Continuing downward from node � the algorithm seperates a group of

�




Figure �� Graph of tree based model
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Goodness of split

before adjustment after adjustment

Covariate cutpoint rank p�value rank p�value

LYPO ��� � � ����	 � � ������

PAI �
�� � � ���
 � ������

DLYP binary � � ���� � � ������

TUMOR ���� � � ���� � ������

DPR binary � � ���� � � ������

UPA ��� � ������� � ������

DER binary 
 ������� � � ������

AGE ���� � ������� 	 �������

DHORM binary 	 ������� 
 ������

MENOP categorical �� �����	� �� ����
�

Table �� Optimized candidate splits for node ��
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Figure �� Partition resulting from root level split�
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high relative risk �RR� patients with negative progesteron receptor status

�RR����� while a further split on LYPO at node � reveals a small group

of patients with marginally lower risk �RR������ as compared to the whole

population� On the branch of the tree originating at node �� where a large

group of lower risk patients was produced by the �rst split on LYPO� PAI

apparently plays an important role in further determining prognosis� Two

small subpopulations with elevated PAI concentrations and accordingly in�

creased risks are seperated before remaining patients are split based on their

lymph node status at node �� For a large group of node negative patients

with PAI concentrations less than ���� the tree predicts a very low risk of re�

lapse �RR������� The split at node �
 is di�cult to explain since it appears

to show a break in the monotony of the relationship between PAI concentra�

tion and risk expectation� This becomes less of a problem when considering

the small size of the originating node� Still� the impact of PAI on the risk of

relapse appears to be a smooth one and the tree is not able to handle it well

by repeatedly splitting o� very small subpopulations�

��



���� Varying�coe�cient model

A common way to interpret the hazard function in this application is not

linear in time� More naturally � taking into account decreased prediction

accuracy as time progresses � one looks at hazards per month in the �rst

year� per quarter in the second and third year and per year later on� In this

context� we use a transformed time grid

f�� � � � � ��� ��� � � � � ��� �
� � � � � ��g �	 f�� � � � � ��� ������ � � � � ��� ������ � � � � �����g�

This grid also helps overcome boundary problems on the right�hand side

of the time axis where the riskset is small� Here the transformation causes

stronger smoothness restrictions� Estimation results using the transformed

time�scale are compared to estimates based on original time�scale by the

AICM criterion�

We start by including dichotomized covariates obtained from the can�

ditate splits of the root node in addition to the original covariates in the

selection process� Table � shows results of the �rst selection step where the

component �LYPO�
� is chosen constant over time� To take into account

that the cut�o� point for this covariate was estimated by recursive partition�

ing we add one degree of freedom� The resulting AICMX � ���
��� is still the

lowest and thus �LYPO�
� is selected as �rst covariate�

The variable selection is continued in table �� Some coe�cients� those

with tr�Sj���� are included in a �semi�� parametric manner� The selection

stopped after � steps� Again� since the covariate �UPA����� results from

an estimated cut�o� point� we increase the AICM by �� Neither UPA nor

any other covariate or interaction decreased the selection criterion computed

from the � coe�cient model� The model choice proceeds with the backward

deletion starting with the model�

	 � ���s� � ���s��LYPO� f�� � � � � �g� � ���PAI�

����s��AGE� ������ � ���s�DPR � ��s��LYPO� ���

��



Variable loglikelihood AICM tr�S�� tr�S�� smoother

���AGE� ��		�	 ������ ������ ���
�� cubic

���PAI� ������ ��	��� ����	� ��
��� cubic

���UPA� ��	
�� ������ ���
�� ������ �rst order

���s��PAI� �
��� ���	�	 ������ ������ ������ �rst order

���s��UPA� ���� ��	��	 ������ ���
�� ������ �rst order

���s�DPR ��	��� ��	��� ������ ������ cubic

���s�DER ��	��� ��	��� �����	 ������ cubic

���s�DHORM ��	��� ��	��� �����	 ������ cubic

���s��LYPO� �� ���
�� ���
�� ��	��	 ���
�� cubic

���s��LYPO� 
� ��
��� ������ ������ ������ �rst order

���s��AGE� ������ ��	
�� ������ �����
 ������ �rst order

Table �� First step of variable selection using the optimal �rst order or cubic

spline�

As can be seen from table � none of the submodels indicate better prediction

through their AICM � so the model selection process terminates�

Furthermore we checked� whether the used transformation of the time

axis improved the model� Results using smoothers gained by the �optimal�

choice from table � are given in table 
 in the column �optimal� yes�� The

next column lists estimates using only �rst order splines whereas the last two

columns indicate that the �t becomes worse without the time transformation�

Except �� all estimates recognized the same e�ects as time�constant and

distributed the degrees of freedom similarly to the included variables� The

time�constant e�ects �tr�Sj���� all have approximately the same value in

each of the four estimates� It seems� that the type of the smoother does not

have a big inuence on the �parametric� part of the model�

Figure � shows the coe�cients for the �nal model using the transformed

time axis and �optimal� smoothers� If one is interested in examining how one

��



Variable smoother loglikelihood AICM tr�Sj�

���s��LYPO� 
� �rst order ��
��� ������ ������

���PAI� cubic ������ ������ ��
���

���s��AGE� ������ �rst order ������ ������ ������

���s�DPR cubic ������ �����	 ������

��s��LYPO� �� cubic ������ ������ ������

�	�s��UPA� ������ �rst order �����	 ������ ������

Table �� Stepwise forward variable selection� chosen covariates and inclusion

criteria�

Variable loglikelihood AICM

���s��LYPO� f�� � � � � �g� �����	 ������

���PAI� ������ ������

���s��AGE� ������ ������ ������

���s�DPR ������ ������

��s��LYPO� �� ������ �����	

Table �� First step of stepwise backward deletion� exclusion criteria of deleted

coe�cients�

��



Smoothers optimal �rst order optimal �rst order

Transform� yes no

Variable tr�Sj�
!��j tr�Sj�

!��j tr�Sj�
!��j tr�Sj�

!��j

���s� ��	
	 ���	�� ����� ������ ��	
� ���	�	 ����� ���	��

���s� ����� �����
 ����� ������ ����� ������ ����� ������

���PAI� ��
�� ����
 ����� ����
 ����� ����� ����� ���
�

���s� ����� ��	�� ����� ��	�� ����� ��	�� ����� ��	��

���s� ����� ����� ����� ����� ����� ����� ����� �����

��s� ��	�
 ������ ��
�� ������ ����
 ����	� ����� �����


l��	� ������ ������ ������ ������

AICM ������ ������ ���
�� �����	

Table 
� E�ective number of parameters and mean of estimated coe�cients

by using di�erent smoothing operators�

covariate a�ects the risk when other factors are �xed� log odds ratios may

be calculated as linear combinations of coe�cients� Within the �nal model

the covariate LYPO is divided into three categories� node negative patients�

patients with fewer than 
 positive lymph nodes and patients having 
 or

more positive lymph nodes� Patients with fewer than 
 positive lymph nodes

have a distinctly lower time�constant relative risk� For node negative patients

the risk of experiencing a relapse is still lower� although this phenomena is

clearly time�dependent� Having no positive lymph nodes has an obvious

risk decreasing e�ect for the �rst two years� after which it does not seem to

matter much� whether a patient is node negative or has just a few �less than 
�

positive lymph nodes �see �gure � �b� for details�� One interpretation could

be that for node�positive patients with less than 
 positive lymph nodes the

beginning beni�cial e�ects of an adjuvant therapy have the e�ect of slowly

letting risk expectations for these two groups converge� The third entry into

the model� AGE was chosen as time constant with patients younger than

��
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Figure �� Varying coe�cients of the �nal logistic model� The constant coef�

�cient for AGE �� � ��	�� is not displayed�
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����� years having a relative risk of ��� compared to older patients�

As suspected by looking at the tree model the varying coe�cient model

con�rms that the impact of PAI�� on the risk of relapse is complicated�

which is reected in it�s entry into the model as a nonlinear term� The risk

of relapse increases sharply up to PAI�� concentrations of about �� ng mg

protein remaining constant at a high level thereafter�

Progesteron receptor status enters the model as a time�varying e�ect�

signifying a relative risk of about � immediately after surgery for patients

with a negative receptor status� This e�ect continuously declines until it

disappears about ��� years after surgery�

�� Conclusions

Currently� there is a discussion going on in the medical community about

the impact of these analyses on clinical and treatment decisions� Studying

variation over time of the risk associated with these and other factors may

give important insights into their role in tumor cell biology�

Our �ndings may still be well short of changing clinical practice at the mo�

ment� Lymph node status together with the number of positive nodes have to

be considered �rst in evaluating the risk of getting a relapse� but in addition�

the absence of steroid hormone receptors and high PAI�� tumor levels can be

said to be indicators of early disease recurrence� Accordingly� patients �tting

this pro�le could be enrolled in a tight follow�up schedule during the �rst

years after primary treatment� Later on� for hormone receptor�negative pa�

tients remaining disease�free during this early period� a less frequent follow�

up might be possible as recurrences tend to be rare� Detailed knowledge of

time�dependent and non�linear risk pro�les of prognostic factors will even�

tually enable clinicians to better predict disease recurrence and survival and

to individualize follow�up and therapy�

As illustrated� the two methods proposed o�er exible extensions to the

more conventional survival analysis framework� Tree based models are well

��



equipped to detect interactions and their results can immediately be used to

stratify patients into di�erent risk groups� On the other hand� allowing for

time�varying e�ects and nonlinear associations enables precise and accurate

explanations of inuencing mechanisms using models of simple structure�

This attempt to combine the advantages of the two methods can be seen as

�rst step towards a more re�ned assessment of prognostic factors� Further

work and practical experience is needed to solve problems of identi�ability

and stability when trying to combine these methods into a more tightly woven

framework�
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