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Abstract

Discrete�time grouped duration data� with one or multiple types of terminating

events� are often observed in social sciences or economics� In this paper we suggest

and discuss dynamic models for �exible Bayesian nonparametric analysis of such data�

These models allow simultaneous incorporation and estimation of baseline hazards and

time�varying covariate e�ects� without imposing particular parametric forms� Meth�

ods for exploring the possibility of time�varying e�ects� as for example the impact of

nationality or unemployment insurance bene�ts on the probability of re�employment�

have recently gained increasing interest� Our modeling and estimation approach is fully

Bayesian and makes use of Markov Chain Monte Carlo 	MCMC
 simulation techniques�

A detailed analysis of unemployment duration data� with full�time job� part�time job

and other causes as terminating events� illustrates our methods and shows how they

can be used to obtain re�ned results and interpretations�

Key words� Bayesian inference� Discrete�time duration data� Markov chain Monte Carlo�

Multiple types of terminating events� Time�varying regression parameters�
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� Introduction

Regression models for duration data are an important and widely used tool for statistical

analysis of life or event histories� Many well�known models are based on the assumption

that duration� the time until some event occurs� is a continuous variable� see� for example�

Kalb
eisch and Prentice ��
���� Blossfeld� Hamerle and Mayer ��
�
�� Lancaster ��

���

and Andersen et� al� ��

��� However� in many applications� in particular in social sciences�

time is often measured as a discrete variable� The applicability of continuous�time duration

models to discrete�time data is limited to special cases� where the number of ties is relatively

small�

Terminating Duration of Sex Nationality Age Unemployment insurance

event unemployment bene�ts received

�months�

full�time job �� male non�German �� yes

full�time job � female non�German �� yes

full�time job � male non�German �	 yes

housewife � female non�German �
 yes

�censored� �� male German �� until month �

househusband � male German �� yes

full time job � male German �� yes

housewife �� female German �� yes

�censored� � female non�German �� yes

part�time job � female German �� yes

Table �� Some typical observations from the unemployment duration data�

Table � shows a small sample from data on duration of unemployment� taken from the

German socio�economic panel GSOEP� Duration of unemployment is discrete and measured

in months� Also there are several alternative types of terminating events or destination

states� and one may distinguish between full�time jobs� part�time jobs and other causes

which end unemployment� Typical questions� that arise here� are� What is the in
uence of
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the covariates �e�g� sex� on the probability of leaving the state of unemployment� Does the

e�ect of covariates change over duration time� How does the shape of hazard and survival

functions look like in the presence of such time�varying e�ects� Is it necessary to distinguish

between di�erent types of terminating events�

Conventional duration models with time�constant parameters are not 
exible enough to an�

swer questions of this type� Instead� both baseline hazards and� at least some� covariate

e�ects have to be considered as functions of time� �t and �t� t � �� �� � � � � q� say� Even for

a moderate number q of intervals� unrestricted modeling and �tting of f�tg and f�tg will

cause severe problems� Due to the large number of parameters involved� this will often lead

to non�existence and divergence of ML estimates� These di�culties increase in situations

with many intervals � but not enough to apply models for continuous time � and with multiple

terminating events� One may try to avoid such problems by a more parsimonious param�

eterization� using piecewise polynomials or other parametric forms for hazard functions or

varying e�ects �Yamaguchi �

��� Multiphase models may also be considered �Portugal and

Addison �

	�� However� by imposing such parametric forms one may overlook unexpected

patterns like peaks� bumps� or seasonal e�ects� In this situation� non� or semiparamet�

ric approaches are useful for detecting and exploring such unknown patterns� Appropriate

parametric models may then be developed in a second step�

In this paper we propose dynamic discrete time duration models as a 
exible nonparametric

Bayesian approach� which makes simultaneous modeling and smoothing of hazard functions

and covariate e�ects possible� Dynamic models are regarded as nonparametric� since no

particular functional form is speci�ed for the dependence of the parameters on time� Instead

only some smoothness is imposed in form of a stochastic process prior� No approximations

based on asymptotic normality assumptions have to be made for statistical inference� and

estimation of unknown smoothness or variance parameters is automatically incorporated�

Thus� the proposed nonparametric Bayesian framework is a promising alternative to more

traditional nonparametric methods like spline smoothing �Hastie and Tibshirani �

��� local

likelihood estimation �Tutz �

	�� discrete kernel smoothing �Fahrmeir and Tutz �

�� Ch� 
�

or approaches based on counting processes �Aalen �
�
� �

�� Hu�er and Mc Keague �

���
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The models are obtained by adopting dynamic or state space models for categorical data

to discrete time duration data� similarly to Gamerman ��

�� for a dynamic version of the

piecewise exponential model� and Fahrmeir ��

�� and Fahrmeir and Wagenpfeil ��

���

see Section �� In contrast to the latter papers� inference is fully Bayesian using Markov

chain Monte Carlo �MCMC� methods� based on ideas and suggestions of Knorr�Held ��

	�

�

�� �Section ��� Other Bayesian nonparametric approaches based on MCMC simulation

have recently been suggested by Arjas and Liu ��

	� for continuous�time duration data

and by Berzuini and Larizza ��

�� for joint modeling of time series and failure time data�

MCMC techniques allow 
exible and sophisticated inference� pointwise and simultaneous

credible regions for covariate e�ects� predictive survival functions and other characteristics

can be calculated based on posterior samples� We illustrate our approach in Section � with a

detailed study of unemployment duration data� taken from the German socio�economic panel

GSOEP� In a �rst analysis� only the terminating event �end of unemployment� regardless of

a speci�c cause� is considered� Based on this nonparametric analysis� we also �t parametric

models and compare results� In a second re�ned analysis we distinguish between three

terminating events� employment in a full�time job� employment in a part�time job� and

other causes� The analysis shows that it is important to di�erentiate between alternative

terminating events in order to obtain correct interpretations and conclusions� The results

suggest that some e�ects of covariates� characterizing individuals� change through time�

whereas the impact of unemployment bene�ts is more or less constant� This is in contrast

to �ndings of Narendranathan and Stewart ��

�� for data from the British labour market�

Section 	 concludes with a discussion of other estimation approaches� extensions to multiple

time scales� the role of unobserved heterogeneity and some other comments�

Formal de�nitions of dynamic models in Section � rely on basic concepts for discrete dura�

tion data� For easier reference� we give a short review� Let time be divided into intervals

�a� � �� a��� �a�� a��� � � � � �aq��� aq� and �aq���� Without loss of generality we assume that aq

denotes the end of the observation period� Often the intervals �a�� a��� � � � � �aq��� aq� are of

equal length but this is not an essential requirement� Instead of a continuous duration time�

the discrete duration time T � f�� � � � � q��g is observed� where T � t denotes end of duration

within the interval �at��� at�� In addition to duration T � a sequence of possibly time�varying
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covariate vectors xt � �xt�� � � � � xtp�� t � �� �� � � �� is observed� Let x�t� � �x�� � � � � xt� denote

the history of covariates up to interval �at��� at�� If there is only one type of terminating

event the discrete hazard function is given by

��tjx�t�� � pr�T � tjT � t� x�t��� t � �� � � � q�

which is the conditional probability of the end of duration in interval �at��� at�� given that

the interval is reached and the history of the covariates� The discrete survival function

S�tjx�t�� � pr�T � tjx�t�� �
tY

s��

��� ��sjx�s��� ���

is the probability of surviving the interval �at��� at�� A common speci�cation for the hazard

function is a binary logit model of the form

��tjx�t�� �
exp��t � z�t��

� � exp��t � z�t��
� ���

see e�g� Thompson ��
��� or Arjas and Haara ��
���� The parameter �t represents a time�

varying baseline e�ect and the design vector zt is some function of x�t�� often simply zt � xt�

Finally � is the corresponding vector of �xed covariate e�ects� A slightly di�erent speci�ca�

tion is the grouped proportional hazards or Cox model ��tjx�t�� � �� exp �� exp��t � z�t����

see e�g� Kalb
eisch and Prentice ��
���� This model can be derived by assuming a latent

proportional hazards model for durations on a continuous time scale� but durations are

only observed in terms of whole time�intervals� like weeks or months� If intervals are short

compared to the observation period� the models are very similar� as has been shown by

Thompson ��
���� A detailed survey on discrete�time duration data can be found in Hamerle

and Tutz ��
�
�� a shorter introduction in Fahrmeir and Tutz ��

�� Ch� 
��

For several� say m� alternative types of terminating events� causes or destinations� let R �

f�� � � � � mg denote the distinct event� The basic quantities characterizing the duration process

are now event�speci�c hazard functions

�r�tjx�t�� � pr�T � t� R � rjT � t� x�t��� ���

r � �� � � � � m� t � �� � � � � q� Models for multicategorical responses can be used to model event�

speci�c hazard functions� A common candidate for unordered events is the multinomial logit

	



model �e�g� Allison �
���

�r�tjx�t�� �
exp��tr � z�t�r�

� �
mX
j��

exp��tj � z�t�j�

� ���

where �tr and �r are event�speci�c baseline and covariate e�ects� respectively� A cause�

speci�c generalization of the grouped Cox model is given e�g� in Fahrmeir and Tutz ��

��

Ch� 
�� Other discrete choice models like a probit or a nested multinomial logit model �Hill�

Axinn and Thornton �

�� may also be considered�

Event�speci�c hazard functions need not necessarily correspond to latent duration times

T�� � � � � Tm� one for each terminating event� The observed duration time can then be de�ned

as T � min�T�� � � � � Tm� and the terminating event as R � r if T � Tr� but this approach

in general requires untestable assumptions on the independence of latent duration times�

Therefore� we use event�speci�c hazard functions ��� as the basic characteristics for duration

models� following Prentice et al� ��
���� Kalb
eisch and Prentice ��
���� and Lancaster

��

�� p� 

��

� Dynamic models for discrete�time duration data

For individual units i � � � � � � n� let Ti denote duration times and Ui right�censoring times�

Duration data with multiple terminating events are usually given by �ti� �i� ri� xi�ti��� where

ti � min�Ti� Ui� is the observed discrete duration time� �i is the censoring indicator�

�i �

����� �� Ti � Ui

�� Ti � Ui�

ri � f�� � � � � mg indicates the terminating event and xi�ti� � fxit� t � �� � � � � tig is the se�

quence of observed covariates� We rewrite the data in terms of stochastic processes� Let Rt

denote the risk set� i�e� the set of units at risk in �at��� at�� Censoring is assumed to occur

at the end of the interval� so that the risk set Rt includes all individuals who are censored
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in �at��� at�� We de�ne event indicators yit � f�� �� � � � � mg� i � Rt� t � �� � � � � ti� by

yit �

����� r� event of type r occurs in �at��� at�� r � � � � � � m

�� no event occurs in �at��� at��

Then� from a dynamic point of view� duration can be interpreted as a stochastic process of

multicategorical decisions between yit � � and yit � r� i�e�� end of duration due to event

r � f�� � � � � mg� Similarly� it is convenient to introduce censoring processes by

cit �

����� �� Ui � at� i�e� i not censored up to �at��� at�

�� Ui � at� i�e� i censored in �at��� at� or earlier�

We collect covariates� event and censoring indicators of time interval t� that is �at��� at�� in

the column vectors

xt � �xit� i � Rt�� yt � �yit� i � Rt�� ct � �cit� i � Rt�

and denote histories up to t by

x�t � �x�� � � � � xt�� y�t � �y�� � � � � yt�� c�t � �c�� � � � � ct��

Dynamic discrete duration models are de�ned hierarchically by an observation model� given

the unknown baseline and covariate e�ects� a latent stochastic transition model for these pos�

sibly time�varying e�ects and priors for unknown hyperparameters of the transition model�

The model speci�cation is completed by several conditional independence assumptions�

Observation model

The duration process of each unit is viewed as a sequence of multicategorical decisions

between remaining in the transient state yit � �� i�e� no event occurs� or leaving for one

of the absorbing states yit � r� r � �� � � � � m� i�e� end of duration at t due to terminating

event of type r� Individual response probabilities for yit � r are modelled using categorical

response models� For the special case of only one type of terminating event �m � ��� we
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assume for i � Rt that� conditional on parameters �t� �t and the covariate xit� response

probabilities for yit � � are in the form

pr�yit � �jxit� �t� �t� � h�	it� �	�

with linear predictor

	it � �t � z�it�t ���

and link function h � R �� ��� ��� e�g� one of the common link functions for the logit

or grouped Cox model� In ���� the design vector zit is some appropriate function of the

covariates xit� The observation model can be extended to incorporate the history y�t�� of

past event indicators into zit� a suggestion made by Prentice et al� ��
���� However� we do

not make use of this possibility here� We assume that the censoring process is conditionally

independent of yit� given xit� �t and �t� so that zit does not depend on c
�
t �

For multiple terminating events �m � �� we assume for r � �� � � � � m

pr�yit � rjxit� �t� �t� � hr�	it�� ���

with link function hr � R
m �� ��� ��� and linear predictor vector 	it � �	it�� � � � � 	itm�� For the

multinomial logit model ���� we have

hr�	it� �
exp�	itr�

� �
mX
j��

exp�	itj�

���

with 	itr � �tr � z�it�tr� Other multicategorical response models can also be written in the

general form ���� Again the design vector may be an appropriate function of covariates xit�

but not of c�t �

Transition model

Let 
t denote the state vector of unknown time�dependent parameters� Prior speci�cations

for stochastic variation of f
tg are in common linear Gaussian and Markovian form as for
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linear dynamic or state space models� The simplest model is a random walk of �rst�order


t � 
t���ut� ut � N��� Q�� here 
t � ��t�� � � � � �tm� �
�
t�� � � � � �

�
tm�

�� An alternative approach

is to take the process 
t to be the superposition of a �rst�order random walk and a local

linear trend component with unknown time�changing slope �t� the local linear trend model

�e�g� Fahrmeir and Tutz �

�� Ch� ��� An intermediate strategy is proposed in Berzuini and

Larizza ��

��� where the slope � is assumed to be time�constant� Informative priors on �

can be used to incorporate prior beliefs that� say� a speci�c covariate e�ect is linear declining

with time� Other interesting transition models are second�order random walks and seasonal

models�

In general� we admit a multivariate Gaussian autoregressive model of order k for 
t� t � k�


t �
kX
l��

Fl
t�l � ut� ut � N��� Qt�� �
�

The error variables ut are assumed to be mutually independent and independent of initial

values 
t� for which di�use priors 
t 	 const� t � �� � � � � k� are assumed� The matrices

F�� � � � � Fk are known� If time intervals �at��� at� are of the same length� we set Qt � Q�

otherwise Qt � htQ� where ht is the length of �at��� at�� Usually Q is unknown and is

considered as a hyperparameter� In a full Bayesian setting� a prior speci�cation for Q

completes the transition model� Products of inverse gamma or inverted Wishart distributions

are the usual choice�

For full Bayesian inference� the joint distribution of y � �y�� � � � � yq�� x � �x�� � � � � xq�� c �

�c�� � � � � cq�� 
 � �
�� � � � � 
q�� where q is the number of intervals� and Q has to be completely

de�ned� This is achieved by adding a number of conditional independence assumptions� To

see what assumptions are useful and how they can be interpreted� we recursively factorize

the joint distribution� Let

Lt � p�y
�
t � x

�
t � c

�
t � 


�
t � Q�� t � �� � � � � q�

denote the joint distribution up to the interval �at��� at�� By repeated conditioning� we get

the factorization

Lt � Lt��p�ytj
�p�
tj
�p�xt� ctj
�






with

p�ytj
� � p�ytjy
�
t��� x

�
t � c

�
t � 


�
t � Q��

p�
tj
� � p�
tj

�
t��� y

�
t��� x

�
t � c

�
t � Q��

and p�xt� ctj
� � p�xt� ctjy
�
t��� x

�
t��� c

�
t��� 


�
t��� Q��

We now make the following conditional independence assumptions�

A� Conditional on xit and 
t� individual event indicators yit are independent of 

�
t�� and

Q� i�e�

p�yitjy
�
t��� x

�
t � c

�
t � 


�
t � Q� � p�yitjxit� 
t��

A� Given y�t��� x
�
t � c

�
t � 


�
t and Q� individual event indicators yit� i � Rt are conditionally

independent� i�e�

p�ytjy
�
t��� x

�
t � c

�
t � 


�
t � Q� �

Y
i�Rt

p�yitjy
�
t��� x

�
t � c

�
t � 


�
t � Q��

A� The sequence 
t is Markovian of order k� i�e�

p�
tj

�
t��� y

�
t��� x

�
t � c

�
t � Q� �

����� p�
tj
t��� � � � � 
t�k� Q� t � k

p�
t� t � �� � � � � k�

A� Given y�t��� x
�
t��� c

�
t��� covariates xt and censoring indicator ct are independent of 


�
t��

and Q�

A� Initial values 
�� � � � � 
k� x�� c� and Q are mutually independent�

Assumption �A��� which is implicitly assumed in the observation model� is common for

dynamic or state space modeling� It says that conditional information of 
�
t on yt is already

contained in 
t� and is usually not stated for �xed parameters� Since only individuals i in the

risk set Rt contribute likelihood information in time period t� i�e� cit � � if i � Rt� c
�
t can be

omitted on the right hand side of �A��� Note that the covariates xit may contain information

on covariate values of other individuals or from the past� As stated above� we do not include

the history y�t�� of failure indicators in form of covariates� The conditional independence

assumption �A�� is weaker than usual unconditional independence assumptions among units�
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since it allows for interaction via common history� and it is likely to hold if a common cause

for failures is incorporated in the covariate process� For �xed parameters �A�� corresponds

to Assumption � of Arjas and Haara ��
���� Assumption �A�� is already implied by the

transition model ����� Assumption �A�� corresponds to Assumption � of Arjas and Haara

��
���� It will generally hold for noninformative censoring and external or time independent

covariates� It may not hold for internal covariates� Independence of initial values 
�� � � � � 
k

in �A�� has already been stated in the transition model and is supplemented by the additional

independence assumption on x�� c� and Q�

Summarizing �A�� and �A��� we get

p�ytjy
�
t��� x

�
t � c

�
t � 


�
t � Q� �

Y
i�Rt

p�yitjxit� 
t��

Under assumptions �A�� � �A�� the joint distribution of y� x� c� 
 and Q is now proportional

to a product of individual conditional likelihood contributions� de�ned by the observation

model� a smoothness prior for 
 as a product of transition densities by ����� and the prior

for Q�

p�y� x� c� 
�Q� 	

���Y
t

Y
i�Rt

p�yitjxit� 
t�

�������Y
t�k

p�
tj
t��� � � � � 
t�k� Q�

���� p�Q��
����

A graphical representation of our model is shown in Figure �� Individual densities in the

�rst factor are given by the observation model �	�� implying they are independent of the

right�censoring mechanism c�t � and transition densities in the second factor are given by

p�
tj
t��� � � � � 
t�k� Q� � N�
kX
l��

Fl
t�l� Q�� ����

��
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Figure �� Directed graphical representation of a dynamic model with lag k � ��

� Estimating hazard functions and covariate e�ects by

MCMC simulation

Smoothing time�varying parameters� i�e� estimation of the sequence 
 � f
tg given the data

y� x� c is of prime interest� Full Bayesian inference will be based on the posteriors p�
jy� x� c�

or p�
tjy� x� c�� which are proportional to the right hand side of ����� Since the normaliz�

ing factor has rather complex structure� direct approaches using numerical integration or

ordinary static Monte Carlo methods are computationally infeasible�

We suggest a Markov chain Monte Carlo �MCMC� sampling scheme� that allows to draw

samples from posteriors of time�varying parameters� hazard functions and similar quantities

of interest� thus making full Bayesian inference possible� We start this section with a short

review� since some of the readers might not be so familiar with MCMC� The reader is

also referred to the tutorial expositions of Casella and George ��

��� Chib and Greenberg

��

	� and Gilks� Richardson and Spiegelhalter ��

��� A more theoretical study of MCMC

techniques can be found in Tierney ��

���

��



��� Basic ideas of MCMC

MCMC techniques have revolutionized general Bayesian inference in the last few years�

Bayesian inference starts with a prior distribution p�x� for an unknown parameter vector x�

In our context� the unknown parameters are 
�� � � � � 
q and Q and the corresponding prior

distribution is ���Y
t�k

p�
tj
t��� � � � � 
t�k� Q�

���� p�Q��
Having observed data D� Bayes�s theorem tells us� that the posterior distribution� condition�

ing on D� is given by

p�xjD� �
p�Djx�p�x�R
p�Djx�p�x�dx

� ����

Here p�Djx� is the likelihood� in our case equal to���Y
t

Y
i�Rt

p�yitjxit� 
t�

��� �

The right hand side of equation ���� corresponds to the nominator p�D� x� � p�Djx�p�x� in

�����

The posterior distribution contains all the information Bayesian inference is based on� Typ�

ically� summary characteristics of the posterior� such as the posterior mean

E�xjD� �

R
x p�Djx�p�x�dxR
p�Djx�p�x�dx

are of primary interest� However� computation of such expectations involves integrations�

which can be very hard to solve� especially if x is of high dimension� Therefore� classical

Bayesian inference was restricted to rather simple models� where analytic computation of

characteristics of the posterior distribution was possible� Accurate approximations by numer�

ical techniques are available only for problems� where the dimension of the parametervector

is not greater than� say� �� or ��� However� for a lot of applied problems� the posterior is

analytically and numerically intractable� Monte Carlo methods circumvent the integration

problem by generating samples from the posterior distribution� However� ordinary Monte

Carlo methods� such as importance sampling� are often computationally infeasible for com�

plex� highly structured models� Here MCMC methods are more appropriate�

��



In this subsection let p�x� be the posterior distribution of a random vector x� suppressing the

conditioning on the dataD� The basic idea of MCMC is to generate a sample x�k�� k � �� �� � � �

by a Markov transition functionQ�x�k� � x�k���� such that p�x� is the stationary distribution

of the Markov chain X� Thus� after a su�ciently long �burn�in phase� of length m� the

generated states x�k�� k � m � �� � � � � n are dependent samples from the posterior� For

example� the posterior mean can now be estimated by the arithmetic average

�

n�m

nX
k�m��

x�k��

Other quantities of interest can be also be estimated by the appropriate empirical versions�

For construction of such a Markov chain it is necessary to �nd a suitable transition function

Q�x�k� � x�k����� such that the posterior distribution p�x� is the stationary distribution of

X� There are surprisingly many di�erent choices of Q for a given distribution p�x�� but

most of them� including the Gibbs sampler� are special cases of the Hastings ��
��� algo�

rithm� Most methods split up x into components x�� � � � � xT � � � � � xH of possibly di�ering

dimension� In our context� these components could be chosen as 
�� � � � � 
q and Q� lead�

ing to a so�called single move updating scheme� These components are updated one by

one using the Hastings algorithm� The posterior distribution p�x�� typically high dimen�

sional and rather complicated� is not needed� only so called full conditional distributions

enter in the Hastings algorithm� A full conditional distribution� short full conditional� is

the distribution of one component� conditioning on all the remaining components� such as

p�xT jx�� � � � � xT��� xT��� � � � � xH�� Besag ��
��� showed� that p�x� is uniquely determined by

the set of its full conditional distribution� This gives an intuitive justi�cation for the fact�

that only full conditional distributions and not the posterior itself are needed for MCMC

simulation� In hierarchical models� de�ned by conditional independence assumptions� these

full conditionals often have a much simpler structure than the posterior itself� This provides

an important computational advantage�

The Gibbs sampling algorithm� probably the most prominent member of MCMC algorithms�

iteratively updates all components by samples from their full conditionals� Markov chain

theory shows that under very general conditions the so generated sequence of random num�

bers converges to the posterior� However� often these full conditionals are themselves still

��



quite complex� so generation of the required random numbers might be a di�cult task� Relief

lies in the fact that it is not necessary to sample from the full conditionals� A member of the

much more general class of Hastings algorithms can be used to update the full conditionals�

Such a Hastings step is typically easier to implement and often makes a MCMC algorithm

more e�cient in terms of CPU time� A Hastings step proposes a new value for a given

component and accepts it with a certain probability� A Gibbs step �i�e� a sample from a full

conditional� turns out to be a special case where the proposal is always accepted�

Let p�xT jx�T � be the full conditional of a component xT of x� given the rest of the compo�

nents� denoted by x�T � To update xT � x�k�T in iteration step k� it is su�cient to generate

a proposal x�T from an arbitrarily chosen transition kernel P�xT � x�T � x�T � and accept the

generated proposal with probability

� � min

	
��
p�x�T jx�T �P�x

�
T � xT � x�T �

p�xT jx�T �P�xT � x�T � x�T �



�

otherwise leave xT unchanged� This is the Hastings algorithm used for updating full condi�

tionals� Only a ratio of the full conditional of xT enters in �� so p�xT jx�T � need to be known

just up to scale and need not to be normalized� a very convenient fact for implementation�

Note that both the current state xT and the proposed new state x�T as well as the current

states of the other components x�T a�ect ��

Gibbs sampling corresponds to the speci�c choice

P�xT � x�T � x�T � � p�x
�
T jx�T ��

so that � becomes � and therefore all proposals are accepted� Here the current state of xT

does not a�ect the new one x�T �

There is a great 
exibility in the choice of the transition kernel P� Common choices are

random walk Metropolis proposals and �conditional� independence proposals �Tierney �

���

Random walk Metropolis proposals are generated from a distribution� that is symmetric

about the current value xT � Often used are Gaussian or Rectangular distributions� In

contrast� conditional independence proposals do not depend on the current state of xT � they

may however depend on the current values of x�T � As we have seen above� the Gibbs

�	



sampling kernel is a speci�c conditional independence proposal� However� it is crucial that

for a chosen P� the acceptance probability � not be too small �in average� and that both

convergence and mixing behavior of the whole simulated Markov chain be satisfactory�

Somewhat surprising is the fact that one is allowed to use hybrid procedures� that is� use

di�erent versions of Hastings proposals for updating di�erent components of x� One strategy

is to sample from the full conditionals� that is a �Gibbs step�� as long as this is easy and

fast� If not� a speci�c Hastings step with a simple proposal distribution mostly works faster

in CPU time� As long as all components are updated in a deterministic or even random

order �which may ensure better mixing of the chain�� the chain converges to the posterior�

��� MCMC simulation in dynamic discrete time duration models

In this subsection we propose a hybrid MCMC procedure for simulating the �unnormalized�

posterior ����� Time�varying parameters 
t� t � �� � � � � q� are updated using speci�c condi�

tional independence proposals� while a Gibbs step is used for updating Q� Consider the full

conditional

p�
tj
s��t� Q� y� x� c� 	
Y
i�Rt

p�yitjxit� 
t�� p�
tj
s ��t� Q�� ����

While the �rst factor corresponds to the observation model at time t� the second re
ects the

dependence of underlying parameters through the transition model and does not depend on

the data y� x and c�

This second factor� the conditional distribution p�
tj
s��t� Q�� can be derived from �
�� It is

Gaussian� with density function ��
t�
t� t�� where the mean 
t and covariance matrix  t

depend on the current values of Q and of neighboring parameters 
s��t� Di�erent transition

models result in di�erent formulae for 
t and  t� For example� a random walk of �rst�order


t � 
t�� � ut� ut � N��� Q�� has conditional distribution

N�
t� t� �

�����������
N�
t��� Q� �t � ��

N��
�

t�� �

�
�

t���

�
�
Q� �t � �� � � � � q � ��

N�
t��� Q� �t � q�

� ����

��



We add a short derivation of this result for t � �� � � � � q � �� The �rst�order random walk

prior on 
 can be written as

p�
jQ� 	 exp

�
�
�

�

qX
t��

�
t � 
t���
�Q���
t � 
t���

�
�

Since p�
tj
s��t� Q� 	 p�
jQ�� it follows that

p�
tj
s ��t� Q� 	 exp


�
�

�

�
�
t � 
t���

�Q���
t � 
t��� � �
t�� � 
t�
�Q���
t�� � 
t�

��
�

which gives the desired result� Note that ���� has an independent appealing interpretation

as a stochastic interpolation rule �Besag and Kooperberg �

	��

We use a speci�c conditional independence proposal� namely a sample from the conditional

distribution p�
tj
s��t� Q�� to update 
t via a Hastings step� The acceptance probability

simpli�es in this case to

� � min

	
��
p�ytj


�
t�

p�ytj
t�



�

with

p�ytj
t� ��
Y
i�Rt

p�yitjxit� 
t�

as the conditional likelihood of objects under risk in interval t� de�ned by the observation

model� Such a proposal has a natural interpretation due to the hierarchical structure of

the model� 
�
t is drawn independently of the observation model and just re
ects the speci�c

autoregressive prior speci�cation� It is therefore called a conditional prior proposal �Knorr�

Held �

��� If it produces improvement in the likelihood at time t� it will always be accepted�

if not the acceptance probability is equal to the likelihood ratio� This algorithm shows good

performance for duration data with an acceptance rate ranging from ��� to ��
� We also

experienced with a slightly di�erent MCMC sampling scheme� where blocks 
a� � � � � 
b are

updated simulataneously rather then updating each 
t one at a time� Such a blocking

strategy often improves mixing and convergence considerably� Conditional prior proposals

can be generalized to this case conveniently�

Sampling from the full conditional

p�Qj
� y� x� c� � p�Qj
�

��



is straightforward for conjugate priors like inverse gamma or inverted Wishart distributions�

If Q is assumed to be diagonal� an inverse gamma prior Qjj � IG�a� b� for the j�th diagonal

entry in Q is computational convenient� since the resulting full conditional is still inverse

gamma with parameters a � �q � k��� and b �
P
u�tj��� Note the transformation from 
 to

ut� t � k��� � � � � q via the transition model �
�� The inverse gamma distribution has density

p�Qjj� 	 Q�a��
jj exp��b�Qjj�

and has a unique mode at b��a� ��� In all our examples we start with the values a � � and

b � ����	� so that p�Qjj� is highly dispersed but still proper� This choice re
ects su�cient

prior ignorance about Q but avoids problems arising with improper priors� see Raftery and

Ban�eld ��

�� for a more detailed discussion� We then add a sensitivity analysis and

rerun the algorithm with di�erent choices for b� such as ���	 or �����	� The parameter b

determines� how close to zero the variances are allowed to be a priori� Note that the inverse

gamma distribution has no expectation for a � �� so our prior guess is rather di�use for

every value of b�

It is very important to carefully check convergence and mixing behavior of any MCMC

algorithm� Theoretical considerations are typically limited to rather simple models� therefore

empirical output analysis is more practical� This is still an active research area� the reader

is referred to Raftery and Lewis ��

��� Gelman ��

��� Cowles and Carlin ��

�� and the

relevant parts of Gilks� Richardson and Spiegelhalter ��

��� We always look at several

plots such as time series plots of the sampled values and calculate routinely autocorrelation

functions for every parameter� Figure � shows the time series plot of a speci�c parameter of

our �rst analysis �m � �� Section ��� Shown are the stored values of the ���th parameter

in our model� the e�ect of nationality at time t � ��� Low values of the autocorrelation

function indicate good mixing� Plots for other parameters look quite similar�

After convergence� the simulated random numbers are samples from the marginal distribu�

tions p�
jy� x� c� and p�Qjy� x� c� and are used to estimate characteristics of the posterior

distribution� Note that for a given covariate sequence xi�t� of a speci�c unit i� samples

from its hazard function are calculated by plugging in the samples from p�
jy� x� c� in �	�

or ���� Even samples from the survivor function can be obtained by using the samples from

��
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Figure �� Time series plot and estimated autocorrelation function of a selected parameter

the hazard function in the dynamic version of ���� Furthermore it is possible to construct

simultaneous credible regions for covariate e�ects� hazard or survival functions by using the

method described in Besag et� al� ��

	��

� Applications to duration of unemployment

We analyze data on duration of unemployment of ���� persons� older than �� years and

living in West Germany� which are observed from January �
�� until December �

� in the

German socio�economic panel GSOEP� Only persons with single spells of unemployment

are considered� Duration of unemployment is measured in months� �
� observations are

censored� Only a small fraction of persons are unemployed for more than three years� so that

there is very little information on such long�term unemployment� Therefore only durations

up to �� months are considered and longer durations are considered as censored� In total� �


from the 	� persons� still unemployed in month ��� are censored� Based on previous analysis

with time�constant e�ects �Fahrmeir and Tutz �

�� Ch� 
� we include the covariates sex�

age and nationality� coded as follows�

Sex S � S � � for males � S � � for females�

Nationality N � N � � for German � N � � for foreigner�

Age at the beginning of unemployment� grouped in four categories and coded by ��� dum�

mies�

�




A� � � for �age � �� years�� � else�

A� � � for ��� � age � 	� years�� � else�

A� � � for �age � 	� years�� � else�

with reference category ��� � age � �� years� coded by �A�� A�� A�� � ��� �� ��� The

observed frequency counts for these covariates are 	� !� �� !� 	� !� �	 ! and �� ! for S�

N � A�� A� and A�� respectively�

Most often covariates are expected to have much the same impact over the course of un�

employment� We let the data decide whether this is really so and admit that the e�ects of

these covariates may vary over time� In particular� we are able to check if unemployment

bene�ts have e�ects that vary or erode over time� Results of Narendranathan and Stewart

��

�� and Portugal and Addison ��

	� based on British Labor market data� provide em�

pirical evidence for declining e�ects of unemployment bene�ts� In Germany there are two

major types of unemployment bene�ts� unemployment insurance ��Arbeitslosengeld�� and

unemployment assistance ��Arbeitslosenhilfe��� Unemployment insurance regularly pays a

certain proportion of last income for a �rst period of unemployment� with receipt of bene�ts

depending on how much has been contributed to the system beforehand� After this period�

unemployment assistance is paid� but the amount of support is considerably less� Under

certain circumstances� there may be no �nancial support at all� For more details on unem�

ployment compensation in Germany see Zimmermann ��

��� In our sample� there are only

few persons with no �nancial support during some time� Therefore� we collapse the cate�

gories �unemployment assistance� and �no �nancial support� and include the time�varying

binary variable

Bt� Unemployment insurance bene�t in month t received �Bt � �� or not �Bt � ��

as a further regressor�

In a �rst analysis� only the terminating event �end of unemployment�� regardless of a speci�c

cause is considered� We apply a dynamic binary logit model

��tjx�t�� �
exp��t � z�it�t�

� � exp��t � z�it�t�
�

where z�it � �Si� Ni� SiNi� A�i� A�i� A�i� Bit� contains the �xed or time�varying covariates

��



above� and SiNi is an interaction e�ect between sex and nationality� with SiNi � � for

German males ��� ! observed frequency�� SiNi � � else� The baseline�e�ect �t and time�

varying covariate e�ects �t are modelled by �rst�order random walks� We prefer �rst order

random walks for the following reasons� Although estimates tend to be less smooth than

with second�order random walks� they react more 
exibly in the presence of unexpected

peaks or other dynamic patterns� Furthermore� �rst�order random walk models reduce to

traditional models with constant parameters� if corresponding error variances tend to zero�

Thus� smoothness priors de�ned by �rst order random walks are in favor of horizontal lines�

Our analysis is based on a �nal run of ����� iterations with a burn�in period of ����� We

stored every ��th sample� We also calculated posterior mode estimators� which were in close

agreement with the MCMC results�

Figure �a� shows the estimated baseline e�ect �t� It corresponds to the hazard function for

foreign females� with age between �� and �� years and receiving no unemployment insurance

bene�t� Apart from a peak at about one year of unemployment� the baseline e�ect is declining

until month ��� The subsequent increase should not be overinterpreted� data becomes sparse

at that observation period� and also censoring due to unemployment spells of more than ��

months may introduce some bias� The e�ects of sex and nationality in Figures �b� and �c�

have to be interpreted together with the interaction e�ect of sex and nationality in Figure

�d�� Figure �c� shows that Germans have generally better chances of leaving the state of

unemployment than foreigners� but this e�ect is vanishing over time� Employment chances

are further enhanced for German men during the �rst year of unemployment �Figure �d��

However� this e�ect also vanishes later on� This may partly be explained by the fact that

Germans with good chances in the labour market have already obtained a job earlier� while

many of the remaining Germans are long�term unemployment persons�

Figure �e� � g� displays the e�ect of age� As one might expect� younger individuals �age

� ��� have better chances of getting a job compared to the reference group �age from �� to

���� especially for the �rst �	 months� but this e�ect vanishes later on� The e�ect of age

between �� and 	� is negative and almost constant� More surprising is the e�ect of age �

	�� It is negative at the beginning but increases distinctly towords zero with duration of

��
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Figure �� Time�varying e�ects of several covariates� Shown is the posterior median 	

 within

�� � and �� � pointwise credible regions�
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unemployment� How can this be interpreted� Perhaps even more surprising is the e�ect

of unemployment bene�ts� It is positive throughout and even increasing with duration of

unemployment� This is in contrast to speculations that unemployment bene�ts foster apathy

in leaving the state of unemployment� As we will see� this e�ect and other questions� for

example the peak at about month �� in the baseline e�ect� can be better interpreted and

answered by a re�ned analysis� that distinguishes between di�erent types of terminating

events�

Figure � shows Bayesian pointwise credible regions for the hazard function and simultaneous

credible regions for the survival function� Considered are persons aged between �� and

�� who receive unemployment insurance bene�ts� All calculations are based on posterior

samples from the corresponding quantities� We see that German men are likely to have

a higher hazard in the �rst month of unemployment than German women� However� we

observe the inverse trend for the second and third year� where the hazard for women seems

to be even slightly higher� Consequently� the survival function is steeper for men than for

women� Note that for foreign men and women hazard and survival functions are much more

similar�

We explored the dependence of our conclusions upon prior speci�cations by a sensitivity

analysis as discussed in Section ���� We rerun our algorithm with the value of b changed

to �����	 for all eight variances� The results can be summarized as follows� In general�

all estimated e�ects show a very similar pattern as for b � ����	 �Figure ��� Both point

and interval estimates are visually indistinguishable for parameters with a relatively high

temporal variation such as the baseline e�ect or the e�ect of age � 	�� The new parameter

b mainly changes a lower limit for the variances� which is much smaller than the estimated

variances anyway� Covariates with less temporal variation show a slightly smoother pattern

with smaller variance estimates� The corresponding credible regions are slightly narrower�

mainly for t � ��� This can be explained by the fact� that the data tends to be sparse towards

the end of the observation period� so prior assumptions are still inherent in the posterior�

Smaller variances therefore cause smaller credible bands� For b � ���	� the patterns are now

rougher for covariates with low temporal variation such as the e�ect of nationality�

��
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Figure �� Hazard and survival functions for several covariate combinations� Considered are persons

who received unemployment insurance bene�ts with age between �� and ��� Shown are �� �� ��

� and �� � pointwise 	hazard
 and simultaneous 	survival
 credible regions�
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To compare results obtained from our Bayesian nonparametric approach� we now reanalyze

the data with a more conventional parametric model� Based on the estimated e�ects and

associated credible regions displayed in Figure �� we model the baseline e�ect and the e�ects

of sex� age � ��� age � 	� and unemployment bene�ts as simple functions of time� whereas

the remaining e�ects are assumed to be constant over time� It should be noted that spec�

i�cation of appropriate functional forms for time�varying e�ects will generally be a rather

di�cult task without exploring patterns nonparametrically in advance�

For the baseline e�ect we assume a cubic polynomial

�t � �� � ��t� ��t
� � ��t

��

A look at the credible regions in Figure �h� suggests that a simple linear trend function

�Bt � �B� � �B� t

is appropriate for the e�ect �Bt of unemployment bene�ts� The e�ects �
S
t of sex and �

age �	�
t

show more variation during the �rst �� months of unemployment than later on� Therefore

we model them by a simple regression spline� consisting of a cubic polynomial up to the

cutpoint t � �� and a linear trend for t � ��� i�e� we assume

�St � �S� � �S� t� �S� min��� t� ���
� � �S� min��� t� ���

�

for the e�ect of sex� and an analogous model for the e�ect of age � 	�� Since there is less

time�variation for the e�ect of age � ��� we choose a piecewise constant function with a

jump at t � ���

� age � �� �

����� �� for t � ��

�� for t � ��
�

Using the relation between discrete�time duration models and sequential binary models �see

Fahrmeir and Tutz �

�� Ch� 
�� maximum likelihood estimation can be carried out with

standard software for generalized linear models� Figure 	 shows the estimated e�ects of

baseline� sex� age � 	� and unemployment bene�ts� The overall shape of the baseline e�ect

in Figure 	a� re
ects the nonparametric estimate in Figure �a�� but obviously peculiarities

like the peak around t � �� cannot be detected by a cubic polynomial� Detailed modeling of

�	



this peak will require a more complex but less parsimonious parametric speci�cation� The

e�ect of unemployment bene�ts in Figure 	d� is quite close to the estimate obtained form

the dynamic model for the �rst year� Later on the increase of this e�ect is less distinct for

the nonparametric �t� This can be explained as follows� A large number of observations

has duration less than about one year� while data become sparse towards the end of the

observation period� The �t of the global parametric linear trend model is in
uenced to a

large extent by the majority of observations with shorter durations� On the other hand� with

a dynamic model the in
uence of these observations on the �t is declining as time increases�

Similar considerations have also be taken into account when comparing the e�ects of sex and

age � 	�� The e�ect of age � 	� in Figure 	c� is quite similar in shape to that in Figure �g��

whereas the e�ect of sex di�ers a little bit from that of Figure �b�� but is still in agreement

with credible regions� Table ��� gives estimates and standard errors for the remaining e�ects�

Comparison with Figure � shows again quite reasonable agreement�
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Figure 	� Estimated e�ects for the parametric model

As shown by this example� conventional parametric modeling of dynamic e�ects is possible
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Estimate Std� Err� 
	! CI

age � �� years� t � �� ������ ����
� ������ ���
��

age � �� years� t � �� ������	 ������ ������
 ������

�� � age � 	� years ������� ������ ������� ������	

Nationality ���	�� ������ ������ �����


Sex"Nationality ������ ������ ������� ��	���

Table �� Parameter Estimates

and can be useful as a second step after having explored time�varying structures with non�

parametric approaches in a �rst analysis� Without the �rst step however� it will generally be

often quite di�cult or even hopeless to specify appropriate but still parsimonious functional

forms and to obtain adequate conclusions�

In our second analysis we now distinguish between three terminating events�

�� employment in a full�time job�

�� employment in a part�time job�

�� further causes like retraining or going to university� completing military or civil service�

retiring� working as a housewife#househusband� and others�

To study event�speci�c di�erences in hazard rates and covariate e�ects� we apply a multi�

nomial dynamic logit model� with m � � categories de�ned by cause � �full�time job�� �

�part�time job� and � �others�� Thus� the observation model is

hr�tjxi� �
exp�	itr�

� �
�X

j��

exp�	itj�

� r � �� �� ��

with event�speci�c predictors 	itr � �tr � z�it�tr� Covariate vectors zit are the same as in the

�rst analysis� Event speci�c baseline e�ects �tr and covariate e�ects �tr� r � �� �� �� are again

modelled by �rst order random walks�

��



The baseline e�ect for transitions to a full�time or a part�time job show the typical smooth

decreasing pattern often observed with unemployment data �Figure ��� The peak at month

�� appears only in the baseline e�ect for transitions to other causes� A closer look at the data

shows that transitions �to retirement�� �housewife#househusband� and �other reasons� are

mainly responsible for this peak� A possible explanation may be that these individuals would

lose unemployment insurance bene�ts after one year and prefer� for example� to retire� A

second reason may be due to the speci�c kind of questions on employment status in GSOEP�

Participants of the panel �ll out questionnaires for every year and have to give answers on

employment status retrospectively for each month� This group tends not to name a certain

month but instead simply name the beginning or end of a year as the time of leaving the

status of unemployment� The e�ects of sex and nationality are also now much better to

interpret� For example� there is a distinct positive e�ect for transitions to a full�time job for

men� but also a distinct negative e�ect for transitions to a part�time job� The nationality

e�ect provides clear evidence that German females have highly increased chances of getting

a part�time job� maybe they are much more interested in getting part�time jobs�

Also the e�ects of age can be better explained now �Figure ��� In particular� looking at the ef�

fects of age � 	�� we see that chances for getting full�time and part�time jobs are signi�cantly

deteriorated and do not improve with increasing duration of unemployment� However� the

e�ect of transitions to other causes is near zero and even slightly increasing� This supports

presumptions that older individuals prefer to retire� to become housewife#househusband or

to leave the unemployment register for other reasons� We also see that the time�varying

e�ect of age � 	� in Figure �g� is largely caused by confounding the e�ect of the three types

of transitions into the e�ect of only one terminating cause� Also� the e�ects of unemploy�

ment insurance bene�ts can now be interpreted correctly� The e�ect is constantly positive

for transitions to a full�time job� presumably since individuals with unemployment insurance

bene�ts had regular jobs earlier and thus get easier o�ers for a new full�time job� On the

other side� the e�ect is clearly negative for transitions to part�time jobs� A possible expla�

nation is that some individuals with good �nancial support from unemployment insurance

are less motivated to get a part�time job�

��
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as in Figure ��

�




ag
e 

<
=

 3
0

0 10 20 30

-3
-2

-1
0

1

FULL-TIME JOB

ag
e 

<
=

 3
0

0 10 20 30

-3
-2

-1
0

1

PART-TIME JOB

ag
e 

<
=

 3
0

0 10 20 30

-3
-2

-1
0

1

OTHERS

40
 <

 a
ge

 <
=

 5
0

0 10 20 30

-1
.5

-0
.5

0.
0

0.
5

1.
0

40
 <

 a
ge

 <
=

 5
0

0 10 20 30

-1
.5

-0
.5

0.
0

0.
5

1.
0

40
 <

 a
ge

 <
=

 5
0

0 10 20 30

-1
.5

-0
.5

0.
0

0.
5

1.
0

50
 <

 a
ge

0 10 20 30

-3
-2

-1
0

1

50
 <

 a
ge

0 10 20 30

-3
-2

-1
0

1

50
 <

 a
ge

0 10 20 30

-3
-2

-1
0

1

un
em

pl
oy

m
en

t b
en

ef
its

0 10 20 30

-1
.5

-0
.5

0.
5

1.
5

un
em

pl
oy

m
en

t b
en

ef
its

0 10 20 30

-1
.5

-0
.5

0.
5

1.
5

un
em

pl
oy

m
en

t b
en

ef
its

0 10 20 30

-1
.5

-0
.5

0.
5

1.
5
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For a parametric reanalysis� we �rst �tted a model with baseline e�ects speci�ed as low

order polynomials� but kept all covariate e�etcs time�constant� The shape of the estimated

baseline e�ects was in agreement with our nonparametric analysis� although the peaks in

the baseline e�ect for �others� could not be reproduced� Attemps to model time�varying

structures in more detail by inclusion of time�varying e�ects� led to divergence of ML esti�

mates due to the large number of parameters involved� This illustrates that nonparametric

approaches� imposing appropriate smoothness restrictions� are useful tools for re�ned and


exible analyses�

� Conclusions

We conclude with some discussion of topics not treated in detail in the main text� e�g� other

estimation approaches� multiple time scales and unobserved heterogeneity�

In this paper� we propose a certain type of Metropolis�Hastings algorithm� In our context� it

has distinct advantages compared to a Gibbs step combined with rejection sampling based on

knowledge of envelope functions and log�concavity of conditionals �e�g� Gilks andWild �

���

Other MCMC sampling schemes for dynamic models have been suggested by Gamerman

��

	� and Shephard and Pitt ��

	�� but they require distinctly more computation time

per iteration� The multi move schemes of Carter and Kohn ��

�� and Fr�uhwirth�Schnatter

��

��� designed for observation models with errors from normal or mixtures of normals�

cannot be extended to discrete observation models�

As a conceptually simpler alternative that avoids MCMC at all� posterior mode estimation

� obtained by maximizing the unnormalized posterior � has been considered in Fahrmeir

��

�� for m � �� and Fahrmeir and Wagenpfeil ��

��� This approach can be viewed as

an empirical Bayes method� since the matrix Q is treated as �xed and unknown� not as a

random variable with some prior distribution� Posterior mode estimation has also a non�

Bayesian interpretation� being equivalent to maximization of a penalized likelihood� E�cient

estimation can be carried out by iterative Kalman �ltering and smoothing�

��



However� posterior mode estimation su�ers from some disadvantages� Duration data usually

becomes sparse towards the end of the observation period� so inference based on approximate

posterior normality will be questionable� Also� like for any empirical Bayes approach� the

uncertainty associated with estimates of f
tg is underestimated� since no allowance is made

for the uncertainty associated with Q� Furthermore� estimation of functionals of 
� such

as hazard or survival functions� has to be based on further approximations like the Delta

method� Posterior mode estimation is� nevertheless� useful as an ingredient of a fully Bayesian

approach� It provides an initial solution for a re�ned analysis and can be used to check

convergence behavior of simulation�based Monte Carlo methods�

Our concepts and also our applications focused on one time dimension� i�e� that of duration

in a certain state� regarding other time scales such as calendar time� age or cohort as method�

ologically secondary� Although the models of this paper allow the inclusion of other time

scales through covariates� they are not built to deal with multiple time scales in a symmetric

way� Here we outline how this could be achieved� For simplicity� let us only consider the

case of two time scales� duration time t and calendar time u� with one terminating event�

The hazard function� now depending on t� u and covariates� may be modelled by

��t� ujx� � h��t � �u � �su � x��t��

where x is a� possibly time�dependent� covariate vector� �t is the baseline e�ect for duration

time t� �u is a trend component in calendar time� e�g� a random walk of �rst order� and �su

may be a monthly seasonal component� e�g� �su � 
 
 
 � �su��� � vu � N��� ��u�� in calendar

time� Multiple time scales models require appropriate conditional independence assumptions

leading to modi�ed full conditionals for MCMC simulation� In principle real�time e�ects

�u� �
s
u can be updated using additional Metropolis�Hastings steps analogous to those in

Section �� However� the simple structure of conditional likelihoods is destroyed� leading to

a considerably increasing amount of implementation and computation requirements� We

plan to consider dynamic models for multiple time scales and to develop e�cient MCMC

methods for such models in future research� Close in spirit is the work by Berzuini and

Clayton ��

��� who discuss survival models with multiple time scales and time�constant

covariate e�ects�

��



Our dynamic model speci�cations in Section � allow rather 
exible modeling of time�varying

hazards and covariate e�ects� However� they do not explicitly take into account unobserved

heterogeneity or frailty� For example� di�erences between short� and longterm unemploy�

ment might be considered as a potential source of unobserved heterogeneity that is not

or insu�ciently explained by observed variables� The e�ect of neglected heterogeneity on

estimation of hazards and covariate e�ects in duration models with �xed parameters has

been studied by a number of authors� see e�g� Lancaster ��

��� The most important con�

sequence of neglecting unobserved heterogeneity is that it may appear as spurious duration

dependence�

The conventional procedure to account for heterogeneity is to introduce unit�speci�c param�

eters� say �i� in the linear predictor and to assume that they are random e�ects� distributed

according to some mixing distribution f�� Two main approaches to the modeling of this

mixing distribution have been proposed� The �rst assumes a parametric form� e�g� a log�

Gamma or a normal density� for f�� For discrete�time duration models with �xed e�ects

and a single terminating event �m � ��� one treatment is to extend the linear predictor 	it

additively to

e	it � 	it � �i� �i i�i�d � N��� ����

and to carry out inference by MCMC� see Raftery� Lewis and Aghajanian ��

	�� Clayton

��

�� uses a log�Gamma distribution instead in so called frailty models� This approach can

be combined with dynamic models by extending the linear predictor to

	it � 
t � x�it�t � �i� �i i�i�d � N��� ���

and to add a further full conditional for �i in the MCMC updating steps� For panel data

with many repeated events� such mixed dynamic models have been successfully implemented

and applied by Knorr�Held ��

	�� For duration models� without repeated events� there is

some evidence given in the literature that estimates can be very sensitive to the choice of the

mixing distribution� see e�g� Meyer ��

��� The likelihood of observations becomes rather


at� so that the prior has much in
uence on the posterior� This is also to be expected for the

second approach� where a discrete distribution� typically with small number of mass points�

is chosen for f� �Heckman and Singer �
���� In addition� the e�ect of heterogeneity decreases

��



with 
exible models for baseline hazards �Narendranathan and Stewart �

�� and may be

even less serious if time�varying covariate e�ects are introduced� For duration models with

several terminating events �m � ��� these problems become even more evident� since the

extension to this case is accompanied by additional prior assumptions� It is therefore likely

that misspeci�cation of the mixing distribution can be worse than omitting heterogeneity�

Therefore� and since our interest here lies in allowing 
exibility in form of time�varying e�ects

of duration dependence� we have restricted attention to models without heterogeneity� This

has to be kept in mind for a careful interpretation of the results in Section �� For example� the

time�varying e�ect of nationality in Figure �c� re
ects di�erences in short�term and long�

term unemployment between Germans and non�Germans� Concerning short unemployment�

Germans have better chances for leaving unemployment� but this e�ect vanishes for longterm

unemployment� Thus� time�varying e�ects may be interpreted as caused by unobserved

heterogeneity�

Other interesting extensions� where our approach should be useful� are dynamic continuous�

time duration models� e�g� the dynamic piecewise exponential model development by Gamer�

man ��

��� with an application to unemployment data in Gamerman and West ��
���� and

event history models for multiple cycles and states e�g� semi�Markov models�

Obviously� a large number of possible models raise questions about model determination and

validation� that are beyond the scope of this paper� Bayesian model choice via MCMC is

currently an intensive research area� promising solutions are based on Bayes factors �Lewis

and Raftery �

�� Raftery �

�� or on predictive distributions� see Gelfand ��

���
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