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University of Munich� Institute of Statistics� Akademiestrasse ��
D���	
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Summary
We consider the problem of estimating the unknown breakpoints in seg�

mented generalized linear models� Exact algorithms for calculating maxi�
mum likelihood estimators are derived for di�erent types of models� After
discussing the case of a GLM with a single covariate having one breakpoint
a new algorithm is presented when further covariates are included in the
model� The essential idea of this approach is then used for the case of more
than one breakpoint� As further extension an algorithm for the situation of
two regressors each having a breakpoint is proposed� These techniques are
applied for analysing the data of the Munich rental table� It can be seen that
these algorithms are easy to handle without too much computational e�ort�
The algorithms are available as GAUSS�programs�

Keywords� Breakpoint� generalized linear model� segmented regression

� Introduction

In many practical regression�type problems we cannot �t one uniform re�
gression function to the data� since the functional relationship between the
response Y and the regressor X changes at certain points of the domain of
X� These points are usually called breakpoints or changepoints� One impor�
tant example is the threshold model used in epidemiology �see Ulm� �		��
K
uchenho� and Carroll� �		��� where the covariate X� typically an exposure�
has no in
uence on Y � e�g� the occurrence of a certain disease� up to a cer�
tain level� Thus the relationship between X and Y is described by a constant
up to this level and for values of X greater than this level it is given by an
increasing function�

In such situations� we apply segmented or multiphase regression mod�
els which are obtained by a piecewise de�nition of the regression function
E�Y jX � x� on intervals of the domain of X� An overview concerning this
topic can be found in Chapter 	 of Seber and Wild ��	�	�� Assuming a gen�
eralized linear model and a known number of segments we have
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E�Y jX � x� �

�����
����

G��� � ��x� if x � ��
G��� � ��x� if �� � x � ��

���
G��K � �Kx� if �K�� � x

���

and

f�yj�� �� � exp

�
y�� b���

�
� c�y� ��

�
	 ���

Here � is the nuisance�parameter and b���� � E�Y jX � x�� see Fahrmeir
and Tutz ��		��� Seber and Wild ��	�	�� G is the link�function� e�g� logistic�
identity etc� and f denotes the density function of Y given X � x� For the
threshold model mentioned above� for instance� there are two segments� where
G is the logistic link and �� � �� The endpoints �i of the intervals denote the
breakpoints� Since they are typically unknown� they have to be estimated�
For theoretical� but also practical reasons the breakpoints are assumed to ly
between the smallest and the largest sample value xi� i � �� 	 	 	 � n�

We further assume that the regression function is continuous� i�e�

�i � �i�i � �i�� � �i���i � � � i � K � �	

Thus the model can be stated in another parameterisation�

E�Y jX � x� � G��� ��x�
KX
i��

�i�x� �i������ ���

where t� �

�
t if t � �
� if t � �	

From this representation it can be seen� that ��� is a usual generalized linear
model� if the breakpoints �i are known� Therefore the ML�estimation can
be performed by a grid�search�type algorithm in case of two segments� see
Stasinopoulos and Rigby ��		���

For the linear model an exact algorithm for the least squares estimator
was given by Hudson ��	��� �see also Schulze� �	�� or Hawkins� �	���� In
Section � it is shown� that this algorithm also works for the GLM with one
breakpoint� In Section � the algorithm is extended to models with further
covariates� In Section � the ideas of Section � are used to derive the algorithm
for fairly general models with more than one breakpoint and more than one
covariate with breakpoints� Giving an algorithm for such general models
we �ll a gap existing so far in the literature� In Section � an example is
considered� We investigate the relationship between the net rent of 
ats in
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Munich and the 
at size as well as the age of the 
ats based on data of the
Munich rental table� Finally� problems concerning the computing time are
discussed and some interesting additional aspects are pointed out�

� Exact ML�estimation for models with one

breakpoint

We consider a GLM with one breakpoint and density ���� The regression
function can then be written as

E�Y jX � x� � G��� ���x� � �� � ���x� � ��� with t� � ���t��	 ���

Here �� is the slope parameter of the �rst segment and �� is the slope in
segment ��

The log�likelihood function of one observation� conditioned on X� is given
by

G�y� �� ���x� � ��� ���x� � ��� �� �
y� � b���

�
� c�y� ���

where the nuisance parameter � is assumed to be constant over the segments�
If G is the natural link function� then

� � �� ���x� � ��� ���x� � ��	

Having i�i�d� observations �xi� yi�i�������n� the log�likelihood function to
be maximized in ��� ��� ��� �� ��

� is

nX
i��

G�yi� �����xi� � ��� ���xi� � ��� ��	 ���

Since this function is not di�erentiable in � at xi� we �rst calculate the pro�le
likelihood� That is� we maximize ��� with respect to all other parameters and
get

P�� � � max
���������

nX
i��

G�yi� �����xi� � ��� ���xi� � ��� ��	 ���

Obviously model ��� is a GLM for �xed � � Thus� the calculation of the pro�le
likelihood corresponds to the ML�estimation of a GLM�

Since ��� is continuous in � � it can be maximized by a grid search� see
Ulm ��		��� For a GLIM�macro see Stasinopoulos and Rigby ��		��� Though
these algorithms give reliable results� if the grid is appropriately chosen� it
would be desirable to have an exact algorithm at one�s disposal�
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We derive such an exact algorithm for maximizing ��� following the ideas
of Hudson ��	���� Since we have assumed� that the nuisance parameter � is
constant for the two segments� it can be neglected in maximizing ���� Let the
observations �xi� yi�i�������n be ordered with respect to xi such that xi � xj for
i � j� The log�likelihood is di�erentiable with respect to 
 � ��� ��� ��� � ��

everywhere except for those values of 
 with � � xi for one i �f�� 	 	 	 � ng	
Therefore the algorithm has to be divided into roughly two steps according
to the di�erentiability of the log�likelihood�

In the �rst step the points of di�erentiability� i�e� the case ����xk� xk���
for some k� are considered� Denoting the partial derivative of G��� �� �� with
respect to the second argument by G���� �� we therefore get

�

�


nX
i��

G�yi� glpi� �� �
nX
i��

�G��yi� glpi��

�
BB�

�
�xi� � ��
�xi� � ��

� ��Ifxi��g� ��Ifxi��g

	
CCA � ���

where glp is the �broken linear predictor�

glpi � �� ���xi� � �� � ���xi� � ��

and I denotes the indicator function�
Let ���� ���� ���� �� �� be a zero of ��� with ����xk� xk��� and ��� �� ���� The

system of equations obtained by equating ��� to � results after some algebra
in

kX
i��

G��yi� ��� � ���xi� � � ���

kX
i��

G��yi� ��� � ���xi�xi � � �	�

nX
i�k��

G��yi� ��� � ���xi� � � ����

nX
i�k��

G��yi� ��� � ���xi�xi � � ����

with ��j � ��� ��j�� � j � � � �	

From equations ��� and �	�� ���� and ���� we conclude that ����� ���� and

����� ����� respectively� are ML�solutions of the regressions in the two seg�
ments� Since � is uniquely determined by the continuity condition� possible
zeros with ����xk� xk��� can be determined by estimating the parameters sep�
arately in the two segments based on �xi� yi�i�������k and �xi� yi�i�k�������n�



�

which yields ����� ���� and ����� ����� respectively� The estimator for � is then
obtained from

�� �
��� � ���
��� � ���

	

If ����xk� xk���� it is a zero of ���� In this case� the estimator �� is given by

�� � ��� � ����� 	

If �� �� �xk� xk���� we deduce from ��� � ���� that there is no local maximum
with ���xk� xk����

The above mentioned procedure is performed for the �nite number of
intervals �xk� xk���� where these intervals have to be chosen such that the
ML�estimators exist in the corresponding segments�

In the second step we calculate the pro�le likelihood P�xi�� i � �� 	 	 	 � n�
obtaining the maximum of the log�likelihood at all points of non�di�eren�
tiability� Finally the global maximum of the log�likelihood is given by the
maximum of this �nite number of local maxima�

Conducting this algorithm the estimation of at most m � �m GLMs is
needed� if there are m observations with di�erent values of x�

� Models with covariates

In many practical situations there will be further covariates in the regression
model� which leads to the following extension of model ����

E�Y jX � x� Z � z� � G��� ���x� � �� � ���x� � �� � z�
�� ����

where Z is the vector of covariates with vector of parameters 
� As in Sec�
tion � �xi� yi� zi�i�������n denote the corresponding observations with xi � xj
for i � j�

To derive the ML�estimator� we �rst consider again the case ����xk� xk����
Then the derivative of the log�likelihood with respect to 
 � ��� ��� ��� �� 
�
is

�

�


nX
i��

G�yi� glpi� �� �
nX
i��

�G��yi� glpi��

�
BBBB�

�
�xi� � ��
�xi� � ��

� ��Ifxi��g� ��Ifxi��g
zi

	
CCCCA ����

with
glpi � �� ���xi� � ��� ���xi� � �� � z�i
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Analogously to ��� � ���� we get the following system of equations with

���� ���� ���� �
� ���
� denoting a zero of �����

kX
i��

G��yi� ��� � ���xi � z�i�
� � � ����

kX
i��

G��yi� ��� � ���xi � z�i�
�xi � � ����

nX
i�k��

G��yi� ��� � ���xi � z�i�
� � � ����

nX
i�k��

G��yi� ��� � ���xi � z�i�
�xi � � ����

kX
i��

G��yi� ��� � ���xi � z�i�
�zi �
nX

i�k��

G��yi� ��� � ���xi � z�i�
�zi � � ����

with ��j � ��� ��j�� � j � �� ��

Equations ���� � ���� correspond to a generalized linear model with an
analysis of covariance�type design matrix

Dk �

�
BBBBBBBB�

�
���
�
�
���
�

x�
���
xk
�
���
�

�
���
�
�
���
�

�
���
�

xk��
���
xn

z�
���
zk
zk��
���
zn

	
CCCCCCCCA
	

Therefore we obtain zeros of ���� by �tting a generalized linear model with
design matrix Dk� which again yields because of the continuity condition

�� �
��� � ���
��� � ���

	

If ����xk� xk���� we have found a local maximum� otherwise there is no max�
imum with ����xk� xk����

The remaining part of the algorithm is now completely analogous to that
presented in Section ��
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� Further extensions

��� Models with more than two segments

Let us now consider the case of K � � segments� i�e� Model ���� In practical
problems the number of segments will be typically not greater than three�
Williams ��	���� for instance� restricts his investigations to this special case�
But even in the situation of a linear regression with a normally distributed Y

no complete algorithm for calculating the exact ML�estimator can be found
in the literature� Williams ��	��� states explicitly that his algorithm for three
segments shows certain gaps� We describe the complete algorithm for K � ��
where it will be formulated such that it can be directly extended to the case
of K � ��

We start with the generalized linear model with two breakpoints in the
following parametrization�

E�Y jX � x� � G��� ��x� ���x � ���� � ���x� ����� ��	�

with �� � �� and �i �� � for i � �� �� Let �xi� yi�i�������n again denote the
ordered observations with xi � xj for i � j� Then� we get the derivative of
the log�likelihood with respect to 
 � ��� ��� ��� ��� ��� ���� as

nX
i��

G��yi� glpi� ��� xi� �xi� ����� �xi� ��������Ifxi���g����Ifxi���g�
� ����

with glpi � �� ��xi � ���xi � ���� � ���xi � ����	

Since the log�likelihood is not di�erentiable at points with �� � xi or �� � xi
for some xi� the domain of ���� ���� is divided into rectangles Rkl with

Rkl � �xk�xk��� � �xl�xl���� k � � � l	

In the interior of Rkl the log�likelihood is di�erentiable� Equating ���� to �
we get after some algebra

nX
i��

G��yi� �� ��xi���� xi�
�Ifxi���g � �

nX
i��

G��yi� �� ���� � ��� � ���xi���� xi�
�Ifxi���gIfxi���g � �

nX
i��

G��yi� �� ���� � ���� � ��� � �� � ���xi���� xi�
�Ifxi���g � �	

Obviously all maxima of the log�likelihood correspond to the maxima of the
separate regressions in the three segments� As in the preceding sections we
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therefore derive the ML�solutions separately for the di�erent segments which
are denoted by ���� ���� ���� ���� ���� ���� The continuity assumption yields

��� �
��� � ���
��� � ���

and ��� �
��� � ���
��� � ���

	

If ��� � �xk�xk��� and ��� � �xl�xl��� then a local maximum has been found�
Otherwise� the log�likelihood function has its maximum value at the

boundary of the rectangle� i�e� �� � fxk� xk��g or �� � fxl� xl��g� Let for
instance �� � xi then the model can be rewritten introducing a new covari�
ate z � �x� ���� as

E�Y jX � x� � G��� ��x� ��z � ���x� �����	

Thus� we are in the situation of a model with one breakpoint and an additional
covariate as discussed in Section �� To obtain all maxima at the boundary
of Rkl we check successively all points �� � xk�� and �� � xl as well as
�� � xl���

This yields the maximizer �
kl for the rectangle Rkl� Finally� the global
maximum is obtained as

�
ML � argmax
k�l

L��
kl�	

��� Models with two regressors both having a break�
point

As a further extension we allow for two regressors with each of them having
a breakpoint which is modelled as

E�Y jX�Z� � G��� ���x� ���� � ���x� ���� � ���z� ���� � ���z� �����	

Even in this case we can essentially proceed as above� Let �xi� yi� zi�i�������n
denote the ordered observations with xi � xj for i � j� The observa�
tions of the second regressor Z are ordered by a second index zir with
zir � zis � r � s� For deriving the ML�estimator of the parameter vector

 � ��� ��� ��� ��� ��� ��� ���

� we again divide the domain of ���� ���
� into rect�

angles Rkr � �xk�xk��� � �zlr � zlr�� � and consider �rst the case where ���� ���
�

lies in the interior of Rkr� Using ideas of Section � we �t a generalized linear
model with parameter vector ���� ��� ��� ��� ��� ��� 
�� 
��

� and design matrix

D �


��� xi� Ifxi���g� ��� xi� Ifxi���g� ��� zi� Ifzi���g� ��� zi� Ifzi���g

�
i�������n

	

The corresponding model equation is given by

E�Y jX � x� Z � z� � G����� ��x�Ifx���g � ���� ��x�Ifx���g

��
�� ��z�Ifz���g � �
�� ��z�Ifz���g�	



	

From the ML�estimator ����� ���� ���� ���� �
�� �
�� ���� ����
� we obtain as estimators

for ���� ���
� using the continuity assumption

��� �
��� � ���
��� � ���

and ��� �
�
� � �
�
��� � ���

	

If ����� ����� � Rkr we have found a local maximum of the log�likelihood since
the score equations can be transformed similarly to equations ���� � �����

At the boundary of the rectangle the above model reduces to one with
only a single regressor� one breakpoint and a covariate� Thus� the approach
of Section � can be applied�

This leads to the maximizer �
kr for each rectangle Rkr� Finally� the global
maximum results from

�
ML � argmax
k�r

L��
kr�	

Further extensions to more than two covariates or more than two breakpoints
are straightforward� but the corresponding algorithms become considerably
more complicated and thus require an increasing computational e�ort�

� An example� the Munich rental table

Rental tables are built up based on surveys in larger cities or communities in
Germany� They serve as a formal instrument for rating rents depending on
year of construction� 
at size� and other covariates� For a detailed description
of the data material and the statistical methods used we refer to Fahrmeir�
Gieger� Mathes� and Schneewei ��		�� and Fahrmeir� Gieger� and Klinger
��		���

As a �rst approach we model the relationship between net rent �Y � and

at size �X�� where the assumption of a breakpoint is justi�ed because smaller

ats are more expensive relative to bigger 
ats� Thus� we consider the fol�
lowing model equation

E�Y jX � x� � �� ���x� � �� � ���x� � ��	 ����

Besides the presence of a breakpoint an additional problem occurs when
analysing this data caused by heteroscedasticity� Following Fahrmeir et al�
��		�� we apply a weighted regression using the weights proposed there�

The results are obtained from the algorithm presented in Section � and
are given in Table �� where the estimated variances are calculated by the
asymptotic theory derived in K
uchenho� ��		���

As it can be seen from these results the breakpoint takes a value of about
�� m�� For smaller 
ats the estimated slope of ���� is below the one for
bigger 
ats � ��� � 		���� Comparing our results with those gained from a
linear regression no essential di�erences can be stated regarding the �t of the
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Table �� Parameter estimates of the weighted broken linear regression model
���� for the Munich rental table� In the column �� the estimated standard
deviations are listed�

parameter estimate ��
�� ���� ���
�� ��� ��
��� ���� ���
��� 	��� ����

data� For a more detailed analysis and a comparison with the results from
Fahrmeir� Gieger� Mathes� and Schneewei ��		�� see K
uchenho� ��		���

In a second step we take into account the age of the 
at �Z� as addi�
tional regressor which is de�ned as �		� minus year of construction� Possible
changes in the way of building 
ats are re
ected in the model equation by
allowing for a breakpoint in the second regressor� age�

E�Y jX�Z� � �� ���x� ���� � ���x� ���� � ���z� ���� � ���z� ����	 ����

Here� the application of the algorithm proposed in Section ��� yields the
results given in Table ��

Table �� Parameter estimates of the weighted broken linear regression model
���� for the Munich rental table� �� and �� denote the breakpoints belonging
to 
at size and age� In the column �� the estimated standard deviations are
listed�

parameter estimate ��
��� ���� ���
��� ���� ��	�
�� ��� �	
��� ���� ���
��� ���� ����
��� ����	 ���
��� ����	� ����

In this case� the application of a segmented model yields a much better �t
than the use of a linear model without breakpoints� The estimated breakpoint
of ���� for the variable age corresponds to the year �	��� Since �� is not
signi�cantly di�erent from �� the age of 
ats built before �	�� is not essential
for their net rent� For 
ats built after �	�� the net rent increases with the
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year of construction ���� � ���		�� As already indicated� this e�ect is possibly
due to a substantial change in the way of how houses were built�

� Discussion

From our experience when analysing data by applying the above algorithms
as for instance in the example presented in Section � we can state a good
practicability of these algorithms� For the Munich rental table� where we have
about ����� data points� the computing time for the model with one break�
point was about � minutes on a sun�sparc �� work station� For the model
with two regressors each having a breakpoint it took about �� minutes for
calculating the ML�estimators using the algorithm presented in Section ����
Thus� the computing times do not seem to constitute a real problem� In
addition� algorithms for linear� logistic� and weighted linear models can be
obtained on request from the author� The algorithms are written in Gauss
and can easily be rewritten for other generalized linear models�

Finally� we should address two important aspects related to the proposed
algorithms�

When deriving the above algorithm we assumed that the nuisance pa�
rameter is constant over the segments� Note that this assumption fails e�g�
in the linear regression when there are di�erent variances in the segments�
In case of logistic regression this problem does not occur since there is no
nuisance parameter �� � ��� This case of the logistic regression where � can
be treated as known can be generalized to other models� That means� alter�
natively to the assumption of a constant nuisance parameter the derivation
of the algorithm remains valid if the nuisance parameter� itself� or the ratio
of the nuisance parameters of the di�erent segments is known�

One of the most interesting aspects of our idea for deriving an exact
algorithm concerns the models with covariates� The approach proposed in
this paper is not only useful for such models� for which this approach was
designed� but it is also an essential part of the derivation of the corresponding
algorithm for the case of more than two segments� Thus� we were also able
to solve the problem pointed out by Williams ��	����
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