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Estimating Time-Varying Effects of Prognostic Factors for

Stomach Cancer Patients within a Dynamic Grouped Cox Model

SUMMARY

We describe the identification of prognostic factors in the framework of a completely resected

stomach cancer survival-study. For the analysis the dynamic grouped Cox-Model was used

allowing for time-varying covariate effects. Therefore the hazard rate might be non-

proportional. As estimation concept we applied the posterior mode, computed by iteratively

weighted Kalman filtering and smoothing steps. The medical study and questions are

described, the statistical method is illustrated, the results are given and interpreted and the

method is discussed.

KEYWORDS: Fisher-scoring, Iteratively weighted Kalman filtering and smoothing,

Non-proportional hazards, Penalized likelihood, Posterior mode

estimation, State space model, Survival analysis.
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1. INTRODUCTION

In common regression models for survival analysis the prognostic factors or effects of the

covariates are assumed to be constant over observation time t, e.g. using Cox-regression with

the proportional-hazards assumption. Sometimes in the analysis of an extended follow-up the

impact of a prognostic factor seems to vary. One reason for such a development can be a

change of the effect over observation time, and the proportional hazards assumption does no

longer meet. In this sense the effects of two proteolytic factors for stomach cancer patients had

to be examined.

In Section 2 we introduce the data and describe the study. As the data were measured in

months, we applied a discrete-time regression model for our analysis. The dynamic grouped

Cox model considered in Section 3 is one of the models covering both features: time-varying

effects and a discrete time-axis. It can be derived as a grouped version of the time-continuous

Cox model, confer for example Kalbfleisch and Prentice1. To ensure the existence of the

maximum penalized likelihood estimate (MPL), a transition model for the process of the

covariate effects is added, acting as roughness penalty within a penalized likelihood criterion.

A basic introduction and detailled description of dynamic, discrete-time survival models is

given in Fahrmeir and Tutz2.

Fahrmeir and Wagenpfeil3 show that, from a Bayesian point of view, the posterior mode

estimate can be obtained by maximizing a penalized likelihood criterion. The relevant Fisher-

scoring steps are efficiently carried out by recursively applying the well-known Kalman filter

and smoother method to a so-called „working score function“. The resulting algorithm is called

the iteratively weighted Kalman filter and smoother, outlined in Section 4.

As a result we get the estimated time-varying effects. Furthermore, we can regard their

development over time and their absolute values. This leads to the results described in Section

5. Section 6 concludes.

2. STUDY

At the Klinikum Rechts der Isar of the Technische Universität München between the years

1987 and 1994, 179 stomach cancer patients were enrolled after resection of the tumor. 84 of

these patients died yet. The survival time of each person is measured in months. The median is

48 months and the maximum survival time is 92 months as can be seen from Figure 1 . Various

factors were collected and their prognostic impact was investigated by Nekarda et al 4.



4

Figure 1. Survial function for stomach cancer patients after surgery (n=179).

Figure 2. Scattergram of observed uPA-values, depending on survival time of patients.
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Figure 3. Scattergram of observed PAI-1-values, depending on survival time of patients.

During earlier observation time periods, two of the histomorphological factors, the urokinase-

like plasminogen activator ´uPA´ and its inhibitor ´PAI-1´, showed effects different from those

measured for patients with longer survival times. The plots of the uPA- and PAI-1 - values

against survival time in the Figures 2 and 3 empirically indicate that both factors have a

prognostic impact. For demonstration, the observation time was divided into two intervals: the

first two years (24 months) and the time afterwards. UPA and PAI-1 were binary coded by a

cut-off value, according to prognosis (uPA: 1.08, PAI-1: 6.23). So we set the covariate xU  =

1 if uPA ≥  1.08 and xU  = 0 otherwise. In the same way we define the covariate xP  = 1 if

PAI-1 ≥  6.23 and xP  = 0 otherwise. From the first to the second time interval, the relative

risk, estimated by two simple Cox-regression models, decreased for high uPA-values ( xU =1)

from 2.5 [1.2; 5.3] to 1.9 [0.7; 5.0] and increased for high PAI-1 - values ( xP =1) from 1.9

[1.1; 3.4] to 5.9 [1.8; 19.7].
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Figure 4. Survival functions for patients with low uPA (---) and with high uPA(⎯)

Figure 5. Survival functions for patients with low PAI-1 (---) and with high PAI-1(⎯)
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In Figure 4, the cumulative survival functions of patients with high uPA values versus patients

with low uPA were plotted, and the same is displayed for PAI-1 in Figure 5. For the first two

years uPA shows an effect as the deviation between the two cumulative survivor curves

increases. Later on, the effect seems to vanish. For PAI-1 the deviation between the two

survivor curves continuously increases, confer Figure 5. Therefore, PAI-1 seems to have an

effect that is constant or increasing over time.

The request was to investigate whether there is a change of impact of the prognostic factors

uPA and PAI-1 over time or not, to describe time-varying effects by a suitable model and to

compute the estimated effects in the framework of the proposed model.

3. MODEL

In the framework of survival data analysis a commonly used model specification for the

continuous-time hazard function

λ( )t  = lim
( )

Δ

Δ
Δ→

< ≤ + >
0

P t T t T t

was introduced by Cox5,

λ( )t  = { }λ β0 ( ) expt z′ , (1)

where T is a continuous random variable denoting survival time and t its realization, z =

( z zm1,..., )’ ∈ IRm  the vector of covariates, β  ∈ IRm a vector of unknown regression

parameters modelling the effect of the covariates and λ0( )t  the baseline hazard function with z

= (0,...,0)’ ∈ IRm.

For discrete-time data with T ∈ {1,2,...} Kalbfleisch and Prentice1 derive the grouped Cox

model. In this case, the discrete hazard rate

( ) ( )λ t P t t= = ≥Τ Τ (2)

is modelled by

( ) ( ){ }λ β βt t z= − − + ′1 0exp exp ( )  , (3)

where β0 (t) is the baseline parameter depending on time t. Within a dynamic model not only

the baseline parameter but also the covariate effects are allowed to vary over time. We now
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formulate a state space model and notationally we replace β βwith t  and gather β0( )t  and β t

in the state vector α t = ( α0(t) ,..., αm(t) )’∈ IRm+1, confer Fahrmeir6. Furthermore one has to

specify the way in which the unknown and unobservable state vectors α t  may vary over time.

Therefor we assume a parameter transition model of the form

α α ξt t tF= +−1 , (4)

where F is a nonrandom transition matrix, {ξt  ~ N(0, Qt )} a white noise sequence which is

independent of the initial state α0  ~ N(a Q0 0, ) . The transition model (4) covers many well-

known structural time series models like the random walks of first or higher order (e. g.

Fahrmeir and Tutz2). In our analysis we used the random walk of first order, i. e F = I ∈

IRm+1,m+1 , where I is the unit matrix.

For each patient i = 1,...,n and time interval t = 1,...,tmax , the survival data are given by

( y x xit i U i P i, , ,, ,δ ), where the values yit  are the failure indicators of patient i defined as

yit = ⎧
⎨
⎩

1
0

,
,

patient i died in time interval t
otherwise

      , (5)

δ i  the censoring indicator with

δ i = ⎧
⎨
⎩

1
0

,
,

failure in time interval t
censoring in time interval t

(6)

and x xU i P i, ,,  the binary coded covariate values of uPA and PAI-1, respectively. Furthermore

we define the risk set { }R i y y yt i i it: ..., ,= = = = =1 2 0  containing all patients under risk in time

interval t.

Our dynamic or state space model now consists of two parts: An observation model defining

the conditional likelihood of the observations given unknown baseline parameters and possibly

time-varying effects, and a transition model (4) governing the stochastic transition of these

parameters.

Since { yit } can be regarded as a sequence of binomial responses (death or survival), we

assume as observation model

y zit i i t, ,δ α  ~ B(1,λ i t( ) ), (7)
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where ( ) { }λ ηi itt = − −1 exp exp( )  according to (3) is the conditional probability of patient i

with covariate values zi  dying in time interval t, and η αit i tz= ′( , )1  is the linear predictor.

Depending on whether we want to examine uPA or PAI-1, we set zi  = xU i,  or zi  = xP i, .

Hence ηit  = β0( )t  + xU i, β t  or ηit  = β0( )t  + xP i, β t .

Our aim is to estimate the states or vectors of regression parameters α t  in the framework of

the state space model (4) and (7).

4. ESTIMATION

In the following we gather failure indicators yit  of time interval t and censoring indicators δ i

in the column vectors

y y i Rt it t= ∈( , )  and δ*  = (δ δ δ1 2, ,..., n ).

Furthermore we denote histories of states and failure indicators by

α*  = (α α α0 1, ,...,
maxt ) and yt

*  = ( y yt1,..., ), (8)

respectively. The posterior density of the unobservable states α*  given the data is

p yt( , )* * *

max
α δ . One way of estimating the vector α*  is to compute the posterior mean. A

comprehensive survey on that kind of field can be found in Fahrmeir and Tutz2. The method

we follow is to determine the posterior mode estimate, that is the maximizer of the posterior

density.

Fahrmeir6 and Fahrmeir and Wagenpfeil7 show that under appropriate assumptions the

following proportionality holds for the posterior density:

p yn( , )* * *α δ  ∝ ( ) ( ) ( )p y y p pit t t
i Rt

t

t t
t

n

t

α δ α α α, , *
max

−
∗

∈=
−

=
∏∏ ∏ ⋅1

1
1

1
0 . (9)

Incorporating the binomial density from the observation model (4) and the Gaussian density

from the transition model (7), assuming that Q and Qt0  , t = 1,..., tmax, are regular and taking

logarithms, we obtain the penalized loglikelihood function

PL(α* ) = l(α* ) − ( ) ( )1

2 1
1

1
1

α α α αt t t t t
t

t

F Q F− ′ −−
−

−
=
∑

max

 − 
1

2 0 0 0
1

0 0α α− ′ −−a Q a� � � � (10)
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with l(α) := ( )lit t
i Rt

t

t

α
∈=
∑∑

1

m ax

 and the individual log-likelihood contribution

lit tα� �  := ( ) { }1 1− − +y t y tit i it ilog ( ) log ( )λ λ .

The first term in (10) measures the deviance between the data and the fit. The second and third

terms penalize deviations from the transition mechanism for the parameters specified in (4),

thus acting as roughness penalties and enforcing smoothness of the parameter sequence {α t }.

The roughness is weighted by Qt .

The maximization of PL(α* ) in (10) with respect to α*  and thus the computation of the

posterior mode estimates can be achieved by various methods from nonlinear optimization

theory. Fahrmeir and Wagenpfeil3 suggest an efficient Fisher scoring method. They show that

each single Fisher scoring step can be carried out by applying the well-known Kalman filter and

smoother algorithm (confer Anderson and Moore8) to a so-called working score function

�st ( )α t
j  := ( ) ( ){ }s S at t

j
t t

j
t t t

jα α α− −−1 , where

st t
j( )α  = ( )∂ α ∂αlit t

j

i R
t
j

t∈
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= { }1 1

z
D y t

i
it t

j
it t

j
it i

i Rt

⎛
⎝⎜

⎞
⎠⎟

−−

∈
∑ ( ) ( ) ( )α α λΣ

is the score function of the likelihood and

St t
j( )α  = ( )1

11

z
D D z

i
it t

j
it t

j
it t

j
i

i Rt

⎛
⎝⎜

⎞
⎠⎟

′−

∈
∑ ( ) ( ) ( )α α αΣ

the expected Fisher information matrix of the likelihood defined by the observation model (7).

Hereby,

Dit t
j( )α  = 

∂λ
∂η

α

i

it

t

t
j

( )
,

λ i t( )  from (3), is the first derivative of the hazard rate modelling with respect to the linear

predictor ηit , evaluated at α t
j ,

Σ it t
j( )α  = { }λ λi it t( ) ( )1−

is the variance of the binomial distribution in (7), and α j  = (( ) , ( ) ,..., ( ) )
max

α α α0 1
j j

t
j′ ′ ′ ′  the

starting vector of a Fisher scoring step. Let at t−1 , at t  and at tmax
, t = 1,...,tmax, be the predicted,

corrected and smoothed values of α t
j+1 , respectively, where α j+1=(( ) , ( ) ,..., ( ) )

max
α α α0

1
1

1 1j j
t
j+ + +′ ′ ′ ′
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denotes the solution of the Fisher scoring step from α j  to α j+1 . Then the Fisher scoring step

can be carried out by the following working Kalman filter and smoother recursions:

Working Kalman filter and smoother:

Initialization: a a0 0 0=  , V Q0 0 0=  .

For t = 1,..,tmax:

( ){ }
( )

predictionstep a Fa

V FV F Q

correction step V V S

a a V s

t t t t t

t t t t t t t

t t t t t t
j

t t t t t t t t
j

: ,

.

: ,

~ .

− − −

− − −

−
− −

−

=

= ′ +

= +

= +

1 1 1

1 1 1

1
1

1

1

α

α

For t = tmax,...,1:

smoother step B V FV

a a B a a

V V B V V B

t t t t t t

t t t t t t t

t t t t t t t t

:

( ),

( ) .

= ′

= + −

= + − ′

− − −
−

− − − −

− − − −

1 1 1
1

1 92 1 1 92 1

1 92 1 1 92 1

Note that the prediction vector at t−1 , necessary for the computation of �st ( )α t
j , is determined

in the previous prediction step. The matrices Vt tmax
, t = 1,..., tmax, are the main-diagonal blocks

of the inverse Fisher information matrix of (10), confer Fahrmeir and Kaufmann9 . They were

used in our analysis to construct pointwise confidence bands via the δ -method as in Fahrmeir

and Wagenpfeil3 .

The generalized extended Kalman filter and smoother described in Fahrmeir10 is a special case

of the working Kalman filter and smoother. A complete Fisher scoring algorithm is given by

the iteratively weighted Kalman filter and smoother defined as follows:

Iteratively weighted Kalman Filter and smoother:
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Initialization: Choose a starting vector α0  and set the iteration index j = 0 .

Step 1: Starting with α j , compute α j+1 by application of the working Kalman filter

and smoother.

Step 2: If a convergence criterion is fulfilled: STOP,

else set j = j+1 and go to Step 1 .

If the convergence criterion is fulfilled in iteration k, then α k  is taken as the posterior mode

estimate. The iteratively weighted Kalman filter and smoother allows for joint estimation of

time-varying effects and discrete hazard functions via model (3).

So far, the hyperparameters a Q0 0,  and Qt  in (4) were supposed to be known. In a general

setting, and especially within our real data example, however, the a Q0 0,  and Qt  will be

unknown hyperparameters. The estimation can be carried out by applying the EM-principle

described for this situation in Fahrmeir and Wagenpfeil7. We assumed Q = Q Q Qt1 2= = =...
max

and a diffuse prior distribution of the random vector α0  for the examination and analysis of

our data. Diffuse versions of the Kalman filter algorithm are given in de Jong11 and

Wagenpfeil12. Wagenpfeil13 sketches and compares further ways of hyperparameter estimation

in the framework of exponential family state space models.
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5. RESULTS

The analysis was done for the factors uPA and PAI-1 separately, i. e. two simple models of the

form (4), (7) were used with m = 1, n=179 and tmax =92. In addition, uPA and PAI-1 were

entered as binary factors, optimally coded belonging to prognosis, as given in Section 2. The

results obtained with the iteratively weighted Kalman filter and smoother are shown in Figures

6 and 8. The time-constant coefficient delivered by the common Cox-regression is outlined

(thick dashed line). It corresponds well to the time-varying estimation within the framework of

model (4), (7). The baseline effects β0( )t  are also displayed (Figures 7 and 9). The EM-type-

estimated hyperparameters �Q  were diag(0.0007748, 0.05840038) for the uPA-model with

linear predictor ηit  = β0( )t  + xU i, β t  and diag(0.0010091, 0.0009996) for the PAI-1-model

with ηit  = β0( )t  + xP i, β t .

For uPA there is a positive effect to the hazard rate or a negative effect to survival,

respectively, for the first two years. Afterwards, there is no significant effect obvious. The

effect seems to be time-varying because the pointwise confidence bands are separated totally at

least after one and after five years. This corresponds to the estimated survival curves, displayed

in Figure 10.

For PAI-1 there is a significant negative effect to survival over the whole observation period.

The effect does not seem to be time-varying because the confidence bands cover the dashed

line indicating the value of the PAI-1 effect from the Cox-regression.

In the analysis containing uPA, the coefficient of the baseline risk seems to be constant,

whereas in the analysis containing PAI-1, the baseline risk slightly decreases during

observation time.

Using the common multiple Cox-regression over the whole observation time using uPA and

PAI-1 as binary coded covariates, uPA showed no significant effect. A multiple analysis using

model (4), (7) with uPA and PAI-1 as binary coded covariates showed results with a structure

similar to the results in Fig. 6 and 8.
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Figure 6. Estimated time-varying coefficient β t  and confidence bands for uPA.
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Figure 7. Estimated baseline effect β0( )t  of the uPA-model.
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Figure 8. Estimated time-varying coefficient β t  and confidence bands for PAI-1.
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Figure 9. Estimated baseline effect β0( )t  of the PAI-1-model.
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Figure 10. Survival functions for patients with low uPA (---) and with high uPA(⎯),

estimated with the iteratively weighted Kalman filter and smoother
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6. DISCUSSION

The progress in using a method, which considers time-varying effects, is made by evaluating

simultaneously a) if there are effects, b) if they are time-varying c) to describe time varying-

effects over time and d) the possibility to do this in a multiple analysis.

The prognostic impact of factors whose effect varies over time, e. g. changes from positive to

negative, may be detected by using the above method. In a more general sense, the above

model allows for simultaneous modelling or model revising, respectively.

There is a demand for further research in this method concerning the selection of factors, i. e.

the comparison of the impact of factors having time-varying and of factors having time-

constant effects. Multiple analyses would then combine the information about one factor: On

one hand there is information about the variation of the effect over time and on the other hand

there is information about the impact of the effect compared to other factors.

Like for other methods using hyperparameters, the selection of starting values for Q in the

EM-type algorithm is a difficult duty and has to be managed responsibly.

Practical conclusions are to take not only PAI-1 but also uPA into account if e. g. the

prognosis of patients has to be estimated by a model during earlier observation time periods.

During later observation time periods uPA can be neglected.

Although our findings may still be well short of changing clinical practice at the moment,

another recommendation would be a close follow-up for patients with high uPA during earlier

observation time periods.

Studying the time variation of the risk associated with histomorphological factors may give

important insights into their role in tumor cell dissemination and metastasis.

In common, detailed knowledge of the time-dependent risk profile of prognostic factors

eventually will enable clinicians to better predict disease recurrance and survival and to

individualize follow-up.
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