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Abstract

A new diagnostic tool for the identification of differential item function-
ing (DIF) is proposed. Classical approaches to DIF allow to consider only
few subpopulations like ethnic groups when investigating if the solution of
items depends on the membership to a subpopulation. We propose an ex-
plicit model for differential item functioning that includes a set of variables,
containing metric as well as categorical components, as potential candi-
dates for inducing DIF. The ability to include a set of covariates entails
that the model contains a large number of parameters. Regularized esti-
mators, in particular penalized maximum likelihood estimators, are used
to solve the estimation problem and to identify the items that induce DIF.
It is shown that the method is able to detect items with DIF. Simulations
and two applications demonstrate the applicability of the method.

Keywords: Rasch model, differential item functioning, penalized maximum like-
lihood, DIF lasso.

1 Introduction

Differential item functioning (DIF) is the well known phenomenon that the prob-
ability of a correct response among equally able persons differs in subgroups. For
example, the difficulty of an item may depend on the membership to a racial, eth-
nic or gender subgroup. Then the performance of a group can be lower because
these items are related to specific knowledge that is less present in this group.
The effect is measurement bias and possibly discrimination, see, for example,
Millsap and Everson (1993); Zumbo (1999). Various forms of differential item
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functioning have been considered in the literature, see, for example, Holland and
Wainer (1993); Osterlind and Everson (2009); Rogers (2005).

We will investigate DIF in item response models, focussing on the Rasch
model. In item response models DIF is considered to be uniform, that is the
probability of correctly answering is uniformly greater for specific subgroups. A
main contribution in this area is Thissen et al. (1993), where tests are used to
find items that show DIF. More recently, DIF has been embedded into the frame-
work of mixed models (Van den Noortgate and De Boeck, 2005) and Bayesian
approaches have been developed (Soares et al., 2009).

A severe limitation of existing approaches is that they are typically limited
to the consideration of few subgroups. Most often, just two subgroups have been
considered with one group being fixed as the reference group. The objective of
the present paper is to provide tools that allow for several groups but also for
continuous variables like age to induce differential item functioning. We propose
a model that lets the item difficulties to be modified by a set of variables that
can potentially cause DIF. The model necessarily contains a large number of pa-
rameters which raises severe estimation problems. But estimation problems can
be solved by regularized estimation procedures. Although alternative strategies
could be used we focus on regularization by penalization, using penalized maxi-
mum likelihood (ML) estimates. The procedure allows to identify the items that
suffer from DIF and investigate which variables are responsible.

More recently Strobl et al. (2010) proposed a new approach that is also able to
handle several groups and continuous variables but uses quite different estimation
procedures. The work stimulated our research and we will compare our method
to this alternative approach.

In Section 2 we present the model, in Section 3 we show how the model can
be estimated. Then we illustrate the fitting of the model by use of simulation
studies and real data examples.

2 Differential Item Functioning Model

We will first consider the binary Rasch model and then introduce a general para-
metric model for differential item functioning.

2.1 The Binary Rasch Model

The most widespread item response model is the binary Rasch model (Rasch,
1960). It assumes that the probability that a participant in a test scores on an
item is determined by the difference between two latent parameters, one repre-
senting the person and one representing the item. In assessment tests the person
parameter refers to the ability of the person and the item parameter to the diffi-
culty of the item. More generally the person parameter refers to the latent trait
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the test is supposed to measure. With Xpi ∈ {0, 1} the probability that person p
solves item i is given by

P (Xpi = 1) =
exp(θp − βi)

1 + exp(θp − βi)
p = 1, . . . , P , i = 1, . . . , I

where θp is the person parameter (ability) and βi is the item parameter (difficulty).
A more convenient form of the model is

log(
P (Xpi = 1)

P (Xpi = 0)
) = θp − βi, (1)

where the left hand side represents the so-called logits, Logit(P (Xpi = 1) =
log(P (Xpi = 1)/P (Xpi = 0)). It should be noted that the parameters are not
identifiable. Therefore one has to fix one of the parameters. We choose θP = 0,
which yields a simple representation of the models to be considered later.

Under the usual assumption of conditional independence given the latent
traits the maximum likelihood (ML) estimates can be obtained within the frame-
work of generalized linear models (GLMs). GLMs for binary responses assume
that the probability πpi = P (Xpi = 1) is given by g(πpi) = xT

piδ, where g(.) is the
link function and xpi is a design vector linked to person p and item i. The link
function is directly seen from model representation (1). The design vector, which
codes the persons and items and the parameter vector are seen from

log(
P (Xpi = 1)

P (Xpi = 0)
) = θp − βi = 1T

P (p)θ − 1T
I(i)β,

where 1T
P (p) = (0, . . . , 0, 1, 0, . . . , 0) has length P − 1 with 1 at position p, 1T

I(i) =
(0, . . . , 0, 1, 0, . . . , 0) has length I with 1 at position i, and the parameter vectors
are θ = (θ1, . . . , θP−1), β = (β1, . . . , βI) yielding the total vector δT = (θT ,βT ).
The design vector linked to person p and item i is given by xT

pi = (1T
P (p),−1T

I(i)).
GLMs are extensively investigated in McCullagh and Nelder (1989), short

introductions with the focus on categorical data are found in Agresti (2002)
and Tutz (2012). The embedding of the Rasch model into the framework of
generalized linear models has the advantage that software that is able to fit
GLMs and extensions can be used to fit models very easily.

2.2 A General Differential Item Functioning Model

In a general model that allows the item parameters to depend on covariates that
characterize the person we will replace the item parameter by a linear form that
includes a vector of explanatory variables. Let xp be a person-specific parameter
that contains, for example, gender, race, but potentially also metric covariates
like age. If βi is replaced by βi+xT

p γi with item-specific parameter γi one obtains
the model
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log
P (Xpi = 1)

P (Xpi = 0))
= θp − (βi + xT

p γi) (2)

For illustration let us consider the simple case where the explanatory variable
codes a subgroup like gender, which has two possible values. Let xp = 1 for males
and xp = 0 for females. Then, if item i functions differently in the subgroups,
one has the item parameters

βi + γi for males and βi for females.

Then γi represents the difference of item difficulty between males and females.
If one prefers a more symmetric representation one can choose xp = 1 for males
and xp = −1 for females obtaining

βi + γi for males and βi − γi for females.

Then γi represents the deviation of the sub-populations in item difficulty from the
baseline difficulty βi. Of course in an item that does not suffer from differential
item functioning, one has γi = 0 and therefore, items for males and females are
equal.

The strength of the general model (2) is that also metric covariates like age
can be included. Thinking of items that are related to knowledge on computers
or modern communication devices the difficulty may well vary over age. One
could try to build more or less artificial age groups, or, as we do, assume linear
dependence of the logits. With xp denoting age in years the item parameter is
βi + ageγi. If γi = 0 the item difficulty is the same for all ages.

The multi-group case is easily incorporated by using dummy-variables for the
groups. Let R denote the group variable, for example, race with k categories,
that is, R ∈ {1, . . . , k}. Then one builds a vector (xR(1), . . . , xR(k−1)), where
components are defined by xR(j) = 1 if R = j and xR(j) = 0 otherwise. The
corresponding parameter vector γi has k − 1 components γT

i = (γi1, . . . , γi,k−1).
Then the parameters are

βi + γi1 in group 1, . . . βi + γi,k−1, in group k − 1 βi in group k.

In this coding the last category, k, serves as reference category, and the param-
eters γi1, . . . , γi,k−1 represent the deviations of the subgroups with respect to the
reference category.

One can also use symmetric coding where one assumes
∑k

j=1 γij = 0 yielding
parameters

βi + γi1 in group 1, . . . βi + γi,k−1, in group k − 1 βi + γik in group k.

In effect one is just coding a categorical predictor in 0 − 1-coding or effect
coding, see, for example, Tutz (2012).
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The essential advantage of model (2) is that the person-specific parameter
includes all the candidates that are under suspicion to induce differential item
functioning. Thus one has a vector that contains age, race, gender and all the
other candidates. If one component in the vector γi is unequal zero the item
is group-specific, the parameter shows which of the variables is responsible for
the differential item functioning. The model includes not only several grouping
variables but also metric explanatory variables.

The challenge of the model is to estimate the large number of parameters
and to determine which parameters have to be considered as unequal zero. The
basic assumption is that most of the parameters do not depend on the group, but
some can. One wants to detect these items and know which one of the explana-
tory variables is responsible. For the estimation one has to use regularization
techniques that are discussed in the next section.

3 Estimation by Regularization

3.1 Maximum Likelihood Estimation

Let the data be given by (Xpi,xp), p = 1, . . . , P, i = 1, . . . , I. Maximum likelihood
estimation of the model is straightforward by embedding the model into the
framework of generalized linear models. By using again the coding for persons
and parameters in the parameter vectors 1P (p) and 1I(i) the model has the form

log
P (Xpi = 1)

P (Xpi = 0))
= θp − βi − xT

p γi

= 1T
P (p)θ − 1T

I(i)β − xT
p γi.

With the total vector given by (θT ,βT ,γT
1 , . . . ,γ

T
I ) one obtains for observation

Xpi the design vector (1T
P (p),−1T

I(i), 0, 0, , . . . ,−xT
p . . . , 0, 0), where the component

−xT
p corresponds to the parameter γi.
Although ML estimation is straightforward estimates will exist only in very

simple cases, for example, if the explanatory variable codes just wo subgroups.
In higher dimensional cases ML estimation will deteriorate and no estimates or
selection of parameters are available.

3.2 Penalized Estimation

In the following we will consider regularization methods that are based on penalty
terms. The general principle is, not to maximize the log-likelihood function, but
a penalized version. Let α denote the total vector of parameters, in our case
α = (θT ,βT ,γT

1 , . . . ,γ
T
I ). Then one maximizes the penalized log-likelihood

lp(α) = l(α)− λJ(α),

5



where l(.) is the common log-likelihood of the model and J(α) is a penalty term
that penalizes specific structures in the parameter vector. The parameter λ is
a tuning parameter that specifies how serious the penalty term has to be taken.
A widely used penalty term in regression problems is J(α) = αTα, that is, the
squared length of the parameter vector. The resulting estimator is known under
the name ridge estimate, see Hoerl and Kennard (1970) for linear models and
Nyquist (1991) for the use in GLMs. Of course, if λ = 0 maximization yields
the ML estimate. If λ > 0 one obtains parameters that are shrunk toward zero.
In the extreme case λ → ∞ all parameters are set to zero. The ridge estimator
with small λ > 0 stabilizes estimates but does not select parameters, which is the
main objective here. Penalty terms that are useful because they enforce selection
are L1-penalty terms.

Let us start with the simple case of a univariate explanatory variable, which,
for example, codes gender. Then the proposed lasso penalty for differential item
functioning (DIF-lasso) is given by

J(θT ,βT ,γT
1 , . . . ,γ

T
I ) =

I∑

i=1

|γi|,

which is a version of the L1-penalty or lasso (for least absolute shrinkage and selec-
tion operator), which was propagated by (Tibshirani, 1996) for regression models.
It should be noted that the penalty term contains only the parameters that are
responsible for differential item functioning, therefore only the parameters that
carry the information on DIF are penalized. Again, if λ = 0 maximization yields
the full ML estimate. For very large λ all the γ-parameters are set to zero. There-
fore in the extreme case λ → ∞ the Rasch model is fitted without allowing for
differential item functioning. The interesting case is in between, when λ is finite
and λ > 0. Then the penalty enforces selection. Typically, for fixed λ, some
of the parameters are set to zero while others take values unequal zero. With a
carefully chosen tuning parameter λ the parameters that yield estimates γ̂i > 0
are the ones that show DIF.

For illustration we consider a Rasch model with 10 items and 70 persons.
Among the 10 items three suffer from DIF induced by a binary variable with
parameters γ1 = 2, γ2 = −1.5, γ3 = −2. Figure 1 shows the coefficient build-
ups for the γ-parameters for one data set, that is, how the parameters evolve
with decreasing tuning parameter λ. In this data set ML estimates existed.
We do not use λ itself on the x-axis but a transformation of λ that has better
scaling properties. Instead of giving the λ-values on the x-axis we scale it by
‖γ̂‖/ max ‖γ̂‖, where max ‖γ̂‖ corresponds to the L2-norm of the maximal
obtainable estimates, that is, the ML estimates. On the right side of Figure 1
one sees the estimates for λ = 0 (‖γ̂‖/max‖γ̂‖ = 1), which correspond to the
ML estimates for the DIF model. At the left end all parameters are shrunk to
zero, corresponding to the value of λ, where the simple Rasch model without DIF
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is fitted. Thus the figure shows how estimates evolve over diminishing strength
of regularization. At the right end no regularization is exerted, at the left side
regularization is so strong that all γ-parameters are set to zero. The vertical
line shows the tuning parameter selected by BIC (see below), which represents
the best estimate for this selection criterion. If one uses this criterion all items
with DIF (dashed lines) are selected, obtaining estimates unequal zero. But for all
items without DIF the estimates are zero. Therefore in this data set identification
was perfect.
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Figure 1: Coefficient build-up for Rasch model with DIF induced by binary

variable, dashed lines are the items with DIF, solid lines are the items without

DIF.

In the general case with a vector of covariates that potentially induce DIF a
more appropriate penalty is a modification of the grouped lasso (Yuan and Lin,
2006; Meier et al., 2008). Let γT

i = (γi1, . . . , γim) denote the vector of modifying
parameters of item i, wherem denotes the length of the person-specific covariates.
Then the group lasso penalty for item differential functioning (DIF-lasso) is

J(θT ,βT ,γT
1 , . . . ,γ

T
I ) =

I∑

i=1

‖γi‖,

where ‖γi‖ = (γ2
i1 + · · · + γ2

im)
1/2 is the L2-norm of the parameters of the ith

item with m denoting the length of the covariate vector. The penalty encourages
sparsity in the sense that either γ̂i = 0 or γis 6= 0 for s = 1, . . . ,m. Thus the
whole group of parameters collected in γi is shrunk simultaneously toward zero.
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For a geometrical interpretation of the penalty, see Yuan and Lin (2006). The
effect is that in a typical application only some of the parameters get estimates
γ̂i 6= 0. These correspond to items that show DIF.

Choice of Penalty Parameter

An important issue in penalized estimation is the choice of the tuning parameter
λ. In our case it determines the numbers of items identified as inducing DIF.
Therefore it determines if all items with DIF are correctly identified and also
if some are falsely diagnosed as DIF-items. To find the final estimate in the
solution path it is necessary to balance the complexity of the model and the data
fit. However, one problem is to determine the complexity of the model, which in
penalized estimation approaches is not automatically identical to the number of
parameters in the model. We worked with several criteria for the selection of the
tuning parameter, including cross-validation and AIC criteria with the number
of parameters determined by the degrees of freedom for the lasso (Zou et al.,
2007). A criterion that yielded a satisfying balancing and which has been used in
the simulations and applications is the BIC (Schwarz, 1978) with the degrees of
freedom for the group lasso penalty determined by a method proposed by Yuan
and Lin (2006). Here, the degrees of freedom (of penalized parameters γ) are
approximated by

d̃fγ(λ) =
I∑

i=1

I(‖γi(λ)‖ > 0) +
I∑

i=1

‖γi(λ)‖
‖γML

i ‖ (m− 1).

Since the person parameters and the item parameters are unpenalized, the total
degrees of freedom are df(λ) = I + P + d̃fγ(λ) − 1. The corresponding BIC is
determined by

BIC(λ) = −2 · l(α) + df(λ) · log(P · I),
where l(α) is the log-likelihood of the current parameter vector α.

Some Remarks

We focus on penalized ML estimation. Regularized estimation with penalty terms
has the advantage that the penalty term is given explicitly, and therefore it is
known how estimates are shrunk. An alternative procedure that could be used is
boosting. It selects relevant variables by using weak learners and regularization is
obtained by early stopping, see, for example, Bühlmann and Hothorn (2007), and
for logistic models Tutz and Binder (2006). Although the form of regularization
is not given in an explicit form it typically is as efficient as regularization with
corresponding penalty terms. Also mixed model methodology as used by (Soares
et al., 2009) to estimate DIF can be combined with penalty terms that enforce
selection. However, methodology is in its infancy, see, for example, Ni et al.
(2010); Bondell et al. (2010).
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4 The Fitting Procedure At Work

In the present section it is investigated if the procedure is able to detect the items
that show DIF. This is done in a simulation study where it is known which items
are affected by DIF.

Illustration

For illustration we will first consider several examples. In the first exam-
ple we have 70 persons, 10 items, three with DIF (γT

1 = (−1, 0.8, 1), γT
2 =

(−1.1, 0.5, 0.9), γT
3 = (1,−1,−1), γT

4 = . . . = γT
10 = (0, 0, 0)). The upper panel

in Figure 2 shows the coefficient build-ups for an exemplary data set. Now one
item is represented by three lines one for each dimesion of the covariate. Again,
items with DIF are given by non-solid lines and items with DIF by solid lines. In
this data set the BIC criterion selects all the items with DIF and sets all items
without DIF to zero. In the lower panel one sees a data set where identification
is not perfect. It is seen that some items without DIF are falsely considered as
inducing DIF. But also in this data set the items with DIF are the first ones to
obtain estimates unequal zero when penalization is relaxed. The items without
DIF obtain estimates unequal zero but estimates are very small.

An example without DIF is seen in Figure 3. The setting is the same as
before (P = 70, I = 10) but all γ-parameters are set to zero. It is seen that the
procedure also works well in the case of the Rasch model because all γ-parameters
are estimated as zero.

For further illustration we show in the upper panel of Figure 4 the estimates
of 100 simulated data sets for the same setting as in Figure 2. The box-plots
show the variability of the estimates, the stars denote the underlying true values.
The β-parameters in the left block represent the basic item parameter, which are
estimated rather well. In the next block the modifying parameters γis are shown
for items with DIF and in the last block the modifying parameters for items
without DIF are shown. In this last block the stars that denote true values are
omitted since they are all zero. Overall the estimates of the basic β-parameters
(first block) and the items without DIF (third block) are quite close to their true
values. In particular the estimates of the parameters that correspond to items
without DIF are zero or close to zero and are frequently diagnosed as not suffering
from DIF. The γ-parameters in the middle block, which correspond to items with
DIF, are distinctly unequal zero and therefore the DIF-items are identified. But
the latter estimates are downward biased because of the exerted penalization,
which shrinks the estimates.

The bias can be removed and estimators possibly improved by an additional
refit. The fit of the model in combination with the selection of the tuning pa-
rameter yields the set of items that are considered as suffering from DIF. To
avoid shrinkage and bias one can compute a final un-penalized ML fit of the re-
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Figure 2: Coefficient build-up for Rasch model with DIF induced by three

variables, dashed lines are the items with DIF, solid lines are the items without

DIF, upper panel shows perfect identification, in the lower panel identification is

not perfect.

duced model that contains only the parameters that have been selected as being
non-zero. In the lower panel of Figure 4 the estimates with a final refit step are
given. While the estimation of the basic β-parameters has hardly changed, the
downward bias in item parameters for items with DIF is removed. However, the
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Figure 3: Coefficient build-up for Rasch model without DIF .

estimates of parameters for items without DIF automatically suffers. If one of
these items is diagnosed as DIF-item the final ML-fit yields larger values than
the penalized estimate.

Simulation Scenarios

In the following we give results for selected simulation scenarios based on 100 sim-
ulations. The person parameters are drawn from a standard normal distribution
and we consider scenarios with varying strength of DIF. The item parameters
have the form βi + xT

p γi. We always work with standardized person characteris-
tics xp, that is, the components have variance 1. A measure for the strength of
DIF in an item is the variance Vi = var(βi + xT

p γi), which has the value
∑

j γ
2
ij

for independent components. The average of
√
Vi over the items with DIF gives a

measure of the strength of DIF in these items. The implicitly used reference value
is the standard deviation of the person parameters, which is 1. For the parameter
given previously the average is 1.61. We consider this scenario as strong DIF, the
value 1 (for parameters γij/1.61) as medium DIF and 0.8 (for parameters γij/2)
as weak DIF. An overall measure of DIF in a setting is the average of

√
Vi over

all items. For the strong scenario with 10 items one obtains 0.48, for the medium
and weak 0.3 and 0.24, respectively.

When calculating mean squared errors we distinguish between person and
item parameters. For person parameters it is the average over simulations of
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Figure 4: Upper panel: Box plots of estimates for Rasch model with DIF

induced by three variables, stars denote true values. Lower panel: the same

model with a final ML step on selected items.

∑
p(θ̂p − θp)

2/P . For items it is the squared difference between the estimated

item difficulty and the actual difficulty
∑

p

∑
i[(βi+xT

p γi)− (β̂i+xT
p γ̂i)]

2/(I ·P ).
One of the main objectives of the method is the identification of items with

DIF. The criteria by which the performance of the procedure can be judged are
the hits or true positives (i.e. the number of correctly identified items with DIF)
and the false positives (i.e. the number of items without DIF that are falsely
diagnosed as items with DIF).

The settings are the following. The first has been used in the illustrations

12



given before, but, for completeness it is given again.

• Setting 1: 70 persons, 10 items, 3 with DIF on 3 variables, parameters
(strong DIF): γT

1 = (−1, 0.8, 1), γT
2 = (−1.1, 0.5, 0.9), γT

3 = (1,−1,−1),
γT
4 = . . . = γT

10 = (0, 0, 0), two variables binary, one standard normally
distributed,

• Setting 2: 120 persons, items as in setting 1,

• Setting 3: 300 persons, 40 items, 4 with DIF on 5 variables, parame-
ters (strong DIF): γT

1 = (−1, 0.8, 0, 0, 1), γT
2 = (0, 1.1, 0.9, 0, 0.9), γT

3 =
(0.8, 0,−1,−1, 0), γT

4 = (0, 0, 1, 0.9, 0.7), γT
5 = . . . = γT

40 = (0, 0, 0, 0, 0),
two variables binary, three standard normally distributed.

In Table 1 the MSEs as well as the hits and false positive rates are given for
the fit of the Rasch model (without allowing for DIF), the DIF-lasso and the DIF-
lasso with refit. It is seen that the accuracy of the estimation of person parameters
does not depend on the strength of DIF. It is quite similar for strong, medium
and weak DIF. Also the fitting of the Rasch model or DIF-lasso yields similar
estimates of person parameters. The refit, however, yields poorer estimates in
terms of MSE for smaller number of persons, but for 300 persons there is hardly
a difference. The estimation of item parameters shows a different picture. DIF-
lasso distinctly outperforms the Rasch model, in particular if DIF is strong. The
refit procedure can again be recommended for large number of persons but not
for small numbers. For illustration in Figure 5 the box plots for setting 2 with
strong DIF are shown. The picture does not show the four data sets that produced
extreme values for all methods.

Since our focus is on the identification of DIF-items the hits and false positive
rates are of particular interest. It is seen from the lower panel of Table 1 that the
procedure works well. If DIF is strong the hit rate is close to 1, for medium DIF
one needs more persons in the setting to obtain an average of 0.80. Of course
for weak DIF identification is harder and one will not always find all the items
with DIF. One nice result is that the false positive rate is negligible, although
not all items with DIF may be found, it hardly occurs that items without DIF
are falsely diagnosed.

5 Examples

5.1 Exam Data

Our first data example deals with the solution of problems in an exam following
a course on multivariate statistics. There were 18 problems to solve and 57
students. In this relatively small data set two variables that could induce DIF
were available, the binary variables level (bachelor student of statistics: 1, master
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Figure 5: Box plots of MSEs for Setting 2 (strong)

student with a bachelor in an other area: 0) and gender (male: 0, female: 1).
Figure 6 shows the coefficient build-ups. With BIC as selection criterion no item
showed DIF. So we were happy that the results did not indicate that the exam
was preferring specific subgroups.

In this simple case, in which potential DIF is induced by binary variables,
which indicate the sub populations, one can also use test statistics to examine if
DIF is present because ML estimates exist. The embedding into the framework
of generalized linear models allows to use the likelihood ratio test to test the null
hypothesis γ1 = . . . , γI = 0 (for the theory see, for example Tutz (2012)). We
consider the effects of gender and level separately. The p-values are 0.28 for gender
and 0.38 for level. The result supports that DIF is not present. Alternatively, we
used model checks based on conditional estimates as Andersen’s likelihood ratio
test (Andersen, 1973), which is implemented in the R-package eRm, see Mair et al.
(2012) and Mair and Hatzinger (2007). These tests resulted in p-values of 0.315
for gender and 0.417 for level and also support that DIF is not an issue in this
data set.

5.2 Knowledge Data

An example that has also been considered by Strobl et al. (2010) uses data from an
online quiz for testing one’s general knowledge conducted by the weekly German
news magazine SPIEGEL. The 45 test questions were from five topics, politics,
history, economy, culture, and natural sciences. We use the same sub sample as
Strobl et al. (2010) consisting of 1075 university students from Bavaria, who had
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MSE person parameters MSE item parameters
Setting Rasch DIF-Lasso Refit Rasch DIF-Lasso Refit

strong 1.08 1.13 1.46 1.42 0.90 1.17
1 medium 1.11 1.11 1.23 0.96 0.85 0.97

weak 1.17 1.15 1.20 0.91 0.85 0.92
strong 0.98 1.04 1.32 1.30 0.70 0.85

2 medium 1.07 1.08 1.24 0.88 0.70 0.81
weak 1.10 1.06 1.18 0.80 0.68 0.78
strong 0.25 0.24 0.25 0.38 0.19 0.15

3 medium 0.24 0.22 0.24 0.20 0.14 0.13
weak 0.23 0.22 0.23 0.16 0.13 0.13

Setting hits false positives
strong 0.97 0.071

1 medium 0.50 0.010
weak 0.33 0.006
strong 1.00 0.061

2 medium 0.84 0.026
weak 0.52 0.014
strong 0.99 0.017

3 medium 0.80 0.003
weak 0.42 0.000

Table 1: MSEs for the simulation scenarios (upper panel) and average rates of

hits/false positives (lower panel)
.

all been assigned a particular set of questions. The covariates that we included
as potentially inducing DIF are gender, age, semester of university enrollment,
an indicator for whether the student’s university received elite status by the
German excellence initiative (elite), and the frequency of accessing SPIEGEL’s
online magazine (spon).

Figure 7 shows as an example the coefficient build-ups for the covariate gender.
At the path point that was selected by the BIC criterion (dashed vertical line), 17
of the 45 items showed DIF, which is not surprising because it is not a carefully
constructed test that really focusses on one latent dimension. In Figure 8 the
estimated effects of the items containing DIF are visualized. The upper panel
shows the profile plots of the parameters for the included covariates. For each
item with DIF one profile is given. The lower panel shows the strengths of the
effects in terms of the absolute value of the coefficients. One boxplot refers to
the absolute values of the 17 parameters for one covariate. It is seen that the
strongest effects are found for the covariate gender, the weakest effects are in

15



0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Gender

||γ̂||/max(||γ̂||)

co
ef

fic
ie

nt
s

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Level

||γ̂||/max(||γ̂||)

co
ef

fic
ie

nt
s

Figure 6: Coefficient build-ups for exam data.

the variable elite, which measures the status of the university where the student
is enrolled. It should be noted that the importance of the single covariates for
the DIF can be measured by the absolute values of their coefficients since all
covariates were standardized.

In Figure 8 (upper panel) four items are represented by dashed lines. They
showed the strongest DIF in terms of the L2- norm of the estimated parameter
vector. All of them refer to economics. For illustration, these four items are
considered in more detail. They are

• Zetsche: ”Who is this?” (a picture of Dieter Zetsche, the CEO of the Daim-
ler AG, maker of Mercedes cars, is shown).
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Figure 7: Coefficient build-ups for covariate gender in Quiz Data; dashed ver-

tical line indicates BIC-optimal path point

• manufacturies: ”What is the historic meaning of manufacturies?” (Manu-
facturies were the precursors of industrial mass production).

• Deutsche Bank: ”Which company does this logo represent?” (Deutsche
Bank).

• AOL: ”Which internet company took over the media group Time Warner?”
(AOL).

The profiles for the items Zetsche, Deutsche Bank and AOL are quite simi-
lar. They are distinctly easier for male participants and for frequent visitors of
SPIEGELonline. The item manufacturies shows a quite different shape being
definitely easier for females. It is also easier to solve for students that are not
frequent visitors of SPIEGELonline. The item differs from the other three items
because it refers more to a broad education than to current issues. In this respect
female students and students that do not follow the latest news seem to find the
item easier. Therefore the different profile.

6 An Alternative Method

In contrast to most existing methods the proposed procedure allows to include all
variables that might lead to DIF and identify the items with DIF. Quite recently
Strobl et al. (2010) proposed a new procedure that is also able to investigate the
effect of a set of variables. Therefore it seems warranted to discuss the differences
between our method and the recursive partitioning approach advocated by Strobl
et al. (2010).
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of absolute values of coefficient-estimates for items with DIF

Recursive partitioning is similar to CARTs (Classification and Regression
Trees), which were propagated by Breiman et al. (1984). For a more recent
introduction see Hastie et al. (2009), or from a psychological viewpoint Strobl
et al. (2009). The basic concept of recursive partitioning and tree methods in
regression models is to recursively partition the covariate space such that the
dependent variable is explained best. In the case of continuous predictors parti-
tioning of the covariate space means that one considers splits in single predictors,
that is, a predictor X is split into X ≤ c and X > c where c is a fixed value. All
values c are evaluated and the best split is retained. If a predictor is categorical
splits refer to all possible subsets of categories. Recursive partitioning means
that one finds the predictor together with the cut-off value c that explains the
dependent variable best. Then given X ≤ c (and the corresponding sub sample)
one repeats the procedure searching for the best predictor and cut-off value that
works best for the sub sample with X ≤ c. The same is done for the sub sample
with X > c. The procedure of consecutive splitting can be visualized in a tree.
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Of course, there are many details to consider, for example, one has to define what
best explanation of the dependent variable means, when to stop the procedure
and other issues. For details see Breiman et al. (1984).

In item response models the partitioning refers to the predictors that char-
acterize the persons. That means when using the person-specific variable X, for
example, age, it is split into X ≤ c and X > c. The Rasch model is fit in these
sub populations yielding different estimates of item parameters. Then one has
to decide if the difference between item estimates before splitting and after split-
ting is systematic or random. If it is systematic the split is warranted. For the
decision Strobl et al. (2010) use structural change tests, which have been used
in econometrics (see also Zeileis et al. (2008)). Although the basic concept is
the same as in the partitioning in regression models, now a model is fitted and
therefore the method is referred to as model based partitioning. For details see
Strobl et al. (2010).

For the knowledge data Strobl et al. (2010) identified gender, spon and age
as variables that induce DIF. This is in accordance with our results (Figure 8),
which also identified these variables as the relevant ones. By construction the
partitioning approach yields areas, in which the effect is estimated as constant.
The partitioning yielded eight subpopulations, for example, {female, spon ≤
1, age ≤ 21} and {male, spon ≤ 2 − 3, age ≤ 22}. Within these subspaces all
items have estimates that are non-zero. Items that have particularly large values
are considered as showing DIF. It is not clear what criterion is used to identify
the items that actually show DIF. Strobl et al. (2010) just describe 5 items that
seem to have large values. Therefore, one can not compare the two approaches
in terms of the number of selected items.

Let us make some remarks on the principles of the recursive partitioning
approach to DIF and the penalization method proposed here.

Recursive partitioning can be considered a non-parametric approach as far as
the predictors are concerned. No specific form of the influence of predictors on
items is assumed. But, in the case of continuous variables implicitly a model is
fitted that assumes that the effects are constant over a wide range, that is, over
X ≤ c and X > c given the previous splitting. In contrast, our penalization
approach assumes a parametric model for DIF. Although it can be extended to a
model with unspecified functional form, in the present version it is parametric. An
advantage of parametric models is that the essential information is contained in a
modest number of parameters that show which variables are influential for specific
items. A disadvantage of any parametric model is that it can be misspecified. The
partitioning approach, considered as a more exploratory tool, is less restrictive,
although assuming a constant value over wide ranges is also a restriction.

An advantage of the parametric model, if it is a fair approximation to the
underlying structure, is the use of familiar forms of the predictor, namely a linear
predictor, which, of course, can include interactions. In contrast, partitioning
methods strongly focus on interactions. Typically in each consecutive layer of
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the tree a different variable is used in splitting. The result is smaller and smaller
subpopulations which are characterized as a combination of predictors. The sub-
populations {female, spon ≤ 1, age ≤ 21} and {male, spon ≤ 2 − 3, age ≤ 22},
found for the knowledge data seem rather specific.

A potential disadvantage of tree based methods is their instability. A small
change of data might result in quite different splits. That is the reason why tree-
based methods have been extended to random trees, which are a combination of
several trees on the same data set, see Breiman (2001).

The penalty approach uses an explicit model for DIF, and the model is sep-
arated from the estimation procedure. In the partitioning approach the model
and the fitting are entwined. For practioners it is often helpful to have an explicit
form of the model that shows how parameters determine the modelled structure.
Moreover, in the penalty approach an explicit criterion is used to determine how
many and which items show DIF. The ability to identify the right items has been
evaluated in the previous section.

Of course, none of the models is true. Neither is the effect constant within an
interval of age as assumed in the partitioning approach nor is the effect linear as
assumed in the suggested model. But, as attributed to Box, although all models
are wrong some can be useful. Since the models are not nested a goodness-of-fit
tests could yield a decision. But goodness-of-fit as a measure for the adequacy
of a model is a tricky business in partitioning models as well as in regularized
estimation procedures, in particular in the framework of item response models.
Therefore, not much is available in terms of goodness-of-fit, although it might be
an interesting topic of future research.

One basic difference seems to be that the penalty approach uses all covariates,
with the variables that are of minor relevance obtaining small estimates, but
selects items. The partitioning approach selects variables, or, more concisely
combinations of covariates, but then estimates all items as having an effect, that
is, estimates are unequal zero. Thus penalty approaches focus on the selection of
items, partitioning methods on the selection of combinations of covariates.

7 Concluding Remarks

A general model for DIF that is induced by a set of variables is proposed and
estimation procedures are given. It is shown that the method is well able to
identify items with DIF. The concept is general, with modifications it can be
extended to models that include items with more than two categories as, for
example, the graded response model (Samejima, 1997) or the partial credit model
(Masters, 1982). Also the assumption that items are modified in the linear form
xT
p γi can be relaxed to allow for additive functions f1(xp1) + · · · + fm(xpm) by

using, for example, P-spline methodology (Eilers and Marx, 1996).
The estimation used here is penalized unconditional ML estimation. Alterna-
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tive regularized estimators could be investigated, for example, estimators based
on mixed models methodology. Also the regularization technique can be modified
by using boosting techniques instead of penalization.

The results shown here were obtained by an R program that is available from
the authors. It uses the the coordinate ascent algorithm proposed in Meier et al.
(2008) and the corresponding R package grplasso (Meier, 2009). Currently we
are developing a faster program that is based on more recently developed opti-
mization techniques, namely the fast iterative shrinkage thresholding algorithm
(Beck and Teboulle, 2009).
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