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Abstract

Discrete-time grouped duration data, with one or multiple types of terminating
events, are often observed in social sciences or economics. In this paper we suggest
and discuss dynamic models for flexible Bayesian nonparametric analysis of such data.
These models allow simultaneous incorporation and estimation of baseline hazards and
time—varying covariate effects, without imposing particular parametric forms. Meth-
ods for exploring the possibility of time—varying effects, as for example the impact of
nationality or unemployment insurance benefits on the probability of re-employment,
have recently gained increasing interest. Our modeling and estimation approach is fully
Bayesian and makes use of Markov Chain Monte Carlo (MCMC) simulation techniques.
A detailed analysis of unemployment duration data, with full-time job, part—time job
and other causes as terminating events, illustrates our methods and shows how they

can be used to obtain refined results and interpretations.

Key words: Bayesian inference; Discrete—time duration data; Markov chain Monte Carlo;

Multiple types of terminating events; Time—varying regression parameters.



1 Introduction

Regression models for duration data are an important and widely used tool for statistical
analysis of life or event histories. Many well-known models are based on the assumption
that duration, the time until some event occurs, is a continuous variable, see, for example,
Kalbfleisch and Prentice (1980), Blossfeld, Hamerle and Mayer (1989), Lancaster (1990),
and Andersen et. al. (1993). However, in many applications, in particular in social sciences,
time is often measured as a discrete variable. The applicability of continuous—time duration

models to discrete—time data is limited to special cases, where the number of ties is relatively

small.

Terminating Duration of Sex | Nationality | Age | Unemployment insurance
event | unemployment benefits received

(months)
full-time job 16 | male | non-German | 21 yes
full-time job 3 | female | non-German | 23 yes
full-time job 4| male | non-German | 25 yes
housewife 3 | female | non-German | 29 yes
(censored) 36 | male German | 30 until month 6
househusband 6 male German | 32 yes
full time job 2 | male German | 36 yes
housewife 11 | female German | 30 yes
(censored) 4 | female | non-German | 22 yes
part—time job 4 | female German | 27 yes

Table 1: Some typical observations from the unemployment duration data.

Table 1 shows a small sample from data on duration of unemployment, taken from the
German socio—economic panel GSOEP. Duration of unemployment is discrete and measured
in months. Also there are several alternative types of terminating events or destination
states, and one may distinguish between full-time jobs, part—time jobs and other causes

which end unemployment. Typical questions, that arise here, are: What is the influence of



the covariates (e.g. sex) on the probability of leaving the state of unemployment? Does the
effect of covariates change over duration time? How does the shape of hazard and survival
functions look like in the presence of such time-varying effects? Is it necessary to distinguish

between different types of terminating events?

Conventional duration models with time-constant parameters are not flexible enough to an-
swer questions of this type. Instead, both baseline hazards and, at least some, covariate
effects have to be considered as functions of time, v, and 3, t = 1,2,...,q, say. Even for
a moderate number ¢ of intervals, unrestricted modeling and fitting of {v;} and {3;} will
cause severe problems: Due to the large number of parameters involved, this will often lead
to non—existence and divergence of ML estimates. These difficulties increase in situations
with many intervals - but not enough to apply models for continuous time - and with multiple
terminating events. One may try to avoid such problems by a more parsimonious param-
eterization, using piecewise polynomials or other parametric forms for hazard functions or
varying effects (Yamaguchi 1993). Multiphase models may also be considered (Portugal and
Addison 1995). However, by imposing such parametric forms one may overlook unexpected
patterns like peaks, bumps, or seasonal effects. In this situation, non— or semiparamet-
ric approaches are useful for detecting and exploring such unknown patterns. Appropriate

parametric models may then be developed in a second step.

In this paper we propose dynamic discrete time duration models as a flexible nonparametric
Bayesian approach, which makes simultaneous modeling and smoothing of hazard functions
and covariate effects possible. Dynamic models are regarded as nonparametric, since no
particular functional form is specified for the dependence of the parameters on time. Instead
only some smoothness is imposed in form of a stochastic process prior. No approximations
based on asymptotic normality assumptions have to be made for statistical inference, and
estimation of unknown smoothness or variance parameters is automatically incorporated.
Thus, the proposed nonparametric Bayesian framework is a promising alternative to more
traditional nonparametric methods like spline smoothing (Hastie and Tibshirani 1993), local
likelihood estimation (Tutz 1995), discrete kernel smoothing (Fahrmeir and Tutz 1994, Ch. 9)
or approaches based on counting processes (Aalen 1989, 1993, Huffer and Mc Keague 1991).



The models are obtained by adopting dynamic or state space models for categorical data
to discrete time duration data, similarly to Gamerman (1991) for a dynamic version of the
piecewise exponential model, and Fahrmeir (1994) and Fahrmeir and Wagenpfeil (1996),
see Section 2. In contrast to the latter papers, inference is fully Bayesian using Markov
chain Monte Carlo (MCMC) methods, based on ideas and suggestions of Knorr—Held (1995,
1996) (Section 3). Other Bayesian nonparametric approaches based on MCMC simulation
have recently been suggested by Arjas and Liu (1995) for continuous-time duration data
and by Berzuini and Larizza (1996) for joint modeling of time series and failure time data.
MCMC techniques allow flexible and sophisticated inference: pointwise and simultaneous
credible regions for covariate effects, predictive survival functions and other characteristics
can be calculated based on posterior samples. We illustrate our approach in Section 4 with a
detailed study of unemployment duration data, taken from the German socio—economic panel
GSOEP. In a first analysis, only the terminating event “end of unemployment” regardless of
a specific cause, is considered. Based on this nonparametric analysis, we also fit parametric
models and compare results. In a second refined analysis we distinguish between three
terminating events: employment in a full-time job, employment in a part—time job, and
other causes. The analysis shows that it is important to differentiate between alternative
terminating events in order to obtain correct interpretations and conclusions. The results
suggest that some effects of covariates, characterizing individuals, change through time,
whereas the impact of unemployment benefits is more or less constant. This is in contrast
to findings of Narendranathan and Stewart (1993) for data from the British labour market.
Section 5 concludes with a discussion of other estimation approaches, extensions to multiple

time scales, the role of unobserved heterogeneity and some other comments.

Formal definitions of dynamic models in Section 2 rely on basic concepts for discrete dura-
tion data. For easier reference, we give a short review. Let time be divided into intervals
[ap = 0,a4), [a1,a2), ..., |a,-1,a,) and [a,, 00). Without loss of generality we assume that q,
denotes the end of the observation period. Often the intervals [ag,a1),. .., [aq-1,0a,) are of
equal length but this is not an essential requirement. Instead of a continuous duration time,
the discrete duration time 7" € {1,...,¢+1} is observed, where T" = t denotes end of duration

within the interval [a;_1, ;). In addition to duration T', a sequence of possibly time—varying



covariate vectors x; = (vp,..., %), t = 1,2,..., is observed. Let z(t) = (z1,...,2;) denote
the history of covariates up to interval [a; 1, a;). If there is only one type of terminating

event the discrete hazard function is given by
Atlz(t)) =pr(T =T = t,z(t)), t=1,...q

which is the conditional probability of the end of duration in interval [a; 1, a;), given that

the interval is reached and the history of the covariates. The discrete survival function

t

S(t|x(t)) = pr(T > tlz(t)) = [T (1 = Als[x(s))) (1)

s=1
is the probability of surviving the interval [a; 1,a;). A common specification for the hazard
function is a binary logit model of the form
exp(v + 2z,0)
A(t]z(t)) = B (2)
1+ exp(v + 210)
see e.g. Thompson (1977) or Arjas and Haara (1987). The parameter -, represents a time—

varying baseline effect and the design vector z; is some function of z(t), often simply z, = x;.
Finally /3 is the corresponding vector of fixed covariate effects. A slightly different specifica-
tion is the grouped proportional hazards or Cox model A(t|x(t)) = 1 —exp (— exp(y: + 213)),

see e.g. Kalbfleisch and Prentice (1980). This model can be derived by assuming a latent
proportional hazards model for durations on a continuous time scale, but durations are
only observed in terms of whole time—intervals, like weeks or months. If intervals are short
compared to the observation period, the models are very similar, as has been shown by
Thompson (1977). A detailed survey on discrete-time duration data can be found in Hamerle

and Tutz (1989), a shorter introduction in Fahrmeir and Tutz (1994, Ch. 9).

For several, say m, alternative types of terminating events, causes or destinations, let R €
{1,...,m} denote the distinct event. The basic quantities characterizing the duration process

are now event—specific hazard functions

M(tlz(t)) =pr(T =t,R=r|T > t,z(t)), (3)

r=1,...,m,t=1,...,q. Models for multicategorical responses can be used to model event—

specific hazard functions. A common candidate for unordered events is the multinomial logit



model (e.g. Allison 1982)

)\T(t|l‘(t)) — eXp(’Ytr + Z;ﬂr) (4)

m Y

14> exp(vy + 23))
j=1
where 7, and (3, are event—specific baseline and covariate effects, respectively. A cause—
specific generalization of the grouped Cox model is given e.g. in Fahrmeir and Tutz (1994,
Ch. 9). Other discrete choice models like a probit or a nested multinomial logit model (Hill,

Axinn and Thornton 1993) may also be considered.

Event—specific hazard functions need not necessarily correspond to latent duration times
Ty,...,T,,, one for each terminating event. The observed duration time can then be defined
as T = min(T},...,T,,) and the terminating event as R = r if T = T,, but this approach
in general requires untestable assumptions on the independence of latent duration times.
Therefore, we use event—specific hazard functions (3) as the basic characteristics for duration
models, following Prentice et al. (1978), Kalbfleisch and Prentice (1980), and Lancaster
(1990, p. 99).

2 Dynamic models for discrete—time duration data

For individual units 2 = 1...,n, let T; denote duration times and U; right—censoring times.
Duration data with multiple terminating events are usually given by (t;,d;, r;, z;(t;)), where

t; = min(7T;, U;) is the observed discrete duration time, d; is the censoring indicator,

5 — 1L, T; <U;
Z 07 ﬂ Z Uia
r; € {1,...,m} indicates the terminating event and z;(t;) = {x;,t = 1,...,t;} is the se-

quence of observed covariates. We rewrite the data in terms of stochastic processes: Let R,
denote the risk set, i.e. the set of units at risk in [a;—1,a;). Censoring is assumed to occur

at the end of the interval, so that the risk set R; includes all individuals who are censored
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in [a;—1,a;). We define event indicators y;; € {0,1,...,m}, i€ R, t =1,...,%;, by

r, event of type r occurs in [a; 1,a;), r=1...,m
Yit =
0, no event occurs in [a; 1, a;).
Then, from a dynamic point of view, duration can be interpreted as a stochastic process of
multicategorical decisions between y; = 0 and y;; = r, i.e., end of duration due to event
r € {1,...,m}. Similarly, it is convenient to introduce censoring processes by
1, U; > ay, i.e. i not censored up to [a; 1, az)

Cit =
0, U; < ay, i.e. i censored in [a; 1,a;) or earlier.

We collect covariates, event and censoring indicators of time interval ¢, that is [a; 1, a;), in

the column vectors

= (i, 0 € Ry), yr = (Y1 € Ry), ¢ = (Cirni € Ry)

and denote histories up to t by
op = (1, ), Y = Wi, 0, € = (C1y.. 0, 0).

Dynamic discrete duration models are defined hierarchically by an observation model, given
the unknown baseline and covariate effects, a latent stochastic transition model for these pos-
sibly time-varying effects and priors for unknown hyperparameters of the transition model.

The model specification is completed by several conditional independence assumptions.

Observation model

The duration process of each unit is viewed as a sequence of multicategorical decisions
between remaining in the transient state y;; = 0, i.e. no event occurs, or leaving for one
of the absorbing states y;; = r, r = 1,...,m, i.e. end of duration at ¢ due to terminating
event of type r. Individual response probabilities for y;; = r are modelled using categorical

response models. For the special case of only one type of terminating event (m = 1), we
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assume for ¢ € R; that, conditional on parameters v;, ; and the covariate x;, response

probabilities for y;; = 1 are in the form
pr(yie = 1|, Ve, Be) = h(ie) (5)

with linear predictor

Nit = Ve + 21y Ot (6)

and link function h : R — (0,1), e.g. one of the common link functions for the logit
or grouped Cox model. In (6), the design vector z; is some appropriate function of the
covariates x;;. The observation model can be extended to incorporate the history y; , of
past event indicators into z;, a suggestion made by Prentice et al. (1978). However, we do
not make use of this possibility here. We assume that the censoring process is conditionally

independent of y;;, given z;, 7, and (3, so that z;; does not depend on cj.

For multiple terminating events (m > 1) we assume for r =1,...,m
Pr(Yie = 7|Tit, Y, Br) = he(Nit), (7)

with link function A, : R™ — (0, 1), and linear predictor vector n;; = (91, - - - , Nizm)- For the

multinomial logit model (4), we have

) = — ) ©)

m

1+ exp(niy)
j=1

with 7, = Y4 + 25,04 Other multicategorical response models can also be written in the
general form (7). Again the design vector may be an appropriate function of covariates x;,

but not of ¢;.

Transition model

Let a4 denote the state vector of unknown time—dependent parameters. Prior specifications

for stochastic variation of {a;} are in common linear Gaussian and Markovian form as for
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linear dynamic or state space models. The simplest model is a random walk of first—order
ap = a1 +uy, ug ~ N(0,Q), here ay = (Yer, -+« s Yems Bias - - > Bi)’- An alternative approach
is to take the process a; to be the superposition of a first—order random walk and a local
linear trend component with unknown time-changing slope 7;, the local linear trend model
(e.g. Fahrmeir and Tutz 1994, Ch. 8). An intermediate strategy is proposed in Berzuini and
Larizza (1996), where the slope 7 is assumed to be time—constant. Informative priors on 7
can be used to incorporate prior beliefs that, say, a specific covariate effect is linear declining
with time. Other interesting transition models are second—order random walks and seasonal

models.

In general, we admit a multivariate Gaussian autoregressive model of order k for oy, t > k:

k
Qp = ZFlatfl +ug,  up~ N(0,Q). 9)

=1
The error variables u; are assumed to be mutually independent and independent of initial
values a4, for which diffuse priors «; o< const, ¢ = 1,...,k, are assumed. The matrices
Fi, ..., F} are known. If time intervals [a;_1,a;) are of the same length, we set Q; = Q,
otherwise Q; = h,Q, where h; is the length of [a;_1,a;). Usually @ is unknown and is
considered as a hyperparameter. In a full Bayesian setting, a prior specification for @)
completes the transition model. Products of inverse gamma or inverted Wishart distributions

are the usual choice.

For full Bayesian inference, the joint distribution of y = (y1,...,y,), © = (21,...,24), ¢ =
(€1,...,¢4), @ = (aq,...,0q,), where ¢ is the number of intervals, and @) has to be completely
defined. This is achieved by adding a number of conditional independence assumptions. To
see what assumptions are useful and how they can be interpreted, we recursively factorize

the joint distribution. Let

Lt:p(y:,fr,CI,Q:,Q), t:].,...,q,

denote the joint distribution up to the interval [a; 1,a;). By repeated conditioning, we get

the factorization

Ly = Lt—1p(yt|')p(@t|‘)l)($t; Ct|‘)

9



with
p(yl) = plulyii, i, ¢ 0, Q)
p(at|') = p(Oét|Oé:_1,y:_1,$:,C:,Q),

and p(l‘t,Ct|') = p($t70t|yff1aff?71,0?71,062117@-

We now make the following conditional independence assumptions:

A1 Conditional on z;; and oy, individual event indicators y;; are independent of «; ; and

Q, i.e.
p(yit|y£‘;17 :I“Ia CIJ Oz:a Q) = p(yit|xit7 Ozt)-

A2 Given y; |,z},c;, a; and @), individual event indicators y;;, « € R, are conditionally
independent, i.e.

p(yt|y:—laxivciaa;@) = H p(yit|y:—1=x:70:7az<7@)'
1€ R

A3 The sequence oy is Markovian of order k, i.e.

plaglag 1, 00 5, Q) t>k

p(@t|a:_1ayf_1,$2kaci, Q) =
p(ay) t=1,....k.

A4 Given y;_,, z;_,, ¢;_,, covariates x; and censoring indicator ¢, are independent of aj_;

and Q).

A5 Initial values ay, ..., ax, x1, ¢; and ) are mutually independent.

Assumption (A1), which is implicitly assumed in the observation model, is common for
dynamic or state space modeling. It says that conditional information of o on ¥, is already
contained in oy, and is usually not stated for fixed parameters. Since only individuals ¢ in the
risk set I?; contribute likelihood information in time period ¢, i.e. ¢;; = 1 if ¢ € Ry, ¢j can be
omitted on the right hand side of (A1). Note that the covariates x;; may contain information
on covariate values of other individuals or from the past. As stated above, we do not include
the history y; ; of failure indicators in form of covariates. The conditional independence

assumption (A2) is weaker than usual unconditional independence assumptions among units,
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since it allows for interaction via common history, and it is likely to hold if a common cause
for failures is incorporated in the covariate process. For fixed parameters (A2) corresponds
to Assumption 2 of Arjas and Haara (1987). Assumption (A3) is already implied by the
transition model (13). Assumption (A4) corresponds to Assumption 1 of Arjas and Haara
(1987). It will generally hold for noninformative censoring and external or time independent
covariates. It may not hold for internal covariates. Independence of initial values ay, ..., ag
in (A5) has already been stated in the transition model and is supplemented by the additional

independence assumption on x1, ¢; and Q).

Summarizing (A1) and (A2), we get

p(yt|y:—17x:76:7az<7@) = H p(yit|xit7at)-
1€ Ry

Under assumptions (A1) — (A5) the joint distribution of y, x, ¢, @ and ) is now proportional
to a product of individual conditional likelihood contributions, defined by the observation

model, a smoothness prior for « as a product of transition densities by (13), and the prior

for Q:

p(yaxaca OC,Q) X {H H p(yit|xit7at)} X
t i€ER

(10)
{H plolog_r, ..., q_p, Q)} x p(Q).

t>k

A graphical representation of our model is shown in Figure 1. Individual densities in the
first factor are given by the observation model (5), implying they are independent of the

right—censoring mechanism cj, and transition densities in the second factor are given by

k
p(at|at—17"'7at—k}7Q) ~ N(Zﬂat—h@)' (11)

=1
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Yit | — Tt
unit
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T

Figure 1: Directed graphical representation of a dynamic model with lag k = 1.

3 Estimating hazard functions and covariate effects by

MCMC simulation

Smoothing time—varying parameters, i.e. estimation of the sequence oo = {c} given the data
Yy, x, ¢ is of prime interest. Full Bayesian inference will be based on the posteriors p(aly, x, ¢)
or p(ay|y, z,¢), which are proportional to the right hand side of (10). Since the normaliz-
ing factor has rather complex structure, direct approaches using numerical integration or

ordinary static Monte Carlo methods are computationally infeasible.

We suggest a Markov chain Monte Carlo (MCMC) sampling scheme, that allows to draw
samples from posteriors of time—varying parameters, hazard functions and similar quantities
of interest, thus making full Bayesian inference possible. We start this section with a short
review, since some of the readers might not be so familiar with MCMC. The reader is
also referred to the tutorial expositions of Casella and George (1992), Chib and Greenberg
(1995) and Gilks, Richardson and Spiegelhalter (1996). A more theoretical study of MCMC
techniques can be found in Tierney (1994).

12



3.1 Basic ideas of MCMC

MCMC techniques have revolutionized general Bayesian inference in the last few years.
Bayesian inference starts with a prior distribution p(z) for an unknown parameter vector .
In our context, the unknown parameters are o, ..., o, and () and the corresponding prior

distribution is
Hp(at|at717"'7atfk7Q) X p(Q)
t>k
Having observed data D, Bayes’s theorem tells us, that the posterior distribution, condition-

ing on D, is given by

__pDple)
PP = T Dyl -

Here p(D|z) is the likelihood, in our case equal to

{H H p(yit|$it,at)}.

t 1€ER:
The right hand side of equation (10) corresponds to the nominator p(D, z) = p(D|z)p(z) in
(12).

The posterior distribution contains all the information Bayesian inference is based on. Typ-

ically, summary characteristics of the posterior, such as the posterior mean

~ Jz p(Dl|z)p(z)dx
B@lD) = T Dlp)dz

are of primary interest. However, computation of such expectations involves integrations,

which can be very hard to solve, especially if = is of high dimension. Therefore, classical
Bayesian inference was restricted to rather simple models, where analytic computation of
characteristics of the posterior distribution was possible. Accurate approximations by numer-
ical techniques are available only for problems, where the dimension of the parametervector
is not greater than, say, 10 or 20. However, for a lot of applied problems, the posterior is
analytically and numerically intractable. Monte Carlo methods circumvent the integration
problem by generating samples from the posterior distribution. However, ordinary Monte
Carlo methods, such as importance sampling, are often computationally infeasible for com-

plex, highly structured models. Here MCMC methods are more appropriate.

13



In this subsection let p(z) be the posterior distribution of a random vector x, suppressing the
conditioning on the data D. The basic idea of MCMC is to generate a sample 2 k =1,2, ...
by a Markov transition function Q(2™®) — z(*+1)) such that p(x) is the stationary distribution
of the Markov chain X. Thus, after a sufficiently long ’burn—in phase’ of length m, the
generated states z*) k = m + 1,...,n are dependent samples from the posterior. For

example, the posterior mean can now be estimated by the arithmetic average
1 n

S a®),

m k=m+1

n —

Other quantities of interest can be also be estimated by the appropriate empirical versions.

For construction of such a Markov chain it is necessary to find a suitable transition function
Q(z™® — x(-*+1) such that the posterior distribution p(x) is the stationary distribution of
X. There are surprisingly many different choices of @) for a given distribution p(z), but
most of them, including the Gibbs sampler, are special cases of the Hastings (1970) algo-
rithm. Most methods split up = into components xi,...,xr,...,zy of possibly differing
dimension. In our context, these components could be chosen as ai,..., o, and @, lead-
ing to a so—called single move updating scheme. These components are updated one by
one using the Hastings algorithm. The posterior distribution p(z), typically high dimen-
sional and rather complicated, is not needed; only so called full conditional distributions
enter in the Hastings algorithm. A full conditional distribution, short full conditional, is
the distribution of one component, conditioning on all the remaining components, such as
p(xr|T1, .. X7 1, T141, ..., 2g). Besag (1974) showed, that p(x) is uniquely determined by
the set of its full conditional distribution. This gives an intuitive justification for the fact,
that only full conditional distributions and not the posterior itself are needed for MCMC
simulation. In hierarchical models, defined by conditional independence assumptions, these
full conditionals often have a much simpler structure than the posterior itself. This provides

an important computational advantage.

The Gibbs sampling algorithm, probably the most prominent member of MCMC algorithms,
iteratively updates all components by samples from their full conditionals. Markov chain
theory shows that under very general conditions the so generated sequence of random num-

bers converges to the posterior. However, often these full conditionals are themselves still

14



quite complex, so generation of the required random numbers might be a difficult task. Relief
lies in the fact that it is not necessary to sample from the full conditionals; A member of the
much more general class of Hastings algorithms can be used to update the full conditionals.
Such a Hastings step is typically easier to implement and often makes a MCMC algorithm
more efficient in terms of CPU time. A Hastings step proposes a new value for a given
component and accepts it with a certain probability. A Gibbs step (i.e. a sample from a full

conditional) turns out to be a special case where the proposal is always accepted.

Let p(zy|z_r) be the full conditional of a component z of x, given the rest of the compo-
nents, denoted by z_,. To update zp = :cgc) in iteration step k, it is sufficient to generate
a proposal 2/, from an arbitrarily chosen transition kernel P(xy — 2/-;x_r) and accept the

generated proposal with probability

5 — min {1 p(ar|z_1)P (2 — 2r; fl?T)}

p(zr|z_7)P(er — a2 1)

otherwise leave x7 unchanged. This is the Hastings algorithm used for updating full condi-
tionals. Only a ratio of the full conditional of z1 enters in d, so p(zy|z_r) need to be known
just up to scale and need not to be normalized, a very convenient fact for implementation.
Note that both the current state xy and the proposed new state a/. as well as the current

states of the other components x_ affect 0.

Gibbs sampling corresponds to the specific choice
P(zr — ap;2-7) = plap|z-7),

so that & becomes 1 and therefore all proposals are accepted. Here the current state of xp

does not affect the new one 7.

There is a great flexibility in the choice of the transition kernel P. Common choices are

random walk Metropolis proposals and (conditional) independence proposals (Tierney 1994).

Random walk Metropolis proposals are generated from a distribution, that is symmetric
about the current value zp. Often used are Gaussian or Rectangular distributions. In
contrast, conditional independence proposals do not depend on the current state of xy; they

may however depend on the current values of z_;. As we have seen above, the Gibbs
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sampling kernel is a specific conditional independence proposal. However, it is crucial that
for a chosen P, the acceptance probability § not be too small (in average) and that both

convergence and mixing behavior of the whole simulated Markov chain be satisfactory.

Somewhat surprising is the fact that one is allowed to use hybrid procedures, that is, use
different versions of Hastings proposals for updating different components of x. One strategy
is to sample from the full conditionals, that is a “Gibbs step”, as long as this is easy and
fast. If not, a specific Hastings step with a simple proposal distribution mostly works faster
in CPU time. As long as all components are updated in a deterministic or even random

order (which may ensure better mixing of the chain), the chain converges to the posterior.

3.2 MCMC simulation in dynamic discrete time duration models

In this subsection we propose a hybrid MCMC procedure for simulating the (unnormalized)
posterior (10). Time-varying parameters ay, t = 1,...,¢q, are updated using specific condi-
tional independence proposals, while a Gibbs step is used for updating ). Consider the full

conditional

p(Oét|Oés¢t;Q7y:$>C) X H P (Yit| Tit, o) X p(at|as;ét7Q)- (13)
1€ Ry

While the first factor corresponds to the observation model at time ¢, the second reflects the
dependence of underlying parameters through the transition model and does not depend on

the data y, x and c.

This second factor, the conditional distribution p(oy|sze, @), can be derived from (9). It is
Gaussian, with density function ¢(ay; pug, X¢), where the mean p; and covariance matrix %,
depend on the current values of ) and of neighboring parameters . Different transition
models result in different formulae for u; and ;. For example, a random walk of first-order

ap = ay_q1 + ug, ug ~ N(0,Q), has conditional distribution

N(a1,Q) (t=1)
N(p, S) =4 NGay g +1ai0,13Q) (t=2,...,9—1) . (14)
N(atfla Q) (t - q)
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We add a short derivation of this result for t = 2,...,¢ — 1. The first—order random walk

prior on « can be written as

q
Z G — O 1 I(CYt - at—l)) .
t=2

[\.’)I»—t

p(a]@) o exp <
Since p(oy|aszi, @) x p(a]@), it follows that

p(@t|@s;ét; Q) X €xXp (‘% ((Oét - at—l)lQ_l(at - at—l) + (Oét+1 - CYt)’Q_l(OétH - CYt))) )

which gives the desired result. Note that (14) has an independent appealing interpretation

as a stochastic interpolation rule (Besag and Kooperberg 1995).

We use a specific conditional independence proposal, namely a sample from the conditional

distribution p(oy|asz, @), to update o, via a Hastings step. The acceptance probability

-, 0D

P(Yelou)

simplifies in this case to

with

P(yt|@t) = H p(yit|$it;@t)
1€ R

as the conditional likelihood of objects under risk in interval ¢, defined by the observation
model. Such a proposal has a natural interpretation due to the hierarchical structure of
the model: «} is drawn independently of the observation model and just reflects the specific
autoregressive prior specification. It is therefore called a conditional prior proposal (Knorr—
Held 1996). If it produces improvement in the likelihood at time ¢, it will always be accepted,
if not the acceptance probability is equal to the likelihood ratio. This algorithm shows good
performance for duration data with an acceptance rate ranging from 0.3 to 0.9. We also
experienced with a slightly different MCMC sampling scheme, where blocks a, ..., q, are
updated simulataneously rather then updating each a; one at a time. Such a blocking
strategy often improves mixing and convergence considerably. Conditional prior proposals

can be generalized to this case conveniently.

Sampling from the full conditional

p(Qla, y,z,¢) ~ p(Q|a)

17



is straightforward for conjugate priors like inverse gamma or inverted Wishart distributions.
If @ is assumed to be diagonal, an inverse gamma prior @);; ~ IG(a, b) for the j—th diagonal
entry in () is computational convenient, since the resulting full conditional is still inverse
gamma with parameters a + (¢ — k)/2 and b+ > u;/2. Note the transformation from a to

ug, t =k—+1,..., ¢ via the transition model (9). The inverse gamma distribution has density
p(Qj;) o Q" exp(—b/Qj;)

and has a unique mode at b/(a+1). In all our examples we start with the values a = 1 and
b = 0.005, so that p(Q;;) is highly dispersed but still proper. This choice reflects sufficient
prior ignorance about () but avoids problems arising with improper priors, see Raftery and
Banfield (1991) for a more detailed discussion. We then add a sensitivity analysis and
rerun the algorithm with different choices for b, such as 0.05 or 0.0005. The parameter b
determines, how close to zero the variances are allowed to be a priori. Note that the inverse
gamma distribution has no expectation for ¢ = 1, so our prior guess is rather diffuse for

every value of b.

It is very important to carefully check convergence and mixing behavior of any MCMC
algorithm. Theoretical considerations are typically limited to rather simple models; therefore
empirical output analysis is more practical. This is still an active research area, the reader
is referred to Raftery and Lewis (1996), Gelman (1996), Cowles and Carlin (1996) and the
relevant parts of Gilks, Richardson and Spiegelhalter (1996). We always look at several
plots such as time series plots of the sampled values and calculate routinely autocorrelation
functions for every parameter. Figure 2 shows the time series plot of a specific parameter of
our first analysis (m = 1, Section 4). Shown are the stored values of the 100th parameter
in our model, the effect of nationality at time ¢ = 28. Low values of the autocorrelation

function indicate good mixing. Plots for other parameters look quite similar.

After convergence, the simulated random numbers are samples from the marginal distribu-
tions p(a|y, z,¢) and p(Q|y,x,c) and are used to estimate characteristics of the posterior
distribution. Note that for a given covariate sequence x;(t) of a specific unit i, samples
from its hazard function are calculated by plugging in the samples from p(aly, z,c) in (5)

or (7). Even samples from the survivor function can be obtained by using the samples from
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Figure 2: Time series plot and estimated autocorrelation function of a selected parameter

the hazard function in the dynamic version of (1). Furthermore it is possible to construct
simultaneous credible regions for covariate effects, hazard or survival functions by using the

method described in Besag et. al. (1995).

4 Applications to duration of unemployment

We analyze data on duration of unemployment of 1416 persons, older than 16 years and
living in West Germany, which are observed from January 1983 until December 1993 in the
German socio—economic panel GSOEP. Only persons with single spells of unemployment
are considered. Duration of unemployment is measured in months. 296 observations are
censored. Only a small fraction of persons are unemployed for more than three years, so that
there is very little information on such long-term unemployment. Therefore only durations
up to 36 months are considered and longer durations are considered as censored. In total, 49
from the 54 persons, still unemployed in month 36, are censored. Based on previous analysis
with time—constant effects (Fahrmeir and Tutz 1994, Ch. 9) we include the covariates sex,

age and nationality, coded as follows:
Sex S : S =1 for males , S = 0 for females;
Nationality N: N =1 for German , N = 0 for foreigner;

Age at the beginning of unemployment, grouped in four categories and coded by 0-1 dum-

mies:
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Al =1 for “age < 30 years”, 0 else;
A2 =1 for “41 < age < 50 years”, 0 else;
A3 =1 for “age > 51 years”, 0 else;

with reference category “31 < age < 40 years” coded by (Al, A2, A3) = (0,0,0). The
observed frequency counts for these covariates are 56 %, 64 %, 50 %, 15 % and 18 % for S,
N, A1, A2 and A3, respectively.

Most often covariates are expected to have much the same impact over the course of un-
employment. We let the data decide whether this is really so and admit that the effects of
these covariates may vary over time. In particular, we are able to check if unemployment
benefits have effects that vary or erode over time. Results of Narendranathan and Stewart
(1993) and Portugal and Addison (1995) based on British Labor market data, provide em-
pirical evidence for declining effects of unemployment benefits. In Germany there are two
major types of unemployment benefits: unemployment insurance (“Arbeitslosengeld”) and
unemployment assistance (“Arbeitslosenhilfe”). Unemployment insurance regularly pays a
certain proportion of last income for a first period of unemployment, with receipt of benefits
depending on how much has been contributed to the system beforehand. After this period,
unemployment assistance is paid, but the amount of support is considerably less. Under
certain circumstances, there may be no financial support at all. For more details on unem-
ployment compensation in Germany see Zimmermann (1993). In our sample, there are only
few persons with no financial support during some time. Therefore, we collapse the cate-
gories “unemployment assistance” and “no financial support” and include the time-varying

binary variable
By: Unemployment insurance benefit in month ¢ received (B; = 1) or not (B; = 0)
as a further regressor.

In a first analysis, only the terminating event “end of unemployment”, regardless of a specific

cause is considered. We apply a dynamic binary logit model

_exp(y + 25)
/\(t|$(t)) - 1+ exp(% + Zétﬁt),

where z, = (S;, N;, S;iN;, Al;, A2;, A3;, B;;) contains the fixed or time—varying covariates
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above, and S;NN; is an interaction effect between sex and nationality, with S;N; = 1 for
German males (34 % observed frequency), S;V; = 0 else. The baseline—effect v, and time—
varying covariate effects 3, are modelled by first—order random walks. We prefer first order
random walks for the following reasons: Although estimates tend to be less smooth than
with second—order random walks, they react more flexibly in the presence of unexpected
peaks or other dynamic patterns. Furthermore, first—order random walk models reduce to
traditional models with constant parameters, if corresponding error variances tend to zero.
Thus, smoothness priors defined by first order random walks are in favor of horizontal lines.
Our analysis is based on a final run of 41000 iterations with a burn-in period of 1000. We
stored every 40th sample. We also calculated posterior mode estimators, which were in close

agreement with the MCMC results.

Figure 3a) shows the estimated baseline effect ;. It corresponds to the hazard function for
foreign females, with age between 31 and 40 years and receiving no unemployment insurance
benefit. Apart from a peak at about one year of unemployment, the baseline effect is declining
until month 30. The subsequent increase should not be overinterpreted: data becomes sparse
at that observation period, and also censoring due to unemployment spells of more than 36
months may introduce some bias. The effects of sex and nationality in Figures 3b) and 3c)
have to be interpreted together with the interaction effect of sex and nationality in Figure
3d). Figure 3c) shows that Germans have generally better chances of leaving the state of
unemployment than foreigners, but this effect is vanishing over time. Employment chances
are further enhanced for German men during the first year of unemployment (Figure 3d).
However, this effect also vanishes later on. This may partly be explained by the fact that
Germans with good chances in the labour market have already obtained a job earlier, while

many of the remaining Germans are long-term unemployment persons.

Figure 3e) - g) displays the effect of age. As one might expect, younger individuals (age
< 30) have better chances of getting a job compared to the reference group (age from 31 to
40), especially for the first 15 months, but this effect vanishes later on. The effect of age
between 41 and 50 is negative and almost constant. More surprising is the effect of age >

50: It is negative at the beginning but increases distinctly towords zero with duration of
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Figure 3: Time-varying effects of several covariates. Shown is the posterior median (—) within
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unemployment. How can this be interpreted? Perhaps even more surprising is the effect
of unemployment benefits: It is positive throughout and even increasing with duration of
unemployment. This is in contrast to speculations that unemployment benefits foster apathy
in leaving the state of unemployment. As we will see, this effect and other questions, for
example the peak at about month 12 in the baseline effect, can be better interpreted and
answered by a refined analysis, that distinguishes between different types of terminating

events.

Figure 4 shows Bayesian pointwise credible regions for the hazard function and simultaneous
credible regions for the survival function. Considered are persons aged between 31 and
40 who receive unemployment insurance benefits. All calculations are based on posterior
samples from the corresponding quantities. We see that German men are likely to have
a higher hazard in the first month of unemployment than German women. However, we
observe the inverse trend for the second and third year, where the hazard for women seems
to be even slightly higher. Consequently, the survival function is steeper for men than for
women. Note that for foreign men and women hazard and survival functions are much more

similar.

We explored the dependence of our conclusions upon prior specifications by a sensitivity
analysis as discussed in Section 3.2. We rerun our algorithm with the value of b changed
to 0.0005 for all eight variances. The results can be summarized as follows: In general,
all estimated effects show a very similar pattern as for b = 0.005 (Figure 3). Both point
and interval estimates are visually indistinguishable for parameters with a relatively high
temporal variation such as the baseline effect or the effect of age > 50. The new parameter
b mainly changes a lower limit for the variances, which is much smaller than the estimated
variances anyway. Covariates with less temporal variation show a slightly smoother pattern
with smaller variance estimates. The corresponding credible regions are slightly narrower;
mainly for ¢ > 24. This can be explained by the fact, that the data tends to be sparse towards
the end of the observation period, so prior assumptions are still inherent in the posterior.
Smaller variances therefore cause smaller credible bands. For b = 0.05, the patterns are now

rougher for covariates with low temporal variation such as the effect of nationality.
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To compare results obtained from our Bayesian nonparametric approach, we now reanalyze
the data with a more conventional parametric model. Based on the estimated effects and
associated credible regions displayed in Figure 3, we model the baseline effect and the effects
of sex, age < 30, age > 50 and unemployment benefits as simple functions of time, whereas
the remaining effects are assumed to be constant over time. It should be noted that spec-
ification of appropriate functional forms for time—varying effects will generally be a rather

difficult task without exploring patterns nonparametrically in advance.

For the baseline effect we assume a cubic polynomial

Y = Yo + Y1t + yat® + 3t

A look at the credible regions in Figure 3h) suggests that a simple linear trend function

BP =By + 6t

is appropriate for the effect 32 of unemployment benefits. The effects 37 of sex and ﬁta 8¢ >50

show more variation during the first 12 months of unemployment than later on. Therefore
we model them by a simple regression spline, consisting of a cubic polynomial up to the

cutpoint ¢ = 12 and a linear trend for ¢ > 12; i.e. we assume
B2 = B3 + Bt + B min(0,t — 12)% + G5 min(0,t — 12)?

for the effect of sex, and an analogous model for the effect of age > 50. Since there is less
time—variation for the effect of age < 30, we choose a piecewise constant function with a
jump at t = 12:
ﬁage§30: Gy fort <12
By fort>12
Using the relation between discrete—time duration models and sequential binary models (see
Fahrmeir and Tutz 1994, Ch. 9), maximum likelihood estimation can be carried out with
standard software for generalized linear models. Figure 5 shows the estimated effects of
baseline, sex, age > 50 and unemployment benefits. The overall shape of the baseline effect
in Figure 5a) reflects the nonparametric estimate in Figure 3a), but obviously peculiarities

like the peak around ¢t = 12 cannot be detected by a cubic polynomial. Detailed modeling of
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this peak will require a more complex but less parsimonious parametric specification. The
effect of unemployment benefits in Figure 5d) is quite close to the estimate obtained form
the dynamic model for the first year. Later on the increase of this effect is less distinct for
the nonparametric fit. This can be explained as follows: A large number of observations
has duration less than about one year, while data become sparse towards the end of the
observation period. The fit of the global parametric linear trend model is influenced to a
large extent by the majority of observations with shorter durations. On the other hand, with

a dynamic model the influence of these observations on the fit is declining as time increases.

Similar considerations have also be taken into account when comparing the effects of sex and
age > 50. The effect of age > 50 in Figure 5c¢) is quite similar in shape to that in Figure 3g),
whereas the effect of sex differs a little bit from that of Figure 3b), but is still in agreement
with credible regions. Table (2) gives estimates and standard errors for the remaining effects.

Comparison with Figure 3 shows again quite reasonable agreement.

BASELINE SEX
@ (b)
50 < AGE UNEMPLOYMENT BENEFITS
© @

Figure 5: Estimated effects for the parametric model

As shown by this example, conventional parametric modeling of dynamic effects is possible
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Estimate Std. Err. 95% CI

age > 30 years, t < 12 0.2173 0.0893  0.0422 0.3924
age > 30 years, t > 12 -0.0075 0.2431 -0.4839 0.4688

41 < age < 50 years -0.4623 0.1147 -0.6871 -0.2375
Nationality 0.2536 0.1078 0.0424  0.4649
Sex*Nationality 0.2421 0.1410 -0.0343 0.5186

Table 2: Parameter Estimates

and can be useful as a second step after having explored time-varying structures with non-
parametric approaches in a first analysis. Without the first step however, it will generally be
often quite difficult or even hopeless to specify appropriate but still parsimonious functional

forms and to obtain adequate conclusions.

In our second analysis we now distinguish between three terminating events:

1. employment in a full-time job;
2. employment in a part—time job;

3. further causes like retraining or going to university, completing military or civil service,

retiring, working as a housewife /househusband, and others.

To study event—specific differences in hazard rates and covariate effects, we apply a multi-
nomial dynamic logit model, with m = 3 categories defined by cause 1 (full-time job), 2

(part-time job) and 3 (others). Thus, the observation model is

exp("itr)
3 )

1+ exp(niy)
j=1

By (t)a) =

r=1,23,

with event—specific predictors 1, = v + 2,0;. Covariate vectors z;;, are the same as in the
first analysis. Event specific baseline effects v, and covariate effects 3;,., r = 1,2, 3, are again

modelled by first order random walks.
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The baseline effect for transitions to a full-time or a part—time job show the typical smooth
decreasing pattern often observed with unemployment data (Figure 6). The peak at month
12 appears only in the baseline effect for transitions to other causes. A closer look at the data
shows that transitions “to retirement”, “housewife/househusband” and “other reasons” are
mainly responsible for this peak. A possible explanation may be that these individuals would
lose unemployment insurance benefits after one year and prefer, for example, to retire. A
second reason may be due to the specific kind of questions on employment status in GSOEP:
Participants of the panel fill out questionnaires for every year and have to give answers on
employment status retrospectively for each month. This group tends not to name a certain
month but instead simply name the beginning or end of a year as the time of leaving the
status of unemployment. The effects of sex and nationality are also now much better to
interpret. For example, there is a distinct positive effect for transitions to a full-time job for
men, but also a distinct negative effect for transitions to a part—time job. The nationality
effect provides clear evidence that German females have highly increased chances of getting

a part—time job; maybe they are much more interested in getting part—time jobs.

Also the effects of age can be better explained now (Figure 7). In particular, looking at the ef-
fects of age > 50, we see that chances for getting full-time and part-time jobs are significantly
deteriorated and do not improve with increasing duration of unemployment. However, the
effect of transitions to other causes is near zero and even slightly increasing. This supports
presumptions that older individuals prefer to retire, to become housewife/househusband or
to leave the unemployment register for other reasons. We also see that the time-varying
effect of age > 50 in Figure 3g) is largely caused by confounding the effect of the three types
of transitions into the effect of only one terminating cause. Also, the effects of unemploy-
ment insurance benefits can now be interpreted correctly: The effect is constantly positive
for transitions to a full-time job, presumably since individuals with unemployment insurance
benefits had regular jobs earlier and thus get easier offers for a new full-time job. On the
other side, the effect is clearly negative for transitions to part—time jobs. A possible expla-
nation is that some individuals with good financial support from unemployment insurance

are less motivated to get a part—time job.
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For a parametric reanalysis, we first fitted a model with baseline effects specified as low
order polynomials, but kept all covariate effetcs time—constant. The shape of the estimated
baseline effects was in agreement with our nonparametric analysis, although the peaks in
the baseline effect for “others” could not be reproduced. Attemps to model time-varying
structures in more detail by inclusion of time—varying effects, led to divergence of ML esti-
mates due to the large number of parameters involved. This illustrates that nonparametric
approaches, imposing appropriate smoothness restrictions, are useful tools for refined and

flexible analyses.

5 Conclusions

We conclude with some discussion of topics not treated in detail in the main text, e.g. other

estimation approaches, multiple time scales and unobserved heterogeneity.

In this paper, we propose a certain type of Metropolis—Hastings algorithm. In our context, it
has distinct advantages compared to a Gibbs step combined with rejection sampling based on
knowledge of envelope functions and log—concavity of conditionals (e.g. Gilks and Wild 1992).
Other MCMC sampling schemes for dynamic models have been suggested by Gamerman
(1995) and Shephard and Pitt (1995), but they require distinctly more computation time
per iteration. The multi move schemes of Carter and Kohn (1994) and Frithwirth-Schnatter
(1994), designed for observation models with errors from normal or mixtures of normals,

cannot be extended to discrete observation models.

As a conceptually simpler alternative that avoids MCMC at all, posterior mode estimation
— obtained by maximizing the unnormalized posterior — has been considered in Fahrmeir
(1994, for m = 1) and Fahrmeir and Wagenpfeil (1996). This approach can be viewed as
an empirical Bayes method, since the matrix @) is treated as fixed and unknown, not as a
random variable with some prior distribution. Posterior mode estimation has also a non—
Bayesian interpretation, being equivalent to maximization of a penalized likelihood. Efficient

estimation can be carried out by iterative Kalman filtering and smoothing.

31



However, posterior mode estimation suffers from some disadvantages: Duration data usually
becomes sparse towards the end of the observation period, so inference based on approximate
posterior normality will be questionable. Also, like for any empirical Bayes approach, the
uncertainty associated with estimates of {«a;} is underestimated, since no allowance is made
for the uncertainty associated with (). Furthermore, estimation of functionals of «, such
as hazard or survival functions, has to be based on further approximations like the Delta
method. Posterior mode estimation is, nevertheless, useful as an ingredient of a fully Bayesian
approach: It provides an initial solution for a refined analysis and can be used to check

convergence behavior of simulation-based Monte Carlo methods.

Our concepts and also our applications focused on one time dimension, i.e. that of duration
in a certain state, regarding other time scales such as calendar time, age or cohort as method-
ologically secondary. Although the models of this paper allow the inclusion of other time
scales through covariates, they are not built to deal with multiple time scales in a symmetric
way. Here we outline how this could be achieved. For simplicity, let us only consider the
case of two time scales: duration time ¢ and calendar time u, with one terminating event.

The hazard function, now depending on ¢, u and covariates, may be modelled by

A, ulz) = h(y + 0, + 05 + 2'5y),

where x is a, possibly time—dependent, covariate vector, +,; is the baseline effect for duration
time ¢, 6, is a trend component in calendar time, e.g. a random walk of first order, and 6;
may be a monthly seasonal component, e.g. 65 +---+605_, = v, ~ N(0,02), in calendar
time. Multiple time scales models require appropriate conditional independence assumptions
leading to modified full conditionals for MCMC simulation. In principle real-time effects
0., 0 can be updated using additional Metropolis-Hastings steps analogous to those in
Section 3. However, the simple structure of conditional likelihoods is destroyed, leading to
a considerably increasing amount of implementation and computation requirements. We
plan to consider dynamic models for multiple time scales and to develop efficient MCMC
methods for such models in future research. Close in spirit is the work by Berzuini and
Clayton (1994), who discuss survival models with multiple time scales and time—constant

covariate effects.
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Our dynamic model specifications in Section 2 allow rather flexible modeling of time-varying
hazards and covariate effects. However, they do not explicitly take into account unobserved
heterogeneity or frailty. For example, differences between short— and longterm unemploy-
ment might be considered as a potential source of unobserved heterogeneity that is not
or insufficiently explained by observed variables. The effect of neglected heterogeneity on
estimation of hazards and covariate effects in duration models with fixed parameters has
been studied by a number of authors, see e.g. Lancaster (1990). The most important con-
sequence of neglecting unobserved heterogeneity is that it may appear as spurious duration

dependence.

The conventional procedure to account for heterogeneity is to introduce unit-specific param-
eters, say #;, in the linear predictor and to assume that they are random effects, distributed
according to some mixing distribution fy;. Two main approaches to the modeling of this
mixing distribution have been proposed. The first assumes a parametric form, e.g. a log—
Gamma or a normal density, for fy. For discrete-time duration models with fixed effects
and a single terminating event (m = 1), one treatment is to extend the linear predictor 7;
additively to
Tie = 0 +0;,  0; iid~ N(0,0%),

and to carry out inference by MCMC, see Raftery, Lewis and Aghajanian (1995). Clayton
(1991) uses a log-Gamma distribution instead in so called frailty models. This approach can

be combined with dynamic models by extending the linear predictor to
Nit = O + l‘;tﬁt + 91', 02 11d ~ N(O, 02)

and to add a further full conditional for #; in the MCMC updating steps. For panel data
with many repeated events, such mixed dynamic models have been successfully implemented
and applied by Knorr-Held (1995). For duration models, without repeated events, there is
some evidence given in the literature that estimates can be very sensitive to the choice of the
mixing distribution, see e.g. Meyer (1990). The likelihood of observations becomes rather
flat, so that the prior has much influence on the posterior. This is also to be expected for the
second approach, where a discrete distribution, typically with small number of mass points,

is chosen for fy (Heckman and Singer 1984). In addition, the effect of heterogeneity decreases
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with flexible models for baseline hazards (Narendranathan and Stewart 1993) and may be
even less serious if time—varying covariate effects are introduced. For duration models with
several terminating events (m > 1), these problems become even more evident, since the
extension to this case is accompanied by additional prior assumptions. It is therefore likely
that misspecification of the mixing distribution can be worse than omitting heterogeneity.
Therefore, and since our interest here lies in allowing flexibility in form of time—varying effects
of duration dependence, we have restricted attention to models without heterogeneity. This
has to be kept in mind for a careful interpretation of the results in Section 4. For example, the
time—varying effect of nationality in Figure 3c) reflects differences in short—term and long—
term unemployment between Germans and non-Germans. Concerning short unemployment,
Germans have better chances for leaving unemployment, but this effect vanishes for longterm
unemployment. Thus, time—varying effects may be interpreted as caused by unobserved

heterogeneity.

Other interesting extensions, where our approach should be useful, are dynamic continuous—
time duration models, e.g. the dynamic piecewise exponential model development by Gamer-
man (1991), with an application to unemployment data in Gamerman and West (1987), and

event history models for multiple cycles and states e.g. semi-Markov models.

Obviously, a large number of possible models raise questions about model determination and
validation, that are beyond the scope of this paper. Bayesian model choice via MCMC is
currently an intensive research area; promising solutions are based on Bayes factors (Lewis

and Raftery 1994, Raftery 1996) or on predictive distributions; see Gelfand (1996).
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