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Summary

Spline smoothing in non- or semiparametric regression models is usually
based on the roughness penalty approach. For regression with normal errors,
the spline smoother also has a Bayesian justification: Placing a smoothness
prior over the regression function, it 1s the mean of the posterior given the
data. For non-normal regression this equivalence is lost, but the spline
smoother can still be viewed as the posterior mode. In this paper, we pro-
vide a full Bayesian approach to spline-type smoothing. The focus is on
generalized additive models, however the models can be extended to other
non-normal regression models. QOur approach uses Markov Chain Monte
Carlo methods to simulate samples from the posterior. Thus it is possible
to estimate characteristics like the mean, median, moments, and quantiles of
the posterior, or interesting functionals of the regression function. Also, this
provides an alternative for the choice of smoothing parameters. For com-
parison, our approach is applied to real-data examples analyzed previously
by the roughness penalty approach.

1 Introduction

Let us first consider classical curve estimation for metrical bivariate data
(yi,2;), ¢t = 1,...,n, with strictly ordered covariate values 1 < ... < z,. It



1s assumed that responses y; depend on x; by
yi = f(zi) +e (1)

with i.i.d. errors ¢; ~ N(0,c?) and a regression function f to be estimated
from the data.

The roughness penalty approach makes the compromise between faith
with the data and smoothness explicit: Find f as a twice-differentiable func-
tion that minimizes the penalized sum of squares

n
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with the smoothing parameter A > 0 controlling the trade-off between fit
and smoothness. The minimizing function f is a cubic smoothing spline, see
Reinsch (1967) or e.g., Green and Silverman (1994).
Wahba (1978) showed that (2) has a Bayesian justification by placing a
smoothness prior over f as the solution of the stochastic differential equation
dW (x)

d* f(x) — N2 x> mr . (3)

dx? dx ’ -

In (3), W(x) is a standard Wiener process with W(z1) = 0, independent of
the errors ¢;.
Initial conditions for x = x; are diffuse, i.e.

i

(£, (@) ~ N (0.k1) (1)

with & — co. Then, the cubic smoothing spline f is the posterior mean of f
given the data, i.e.

f=E(fly) (5)

for k — oco. This equivalence can also be established for more general classes
of spline functions, see e.g. Kohn and Ansley (1987). These authors also
derive a stochastic difference equation from (3) and apply Kalman filtering
and smoothing for efficient computation of the smoothing spline f

For non-normal responses, the observation equation (1) will be defined
by a non-normal regression model, for example a logit model in the case of
binary responses. Accordingly, the sum of squares in (2), which is essen-
tially the log-likelihood for normal responses, is replaced by a sum of log-
likelihoods I; (y;|f (#;)) for non-normal responses. This leads to the penalized
log-likelihood criterion

PL(f)Zili(yilf(xi))—%A [ @) dwmas )



The solution f i1s again a cubic spline smoother, see Green and Silverman
(1994).

However, the Bayesian justification as the posterior mean (5) is lost, since
the posterior is no longer Gaussian: The cubic spline smoother f can now
be seen as the posterior mode given the data. From this point of view, a
Bayesian analysis that allows for wider inference is obviously desirable and
provides motivation for the full Bayesian approach developed and discussed
in this paper.

A direct approach to evaluate posteriors via Bayes’ theorem would involve
computationally intractable high-dimensional integrations. Therefore, we use
Markov Chain Monte Carlo (MCMC) simulations to draw samples from the
posterior. Based on these samples, estimates of means, medians, quantiles
and other characteristics can be computed, without assuming any normality
approximation for the posterior. In addition, Bayesian data-driven choice of
smoothing parameters is carried out simultaneously. As a further advantage,
the Bayesian formulation also allows to estimate posterior distributions of
any functionals, e.g. maxima or minima, of regression functions.

Our focus 1s on non- and semiparametric analysis of generalized additive
models. Section 2 gives a Bayesian framework for these models, including
the more general case of polynomial splines of order 2m — 1 instead of cubic
splines. In Section 3 we describe MCMC algorithms for simulation-based
inference. The proposed sampling schemes are close to those in Knorr-Held
(1995) and Fahrmeir and Knorr-Held (1996), developed in the related con-
text of dynamic generalized linear models. For the case of a single covariate
a somewhat different suggestion has recently been made by Shephard and
Pitt (1995). Carter and Kohn (1995) discuss MCMC sampling for robusti-
fied models of the form (1), with mixtures of normals as error distributions.
However, their sampling schemes are not applicable in our context. Section
4 contains applications to data sets analyzed previously by the roughness
penalty approach. Extensions to other kinds of regression, e.g. varying coef-
ficient models, are outlined in the concluding remarks in Section 5.

2 Bayesian models for generalized additive re-

.
gression

Consider now the regression situation where observations (vi, 1, ..., Zip),

i=1,...,n, on aresponse y and on a vector & = (x1,...,xp) of covariates

are given. The response y may be non-normal, e.g. nonnegative or discrete.
To simplify presentation, we first assume that all covariates are metrical and
that covariate values are strictly ordered, ie. z1; < ... < zp;forj=1,...,p.

Generalized additive models assume that, given #; = (2;1,..., 2;p), the
distribution of y; belongs to an exponential family with mean p; = E(y;|z;)



linked to an additive predictor 7; by an appropriate response function A, i.e.

wi=nhm) , ni=v+hAa)+...+ folzp) . (7)

To estimate the regression functions fi,..., fp, the roughness penalty ap-
proach (6) is generalized to the penalized log-likelihood criterion
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with likelihood contributions /; from y;|a;, and with separate penalty terms

and smoothing parameters. The maximizing functions fl, .. .,fp are polyno-

mial splines of order 2m — 1, e.g. cubic splines for m = 2. The constant = is

added to guarantee uniqueness of the smoothers in the backfitting algorithm,
see Hastie and Tibshirani (1990) or Fahrmeir and Tutz (1994, ch.5).

For a Bayesian formulation, (7) together with a specific choice of the
exponential family defines the observation model. It is supplemented by
placing smoothness priors over the regression functions similarly as in (3).
We make the following assumptions:

For j =1,...,p, the regression function f; obeys the stochastic differential
equation
dW:(x
2 fey = o s ()

with L™ = d™/da™ as the m-th order differential operator. The standard
Wiener processes W;(z), with W;(21;) = 0, are mutually independent.
Initial conditions are

i), £ (rg), o 7 @) ~ N0, kD) (10)

becoming diffuse for k; — oo. We also assume a normal or diffuse prior,
independent from (9), for the constant ~.

The spline smoothers fj obtained from (8) with A; = 0.5/0']2» can then
be viewed as posterior mode estimators. In an empirical Bayes approach,
0']2» will be regarded as an unknown constant that can be estimated from the
data, e.g. by cross-validation or by maximum likelihood. Here we adopt a

full Bayesian model and impose independent inverse gamma priors
oF ~1G(aj,b5) , j=1,....p , (11)

on the variances. By appropriate specification of hyperparameters a;,b;,
these priors can be made more or less informative. Posterior estimation of

o2

5 then provides an alternative data-driven choice of smoothing parameters.

In order to compute Bayesian spline-type smoothers based on MCMC
simulations from the posterior, we reformulate (9) as a stochastic difference
equation for the vector f;(x1;),..., fj(xn;) of evaluations of f;. For the case



of a normal regression model (1) with a single covariate, such a derivation is
already given in Kohn and Ansley (1987) and previous work of these authors.
Since this derivation has nothing to do with the observation model, we can
exploit their results for the present purpose. For j = 1,..., p, we define

1 -1 ! .
Ozij:(fj(l‘ij),f; )(l‘”),,f](m )(l‘”)) s z:l,...,n
Then the sequence oy, ..., ay; obeys the stochastic difference equation
Qo :Fijai_lyj—l—ajuij , t=2,...,n . (12)
The (m x m)- transition matrices Fj; are given by

m—1
6;]'

(m—1)!
sm=2

by - e

(Sij
1

with d;; = ¢35 — x;-1,;. The errors u;; are independent and normal
with elements @;;(k, 1) of Q;; given by
622m—k—l+1

J

2m—k—14+1)(m—Fk)l(m-=]!

Qij(k’,l): , kil=1

gy

According to (10), initial values «1; have a diffuse prior. For m = 2, corre-
sponding to cubic smoothing splines, we have a;; = (f;(2i;), f(l)(xij))l, and
transition and covariance matrices are

g 33, 52./2
Fij = ( é 613 ) , Qij = ( ;]/3 ! )
(5Z»j/2 di;

The stochastic difference equation (12) then defines a smoothness prior on
a sequence of "parameters” ayj,...,an; that is equivalent to the one ob-
tained from (9). The generalized additive observation model (7) together
with (12) is now similar in form to dynamic generalized linear models (see,
e.g., Fahrmeir and Tutz, 1994, ch.8 for a survey). Therefore we may conceive
MCMC sampling schemes based on suggestions and experience made in this
related area.

The restriction to strictly ordered covariate values made at the beginning
of this section can be easily dropped. First, for each covariate z;,7 =1,...,p,



the observed covariate values are ordered. Then z; < x9; < ... < x5 <
... < &y; for each component, where x;; now denotes the ¢-th covariate value
in the ordered sequence. The stochastic process prior (9) and its represen-
tation by the stochastic difference equation (12) remain formally unchanged,
even in the presence of tied covariate values. If, for example, z;_1 ; = 2; ;,
then §;; = 0, Fi; = [ and @Q; = 0, so that also a;_1; = ay;. For com-
putational purposes as in the next section, it is more convenient to group
observations with same covariate value x;;, say. Here grouping is realized
separately for each covariate. Therefore, after relabeling, one gets ordered
values x1; < ... < xp; < ... < Tp, 4, 7y < n. With the number w;; of
repetitions of covariate value x,; we define the grouped response

as the mean of the responses ¥, s = 1, ..., w,;, with same covariate value z,;.
Doing so, we remain within the exponential family framework. To connect
the original covariate values z;;, ¢ = 1, ..., n, with the ordered and grouped
values z,;, r = 1,...,n;, we use the n x n; incidence matrix N;, with entries
N;’T = 1if x;; = 2,;, and 0 otherwise (see Green and Silverman, 1994, p.
65).

In Section 3, we always assume that data are ordered and grouped in the
described way. The definitions of the quantities «;;, Fj;, ... made above
remain unchanged, if we use the index ¢ instead of r also for the grouped
data, but with ¢ now running from 1 to n;.

Another extension concerns partial splines, where the predictor has semi-
parametric additive form

= O[—|—f1(l‘i1) + —|—fp($2p) +BIZZ

For example, z; may contain binary or categorical covariates, or the effect of
some metrical covariate is supposed to be linear. To deal with such models,
we add normal or diffuse priors for the components of 3.

3 Posterior analysis by MCMC sampling

Bayesian inference for the unknown parameters «; = (g, ..., @i, . . .)I, 0']2»,
j=1,...,p, is based on joint or marginal posterior distributions like p(«;|y),
plaijly) or p(O']z»|y). Direct evaluation of posteriors generally becomes com-
putationally intractable due to high-dimensional integrations. Markov Chain
Monte Carlo (MCMC) methods circumvent this problem by drawing sam-
ples indirectly. Estimates of the posteriors and functionals like moments and
quantiles are available from these samples. Recent expositions of MCMC are
given, e.g., in Besag, Green, Higdon and Mengersen (1995), Tierney (1995)
and in the first chapter of Gilks et. al. (1996).



The key tool for the design of MCMC techniques is the definition of so-
called full conditionals, i.e. conditional distributions for a part of the param-
eters given the rest and the data. For example p(aj|ag, k # j, 0, ..., 0'12,, ),
plaijloj, U # i,on, k # j,of, ..., 0'12,, v) p(oﬂa, o,k # j,y) are such con-
ditional distributions. The full set of such conditionals defines an ergodic
Markov Chain on the state space of parameters with marginal posteriors as
limiting distributions. Starting from some initial values, a sequence of sam-
ples drawn from the full conditional will then converge in distribution to
the marginal posteriors, for example to p(e;|y), p(aujly), or p(O']z»|y). Ob-
viously, two properties are essential for designing efficient MCMC schemes:
Firstly, samples from the conditionals should be available in a computation-
ally efficient way. Secondly, the constructed Markov Chain should possess
good convergence properties. Both goals are possibly conflicting, and some
compromise will often be useful.

Our proposals for MCMC samplings for generalized additive models are
based on suggestions and experience made in the related field of state space
models and dynamic generalized linear models. Carlin, Polson and Stof-
fer (1992) first suggested the use of Gibbs sampling for state space models,
and Fahrmeir, Hennevogl and Klemme (1992) adopted their method to dy-
namic generalized linear models. More general MCMC schemes for this class
of models are proposed in Knorr-Held (1995, 1996), Gamerman (1995) and
Shephard and Pitt (1995). These authors also discuss the important issue of
single versus block moves.

In the following, we describe a single move sampling scheme and outline
a generalization to block moves. For the derivation of full conditionals it is
useful to note that the joint priors for a;, j = 1,.. ., p are multivariate normal
with
Kjog) (13)

1
p(ozj|0']2») x exp(—ma]
b

The penalty matrix K; in (13) is symmetric and block-tridiagonal :
K1 Kis

Koy Koo

K =
[an—l,nj
Anj,nj—l I\nj,nj
with blocks
- ! -1
K1 = FyQ5; Py
- . -1 ! -1 - )
Kii = Qi +Fip Qi j Py i=2,..,m5—1
7
. _ K _o-lp. i .
Kijor = Koy, =-Q Fiy i=2,...,n;
. _ -l
Knjny, = Qn;



compare Fahrmeir and Tutz (1994, p.265).
Single moves update the components «;; of a; one at a time. For a more

compact notation, we suppress the conditioning variables o2, .. .,0'12, and the
data y. Then
plaijlarj, v # i, ar, k # j) oc laij)p(aijlon;, r #14) . (14)

In (14), the first factor {(c;) denotes the joint likelihood of all responses that
are observed at the (same) covariate value z;;. For untied covariate values,
l(;;) reduces to the exponential family density p(y;|aij) of y;. The second
factor is the conditional prior for a;; given the remaining components. Since
the joint prior (13) is normal, it is multivariate normal,

plaijlang, r # i) o< ¢(aijluij, o3 i)

with mean p;; and covariance matrix 0']2»22']', say. Following Carlin, Polson
and Stoffer (1992) or Fahrmeir and Tutz (1994, Section 8.3.2), we have

/ _1 1 _1 .
(Fo;Qq; Foj) ™1 Fay Q5 vz Ci=1
—1 ' —1 11 ' —1
- (Qij + Fiyr ;@i jFi1 ) Qs Fijaim1j+ Fiyy ;@i j0it ;)
ij = .
o t=2,...,n;—1
Fijoio1j ;1=
and
] _1 _ .
(szsz Fay)! , i=1
_ —1 ' —1 _ ,
Eij = (Q” +Fi+1,jQi+1,jFi+1,j) 1 , z:2,...,nj—1
Qij , 1= n;

(Note that a4, has a diffuse normal prior with Ql_jl =0.))
ij» we use Metropolis-Hastings steps with a
conditional independence proposal af; ~ ¢(af;|u5;, (0'5)22%), with 7 ¢“ denot-
ing values available at the current iteration. Then the acceptance probability

of oz:»‘j 1s
. e G
a(aij, aij) = min { l(ozc]) , 1}

ij

For updating a current value o

This updating procedure was introduced by Knorr-Held (1995) in the context
of dynamic generalized linear models. Other updating schemes like those in
Gamerman (1995) and Shephard and Pitt (1995) may also be used instead.
However, they require more CPU time, since score functions and information
matrices have to be evaluated in every update step.

A drawback of single move schemes is that convergence can be slow if
neighboring parameters are highly correlated. This is likely to happen if



the likelihood I(w;;) contains little information, as for example for binary
responses. Then block move schemes as the one outlined below are generally
preferable.

The other parameters are updated more conventionally. For the constant
~, we have

p(ylaa, .. ap,y) xp(yla, ... ap,y)p(Y)

where p(y|-) is the likelihood of all observations and p(y) a normal diffuse
prior. MH steps with a simple random walk proposal are used for updating.

With inverse Gamma priors (11) for o7, .. .,0'12,, posteriors are again in-
verse Gamma o

U?|aj’y ~ IG(aj’bj) )

with hyperparameters

i m
a; = aj+5(nj—1)
1 1 -
] _ ] -1
by = (; +t3 > wiQn “m)
J i=2
and u;; = (aij— Fija;—1 j)/cj. Therefore, o7, ..., 0'12) can be directly updated

by Gibbs sampling.
For block moves, the vector «; is divided into several blocks a; = (a(1);,
S Qg -5 Q(s);), say, each block ay; consisting of several components
a;j; of a;. Then, instead of updating single components «;; one at a time,
blocks a(y;, ¥ = 1,...,s, are updated. The idea for block moves is that
corresponding likelihoods [(a,);) will contain more information, leading to
less autocorrelation and better convergence. The conditionals p(a();]-), given

the rest of parameters, have a similar structure as in the case of single moves:

plagy;l-) o aw))o(omy; iy, o5 S );)

Here, I(c();) denotes the joint likelihood of all responses with densities de-
pending on (components of) ay,y;, and ¢ is multivariate normal with fi(;
and X(,); depending on neighboring blocks. Explicit formulae can be derived
from the joint multivariate prior (13) with similar arguments as for single
moves. Updating of blocks 1s done by MH steps with proposal densities
¢(ary;]-), in analogy to single moves, see Knorr-Held (1996). Updating of
and o2, ..., 0'12, remains unchanged.

A different proposal, based on multivariate normals, centered near pos-
terior modes, is suggested in Shephard and Pitt (1995), but computational
efforts are distinctly higher.

4 Applications

For comparison, we apply the suggested Bayesian smoothing techniques to
data sets already analyzed by other approaches.
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Figure 1: Posterior mean estimates (solid line) and pointwise two standard
deviation confidence bands together with crude death rates (plus)

Application 1: Smoothing mortality tables

Green and Silverman (1994, pp. 101-104) smooth crude death rates y, =
d /ng for a population of retired American white females with cubic splines,
using the roughness penalty approach. Here n, is the size of the population at
risk at age z, and d, is the number of corresponding recorded deaths. Figure
1 shows crude death rates, from age 55 to 104, together with a Bayesian
smoother. Since n, becomes rather small for higher age, varying between 2
and 11 for z > 98, a binomial logit model

exp(f(2))

ny:ﬂx:m

is used, with smoothness prior d?f(z)/dz?> = dW(z)/dz, corresponding to
cubic spline type smoothing. Figure 1 shows the posterior mean smoother
with +2 standard deviation pointwise confidence bands, based on single move
MCMC sampling with 100.000 iterations and a burn-in period of 2500 itera-
tions. After the burn-in period every 10th sample is used to estimate poste-
rior means and variances. The average acceptance rate in the MH steps was
0.91. Hyperparameters for the inverse Gamma prior for ¢? were set to a = 1,
b = 200, corresponding to a very flat prior. The posterior mean was esti-
mated by 6% = 0.0037. Shephard and Pitt (1995) analyzed the same data set
with their computationally more demanding block move scheme. Comparing
results, the methods yield more or less identical smoothers. This shows that
the simple single move MCMC updating scheme described in Section 3 may
give satisfactory results.
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Figure 2: Posterior mean estimates (solid line) and pointwise one standard de-
viation confidence bands from single move together with observations (plus)

Application 2: Lymph node syndrome incidence

Figure 2 contains observations y; of the weekly incidence of muco-cutaneous
lymph node syndrome (MCLS) in Tottori-prefecture in Japan during 1982.

This data set is analyzed by Kashiwagi and Yanagimoto (1992), assuming
a dynamic loglinear Poisson model

Ar = exp(f(1))

and a first order random walk f(¢) = f(t—1)+u(?) as smoothness prior. They
obtain a posterior mean estimate based on numerical integrations similarly
as in Kitagawa (1987).

We take a cubic spline type prior (9) and an inverse Gamma priori o ~
IG(a,b) with a = 1, b = 200. For comparison, single and block move schemes
are used to estimate posterior moments and quantiles. Figure 2 displays
the estimated posterior mean and 41 standard deviation confidence band
obtained from taking every 10th sample out of 100.000 iterations after a
burn-in period of 2500 iterations. Samples and autocorrelations for selected
values a; are seen in Figure 3.

Figure 4 gives corresponding results for block moves of block size 3, dis-
playing posterior means and medians that are almost identical and very close
to the posterior means for single move sampling. This seems to indicate that
single moves may do their job quite well. Figure 5 contains block move sam-
ples and autocorrelations for the same selected values a;. Here a distinct
improvement can be seen in comparison to Figure 3. The graphs indicate
that block moves might yield better mixing and convergence behaviour.

The following application is to be considered as a benchmark example:
The response is (almost) purely binary, and there are three metrical covariates
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Figure 3: Single move samples (left) and autocorrelations (right) for aag (top)
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Figure 4: Posterior mean estimates and median together with pointwise one
standard deviation confidence bands and 50% credible regions from block
move.

with unknown functional forms fi(z1), fa(22) and fz(x3) to be estimated
from sparse data.

Application 3: Kyphosis in laminectomy patients

To illustrate the use of generalized additive modelling, Hastie and Tibshirani
(1990, Section 10.2) analyze data on 83 patients undergoing corrective spinal
surgery. The response y of interest is the presence or absence of kyphosis,
defined to be the forward flexion of the spine of at least 40 degrees from
vertical, following surgery. Risk factors are age in months (x1), the starting
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Figure 5: Block move samples (left) and autocorrelations (right) for asg (top)
and asgg (bottom)

vertebrae level of the surgery (z3) and the number of vertebrae level involved
(z3). They fit an additive logit model for P(y = 1|x), with predictor n(z) =
¥+ f1(z1)+ f2(z2) + f3(x3), using the roughness penalty approach with cubic
splines. We analyze the data with Bayesian cubic spline-type priors (9) for
the functions f;(z;).

In contrast to the previous two examples, mixing and convergence be-
haviour detoriates distinctly, regardless whether single or block move schemes
are used. Figure 6 shows estimated posterior means fi, f2 and f5 together
with confidence bands based on a burn-in period of 2500 iterations and a
sampling period of 100.000 iterations taking every 10th sample.

Hyperparameters for the variance priors were chosen as in the forego-
ing examples. Comparing the estimates with those in Hastie and Tibshirani
(1990) and looking at confidence bands, it is seen that the overall pattern of
estimated regression curves is similar and will lead to analogous interpreta-
tions given there. However, details of curves differ more distinctly than for
the previous examples. In view of our experience with this sparse data set, it
is surely worthwile to develop and investigate alternative sampling schemes to
improve mixing and convergence, but this is beyond the scope of this paper.

5 Concluding remarks

Semiparametric Bayesian smoothing as discussed here has some attractive
features compared to the roughness penalty approach: It provides a natu-
ral framework for Bayesian analysis beyond posterior modes, and MCMC
techniques allow to estimate posterior means, medians, quantiles and other
functionals of regression functions. No asymptotic normality approximations
have to be assumed. Bayesian data-driven choice of smoothing parameters is
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Figure 6: Posterior mean estimates (solid line) and pointwise one standard
deviation confidence bands of the risk factors age, start and number.
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automatically incorporated. A further advantage of MCMC techniques, not
considered in this paper, is the convenient handling of missing values.

To some extent, the flexibility of MCMC techniques is also a certain
weakness: The general Metropolis-Hastings algorithm allows for a wide vari-
ety of proposals for updating steps, at least in theory. As our application 3
shows, further experience 1s needed for developing and investigating sampling
schemes that are efficient in sparse data situations.

We focussed on generalized additive models and polynomial spline-type
smoothing, but modifications and extensions to other models are possible by
other choices of observation models and smoothness priors. In particular, the
approach can be extended to varying coefficient models and regression models
for survival and event history data. More general splines, e.g. log-splines,
can be considered as in Kohn and Ansley (1987). Introduction of mixtures of
normals as in Carter and Kohn (1995) instead of normal errors in smoothness
priors, is an appropriate device to detect jumps or discontinuities in regression
functions. We intend to consider some of these topics in future work.

Acknowledgement: This work was supported by a grant from the German
National Science Foundation, Sonderforschungsbereich 386. Special thanks
go to Leo Knorr-Held for providing a prelimenary version of his doctoral
thesis.
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