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Summary
We consider the problem of estimating the unknown breakpoints in seg-

mented generalized linear models. Exact algorithms for calculating maxi-
mum likelihood estimators are derived for different types of models. After
discussing the case of a GLM with a single covariate having one breakpoint
a new algorithm is presented when further covariates are included in the
model. The essential idea of this approach is then used for the case of more
than one breakpoint. As further extension an algorithm for the situation of
two regressors each having a breakpoint is proposed. These techniques are
applied for analysing the data of the Munich rental table. It can be seen that
these algorithms are easy to handle without too much computational effort.
The algorithms are available as GAUSS-programs.
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1 Introduction

In many practical regression—type problems we cannot fit one uniform re-
gression function to the data, since the functional relationship between the
response Y and the regressor X changes at certain points of the domain of
X. These points are usually called breakpoints or changepoints. One impor-
tant example is the threshold model used in epidemiology (see Ulm, 1991,
Kiichenhoff and Carroll, 1996), where the covariate X, typically an exposure,
has no influence on Y, e.g. the occurrence of a certain disease, up to a cer-
tain level. Thus the relationship between X and Y is described by a constant
up to this level and for values of X greater than this level it 1s given by an
increasing function.

In such situations, we apply segmented or multiphase regression mod-
els which are obtained by a piecewise definition of the regression function
E(Y|X = x) on intervals of the domain of X. An overview concerning this
topic can be found in Chapter 9 of Seber and Wild (1989). Assuming a gen-
eralized linear model and a known number of segments we have
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Here £ is the nuisance—parameter and b'(¥) = E(Y|X = =), see Fahrmeir
and Tutz (1994), Seber and Wild (1989), i is the link—function, e.g. logistic,
identity etc, and f denotes the density function of Y given X = z. For the
threshold model mentioned above, for instance, there are two segments, where
G is the logistic link and #; = 0. The endpoints 7; of the intervals denote the
breakpoints. Since they are typically unknown, they have to be estimated.
For theoretical, but also practical reasons the breakpoints are assumed to ly
between the smallest and the largest sample value z;,¢ =1,...,n.
We further assume that the regression function is continuous, i.e.

o+ Bim = g1 + B, 1<i <K — 1.

Thus the model can be stated in another parameterisation:

K
E(Y|X =2)=Gla+ e+ Bz —mi-1)1), (3)
=2
t it >0
where t+—{ 0 if t<0.

From this representation it can be seen, that (3) is a usual generalized linear
model, if the breakpoints 7; are known. Therefore the ML—estimation can
be performed by a grid-search—type algorithm in case of two segments, see
Stasinopoulos and Rigby (1992).

For the linear model an exact algorithm for the least squares estimator
was given by Hudson (1966) (see also Schulze, 1987 or Hawkins, 1976). In
Section 2 it is shown, that this algorithm also works for the GLM with one
breakpoint. In Section 3 the algorithm is extended to models with further
covariates. In Section 4 the ideas of Section 3 are used to derive the algorithm
for fairly general models with more than one breakpoint and more than one
covariate with breakpoints. Giving an algorithm for such general models
we fill a gap existing so far in the literature. In Section 5 an example is
considered. We investigate the relationship between the net rent of flats in



Munich and the flat size as well as the age of the flats based on data of the
Munich rental table. Finally, problems concerning the computing time are
discussed and some interesting additional aspects are pointed out.

2 Exact ML—estimation for models with one
breakpoint

We consider a GLM with one breakpoint and density (2). The regression
function can then be written as

E(Y|X =2) =G(a+ pi(z —7)- + fa(x —7)3) with t_ = —(-t)4. (4)

Here (3 is the slope parameter of the first segment and fs is the slope in
segment 2.
The log-likelihood function of one observation, conditioned on X, is given

by

y — b(v
Gy, a+ Pr(z—T7)-+ Ba(a—7)4,§) = % + e(y,€),
where the nuisance parameter ¢ is assumed to be constant over the segments.
If GG is the natural link function, then

¥ =a+ fi(e—T)_+ Fa(z—T)+.

Having i.i.d. observations (z;, ¥i)i=1, . n, the log-likelihood function to
be maximized in (&, 81, Fa2, 7, &)’ is

ZG(%,Oz-l-ﬁl(l‘rT)—‘i'52(1‘2'*7')%5) (5)

i=1

Since this function is not differentiable in 7 at @;, we first calculate the profile
likelihood. That is, we maximize (5) with respect to all other parameters and
get
P(r) = ) %naﬁx ; Z G(ys, ot Br(ai— 1)+ Ba(xi—7)4, ). (6)
W12, i=1
Obviously model (4) is a GLM for fixed 7. Thus, the calculation of the profile
likelihood corresponds to the ML—estimation of a GLM.

Since (6) is continuous in 7, it can be maximized by a grid search, see
Ulm (1991). For a GLIM-macro see Stasinopoulos and Rigby (1992). Though
these algorithms give reliable results, if the grid is appropriately chosen, it
would be desirable to have an exact algorithm at one’s disposal.



We derive such an exact algorithm for maximizing (5) following the ideas
of Hudson (1966). Since we have assumed, that the nuisance parameter £ is
constant for the two segments, it can be neglected in maximizing (5). Let the
observations (&;, ¥i)i=1,..n be ordered with respect to z; such that z; < z; for
i < j. The log-likelihood is differentiable with respect to 8 = (&, 81, Fa2, 7)’
everywhere except for those values of § with 7 = x; for one i¢{l,... n}.
Therefore the algorithm has to be divided into roughly two steps according
to the differentiability of the log-likelihood.

In the first step the points of differentiability, i.e. the case Te(wy, zp41)
for some k, are considered. Denoting the partial derivative of G(-,-, 1) with
respect to the second argument by Ga(-, -) we therefore get

1

S G oty 1) = 3 ol alp)] (zimr)- G
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where glp is the “broken linear predictor”

glp = o+ fi(zi—7)= + Bo(zi—7)4

and I denotes the indicator function. R R

Let (&, 1, B2, 7) be a zero of (7) with Fe(ay, xp41) and f1 # 2. The
system of equations obtained by equating (7) to 0 results after some algebra
n

k

Zgz(yi,@1+31$i) = 0 (8)
i=1

k ~

ZGz(yi,@1+ﬁll‘i)l‘i =0 (9)
i=1

Z Goyi, ez + Pas) = 0 (10)
i=k+1

Z Go(yi, G2 + Poxi)z; = 0 (11)
i=k+1

From equations (8) and (9), (10) and (11) we conclude that (071,31) and
(072,52), respectively, are ML-solutions of the regressions in the two seg-
ments. Since 7 is uniquely determined by the continuity condition, possible
zeros with Te(zy, p41) can be determined by estimating the parameters sep-
arately in the two segments based on (z;,¥i)i=1, & and (2, ¥i)izk+1,..n,



which yields (aq, Bl) and (&, Bz), respectively. The estimator for 7 is then
obtained from . .

g — (X1

BB

If 7e(ar, xp41), it is a zero of (7). In this case, the estimator & is given by

72

& =day+ At

If # & (z1, €k41), we deduce from (8) — (11) that there is no local maximum
with re(zp, ¥p41).

The above mentioned procedure is performed for the finite number of
intervals (p, £x41), where these intervals have to be chosen such that the
ML-estimators exist in the corresponding segments.

In the second step we calculate the profile likelihood P(#;),i = 1,...,n,
obtaining the maximum of the log-likelihood at all points of non—differen-
tiability. Finally the global maximum of the log—likelihood is given by the
maximum of this finite number of local maxima.

Conducting this algorithm the estimation of at most m + 2m GLMs is
needed, if there are m observations with different values of z.

3 Models with covariates

In many practical situations there will be further covariates in the regression
model, which leads to the following extension of model (4):

EY|X=2,72=2)=CGla+ fi(z—7)_ 4 o — )y +2'7), (12)

where 7 is the vector of covariates with vector of parameters v. As in Sec-
tion 2 (x;, Y, #i)i=1,...n denote the corresponding observations with z; < «;
for ¢ < j.

To derive the ML-estimator, we first consider again the case Te(xp, £541).
Then the derivative of the log-likelihood with respect to 6 = («, f1, 82,7, 7)
is

1
6 n n (l‘if T)_
5 D G glpi, 1) =Y [Galui, glpi)] (2 7)4 (13)
i=1 i=1 —Brliei<ri—Polivsm
z

with
glpi = a+ Br(@i—7)—+ Bolwi— 7)1 + 2{7.



Analogously to (8) — (11) we get the following system of equations with
(&, B, Ba, 7, 7)" denoting a zero of (13):

k
ZGz(yi,%-l-Bll‘ri-Zﬁ) =0 (14)

i=1

k
> Golyi,an+ Prai + 2{3)zi =0 (15)

i=1

Z gz(yi,@z-i-ﬁle‘ri'zﬁ) =0 (16)

i=k+1

Y Golyisda+ Pawi + 2[7)ai = 0 (17)

i=k+1
k n
Y Galyisan+ Prai+ =)z + Y Galys, do + Pozi + 2[7)z = 0 (18)
i=1 i=k+1

with &; = a — §;7,j = 1,2.

Equations (14) — (18) correspond to a generalized linear model with an
analysis of covariance—type design matrix

1 z 0 0 z1
1 =z 0 0 Zk
0 0 1 =zps1 2p+1
0O 0 1 =, Zn
Therefore we obtain zeros of (13) by fitting a generalized linear model with
design matrix Dy, which again yields because of the continuity condition
Qay — Qg
B = P
If 7e(xr, xr41), we have found a local maximum, otherwise there is no max-
imum with 7e(zp, p41).

The remaining part of the algorithm is now completely analogous to that
presented in Section 2.

7=



4 Further extensions

4.1 Models with more than two segments

Let us now consider the case of K > 2 segments, i.e. Model (3). In practical
problems the number of segments will be typically not greater than three.
Williams (1970), for instance, restricts his investigations to this special case.
But even in the situation of a linear regression with a normally distributed Y
no complete algorithm for calculating the exact ML-estimator can be found
in the literature. Williams (1970) states explicitly that his algorithm for three
segments shows certain gaps. We describe the complete algorithm for K = 3,
where 1t will be formulated such that it can be directly extended to the case
of K > 3.

We start with the generalized linear model with two breakpoints in the
following parametrization:

EY|X =2) = G(a+ Bz + fao(x — )4 + Ba(x — 1)) (19)

with 1 < ™ and §; # 0 for ¢ = 2,3. Let (;,¥:)i=1, .. » again denote the
ordered observations with z; < z; for ¢ < j. Then, we get the derivative of
the log-likelihood with respect to 8 = (o, 51, B2, 3, 71, T2)" as

Z%(yi,glpi) (1,2, (2 — 71)4, (® — 72)4, —Pol{z,>m), —P3l{e,>73) (20)
i=1
with  glp; = o+ fra; + Bo(zs — )4 + Ba(mi — 7o)+

Since the log-likelihood is not differentiable at points with 7 = z; or 7 = @;
for some x;, the domain of (71, 72)" is divided into rectangles Ry; with

Ry = [z xp41] X [z, E+1 <L

In the interior of Ry; the log-likelihood is differentiable. Equating (20) to 0
we get after some algebra

Zgz(yz’, o+ Brxg)(1, l‘i)/I{szn} =0

i=1
Zgz(yi, a = Pori + (b1 + P2)wi) (L, 20) I, 5y [oi<ry = 0
i=1
Zgz(yi, o — fBamy — Pama + (B1 + P2 + P3)x:)(1, l’i)/I{x»Tz} = 0.

i=1

Obviously all maxima of the log-likelihood correspond to the maxima of the
separate regressions in the three segments. As in the preceding sections we



therefore derive the ML-solutions separately for the different segments which
are denoted by a;, 51, Qo Bz, as, 53. The continuity assumption yields
. a1 — Qs . ap—as
fl=—=——= and 7T =————.
B2 — P B3 — B2

If 71 € (xp; 2p41) and 72 € (27; 2741) then a local maximum has been found.

Otherwise, the log-likelihood function has its maximum value at the
boundary of the rectangle, i.e. 7 € {@g, @pq1} or 7 € {ay, 241}, Let for
instance 7 = z; then the model can be rewritten introducing a new covari-
ate z = (x — 71 )4 as

E(Y|X =)= G(a+ fiz+ Pz + B3z — T2)1).

Thus, we are in the situation of a model with one breakpoint and an additional
covariate as discussed in Section 3. To obtain all maxima at the boundary
of Ry we check successively all points 7 = 241 and ™ = x; as well as
Ty = Li41- R

This yields the maximizer 6y; for the rectangle Rg;. Finally, the global
maximuimn is obtained as

Opr = arg H%aXL(ékl).

4.2 Models with two regressors both having a break-
point

As a further extension we allow for two regressors with each of them having
a breakpoint which is modelled as

EXY|X,7)=Gla+ fi(x—11)- + Bo(e—71)4 + 61(z—72)= + b2(2—T2)4).

Even in this case we can essentially proceed as above. Let (z;,ys, 2i)i=1, .n
denote the ordered observations with z; < z; for ¢ < j. The observa-
tions of the second regressor Z are ordered by a second index z;, with
zi, < z,,7 < s. For deriving the ML-estimator of the parameter vector
0 = («, 81, B2, 61,862,171, ) we again divide the domain of (7, 72)’ into rect-
angles Ry, = [xr; ¢r41] X [21,; 21,4, ] and consider first the case where (71, 72)’
lies in the interior of Ry,. Using ideas of Section 2 we fit a generalized linear
model with parameter vector (e, s, 51, 52,61, 82,71, v2)" and design matrix

D= ((1,1‘2) I{szTl}a (Lxl) I{xz>71}’ (LZZ) 1{21372}’ (1’Zi)I{Z’>T2})i:17~~~y”.
The corresponding model equation is given by

EY|IX=22=2) = Gar+bix){p<ry + (@24 fox) [{zsr)
+ (71+612)I{2372} + (72+62Z)I{z>72})~



From the ML-estimator (&, éa, B, Ba, A1, A2, 01, 52)’ we obtalin as estimators
for (71, 72)" using the continuity assumption
%1 = w and %2 = ’.}1_7?
B2 — B b2 — &1

If (71, 72)" € Rir we have found a local maximum of the log-likelihood since
the score equations can be transformed similarly to equations (14) - (18).

At the boundary of the rectangle the above model reduces to one with
only a single regressor, one breakpoint and a covariate. Thus, the approach
of Section 3 can be applied.

This leads to the maximizer ékr for each rectangle Ry,.. Finally, the global
maximum results from

Orr = arg maXL(ékr).

T

Further extensions to more than two covariates or more than two breakpoints
are straightforward, but the corresponding algorithms become considerably
more complicated and thus require an increasing computational effort.

5 An example: the Munich rental table

Rental tables are built up based on surveys in larger cities or communities in
Germany. They serve as a formal instrument for rating rents depending on
year of construction, flat size, and other covariates. For a detailed description
of the data material and the statistical methods used we refer to Fahrmeir,
Gieger, Mathes, and Schneeweifi (1995) and Fahrmeir, Gieger, and Klinger
(1995).

As a first approach we model the relationship between net rent (¥) and
flat size (X)), where the assumption of a breakpoint is justified because smaller
flats are more expensive relative to bigger flats. Thus, we consider the fol-
lowing model equation

EXY|X=z)=a+ fi(z—7)- + Fa(z—T)+. (21)

Besides the presence of a breakpoint an additional problem occurs when
analysing this data caused by heteroscedasticity. Following Fahrmeir et al.
(1995) we apply a weighted regression using the weights proposed there.

The results are obtained from the algorithm presented in Section 2 and
are given in Table 1, where the estimated variances are calculated by the
asymptotic theory derived in Kiichenhoff (1995).

As it can be seen from these results the breakpoint takes a value of about
44 m?. For smaller flats the estimated slope of 5.04 is below the one for

bigger flats (82 = 9.05). Comparing our results with those gained from a
linear regression no essential differences can be stated regarding the fit of the
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Table 1: Parameter estimates of the weighted broken linear regression model
(21) for the Munich rental table. In the column & the estimated standard
deviations are listed.

parameter estimate c
T 44.0 4.6

Qo 601 36

B 5.04 1.3

8o 9.05 0.43

data. For a more detailed analysis and a comparison with the results from
Fahrmeir, Gieger, Mathes, and Schneeweiff (1995) see Kiichenhoff (1995).

In a second step we take into account the age of the flat (7) as addi-
tional regressor which is defined as 1994 minus year of construction. Possible
changes in the way of building flats are reflected in the model equation by
allowing for a breakpoint in the second regressor, age:

EY|X,Z)=a+ Bi(z—711)- + Ba(a—71)4 + 61(2~T2)— + ba(2—T2)4. (22)

Here, the application of the algorithm proposed in Section 4.2 yields the
results given in Table 2.

Table 2: Parameter estimates of the weighted broken linear regression model
(22) for the Munich rental table. 71 and 72 denote the breakpoints belonging
to flat size and age. In the column ¢ the estimated standard deviations are
listed.

parameter estimate c
%1 37.0 3.7

s 30.6 0.97

& 501 29

B 3.54 2.2

8o 8.81 0.35

51 -12.9 1.4

8o -0.391 0.28

In this case, the application of a segmented model yields a much better fit
than the use of a linear model without breakpoints. The estimated breakpoint
of 30.6 for the variable age corresponds to the year 1963. Since é; 1s not
significantly different from 0, the age of flats built before 1963 is not essential
for their net rent. For flats built after 1963 the net rent increases with the
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year of construction (51 = —12.9). As already indicated, this effect is possibly
due to a substantial change in the way of how houses were built.

6 Discussion

From our experience when analysing data by applying the above algorithms
as for instance in the example presented in Section b we can state a good
practicability of these algorithms. For the Munich rental table, where we have
about 2.000 data points, the computing time for the model with one break-
point was about b minutes on a sun-sparc 10 work station. For the model
with two regressors each having a breakpoint it took about 10 minutes for
calculating the ML-estimators using the algorithm presented in Section 4.2.
Thus, the computing times do not seem to constitute a real problem. In
addition, algorithms for linear, logistic, and weighted linear models can be
obtained on request from the author. The algorithms are written in Gauss
and can easily be rewritten for other generalized linear models.

Finally, we should address two important aspects related to the proposed
algorithms.

When deriving the above algorithm we assumed that the nuisance pa-
rameter 1s constant over the segments. Note that this assumption fails e.g.
in the linear regression when there are different variances in the segments.
In case of logistic regression this problem does not occur since there is no
nuisance parameter (£ = 1). This case of the logistic regression where £ can
be treated as known can be generalized to other models. That means, alter-
natively to the assumption of a constant nuisance parameter the derivation
of the algorithm remains valid if the nuisance parameter, itself, or the ratio
of the nuisance parameters of the different segments is known.

One of the most interesting aspects of our idea for deriving an exact
algorithm concerns the models with covariates. The approach proposed in
this paper is not only useful for such models, for which this approach was
designed, but it is also an essential part of the derivation of the corresponding
algorithm for the case of more than two segments. Thus, we were also able
to solve the problem pointed out by Williams (1970).
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