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Abstract

The Generalized Estimating Equations (GEE) proposed by Liang and
Zeger (1986) have found considerable attention in the last years and sev-
eral extensions have been proposed. This paper will give a more intuitive
description how GEE have been developed during the last years. Addi-
tionally we will describe the advantages and disadvantages of the different
parametrisations that have been proposed in the literature. We will also
give a brief review of the literature available on this topic.

Keywords: Generalized Estimating Equations, Marginal Models, Correlated Data
Analysis

1 Introduction

The primary goal of the analysis is in most regression models to investigate the
influence of certain covariates on the response variable. Theoretical results for
estimating parameters in regression models are available mainly for continuous
and normal distributed response variables. However, in praxis the response
variable is often binary or categorical and only recently some theoretical work
has been published on regression models for this situation.

Generalized linear models (GLM) as described for example by Nelder and
Wedderburn (1972) and McCullagh and Nelder (1989) are regression models
to analyse continuous or discrete response variables. The association between
the response variable and the covariables is given by the so-called link func-
tion. GLM assume that the observations are independent and do not consider
any correlation between the outcome of the n observations. Marginal models,
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conditional models and random effects models are extensions of the GLM for
correlated data.

In the marginal model, the primary interest of the analysis is to model the
marginal expectations of the response variable given the covariables. Here, the
correlation - or more general the association - between the outcome variables is
modelled separately and is regarded as nuisance parameter. The major goal is
to investigate the effect of the covariables in the population on the response vari-
able. Including the correlation structure in estimating the effects mainly yields
different variance estimation. Marginal models have been introduced first by
Zeger, Liang and Self (1985), Liang and Zeger (1986) and Zeger and Liang
(1986). In these articles the authors give a detailed definition of the approach
and describe several applications. Their approach is termed Generalized Esti-
mating Equations (GEE) and can be interpreted as a synthesis of the Feasible
Generalized Least Squares (FGLS) approach (Greene, 1993) and the GLM.

Several procedures have been developed to estimate parameters in marginal
models. Here, we will describe first the approach from Liang and Zeger, and
then give an example and explain how to use this approach for analysing a data
set with dependent observations. We will also give some recommendations for
the application of this methods and a brief literature review.

2 The Generalized Estimating Equations of Or-
der 1 (GEE1)

Let y;; be a vector of responses from n clusters, e.g. families or periods, with
T observations for the ith cluster, i = 1,...,n. For each y;; several covariates
x;; are available, where the first element of «;; is 1 to allow the inclusion of
an intercept. The data can be summarised to the vector y, and the matrix
X; = (x},...,2lp)". The method can be extended to unequal cluster sizes T;.
The pairs (y;, X;) are assumed to be independent identically distributed (iid).
We will first describe models for TE(y;; |#4¢). It is necessary to find a method
that can deal with the association between the T observations of the cluster ¢.
For linear models, this method is FGLS. Suppose E(y;; | X ;) = By |@i) = @}, 3,
where 3 1s the unknown p x 1 parameter vector of interest. Furthermore, assume
that the conditional variance matrix of y; given on X, is known and given
by Cov(y,;|X;) = V;. Then, the general multivariate linear regression model
estimator can be obtained via the estimating equations (score equations)

w(B)= X'V y— ) =0, )

where X and y are the stacked X; matrices and vy, vectors, respectively. V
is the block diagonal matrix of the V;, pu; = p;(8) = X3 and p is defined
analogously to y.

The estimator is unbiased and under the assumption of normality finite
normal distributed, otherwise asymptotically normal distributed. Its covariance
matrix is given by the inverse Fisher information matrix. For this estimator the
Gaufi-Markov—Theorem holds.

If Cov(y;|X;) = Q; # V), the estimator still remains unbiased. However,
instead of the Fisher information matrix the robust variance matrix with the



socalled sandwich form of White (1982), Gourieroux and Monfort (1984) or
Liang and Zeger (1986) has to be used. This variance matrix has the form

-1

V(B) = (X’V‘lX)_l(X’V_lﬂV_lX) (X’V‘lX) , 2)

where € is defined analogously to V.. An estimator of (2) can be obtained by
replacing §2; by Q; = (y; — ;) (y; — i)', where p1; = X ;3. Note that £; is not
an estimator for £;.

Instead of using a fixed covariance matrix V;, a model for V; = V;(«)
depending on an association parameter a can be used. This approach is called
FGLS (Greene, 1993). The estimator B is obtained in a two step procedure: In
the first step the association parameter & for o and in a second step B for 3 is
estimated.

This approach can also be used to model dependencies within clusters in
linear models. However, the linear model is inadequate in many applications.
For independent observations, the GLM allows flexibility in modelling mean and
variance structures. In GLM, the mean structure is given by F(y;¢ [#i) = pir =
g(x!,B), where g is a non-linear response function. ¢g~! is termed link function.
An important property of the GLM is the functional relation between mean and
variance: v = V(yi|®it) = h(pe). ks called variance function. In general, an
assumption of the distribution motivates the link and the variance function of
the GLM.

For independent observations, the parameter vector 3 is estimated using
the maximum likelihood method: The distribution—say the Binomial or Pois-
son distribution—determines the likelihood equations (score equations) that are
given by derivatives of the log-likelihood function with respect to 3. The score
equations have the form

W)= o e = vy em=0
i=1

where D; = dp; /93" is the diagonal matrix of the first derivatives and V; is the
diagonal matrix of the variances V; = diag(v;). (3) are called independence
estimation equations (IEE).

A solution of (3) exists only for the linear model with normal distributed re-
sponse variables—in all other situations, they have to be solved iteratively. The
estimator B is consistent and asymptotically normal distributed with covariance
matrix COU(B) =(D'V™'D)"L.

For correlated observations the true variance matrix cannot have a diagonal
form. For correlated data, Zeger et al. (1985) proposed the use of the robust
variance estimation of White (1982):

n -1 n n -1
VB = (z Divrlfal) (z b;vrlﬁivrlbi> (z DZV?IDJ n
=1 =1 =1

In this equation, €2 is the block diagonal matrix of €; = (y; — ) (y; — )
is defined by the link function of the GLM.

The estimation will not be very efficient, because of the diagonal form of V.
An approach that has been proposed by Liang and Zeger (1986) and Zeger and
Liang (1986) allows a more efficient estimation by combining the GLM and the



FGLS procedures: First, consider a model for the expectation and the variance
using the GLM approach. In this case V; is not necessarily a diagonal matrix
but a covariance matrix which is closer to the true covariance matrix £2; then
the diagonal matrix. The association (correlation) is not of interest here. For
an estimator R; of the correlation matrix of y, conditional on X ;, the estimator
for V; is given in the form

vi=A"RA"”, (5)

L o —L/2 . . . .
with A; ° | the estimated inverse square root of the diagonal matrix of the
variances v;;. RZ should be a positive definite 7' x T' matrix that describes
well the association-structure. For estimating this "working correlation matrix’,
Liang and Zeger (1986) used the method of moments. The choice of the work-
ing correlation matrix R;, has been discussed for example by Liang and Zeger
(1986) in some detail. If the identy matrix is used for the working correlation
matrix, (5) is reduced to a diagonal matrix for the variances, and the estimation
equations are given by the IEE (3).

The interpretation of the estimation is difficult, if the working correlation
matrix is not well specified—that means if 1t is not close to the true correlation
matrix—as a function of a (Crowder, 1995).

With the estimated working correlation matrix R; and the diagonal matrices

A;, the Generalized Estimating Equations (GEEL) have the form
1< sl
u(B) = n Z;Divi (yz - Hi(ﬁ)) =0. (6)

The term “generalized” is somehow misleading, however it is justified con-
sidering that Liang and Zeger (1986) have developed the equation system (6)
from the GLM respectively TEE.

GEE1 means that only first order moments, i.e. mean structure, are esti-
mated consistent. Note that (6) is similar to the FGLS estimator where in the
first step the variance matrix V; and in the second step the parameter vector
3 are estimated.

If 3 is estimated using equation (6), B is under suitable regularity conditions
consistent, if p;r = F(yse|®ir) = E(yir|X;) is specified correctly. The GEE1
estimator is asymptotically normal distributed. The variance can be estimated
consistently with the robust estimator (4) and V; as in (5); see e.g. Liang
and Zeger (1986), Zeger and Liang (1986), Gourieroux and Monfort (1984),
Rotnitzky (1988) and Ziegler (1994b). If V'; is specified correctly, i.e. ; = V7,
it follows that B is efficient in the sense of Rao—Cramér
(see Gourieroux and Monfort, 1984; Ziegler, 1994b).

Most estimators proposed by Liang and Zeger (1986) for the correlation
structure R; can be developed using estimation equations (see Crowder, 1995;
Ziegler, 1994b). Tt follows that additionally to the estimation equations for 3
a second equation system can be introduced for ao. The general form of this
estimation equation system is (Prentice, 1988)

u(e) = 2 BW (5 - () =0 7



In (6) the expectation y; of y;, is given as a function of the parameters 8. In
(7) the vector form g,(c) of the correlation matrix R; () is given as a function
of the parameters of association a. z; is defined analogous to the response
vector y,. Note that the product of the Pearson-residuals z;+» do not only
include observations but also parameters. E; is the matrix including the first
derivatives of g;(a) with respect to a. WZ»_1 can be interpreted as the inverse
of the covariance matrix of z;.

The advantage of using (7) is that non-linear correlation structures can be
estimated. Like the link function in the GLM, we can define the association with
the explanatory variables X; in the form g;(a) = 0;(X;, ) (Prentice, 1988).
However, it is not straight forward to define a reasonable function to model
the association between the correlation structure g;(X;, «) and the covariables
X; (see Lipsitz, Laird and Harrington, 1991; Lipsitz, Fitzmaurice, Orav and
Laird, 1994; Ziegler, Kastner, Gromping and Blettner, 1996; Ziegler, 1995).
The problem is that the covariables can be continuous but the correlations are
restricted to the interval [-1;1]. Therefore it is necessary to define restrictions
for the correlation structure which should be non-linear functions analogous to
the well-known link function. An example for such a function is given by the
inverse of Fisher’s z—transformation (Lipsitz et al., 1991). The transformation
has a similar interpretation as the link function in GLM and we will call it “link
function for the association”.

3 Generalized Estimating Equations for Estima-
tion of Mean and Association (GEE2)

In the last section we described estimating equations that allow a consistent
estimation of the mean. We will now describe a set of equations that will allow
the estimation of the first and the second moments jointly and consistently.
These estimating equations are called GEE2. Note however, that Liang, Zeger
and Quagish (1992) used the term GEE2 only for the simultaneous estimation
of the mean and the association. We believe that it is better to distinguish
between estimating equation of first and second order.

Currently, no clear and unique definition of GEE2 is possible, as several
procedures are summmarised by this term. In this section, we will describe the
development of the different estimating equation systems. The two systems, (3)
and (7), have a comparable from and under certain regulation conditions the
estimators B and & are asymptotically normal distributed.

The proof of the asymptotic distribution has been given by Prentice (1988)
but without the exact definition of the regularity conditions. Prentice (1988)
also gives the asymptotic covariance matrix. The two equations (3) and (7) can
be imbedded into the Generalized Method of Moments (GMM) (see Hansen,
1982; Newey, 1993) as shown in (Ziegler, 1995) and therefore the asymptotic
normality can be proven with the conditions given by Hansen (1982).

(3) and (7) can be summarised to one system of estimating equations:

sy 1[5 0\ v 0y
w _ ' o8’ Y; Yi — K
(a) n; 0 Jo; ( 0 V(Zi)) (Zi—Qi) 0 ®

da’



It can be seen that the matrix of the first derivatives and the working covariance
matrix are matrices in a block-diagonal form. Therefore, (8) is a simplification
of the following system:

u(g):

o op; ' 1
n & Jdo;, Jo; Cov(zs,y;) V() zi—0 )
=\ o oo

Note that g, is a function of the association parameter «, if du; /da’ # 0.

However, this assumption is not always plausible. Additionally, it is difficult
to interpret a mean vector that includes «. In most applications, the mean
values are only defined as a function of S—mnot depending on a. The form
Op;/0a’ = 0in (9) implies also that the association—here the correlation—is a
function of 8. In general, g, is defined with Fisher’s z and therefore independent
of B. In most applications where the correlation was used, dg,;/d8" = 0 was
assumed.

If the matrix of the first derivatives has a block-diagonal form, then V has to
be block diagonal, to guarantee unbiased estimators B for 3 (see Prentice and
Zhao, 1991; Ziegler, 1994b). With this approach, modelling o using Fisher’s z
yields (8), as 8 is not needed to model the association.

So far, we only defined estimating equations using the correlation as mea-
surement for the association. However, the equations could also be defined using
the covariance matrix. Then s;rp = (yir — phie) (Yier — parr) and o0 = E(s5000) =
Cov(yit, yir') are used instead of z and g, The first derivatives and the
working variance matrices have to be changed accordingly.

The main question is, how to model the association between o; and « and o;
and 3 respectively. o0 = (vitvit/)_l/zgm/ and therefore o;;4» can be modelled
as a function of B via v;; and as a function of a via g;¢sr.

For this equation system the following holds: If p, and o; are specified cor-
rectly as functions of a and 3, then B,d can be estimated consistently and
the estimators are asymptotically normal distributed (see Gourieroux and Mon-
fort, 1984; Zhao and Prentice, 1990; Zhao and Prentice, 1991; Prentice and
Zhao, 1991; Gourieroux and Monfort, 1993). The asymptotic covariance matrix
is given e.g. by Prentice and Zhao (1991). The estimating equation system with
the covariance matrix i1s not often used, probably due to the following disadvan-
tage compared to (3) and (7): Here, it is necessary to specify p, correctly as well
as o; in order to obtain a consistent estimator of 3. Due to the independence
of (3) and (7) and g;, the estimator 3 is consistent even if g;() is not specified
correctly. The interpretation of the parameter « is not improved by using o;
instead of g;. The advantage of using the covariance structure to model the
association compared to the system (3) and (7) is that the estimation equations
can be obtained using a (pseudo) maximum likelihood (PML2) approach (see
Gourieroux and Monfort, 1984; Gourieroux and Monfort, 1993) as shown by
(Ziegler, 1994b). This allows to define exact regularity conditions.

With the PML2 methods, the estimating equations can also be described
using second moments (see Zhao and Prentice, 1990; Prentice and Zhao, 1991;
Liang et al., 1992; Ziegler, 1994b). The relationship between the second mo-



ments and the log odds ratios can be described easily (Bishop, Fienberg and
Holland, 1975). In this situation, the log odds ratio can be modelled as linear
functions of the covariables X; and the unknown parameter c.

If (9) is used together with the log odds ratio, then consistent estimators
B and ¢ exist and are jointly (multivariate) normal distributed, if mean and
association structure are specified correctly (see Zhao and Prentice, 1990; Pren-
tice and Zhao, 1991; Gourieroux and Monfort, 1984; Gourieroux and Mon-
fort, 1993; Ziegler, 1994b). The asymptotic covariance matrix is given in Liang
et al. (1992). A misspecification of o can lead to an inconsistent estimate of 3,
since B and « are estimated simultaneously.

The orthogonal models for the parameter « and 8 (Liang et al., 1992) and
the log odds ratio for the association structure can be used to transform the
simultaneous estimation procedure of B,d into a two-step procedure. Then
B is consistent, even if a is not specified correctly. This approach is called
‘alternate logistic regression (ALR)’ (Carey, Zeger and Diggle, 1993), here the
logit-link 1s used as link function. The advantage of the two-step procedure was
first observed by Firth, D. and Diggle, P. in their discussions of the paper by
Liang et al. (1992). The ALR corresponds to the approach of Prentice (1988),
except that the log odds ratio is used instead of the correlation. It can only be
used if the response is categorical.

There 1s a further problem using marginal models for binary variables to
estimate the mean and association structure: If the correlation or marginal
log odds ratios were used instead of conditional log odds ratios, the parameter
space of the association parameters is for correlation bounded if T' > 2 and for
marginal log odds ratios if 7' > 3 (see Fitzmaurice and Laird, 1993; Fitzmaurice,
Laird and Lipsitz, 1994). These aspects are discussed in detail in Prentice
(1988), Liang et al. (1992), Fitzmaurice and Laird (1993), Fitzmaurice et al.
(1994), Ziegler (1994b) and Ziegler et al. (1996). A possible solution of this
problem is to investigate the full likelihood (see Fitzmaurice and Laird, 1993;
Fitzmaurice et al., 1994).

4 An example: A 2 x 2 Crossover Trial

The data given here to illustrate some practical issues are from a 2 x 2 crossover
trial on cerebrovascular deficiency adapted from Jones and Kenward (1989), re-
spectively Diggle, Liang and Zeger (1994). Treatments A and B are active drug
and placebo, respectively. The outcome y;; indicates whether an electrocardio-
gram of the person i at time ¢, ¢ = 1,2 was judged abnormal (y;; = 1) or normal
(yit = 0). The results are presented in table 1.

response

Group | (1,1) (0,1) (1,0) (0,0)
AB 22 0 6 6
BA 18 4 2 9

Table 1: response profiles 2 x 2 crossover trial

Among 34 persons that were treated first with the drug and then with the
placebo, 28 had a normal result in the first period and 22 in the second period.



Model
Variable 1 | 2 | 3
constant 0.431 0.666 0.660
(1.209) [1.210] (2.335) [2.313] (2.056) [2.297]
period (1) 0.175 -0.295 -0.274
(0.347) [0.347] | (-1.271) [-1.276] | (-0.728) [-1.181]
treatment (z2) 1.110 0.669 0.558
(1.934) [1.934] (2.433) [2.444] (1.475) [2.393]
interaction (z122) -1.023 — —
(-1.045) [-1.045]
assoclation « 1.447 1.449 —
(3.673) [3.216] (3.705) [3.256]

Table 2: estimation results

Out of 33 persons with the combination BA | 20 normal values were observed in
the first period and 22 in the second period.

We will use several GEE models for these data which include n = 67 ob-
servations, T = 2. The models include two covariables: #;; = 1 if ¢t = 2 and
;1 = 0,if t = 1, and 2;5 = 1, if person ¢ receives treatment A (Medicament),
otherwise 0.

The link function is the logit link and for variance the binomial distribution
1s assumed. The association does not depend on the covariates. The estimators
for the parameters of different models are given in table 2. Model-based z values
are given in parentheses and robust z values are given in brackets. Note that
our results are slightly different to those given by Diggle et al. (1994).

In this example, we used the GEEl equations from Prentice (1988). The
parameter for the association is defined by Fisher’s z and the estimated corre-
lations are the same for model 1 and model 2 (p = 0.619). Model 2 includes in
contrast to model 1 not an interaction term and so the treatment effect becomes
statistically significant (p < 0.05). Ignoring the association within the clusters
(model 3), yields a non-significant treatment effect if the model-based variance
is calculated. However, using the robust variance matrix yields a significant
result (p < 0.05).

5 Recommendations for the Use of GEE

For practical use, some recommendations are needed to decide whether the ML
methods for multivariate distributions (e.g. FGLS or the approach by Fitzmau-
rice and Laird (1993)) or GEE methods should be used.

In general, the ML method should only be used if the complete distribution
of y,, conditional on X, is specified correctly. If this is not the case, misspeci-
fication may yield inconsistent estimators of the parameters, either only for the
asymptotic variance matrix or for both, the parameters and their asymptotic
variance matrix. GEE1 yields inconsistent estimators for the mean, if it is not
specified correctly. However, the association between observations within the
clusters is treated as nuisance parameter. The use of the robust estimators for
the variance has to be used, if misspecification of the association structure is



possible. If the investigation of the association i1s the main goal of the analysis,
GEE2 can be used, but only if the mean and association structure are specified
correctly. GEE2 yields—if block-diagonal matrices are used—consistent estima-
tion of the mean-structure even if the association is not specified correctly.

Several authors have investigated the efficiency and the consistency of the
GEEL approach: Paik (1988), Park (1993), Sharples (1989), Sharples and Bres-
low (1992), Lee, Scott and Soo (1993), McDonald (1993), Emrich and Piedmonte
(1992), Royall (1986). However, the results are inconsistent and many questions
remain open. The efficiency of GEE2 estimation has not been investigated in
detail. Some theoretical results exist for the asymptotic distributions in the
context of PML2 estimation (Gourieroux and Monfort, 1984) and for the GMM
estimation (Newey, 1993).

Vach, Grémping and Schulz (1994) have shown that for panel data with time
dependent exogenous covariables, IEE is preferable to avoid biases for 3, if the
assoclation structure is not specified correctly. For a detailed discussion see also
Sullivan Pepe and Anderson (1994)

Lee et al. (1993) have shown for a simple model that the robust variance es-
timation for BIEE yields an estimator that underestimates the true covariance
matrix. However, all estimation procedures—including ML—yield an underesti-
mation of the covariance matrix. As the covariance can be estimated consistent,
small sample size yields biased estimation. This bias decreases with the number
of clusters n (see Sharples, 1989; Sharples and Breslow, 1992).

It was noted that GEE2 algorithm does converge less often then GEEL.
To apply GEE2, a simple structure of the working matrix is recommended. If
convergence problems occur, it is recommended to use e.g. the idendity matrix
as upper right block of the working matrix. Further simplification is obtained
by setting the third moments to 0. This working matrix is called “working-
covariance matrix for applications” (Kastner, 1994).

From published theoretical results and our own experience we recommend
that GEE should only be used if at least 30 clusters with 7' < 4 are available.
Liang and Zeger (1986) have proposed the GEE as a more efficient procedure
than TEE but the authors found in their own application that only a small gain
in efficiency was obtained using the working correlation matrix. We recommend
to use IEE first and to model other association structures in a second step.

The problem of missing values for the GEE has been investigated recently
by Ziegler (1994b), Ziegler (1996) and in Robins, Rotnitzky and Zhao (1995),
Robins and Rotnitzky (1995), Rotnitzky and Robins (1995).

A detailed description of the test problem with GEE and in connection to the
pseudo maximum mikelihood methods is given in Rotnitzky (1988), Rotnitzky
and Jewell (1990), Gourieroux and Monfort (1993), Arminger (1995) and Ziegler
(1996). Also, regression diagnostic techniques for the GEE have been well-
developed (see Hall, Zeger and Bandeen-Roche, 1994; Ziegler, Bachleitner and
Arminger, 1995).

An extension of the univariate GLM is the multivariate GLM. While in the
univariate GLM a parameter vector 3 is used that is the same for all ¢, this is no
longer necessary in the multivariate GLM. GEE can be extended in an analogous
manner so that the parameter vectors 3, can be estimated. This extension is
important for longitudinal studies where the influence of the covariates changes
with time. This extension is well-described in several papers, e.g. by Wei and



Stram (1988), Lipsitz, Kim and Zhao (1994), Ziegler and Arminger (1995) or
Ziegler (1994b).

Ordered categorical and non-ordered categorical data are discussed in some
papers mainly as in this context convergence problems occur frequently (see
Stram, Wei and Ware, 1988; Lipsitz, Kim and Zhao, 1994; Clayton, 1992; Ziegler,
1994a; Ziegler, 1994b; Miller, 1995; Miller, Davis and Landis, 1993; Liang et al.,
1992; Kenward, Lesaffre and Molenberghs, 1994; Kastner, 1994).

Several programs are available for the application of GEE (see Karim and
Zeger, 1988; Lipsitz and Harrington, 1990; Davis, 1993; Gromping, 1993; Kast-
ner, 1994; Ziegler, 1994b), however, the robust variance matrix can also be
estimated using Jack-knife techniques (Lipsitz, Dear and Zhao, 1994).
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