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Summary

Spline smoothing in non� or semiparametric regression models is usually
based on the roughness penalty approach� For regression with normal errors�
the spline smoother also has a Bayesian justi�cation� Placing a smoothness
prior over the regression function� it is the mean of the posterior given the
data� For non�normal regression this equivalence is lost� but the spline
smoother can still be viewed as the posterior mode� In this paper� we pro�
vide a full Bayesian approach to spline�type smoothing� The focus is on
generalized additive models� however the models can be extended to other
non�normal regression models� Our approach uses Markov Chain Monte
Carlo methods to simulate samples from the posterior� Thus it is possible
to estimate characteristics like the mean� median� moments� and quantiles of
the posterior� or interesting functionals of the regression function� Also� this
provides an alternative for the choice of smoothing parameters� For com�
parison� our approach is applied to real�data examples analyzed previously
by the roughness penalty approach�

� Introduction

Let us �rst consider classical curve estimation for metrical bivariate data
�yi� xi�� i 	 
� � � � � n� with strictly ordered covariate values x� � � � � � xn� It



�

is assumed that responses yi depend on xi by

yi 	 f�xi� � �i � �
�

with i�i�d� errors �i � N �
� ��� and a regression function f to be estimated
from the data�

The roughness penalty approach makes the compromise between faith
with the data and smoothness explicit� Find f as a twice�di�erentiable func�
tion that minimizes the penalized sum of squares

PS�f� 	
nX
i��

�yi � f�xi��
�
� �

Z �
f
��

�u�
��

du � ���

with the smoothing parameter � � 
 controlling the trade�o� between �t
and smoothness� The minimizing function �f is a cubic smoothing spline� see
Reinsch �
���� or e�g�� Green and Silverman �
�����

Wahba �
���� showed that ��� has a Bayesian justi�cation by placing a
smoothness prior over f as the solution of the stochastic di�erential equation

d�f�x�

dx�
	 ������

dW �x�

dx
� x � x� � ���

In ���� W �x� is a standard Wiener process with W �x�� 	 
� independent of
the errors �i�

Initial conditions for x 	 x� are di�use� i�e�

�
f�x��� f

����x��
��
� N �
� kI� ���

with k��� Then� the cubic smoothing spline �f is the posterior mean of f
given the data� i�e�

�f 	 E�f jy� ���

for k��� This equivalence can also be established for more general classes
of spline functions� see e�g� Kohn and Ansley �
����� These authors also
derive a stochastic di�erence equation from ��� and apply Kalman �ltering

and smoothing for e�cient computation of the smoothing spline �f �
For non�normal responses� the observation equation �
� will be de�ned

by a non�normal regression model� for example a logit model in the case of
binary responses� Accordingly� the sum of squares in ���� which is essen�
tially the log�likelihood for normal responses� is replaced by a sum of log�
likelihoods li�yijf�xi�� for non�normal responses� This leads to the penalized
log�likelihood criterion

PL�f� 	
nX
i��

li�yijf�xi�� �



�
�

Z �
f
��

�u�
��

du� max
f

� ���



�

The solution �f is again a cubic spline smoother� see Green and Silverman
�
�����

However� the Bayesian justi�cation as the posterior mean ��� is lost� since

the posterior is no longer Gaussian� The cubic spline smoother �f can now
be seen as the posterior mode given the data� From this point of view� a
Bayesian analysis that allows for wider inference is obviously desirable and
provides motivation for the full Bayesian approach developed and discussed
in this paper�

A direct approach to evaluate posteriors via Bayes� theorem would involve
computationally intractable high�dimensional integrations� Therefore� we use
Markov Chain Monte Carlo �MCMC� simulations to draw samples from the
posterior� Based on these samples� estimates of means� medians� quantiles
and other characteristics can be computed� without assuming any normality
approximation for the posterior� In addition� Bayesian data�driven choice of
smoothing parameters is carried out simultaneously� As a further advantage�
the Bayesian formulation also allows to estimate posterior distributions of
any functionals� e�g� maxima or minima� of regression functions�

Our focus is on non� and semiparametric analysis of generalized additive
models� Section � gives a Bayesian framework for these models� including
the more general case of polynomial splines of order �m� 
 instead of cubic
splines� In Section � we describe MCMC algorithms for simulation�based
inference� The proposed sampling schemes are close to those in Knorr�Held
�
���� and Fahrmeir and Knorr�Held �
����� developed in the related con�
text of dynamic generalized linear models� For the case of a single covariate
a somewhat di�erent suggestion has recently been made by Shephard and
Pitt �
����� Carter and Kohn �
���� discuss MCMC sampling for robusti�
�ed models of the form �
�� with mixtures of normals as error distributions�
However� their sampling schemes are not applicable in our context� Section
� contains applications to data sets analyzed previously by the roughness
penalty approach� Extensions to other kinds of regression� e�g� varying coef�
�cient models� are outlined in the concluding remarks in Section ��

� Bayesian models for generalized additive re�

gression

Consider now the regression situation where observations �yi� xi�� � � � � xip��
i 	 
� � � � � n� on a response y and on a vector x 	 �x�� � � � � xp� of covariates
are given� The response y may be non�normal� e�g� nonnegative or discrete�
To simplify presentation� we �rst assume that all covariates are metrical and
that covariate values are strictly ordered� i�e� x�j � � � � � xnj for j 	 
� � � � � p�

Generalized additive models assume that� given xi 	 �xi�� � � � � xip�� the
distribution of yi belongs to an exponential family with mean 	i 	 E�yijxi�



�

linked to an additive predictor 
i by an appropriate response function h� i�e�

	i 	 h�
i� � 
i 	 � � f��xi�� � � � �� fp�xip� � ���

To estimate the regression functions f�� � � � � fp� the roughness penalty ap�
proach ��� is generalized to the penalized log�likelihood criterion

PL�f�� � � � � fp� 	
nX
i��

li�yij
i��



�

pX
j��

�j

Z �
f
�m�
j �u�

��
du� max

f������fp
� ���

with likelihood contributions li from yijxi� and with separate penalty terms

and smoothing parameters� The maximizing functions �f�� � � � � �fp are polyno�
mial splines of order �m� 
� e�g� cubic splines for m 	 �� The constant � is
added to guarantee uniqueness of the smoothers in the back�tting algorithm�
see Hastie and Tibshirani �
��
� or Fahrmeir and Tutz �
���� ch����

For a Bayesian formulation� ��� together with a speci�c choice of the
exponential family de�nes the observation model� It is supplemented by
placing smoothness priors over the regression functions similarly as in ����
We make the following assumptions�

For j 	 
� � � � � p� the regression function fj obeys the stochastic di�erential
equation

Lmfj�x� 	 �j
dWj�x�

dx
� x � x�j ���

with Lm 	 dm�dxm as the m�th order di�erential operator� The standard
Wiener processes Wj�x�� with Wj�x�j� 	 
� are mutually independent�

Initial conditions are

�fj�x�j�� f
���
j �x�j�� � � � � f

�m���
j �x�j��

�

� N �
� kjI� � �

�

becoming di�use for kj � �� We also assume a normal or di�use prior�
independent from ���� for the constant ��

The spline smoothers �fj obtained from ��� with �j 	 
�����j can then
be viewed as posterior mode estimators� In an empirical Bayes approach�
��j will be regarded as an unknown constant that can be estimated from the
data� e�g� by cross�validation or by maximum likelihood� Here we adopt a
full Bayesian model and impose independent inverse gamma priors

��j � IG�aj � bj� � j 	 
� � � � � p � �

�

on the variances� By appropriate speci�cation of hyperparameters aj� bj�
these priors can be made more or less informative� Posterior estimation of
��j then provides an alternative data�driven choice of smoothing parameters�

In order to compute Bayesian spline�type smoothers based on MCMC
simulations from the posterior� we reformulate ��� as a stochastic di�erence
equation for the vector fj�x�j�� � � � � fj�xnj� of evaluations of fj � For the case



�

of a normal regression model �
� with a single covariate� such a derivation is
already given in Kohn and Ansley �
���� and previous work of these authors�
Since this derivation has nothing to do with the observation model� we can
exploit their results for the present purpose� For j 	 
� � � � � p� we de�ne


ij 	 �fj�xij�� f
���
j �xij�� � � � � f

�m���
j �xij��

�

� i 	 
� � � � � n �

Then the sequence 
�j� � � � � 
nj obeys the stochastic di�erence equation


ij 	 Fij
i���j � �juij � i 	 �� � � � � n � �
��

The �m �m�� transition matrices Fij are given by

Fij 	

�
BBBBBBBBB�


 �ij � � � � � �
�m��

ij

�m����


 �ij � � �
�m��

ij

�m����

� � �
� � �

���
� � � �ij




�
CCCCCCCCCA

with �ij 	 xij � xi���j� The errors uij are independent and normal

uij � N �
� Qij� �

with elements Qij�k� l� of Qij given by

Qij�k� l� 	
��m�k�l��
ij

��m � k � l � 
��m � k���m� l��
� k� l 	 
� � � � �m �

According to �

�� initial values 
�j have a di�use prior� For m 	 �� corre�

sponding to cubic smoothing splines� we have 
ij 	 �fj�xij�� f
����xij��

�

� and
transition and covariance matrices are

Fij 	

�

 �ij

 


�
� Qij 	

	
��ij�� ��ij��

��ij�� �ij



�

The stochastic di�erence equation �
�� then de�nes a smoothness prior on
a sequence of �parameters� 
�j� � � � � 
nj that is equivalent to the one ob�
tained from ���� The generalized additive observation model ��� together
with �
�� is now similar in form to dynamic generalized linear models �see�
e�g�� Fahrmeir and Tutz� 
���� ch�� for a survey�� Therefore we may conceive
MCMC sampling schemes based on suggestions and experience made in this
related area�

The restriction to strictly ordered covariate values made at the beginning
of this section can be easily dropped� First� for each covariate xj � j 	 
� � � � � p�



�

the observed covariate values are ordered� Then x�j � x�j � � � � � xij �
� � � � xnj for each component� where xij now denotes the i�th covariate value
in the ordered sequence� The stochastic process prior ��� and its represen�
tation by the stochastic di�erence equation �
�� remain formally unchanged�
even in the presence of tied covariate values� If� for example� xi���j 	 xi�j�
then �ij 	 
� Fij 	 I and Qij 	 
� so that also 
i���j 	 
ij� For com�
putational purposes as in the next section� it is more convenient to group
observations with same covariate value xij� say� Here grouping is realized
separately for each covariate� Therefore� after relabeling� one gets ordered
values x�j � � � � � xrj � � � � � xnj�j� nj � n� With the number wrj of
repetitions of covariate value xrj we de�ne the grouped response

yrj 	



wrj

wrjX
s��

ysi

as the mean of the responses ysi � s 	 
� � � � � wrj� with same covariate value xrj �
Doing so� we remain within the exponential family framework� To connect
the original covariate values xij� i 	 
� � � � � n� with the ordered and grouped
values xrj � r 	 
� � � � � nj� we use the n�nj incidence matrix Nj � with entries

N i�r
j 	 
 if xij 	 xrj� and 
 otherwise �see Green and Silverman� 
���� p�

����
In Section �� we always assume that data are ordered and grouped in the

described way� The de�nitions of the quantities 
ij� Fij� � � � made above
remain unchanged� if we use the index i instead of r also for the grouped
data� but with i now running from 
 to nj�

Another extension concerns partial splines� where the predictor has semi�
parametric additive form


i 	 
� f��xi�� � � � �� fp�xip� � �
�

zi �

For example� zi may contain binary or categorical covariates� or the e�ect of
some metrical covariate is supposed to be linear� To deal with such models�
we add normal or di�use priors for the components of ��

� Posterior analysis by MCMC sampling

Bayesian inference for the unknown parameters 
j 	 �
�j� � � � � 
ij� � � ��
�

� ��j �
j 	 
� � � � � p� is based on joint or marginal posterior distributions like p�
jjy��
p�
ijjy� or p���j jy�� Direct evaluation of posteriors generally becomes com�
putationally intractable due to high�dimensional integrations� Markov Chain
Monte Carlo �MCMC� methods circumvent this problem by drawing sam�
ples indirectly� Estimates of the posteriors and functionals like moments and
quantiles are available from these samples� Recent expositions of MCMC are
given� e�g�� in Besag� Green� Higdon and Mengersen �
����� Tierney �
����
and in the �rst chapter of Gilks et� al� �
�����



�

The key tool for the design of MCMC techniques is the de�nition of so�
called full conditionals� i�e� conditional distributions for a part of the param�
eters given the rest and the data� For example p�
jj
k� k 		 j� ���� � � � � �

�
p� y��

p�
ijj
lj� l 		 i� 
k� k 		 j� ���� � � � � �
�
p� y� � p���j j
� �

�
k� k 		 j� y� are such con�

ditional distributions� The full set of such conditionals de�nes an ergodic
Markov Chain on the state space of parameters with marginal posteriors as
limiting distributions� Starting from some initial values� a sequence of sam�
ples drawn from the full conditional will then converge in distribution to
the marginal posteriors� for example to p�
jjy�� p�
ijjy�� or p��

�
j jy�� Ob�

viously� two properties are essential for designing e�cient MCMC schemes�
Firstly� samples from the conditionals should be available in a computation�
ally e�cient way� Secondly� the constructed Markov Chain should possess
good convergence properties� Both goals are possibly con�icting� and some
compromise will often be useful�

Our proposals for MCMC samplings for generalized additive models are
based on suggestions and experience made in the related �eld of state space
models and dynamic generalized linear models� Carlin� Polson and Stof�
fer �
���� �rst suggested the use of Gibbs sampling for state space models�
and Fahrmeir� Hennevogl and Klemme �
���� adopted their method to dy�
namic generalized linear models� More general MCMC schemes for this class
of models are proposed in Knorr�Held �
���� 
����� Gamerman �
���� and
Shephard and Pitt �
����� These authors also discuss the important issue of
single versus block moves�

In the following� we describe a single move sampling scheme and outline
a generalization to block moves� For the derivation of full conditionals it is
useful to note that the joint priors for 
j� j 	 
� � � � � p are multivariate normal
with

p�
jj�
�
j � 
 exp��




���j


�

jKj
j� � �
��

The penalty matrix Kj in �
�� is symmetric and block�tridiagonal �

Kj 	

�
BBBBBBB�

K�� K��

K�� K��
� � �

� � �
� � �

� � �
� � �

� � � Knj���nj

Knj�nj�� Knj�nj

�
CCCCCCCA

with blocks

K�� 	 F
�

�jQ
��
�j F�j

Kii 	 Q��
ij � F

�

i���jQ
��
i���jFi���j � i 	 �� � � � � nj � 


Ki�i�� 	 K
�

i���i 	 �Q��
ij Fij � i 	 �� � � � � nj

Knj�nj 	 Q��
nj�j



�

compare Fahrmeir and Tutz �
���� p������
Single moves update the components 
ij of 
j one at a time� For a more

compact notation� we suppress the conditioning variables ���� � � � � �
�
p and the

data y� Then

p�
ijj
rj� r 		 i� 
k� k 		 j� 
 l�
ij�p�
ijj
rj� r 		 i� � �
��

In �
��� the �rst factor l�
ij� denotes the joint likelihood of all responses that
are observed at the �same� covariate value xij� For untied covariate values�
l�
ij� reduces to the exponential family density p�yij
ij� of yi� The second
factor is the conditional prior for 
ij given the remaining components� Since
the joint prior �
�� is normal� it is multivariate normal�

p�
ijj
rj� r 		 i� 
 ��
ijj	ij� �
�
j�ij�

with mean 	ij and covariance matrix ��j�ij� say� Following Carlin� Polson
and Sto�er �
���� or Fahrmeir and Tutz �
���� Section ������� we have

	ij 	

�����

�����

�F
�

�jQ
��
�j F�j�

��F
�

�jQ
��
�j 
�j � i 	 


�Q��
ij � F

�

i���jQ
��
i���jFi���j����Q

��
ij Fij
i���j � F

�

i���jQ
��
i���j
i���j�

� i 	 �� � � � � nj � 


Fij
i���j � i 	 nj

and

�ij 	

���

���

�F
�

�jQ
��
�j F�j�

�� � i 	 


�Q��
ij � F

�

i���jQ
��
i���jFi���j��� � i 	 �� � � � � nj � 


Qij � i 	 nj

�

�Note that 
�j has a di�use normal prior with Q��
�j 	 
��

For updating a current value 
c
ij� we use Metropolis�Hastings steps with a

conditional independence proposal 
�ij � ��
c
ijj	

c
ij� ��

c
j�
��c

ij�� with �c� denot�
ing values available at the current iteration� Then the acceptance probability
of 
�ij is

a�
�ij� 

c
ij� 	 min

�
l�
�ij�

l�
c
ij�

� 


�
�

This updating procedure was introduced by Knorr�Held �
���� in the context
of dynamic generalized linear models� Other updating schemes like those in
Gamerman �
���� and Shephard and Pitt �
���� may also be used instead�
However� they require more CPU time� since score functions and information
matrices have to be evaluated in every update step�

A drawback of single move schemes is that convergence can be slow if
neighboring parameters are highly correlated� This is likely to happen if



�

the likelihood l�
ij� contains little information� as for example for binary
responses� Then block move schemes as the one outlined below are generally
preferable�

The other parameters are updated more conventionally� For the constant
�� we have

p��j
�� � � � � 
p� y� 
 p�yj
�� � � � � 
p� ��p��� �

where p�yj�� is the likelihood of all observations and p��� a normal di�use
prior� MH steps with a simple random walk proposal are used for updating�

With inverse Gamma priors �

� for ���� � � � � �
�
p� posteriors are again in�

verse Gamma
��j j
j� y � IG�a

�

j� b
�

j� �

with hyperparameters

a
�

j 	 aj �
m

�
�nj � 
�

b
�

j 	

	



bj
�




�

njX
i��

u
�

ijQ
��
ij uij



��

and uij 	 �
ij�Fij
i���j���j� Therefore� ���� � � � � �
�
p can be directly updated

by Gibbs sampling�
For block moves� the vector 
j is divided into several blocks 
j 	 �
���j�

� � � � 
�r�j� � � � � 
�s�j�� say� each block 
�r�j consisting of several components

ij of 
j� Then� instead of updating single components 
ij one at a time�
blocks 
�r�j� r 	 
� � � � � s� are updated� The idea for block moves is that
corresponding likelihoods l�
�r�j� will contain more information� leading to
less autocorrelation and better convergence� The conditionals p�
�r�j j��� given
the rest of parameters� have a similar structure as in the case of single moves�

p�
�r�jj�� 
 l�
�r�j���
�r�jj	�r�j� �
�
j��r�j� �

Here� l�
�r�j� denotes the joint likelihood of all responses with densities de�
pending on �components of� 
�r�j� and � is multivariate normal with 	�r�j
and ��r�j depending on neighboring blocks� Explicit formulae can be derived
from the joint multivariate prior �
�� with similar arguments as for single
moves� Updating of blocks is done by MH steps with proposal densities
��
�r�j j��� in analogy to single moves� see Knorr�Held �
����� Updating of �
and ���� � � � � �

�
p remains unchanged�

A di�erent proposal� based on multivariate normals� centered near pos�
terior modes� is suggested in Shephard and Pitt �
����� but computational
e�orts are distinctly higher�

� Applications

For comparison� we apply the suggested Bayesian smoothing techniques to
data sets already analyzed by other approaches�







Figure 
� Posterior mean estimates �solid line� and pointwise two standard
deviation con�dence bands together with crude death rates �plus�

Application �� Smoothing mortality tables

Green and Silverman �
���� pp� 


�

�� smooth crude death rates yx 	
dx�nx for a population of retired American white females with cubic splines�
using the roughness penalty approach� Here nx is the size of the population at
risk at age x� and dx is the number of corresponding recorded deaths� Figure

 shows crude death rates� from age �� to 

�� together with a Bayesian
smoother� Since nx becomes rather small for higher age� varying between �
and 

 for x � ��� a binomial logit model

Eyx 	 	x 	
exp�f�x��


 � exp�f�x��

is used� with smoothness prior d�f�x��dx� 	 dW �x��dx� corresponding to
cubic spline type smoothing� Figure 
 shows the posterior mean smoother
with �� standard deviation pointwise con�dence bands� based on single move
MCMC sampling with 


�


 iterations and a burn�in period of ��

 itera�
tions� After the burn�in period every 

 th sample is used to estimate poste�
rior means and variances� The average acceptance rate in the MH steps was

��
� Hyperparameters for the inverse Gamma prior for �� were set to a 	 
�
b 	 �

� corresponding to a very �at prior� The posterior mean was esti�
mated by ��� 	 
�

��� Shephard and Pitt �
���� analyzed the same data set
with their computationally more demanding block move scheme� Comparing
results� the methods yield more or less identical smoothers� This shows that
the simple single move MCMC updating scheme described in Section � may
give satisfactory results�







Figure �� Posterior mean estimates �solid line� and pointwise one standard de�
viation con�dence bands from single move together with observations �plus�

Application �� Lymph node syndrome incidence

Figure � contains observations yt of the weekly incidence of muco�cutaneous
lymph node syndrome �MCLS� in Tottori�prefecture in Japan during 
����

This data set is analyzed by Kashiwagi and Yanagimoto �
����� assuming
a dynamic loglinear Poisson model

�t 	 exp�f�t��

and a �rst order randomwalk f�t� 	 f�t�
��u�t� as smoothness prior� They
obtain a posterior mean estimate based on numerical integrations similarly
as in Kitagawa �
�����

We take a cubic spline type prior ��� and an inverse Gamma priori �� �
IG�a� b� with a 	 
� b 	 �

� For comparison� single and block move schemes
are used to estimate posterior moments and quantiles� Figure � displays
the estimated posterior mean and �
 standard deviation con�dence band
obtained from taking every 

 th sample out of 


�


 iterations after a
burn�in period of ��

 iterations� Samples and autocorrelations for selected
values 
i are seen in Figure ��

Figure � gives corresponding results for block moves of block size �� dis�
playing posterior means and medians that are almost identical and very close
to the posterior means for single move sampling� This seems to indicate that
single moves may do their job quite well� Figure � contains block move sam�
ples and autocorrelations for the same selected values 
i� Here a distinct
improvement can be seen in comparison to Figure �� The graphs indicate
that block moves might yield better mixing and convergence behaviour�

The following application is to be considered as a benchmark example�
The response is �almost� purely binary� and there are three metrical covariates




�

Figure �� Single move samples �left� and autocorrelations �right� for 
�	 �top�
and 

	 �bottom�

Figure �� Posterior mean estimates and median together with pointwise one
standard deviation con�dence bands and �
� credible regions from block
move�

with unknown functional forms f��x��� f��x�� and f��x�� to be estimated
from sparse data�

Application �� Kyphosis in laminectomy patients

To illustrate the use of generalized additive modelling� Hastie and Tibshirani
�
��
� Section 

��� analyze data on �� patients undergoing corrective spinal
surgery� The response y of interest is the presence or absence of kyphosis�
de�ned to be the forward �exion of the spine of at least �
 degrees from
vertical� following surgery� Risk factors are age in months �x��� the starting




�

Figure �� Block move samples �left� and autocorrelations �right� for 
�	 �top�
and 

	 �bottom�

vertebrae level of the surgery �x�� and the number of vertebrae level involved
�x��� They �t an additive logit model for P �y 	 
jx�� with predictor 
�x� 	
��f��x���f��x���f��x��� using the roughness penalty approach with cubic
splines� We analyze the data with Bayesian cubic spline�type priors ��� for
the functions fj�xj��

In contrast to the previous two examples� mixing and convergence be�
haviour detoriates distinctly� regardless whether single or block move schemes
are used� Figure � shows estimated posterior means �f�� �f� and �f� together
with con�dence bands based on a burn�in period of ��

 iterations and a
sampling period of 


�


 iterations taking every 

 th sample�

Hyperparameters for the variance priors were chosen as in the forego�
ing examples� Comparing the estimates with those in Hastie and Tibshirani
�
��
� and looking at con�dence bands� it is seen that the overall pattern of
estimated regression curves is similar and will lead to analogous interpreta�
tions given there� However� details of curves di�er more distinctly than for
the previous examples� In view of our experience with this sparse data set� it
is surely worthwile to develop and investigate alternative sampling schemes to
improve mixing and convergence� but this is beyond the scope of this paper�

� Concluding remarks

Semiparametric Bayesian smoothing as discussed here has some attractive
features compared to the roughness penalty approach� It provides a natu�
ral framework for Bayesian analysis beyond posterior modes� and MCMC
techniques allow to estimate posterior means� medians� quantiles and other
functionals of regression functions� No asymptotic normality approximations
have to be assumed� Bayesian data�driven choice of smoothing parameters is




�

Figure �� Posterior mean estimates �solid line� and pointwise one standard
deviation con�dence bands of the risk factors age� start and number�




�

automatically incorporated� A further advantage of MCMC techniques� not
considered in this paper� is the convenient handling of missing values�

To some extent� the �exibility of MCMC techniques is also a certain
weakness� The general Metropolis�Hastings algorithm allows for a wide vari�
ety of proposals for updating steps� at least in theory� As our application �
shows� further experience is needed for developing and investigating sampling
schemes that are e�cient in sparse data situations�

We focussed on generalized additive models and polynomial spline�type
smoothing� but modi�cations and extensions to other models are possible by
other choices of observation models and smoothness priors� In particular� the
approach can be extended to varying coe�cient models and regression models
for survival and event history data� More general splines� e�g� log�splines�
can be considered as in Kohn and Ansley �
����� Introduction of mixtures of
normals as in Carter and Kohn �
���� instead of normal errors in smoothness
priors� is an appropriate device to detect jumps or discontinuities in regression
functions� We intend to consider some of these topics in future work�

Acknowledgement� This work was supported by a grant from the German
National Science Foundation� Sonderforschungsbereich ���� Special thanks
go to Leo Knorr�Held for providing a prelimenary version of his doctoral
thesis�

References

Besag� J�� Green� P� J�� Higdon� D� and Mengersen� K� �
�����
Bayesian Computation and Stochastic Systems� Statistical Science

���
�� �����

Carlin� B� P�� Polson� N� G� and Stoffer� D� S� �
����� A Monte
Carlo Approach to Nonnormal and Nonlinear State�Space Modeling� J�
A� Statist� Assoc� ����
��� �����

�

Carter� C� K� and Kohn� R� �
����� Robust Bayesian nonparametric
regression� Preprint� Australian Graduate School of Management� Univ�
of New South Wales�

Fahrmeir� L� and Knorr�Held� L� �
����� Dynamic discrete�time du�
ration models� Discussion Paper ��� Sonderforschungsbereich ��� der
Ludwig�Maximilians�Universit at M unchen�

Fahrmeir� L� and Tutz� G� �
����� Multivariate Statistical Modelling

Based on Generalized Linear Models� Springer�Verlag� New York�

Fahrmeir� L�� Hennevogl� W� and Klemme� K� �
����� Smoothing in
dynamic generalized models by Gibbs sampling�Advances in GLIM and

Statistical Modelling� Springer Verlag� New York�




�

Gamerman� D� �
����� Monte Carlo Markov Chains for Dynamic General�
ized Linear Models� Discussion paper� Instituto de Matem!atica� Univer�
sidade Federal do Rio de Janeiro�

Gilks� W� R�� Richardson� S� and Spiegelhalter� D� J� �
�����
Markov Chain Monte Carlo in Practice� Chapman and Hall� London�

Green� P� J� and Silverman� B� W� �
����� Nonparametric Regression

and Generalized Linear Models� Chapman and Hall� London�

Hastie� T� J� and Tibshirani� R� J� �
��
�� Generalized Additive Models�
Chapman and Hall� London�

Kashiwagi� N� and Yanagimoto� T� �
����� Smoothing Serial Count
Data Through a State�Space Model� Biometrics ��� 

���

���

Kitagawa� G� �
����� Non�Gaussian state�space modelling of nonstationary
time series� J� A� Statist� Assoc� ����

�� 

���

���

Knorr�Held� L� �
����� Markov Chain Monte Carlo Simulation in Dy�
namic Generalized Linear Mixed Models� Discussion Paper �� Sonder�
forschungsbereich ��� der Ludwig�Maximilians�Universit at M unchen�

Knorr�Held� L� �
����� Bayesian Hierachical Modelling of Discrete Lon�

gitudinal Data� Dissertation� Universit at M unchen� forthcoming�

Kohn� R� and Ansley� C� F� �
����� A New AlgorithmFor Spline Smooth�
ing Based On Smoothing A Stochastic Process� SIAM J� Sci� Stat� Com�

put� ��
�� ������

Reinsch� C� �
����� Smoothing by spline functions� Numerische Mathematik

��� 
���
���

Shephard� N� and Pitt� M� K� �
����� Parameter�Driven Exponential
Family Models� Preprint� Nu�eld College� Oxford

Tierney� L� �
����� Markov Chains for exploring Posterior Distributions�
Ann� Statist� ������ 
�

�
����

Wahba� G� �
����� Improper Priors� Spline Smoothing and the Problem
of Guarding against Model Errors in Regression� J� R� Statist� Soc� B
������ ��������


