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Summary

We investigate the possible bias due to an erroneous missing at random assump�

tion if adjusted odds ratios are estimated from incomplete covariate data using the

maximum likelihood principle� A relation between complete case estimates and

maximum likelihood estimates allows us to identify situations where the bias va�

nishes� Numerical computations demonstrate that the bias is most serious if the

degree of the violation of the missing at random assumption depends on the value

of the outcome variable or of the observed covariate� Implications for the analysis

of prospective and retrospective studies are given�
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�� Introduction

The analysis of incomplete data is a challenge of the daily work of app�
lied statisticians� The restriction to units with complete data is the standard
approach of most statistical software packages� Such a complete case ana�
lysis� however� is wasteful of information� Recently the e�cient analysis of
regression models based on incomplete covariate data gathered a lot of at�
tention� the book of Vach ��		
� and the paper of Robins et al� ��		
�



present an overview� However� these sophisticated approaches to handle mis�
sing values rely on the missing at random �MAR� assumption� which excludes
dependence of the observability of a covariate on its unobserved value�

In practical applications this assumption is often highly questionable�
This is especially true if covariate data are collected by interviews or que�
stionnaires� such that missing values can be due to an active refusal of sub�
jects� Such a refusal may depend on the true value of a covariate� for example
if one asks for alcohol consumption� sexual behaviour or income� Using do�
cuments like hospital records as a source for data collection similar problems
occur� Strange symptoms or unusual treatments are usually well documented
when they are present� but their absence results often only in a gap in the
documents� In view of these problems one may argue that it is better to use
methods not relying on the MAR assumption� e�g� a complete case analy�
sis� However� in the analysis of case�control studies a complete�case analysis
can result in biased estimates� and hence in this setting the use of advanced
methods is even necessary to achieve consistent estimates�

In this paper we investigate the bias due to a violation of the MAR
assumption in the special case of logistic regression which aims to estimate
adjusted odds ratios� We restrict ourselves to the case of two categorical
covariates where only the second is a�ected by missing values� In Section 

we introduce some basic notations and in Section � some aspects of missing
value mechanisms are discussed� Section 
 investigates the bias of complete
case estimates� and in Section � we show� how the maximum likelihood �ML�
estimate based on incomplete data is related to the complete case estimates�
This allows us to investigate in Section � the possible asymptotic bias of
the ML estimate� and some numerical results are presented� too� Section �
investigates some alternative semiparametric procedures and in Section � we
consider implications for the analysis of prospective and retrospective studies
with incomplete covariate data� A general discussion �nishes the paper�


� Notation

Let Y be a binary outcome variable and X� and X� two categorical
covariates with J andK categories� respectively� If all variables are observable
the corresponding contingency table has the cell probabilities pijk �� P �Y �
i�X� � j�X� � k�� Within the k�th stratum of X� the odds ratio between
the j�th category of X� and the �rst category is

�jk ��
p�jkp��k
p�jkp��k

and within the j�th stratum of X� the odds ratio between the k�th category






of X� and the �rst category is

�jk ��
p�jkp�j�
p�jkp�j�

where we can replace pijk also by the conditional probabilities pijjk �� P �Y �
ijX� � j�X� � k�� In estimating adjusted odds ratios we assume that the
odds ratios are constant over di�erent strata� i�e�

�j �� �jk for all k and �k �� �jk for all j

This can be equivalently expressed as

p�jjk
p�jjk

� ��j�k

with an additional parameter � � In logistic regression the logarithms of the
odds ratios are considered as parameters� i�e�

log
p�jjk
p�jjk

� �� � ��j � ��k

with exp���� � � � exp���j� � �j and exp���k� � �k� such that pijjk��� �
���� � ��j � ��k�i�� � ���� � ��j � ��k����i with ��t� �� �� � exp��t�����

In this paper we consider the additional di�culty that the second cova�
riate is unobservable for some subjects� The observability of X� is indicated
by the binary random variable R�� such that we observe instead of X� the
random variable Z� with

Z� ��

�
X� if R� � �
� otherwise

�

The observation of n independent realizations of �Y�X�� Z�� can be summari�
zed in a 
�J� �K��� contingency table nijk� where the �K����th category
corresponds to a missing value for X�� The cell probabilities of this table are
determined by the original pijk and the response probabilities

qijk �� P �R� � �jY � i�X� � j�X� � k� �

A special role will be played by the observable response rates bQij �� nij��nij�
with nij� �� nij� � � � �� nijK and nij� �� nij� � � � �� nijK��� Here bQij is an
estimate for Qij �� P �R� � �jY � i�X� � j� �

P
k qijkP �X� � kjY � i�X� �

j��

�



�� Missing Value Mechanisms

The properties of any statistical method to handle such incomplete data
depend on the unknown response probabilities qijk� which cannot be estima�
ted observing only Y�X� and Z�� Hence assumptions on the missing value
mechanism are necessary to insure desired statistical properties� Of central
importance is the MAR assumption introduced by Rubin ��	���� which ex�
cludes a dependence of response probabilities on unobserved values� In our
setting� the MAR assumption reads

qijk � qij �

and is equivalent to P �X� � kjY � i�X� � j�R� � �� � P �X� � kjY �
i�X� � j�R� � �� for all i� j� k� i�e�� it allows us to assume that unobserved
values of X� have the same conditional distribution as the observed values�
Hence this assumption is the key to an adequate handling of missing values�

In this paper we focus on the possible bias due to an erroneous MAR
assumption� The theoretical results will depend on the assumption that the
response rates can be decomposed to qijk � qjkqi� qijk � qikqj� or qijk � qijqk�
In practice it will be di�cult to identify situations� where such a decompo�
sition holds without that one of the factors is equal to one� But in many
applications assumptions like qijk � qjk or qijk � qik can be justi�ed by the
design of a study� and these are special cases of the above decompositions�
This will be discussed in more detail in Section ��


� Complete case analysis

In a complete case analysis all subjects with incomplete covariate data
are omitted in the analysis� Hence estimation is based on the analysis of a

 � J �K contingency table with cell probabilities

pCCijk �� P �Y � i�X� � j�X� � kjR� � ��
� qijkpijk�P �R� � ��

and hence with odds ratios

�CCjk �� �jf
�
jk with f�jk ��

q�jkq��k
q�jkq��k

and

�CC
jk �� �kf

�

jk with f�jk ��
q�jkq�j�
q�jkq�j�

�

In general� �CCjk may depend on k and �CC
jk may depend on j� hence the

essential assumption for the estimation of adjusted odds ratios is violated�
However� if the response rates can be decomposed into two factors� i�e� if






qijk � qjkqi� qijk � qikqj� or qijk � qijqk� then the odds ratios are constant and

hence coincide with the stochastic limits of the estimates ��CCj and ��CC
k from

a complete case analysis� The resulting asymptotic bias factors �CCj ��j and
�CC
k ��k are summarized in the following table�

condition �CCj ��j �CC
k ��k

qijk � qijqk
q�jq��

q�jq��
�

qijk � qikqj � q�kq��
q�kq��

qijk � qjkqi � �

The third condition of this table was previously identi�ed by Glynn and
Laird ��	��� as the essential condition to assure consistent estimation for a
logistic regression analysis based on complete cases� For any regression model
the condition qijk � qjk implies consistency of the complete case regression
estimates� because the selection process only changes the distribution of the
covariates� but not the regression model� Logistic regression allows additio�
nally the factor qi� because a selection depending only on the outcome only
changes the intercept� which is the essential argument in using logistic re�
gression in the analysis of case�control studies �Breslow and Day �	����
Further aspects of biased estimation in a complete case analysis are discussed
by Vach and Blettner �		� and Vach ��		
� pp� ���
���

�� ML estimation under the MAR assumption

Obviously a complete case analysis is not an e�cient method of esti�
mating �j� because the neglected subjects carry information on the relation
between Y and X�� The MAR assumption allows us to use the information
from these subjects� Let us �rst note that under the MAR assumption the
complete case estimates may be biased� As now qij and Qij coincide� the bias
factor depends only on estimable quantities� A �rst idea is to correct for this
bias� i�e� to consider the corrected complete case estimates

b�CCCj �� ��CCj � bf�j with bf�j ��
bQ�j

bQ��bQ�j
bQ��

�

b�CCC
k �� ��CC

k and ��CCC �� ��CC�
bQ��bQ��

This estimate was �rst considered by White ��	�
� for the case of a binary
X�� The same estimate was considered by Cain and Breslow ��	��� as a
special case of a conditional maximum likelihood estimate in a more general

�



setting �Breslow and Cain �	���� The motivation outlined above was �rst
presented by Vach and Blettner ��		���

If not only the removal of bias but also e�ciency is our goal� estimation
by the ML principle is a straightforward choice� However� besides the MAR
assumption application of the ML principle requires a speci�cation of a pa�
rametric family of distributions for the conditional distribution of X� given
X� �Ibrahim �		�� Vach and Schumacher �		��� As both covariates are
categorical in our setting� we can use the conditional probabilities

	kjj �� P �X� � kjX� � j�

directly� Hence the ML estimates for ��� 	� result from maximizing

L��� 	� ��
Y
i�j

�Y
k

�
pijjk���	kjj

�nijk��X
k

pijjk���	kjj

�nij�
�

Using preliminary results of Weinberg and Wacholder ��		��� we show
in the Appendix that the resulting estimates are identical to the corrected
complete case estimates� This allows a simple investigation of the asymptotic
bias in the next section�

Standard theory for maximum likelihood estimation ensure that the ML
estimates of � are consistent and e�cient �e�g� Lehmann �	��� p� 
���� if
the MAR assumption is valid�

�� Asymptotic bias of ML estimates under violation of the MAR assumption

As b�CCC
k � b�CC

k � the results on the asymptotic bias of b�CC
k apply also

to the ML estimates of �k� Hence we can restrict ourselves to the asymptotic
bias in estimating �j�

Whenever the complete case estimate b�CCj is consistent� the asymptotic
bias factor of the ML estimate� i�e� the ratio between the stochastic limit ofb�ML
j and �j is equal to F

��
j with

Fj ��
Q�jQ��

Q�jQ��

�

In the general case� F��
j has to be multiplied additionally by the bias factor

of the complete case estimate� This allows someone to identify two important
situations� where the asymptotic bias vanishes� First� if the second covariate
has no in�uence or� second� if �j � � and the covariates are independent�
However� we need additional assumptions on the missing value mechanism�

�



Lemma �� If �k � � and one of the following conditions holds� then the ML
estimate for �j is consistent� The three conditions are�

i� qijk � qjkqi
ii� qijk � qijqk
iii� qijk � qikqj �X� and X� are independent

Proof� �k � � implies P �X� � kjY � i�X� � j� � 	kjj� Hence Qij �P
k qijk	kjj� Now i� implies Qij � qi

P
k qjk	kjj� hence Fj � �� ii� implies

Qij � qij
P

k qk	kjj� hence Fj � q�jq��

q�jq��
� which coincides with the asymptotic

bias factor of the complete case estimate� iii� implies 	kjj � 	k and further
Qij � qj

P
k qik	k� hence Fj � �� �

Lemma �� If �j � �� qijk � qijqk and if X� and X� are independent� then the
ML estimate of �j is consistent�

Proof� �j � � and independence of X� and X� imply P �X� � kjY � i�X� �
j� � P �X� � kjY � i�� Hence Qij � qij

P
k qkP �X� � kjY � i� and Fj

coincides with the asymptotic bias factor of the complete case estimate� �

Under the conditions of Lemma 
� but with �j �� �� it does not hold
that the bias is always toward �� Even if additionally qijk � qk and X� is a
balanced dichotomous covariate� there exist constellations with �j 
 � and
an asymptotic bias factor larger than ��

These theoretical results are directly of no great practical value� because
none of the conditions is likely to be satis�ed completely in practice� Ho�
wever� they may indicate the main factors with in�uence on the asymptotic
bias� The size of the e�ect of X�� the degree of dependence between X� and
X�� and the special type of the violation of the MAR assumption� To validate
these factors� we compute the numerical value of the asymptotic bias for a
variety of parameter constellations in the setting of two dichotomous covaria�
tes� For each choice of response rates we compute the maximal absolute bias
in estimating a true ��� of ��� varying P �X� � ��� P �X� � �� and P �Y � ��
between ��
 and ��� by a step width of ��� and considering all possible com�
binations� For the dependence of X� and X� we investigate odds ratios of
���� ��� and 	�� and with respect to the in�uence of X� we consider the cases
��� � ��� and ��� � 
���

We �rst consider constellations where the response rates do not depend
on the outcome variable �Table ��� For all constellations we observe that the
bias depends on the degree of correlation between X� and X� and on the
size of ���� If the response rates do not depend on X�� that is qijk � qk� a
small violation of the MAR assumption results in a small bias� even if ���

�



and the degree of dependence between X� and X� is large� but increasing
the degree of violation the bias may become unacceptably large� A similar
picture is shown in the third and fourth row� where the response rates depend
on X�� but still can be factorized� that is qijk � qjqk� However� if this does
not hold� a small violation can induce a large bias even if the covariates are
independent� which is demonstrated in the �fth row� where the ratio of the
response probabilities between X� � 
 and X� � � depend on X�� Even if
the covariates are independent and balanced� a dependence of the degree of
violation on the �rst covariate is a major source of bias� which is shown in
Figure ��

Table � about here

Figure � about here

Second we consider constellations where the response rates depend on
the outcome variable� but not on the �rst covariate �Table 
�� Again the
in�uence of the degree of dependence of the covariates and the size of ���
is obvious� In the �rst two rows the response rates can be factorized� that
is qijk � qiqk� and the results agree with the corresponding results in Table
�� which can be also shown using the results above� From the third row we
conclude that a dependence of the degree of violation on the outcome can
be a source of bias� however independence of the covariates seems to limit
this bias� This combined in�uence of the dependence of the covariates and of
the dependence of the degree of violation on the outcome variable is further
demonstrated in Figure 
 for the case of balanced covariates and a balanced
outcome variable�

Table � about here

Figure � about here

�� Semiparametric methods

In the case of two categorical covariates the ML principle provides an
appropriate tool to achieve e�cient estimates� If the covariates are conti�
nuous� the necessity to specify parametric families for conditional distribu�
tions among the covariates prevents its application in practice� Semipara�
metric approaches avoid this problem and have been considered by several
authors �Pepe and Fleming �		�� Carroll and Wand �		�� Flanders
and Greenland �		�� Reilly and Pepe �		
� Robins et al� �		
�� In
our setting two of these approaches result in rather simple and intuitive me�

�



thods� which have been shown to be less e�cient than ML estimation �Vach
�		
�� Hence it may be worth to investigate� whether the loss of e�ciency
under the MAR assumption may be counterbalanced by a smaller bias under
violation of the MAR assumption�

The approaches of Pepe and Fleming ��		�� and Carroll and Wand

��		�� reduce in our setting to the maximization of the likelihood L��� b	�
where b	 is a consistent estimate for 	� Vach and Schumacher ��		��
showed that the estimate

b	V Skjj ��
n�jk� bQ�j � n�jk� bQ�j

n�j�

is consistent under the MAR assumption and does not require additional as�
sumptions as do the original proposals� The estimate achieved by maximizing
L��� b	� can be regarded as a pseudo maximum likelihood estimate b�PML� In
the Appendix we show that under the assumption qijk � qjk the estimatesb	V Skjj and b	ML

kjj have the same stochastic limit� This implies that b�ML andb�PML have the same asymptotic bias�

The approach of Reilly and Pepe ��		
� reduces in our setting to the
analysis of a 
� J �K contingency table with estimated entries

bnijk �� nijk � nij�
nijk
nij�

�
nijkbQij

�

Due to the appealing interpretation Vach and Blettner ��		�� called this
method �Filling�� Under the assumption qijk � qiqjk the stochastic limitepijk of bnijk�n is equal to pijkqiqjk�Qij� hence the corresponding odds ratios

satisfy e�jk � �j�Fj and e�jk � �k� This implies that estimates from the �lled
table have the same asymptotic bias as the ML estimates� Computations
of the asymptotic bias for response rates not satisfying qijk � qjk or qijk �
qiqjk� respectively� show only slight di�erences between the three estimates�
Hence these methods provide no alternative to reduce the sensitivity against
violation of the MAR assumption�

�� Implications for the analysis of prospective and retrospective studies

So far we have identi�ed some major sources of bias due to a violation
of the MAR assumption� Speci�c constellations of the response probabilities
are one source� As these probabilities are unknown and cannot be estimated
from the available data� we have to rely on a�priori assumptions� However�
the design of a study and the conceptual meaning of covariates may allow
such assumptions�

	



In many studies we �rst collect data on the covariates and later on data
on the outcome variable representing an event happening after �nishing collec�
tion of covariate data� This prospective measurement of the outcome variable
is typical for controlled clinical trials� where all covariates are measured at
baseline� In this setting we can usually exclude a dependence of the response
rates on the outcome variable� i�e� qijk � qjk holds� This implies that com�
plete case estimates are consistent� If we decide to use ML estimation under
the MAR assumption to improve e�ciency� a large bias due to a violation of
the MAR assumption can easily be identi�ed� because then the ML estimates
di�er distinctly from the complete case estimates� However� if the di�erence
is small� we do not know� whether this indicates bias or whether it is just the
necessary correction to improve e�ciency� The next point is to check whe�
ther we can additionally assume qjk � qk� as this would reduce the risk of a
serious bias� There are situations where it is obvious that we cannot exclude
such a dependence� e�g� if X� is age or sex and X� is a question on sexual
behaviour� However� often the conceptual context of the covariates allows
to exclude such a dependence� This is especially true if X� is a randomized
treatment� In any case one should look at the size of the e�ect of X� and the
degree of dependence between X� and X�� Whereas the �rst is estimated in a
consistent manner even if the MAR assumption is violated� estimates of the
latter may be biased too�

We should mention that even in such a prospective setting the assump�
tion qijk � qjk may be violated� if there is a latent variable with strong impact
on the outcome variable and the missing value mechanism� In clinical trials
such a variable may be a positive�negative attitude to clinical medicine in ge�
neral or the patients expectation on the success of the therapy or unpleasant
side e�ects�

If data on the outcome variable is collected in a retrospective manner�
the assumption qijk � qjk is highly questionable� Especially in case�control
studies di�erent data collection procedures for cases and controls imply some
dependence of the response probabilities on the outcome� Additionally� if
the missing at random assumption is questionable di�erent data collection
procedures are likely to result in a di�erent degree of the violation of the MAR
assumption� Hence the situation qijk � qik can be regarded as typical for a
case control study� Now if X� is the exposure of interest and X� is a potential
confounder� i�e� if X� and X� are correlated and X� has an e�ect on Y � our
numerical results suggest that the typical situation results in substantial bias�
Additionally� any problem mentioned above for the prospective setting can
occur also in the retrospective setting�

��



Note that in case�control studies with incomplete covariate data the use
of the prospective logistic model can be justi�ed �Wacholder and Wein�

berg �		
� Carroll et al� �		���

	� Conclusions

A violation of the MAR assumption can result in a serious bias� if me�
thods relying on this assumption are used to handle incomplete covariate
data� We investigated this bias for the case of logistic regression with two
categorical covariates� where only the second is a�ected by missing values�
With respect to the estimation of the e�ect of the completely observed co�
variate� our investigations suggest that this bias is small if we have a pure
violation in the sense that the response probabilities depend only on the true
value of the covariate� An additional dependence on the �rst covariate or on
the outcome variable can be a source of serious bias� Furthermore the degree
of dependence between the covariates and the size of the e�ect of the second
covariate have an impact on the bias�

Our results can be generalized in the way that X� can be a vector of
categorical covariates and that the regression model includes interactions with
X�� If X� is continuous our results are also valid� if we consider ML estimation
with arbitrary conditional distributions D�X�jX� � j� putting mass only
on the observed values of X�� In a related framework Cosslett ��	���
considered estimates of this type�

The results of this paper allow some qualitative statements about the
magnitude of a potential bias� In applications we need additional quantitative
information about a possible bias� especially if we have some prior information
on the kind and magnitude of the violation of the MAR assumption� Vach
and Blettner ��		�� provide a framework to estimate regression parameters
under a speci�ed non MAR mechanism and suggest a sensitivity analysis by
investigating systematically the variation of the parameter estimates under
speci�ed violations� Their conclusions derived from some examples agree with
the results of this paper� First� they observe that the estimates are not too
sensitive against violations of the MAR assumption if the observed response
rates are equal� Second� they observe in the analysis of a case�control study
that estimates are highly sensitive against violations of the MAR assumption
if the degree of violation di�ers between cases and controls�
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Appendix

We have to show the identity of b�CCC and b�ML� We will do this in a
more general framework of regression models with

p�jjk��� ��

p�jjk��� ��
� �jgjk���

with a prespeci�ed function gjk� Our proof follows closely that of Wein�

berg and Wacholder ��		��� who show a similar identity to justify the
prospective analysis of case�control studies�

The ML estimate �b�ML� b�ML� b	ML� maximizes

L��� �� 	� ��
Y
i�j�k

pijjk��� ��
nijk

Y
j�k

	
n

�jk

kjj

Y
i�j

pijj��� �� 	�
nij�

with pijj��� �� 	� ��
KX
k��

pijjk��� ��	kjj

The estimate �b�CCC � b�CCC � can be expressed as the maximum of

L���� �� �
Y
i�j�k

p�ijjk��� ��
nijk with

p��jjk��� ��

p�
�jjk��� ��

� �j
bQ�jbQ�j

gjk��� �

i�e� of a likelihood with an appropriate o�set�

In a �rst step� we show that for � �xed� b�ML��� and b�CCC��� coincide�
For complete data summarized in a 
� J �K contingency table with entriesenijk it can be shown that for � �xed the ML estimate e� is uniquely determined
by X

k

en�jkp�jjk�e�� �� � n�j� for all j ���

and the ML estimate e	 satis�es

e	kjj � en�jken�j�
�
�

For incomplete data� the ML estimate �b�� b	� �� �b�ML���� b	ML���� is a �xed
point of the EM algorithm �Dempster� Laird and Rubin �	���� hence b�
and b	 satisfy ��� and �
� for the contingency table with entries

bnijk �� nijk � nij�Pb��b����X� � kjY � i�X� � j� �

�




hence X
k

bn�jkp�jjk�b�� �� � bn�j� � n�j� for all j and ���

b	kjj � bn�jkbn�j�
�
bn�jk

n�j�

This implies

p�jj�b�� �� b	� �X
k

p�jjk�b�� ��b	kjj � �

n�j�

X
k

bn�jkp�jjk�b�� �� � n�j�
n�j�

�
�

and

b	kjj �� n�jk

n�j�H
bQ
jk�b�� �� with HQ

jk��� �� ��
�X
i��

Qijpijjk��� �� � ���

The latter follows from

b	kjj � bn�jk

n�j�
�

�

n�j�

�
n�jk �

�X
i��

nij�
pijjk�b�� ��b	kjj
pijj�b�� ��

�

and hence with �
�

b	kjj � n�jk

�
n�j� �

�X
i��

nij�
n�j�

nij�
pijjk�b�� ��

���

�
n�jk

n�j�

�
� �

�X
i��

�� � bQij�pijjk�b�� ��
���

�

Now ��� is equivalent toX
k

n�jkp
�
�jjk�b�� �� � n�j� for all j ���

because bn�jk � n�j�b	kjj � n�jk�H
bQ
jk�b�� �� and

p�jjk�b�� ��
H
bQ
jk�b�� �� �

�

� � b�jgjk���
� bQ�j
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� � b�jgjk��� � bQ�j

�

� � b�jgjk���
���

�
�bQ�j � bQ�jb�jgjk��� �

�bQ�j

�

� � b�jgjk��� bQ�jbQ�j

�
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As b�CCC ��� is uniquely determined by ���� this �nishes the �rst step� In the
second step we show that the di�erence of the pro�le loglikelihood

logL��b����� ��� logL�b����� �� b	���� ���

��



is independent of �� which implies the coincidence of b�CCC and b�ML� ��� is
equal to

X
i�j�k

nijk log
p�ijjk�b����� ��
pijjk�b����� �� �

X
j�k

n�jk log b	kjj����X
i�j

nij� log pijj�b����� �� b	����
and p�ijjk�b����� ���pijjk�b����� �� � bQij�H

bQ
jk�b����� ��� which we have shown above

for i � � and which can be shown similarly for i � �� With b	kjj��� �
n

�jk

n
�j�
�H

bQ
jk�b����� �� and �
� we have shown that ��� does not depend on ��

It remains to prove the results of Section �� Under the assumption qijk �
qjk the stochastic limit of b	V Skjj is equal to

�

p�j�

�
qjkp�jk
Q�j

�
qjkp�jk
Q�j

�
� qjk	kjj

�
p�jjk
Q�j

�
p�jjk
Q�j

�

and by ��� the stochastic limit of b	ML
kjj is equal to qjk	kjjH

Q
jk��

�� ���� where

�� is the stochastic limit of b�ML� i�e� ��
j �� �j�

Q�j

Q�j
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Q�j
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hence the stochastic limits coincide�
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Table �� Maximal absolute bias in estimating ��� � ��� for selected response
probabilities not depending on the outcome variable
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Table 
� Maximal absolute bias in estimating ��� � ��� for selected response
probabilities depending on the outcome variable�
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Figure �� Asymptotic bias of the ML estimate b�ML
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Figure 
� Asymptotic bias of the ML estimate b�ML
�� in dependence of
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