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SUMMARY

We are dealing with time series which are measured on an arbitrary scale, e.g.
on a categorical or ordinal scale, and which are recorded together with time
varying covariates. The conditional expectations are modelled as a regres-
sion model, its parameters are estimated via likelihood- or quasi-likelihood-
approach. Our main concern are diagnostic methods and forecasting proce-
dures for such time series models. Diagnostics are based on (partial) resid-
ual measures as well as on (partial) residual variables; [-step predictors are
gained by an approximation formula for conditional expectations. The vari-
ous methods proposed are illustrated by two different data sets.

Some key words: Categorical time series; Conditional regression models;
Forecast methods; Ordinal responses; Partial residuals.

1 INTRODUCTION

We are concerned with time series data (Z;, Y;),t > 1, where Y; is a response
variable measured on a scale which is not necessarily metrical, and Z; is a
vector of covariates. The evolution of the Y;-process is assumed to be driven
by its own history as well as by the covariate process 7Z,. The conditional
expectation of Y; is modelled in the form h(n;), where h is a suitable re-
sponse function and 7; a regression term containing the actual covariates Z;
as well as former observations (sec. 2 and 3). Such models were already

investigated by Kaufmann (1987), Zeger and Qaqish (1988), Pruscha (1993),



Lee (1991,1994). Their statistical analysis is based on (quasi-) likelihood
methods (sec. 4). The main concern of the present paper is to carry over
two classic time series topics to these more general models. The first is the
partial residual analysis (sec. 5) which can be used to assess the relevance of
subsets of covariates as well as to remove the influence of covariate subsets
(see Fuller, 1976, sec. 9.3 for the latter). Our methods are inspired by linear
model theory and can be found in the special case of a binary logistic model in
Landwehr et al (1984) and of a cumulative logistic model in Pruscha (1994).
The second topic deals with forecasting future outcomes Y7y 1, Yrio, ..., if
the process has been observed up to time T. Here, some recent work on the
cumulative model (Pruscha, 1995) is continued and generalized: We will ar-
rive at forecast formulas covering the well-known recursive equations of Box
and Jenkins (1976) as well as the [-step transition laws for finite Markov
chains (sec. 6).

In the following we assume that the response variable is m-dimensional,

)/t — (1/25717"'71/257m)T 9

and that the covariates 7, form an r-dimensional vector process. Formally
the continuous case, where the Y, ; are metrically scaled, is also covered.
Most emphasis, however, lies on the discrete case, where Y; is e.g. M, (1, 7¢)
distributed, i.e. multinomially distributed with parameters 1 and =y,

T = (ﬂ-t,lv .. .,7Tt7m)T, Tt,5 > 0, Zﬂ-tJ < 1.
j=1
Within this case special attention is given to an ordinally scaled Y;, where it
is useful to introduce cumulative probabilities
7Tt(]‘) =Tt + ...+ Tt,5 -

Throughout we will use subscripts in parenthesis to indicate an increasing
order.



2 MODELLING

The collection of variables, observed earlier than Y}, is denoted by
Ht = (Z17 )/17 sy Zt—17 )/15—17 Zt) .

The m-dimensional conditional expectation vector

e = E(Yi|Hy)
is modelled in the form
e =h(ne), t=1,2,..., (1)
where h : IR™ — IR™ is an appropriate response function and n; = (¢1, ..., Jt.m )T

the linear regression term of the model. This term is written as
= Xtﬂ 9 (2)

where ¢ € IR? comprises the unknown parameters and the entries of the
m X p -matrix X, are functions of H;.

Typically, the dependence on the last response Y;_; [or on the last responses

Yi—1,..., Y] and on the present covariates Z; are separated in (2), leading
to

Nej = o+ Hiy + A A(Yim); + 812 (3)
Here, for each j = 1,...,m, «;is an intercept term, H,_4 ; is an s x 1 -vector,

the components of which being functions of H;_1, and A(y); is a ¢ x 1 -vector
expressing the dependence on the last response y = Y;_; [the term ATA(Y;_)
can be expanded to ATA(Y;_4,...,Y;_;)or to Sk MA(YZ:)]. For model (1)
- (3), the vector ¥ € R?, where

It = (' 4" AT 8T), aeR™, yeR’, VeR! BeNR,

is the unknown parameter vector of dimension p = m+s+¢+r, and Hy, A(Yp)
must be given in advance.



3 EXAMPLES

Let us consider examples, some of them already existing in the literature.

1. Y, multinomially distributed

Let, conditionally on H;, the variable Y; be M,, (1, p;) - distributed. In this
case p; = fiy . We have m 4 1 alternatives, the last one being Y} 41 =
1 — (Y1 + ...+ Yinm), occurring with probability

Promtr =1L —(pea+ ...+ pem) -

A suitable response function is, e.g., h;(n) = exp(n;)/(1 + X, exp(nx))
which leads to a multivariate logistic regression model. Together with the
general form (2) of the regression term multinomial models were analysed
by Kaufmann (1987). Let us mention two specifications of A(y) occurring in
(3). In the first, so-called lagged variable dummies are used, i.e. we put

(i) ¢=m,A(y); =y forall j.

In the second , an (m + 1) x (m + 1) -transition matrix P(-,-) is employed.
Letting ¢mt1 =1 —(y1 + ... + ym) and w = Z;”:"il Jy;, we put

(H) g=m+ 17A(y)ij = P(lvj)v if w=q [A(y)” =0 6156]7

such that ATA(y); = A\, P(w, ), see Goettlein and Pruscha (1992) for an
application. Assuming case (ii) and h =id,a =~v =3 =0, = 1, model (1)
- (3) describes a simple Markov chain with known transition matrix P(-,-). A
Markov chain with unknown transition matrix can be obtained from (1)-(3),
if one allows )\]TA(y)j instead of ATA(y); and takes case (i) above, but with
g =m + 1 instead of ¢ = m.

2. Ordinally scaled response

Let Y; as in 1. and define the J = {1,2,...,m + 1} -valued ordinal variable



m+1

We= 3% . (4)
7=1
Introducing H;y(n) = hi(n)+...4+h;(n), wehavefrom (1) for j = 1,...,m+1

i) = pr(We < JIHe) = Hgy(ne) - (5)

If F' denotes a (cumulative) distribution function we define a cumulative
regression model (Mc Cullagh, 1980) by setting

H(J‘)(Ut) = F(Ut(j)) . (6)
Putting s = 1 and Hy—y = p;—1 in (3), the regression term 7n; can be written
in the specific form

M) = oGy + 1) + ATAYic) gy + 81 2 (7)

Note that model (5) - (7) has an inherent recursive structure and a side
condition on the parameters to ensure 7;;y — 7¢;—1) > 0. Besides the speci-
fications (i) and (ii) above we can here also choose

(iii) g=1, A(Y;_1); = W,y forall j,

i.e. we can employ the lagged ordinal variables. Model (7) can easily ex-
tended to a higher order: instead of vp;_1 and )\TA(Yt_l) sums of the form

50 q0
S vipm and > ATA(YL)
=1

=1

can be used.
3. Metrically scaled responses

If the response vector Y; = (Yi1,. .. ,th)T consists of metrically scaled vari-
ables Y; ;, the regression term 5, can be put as



50 q0
M=o+ > Yt + Y NYi + 1877, (8)

with 1 = (1,...,1)T € R™ and 7, A; scalars or m x m -matrices, see Zeger
and Qaqish (1988) and Li (1994). Here we often have a function by : R — IR,
e.g. hg = exp, such that

hin) = (ho(m), -, ho(nm))" - (9)

4 (QUASI-) LIKELITHOOD

For the following we will assume that the evolution of the process Z; ¢t > 1,
is not influenced by the process Y; , t > 0; precisely

pr(Zoga € - |He, Yy) = pr(Ziga € - | 2,00, Zs) (10)

Then a full likelihood approach is possible if (conditional) densities
fily,94),y € R™, of the conditional distributions pr(Y; € - |H;) are available,
as in Ex. 1 and 2 above.

1. First, let us assume that the density f; belongs to an m-parametric expo-
nential family, i.e.

fily,90) = exp {y" 9 — b(0) }auly). (11)

Then we obtain u,(9;) = b'(9;), and, via (1), ¥, = u(n,), with u = (¥')"L o h
and n; = X;v. Based on an observation (71, Y1, ..., Z,, Y, ), the log-likelihood
function [,(), the p x 1 -score vector U, (V) = (d/dV)l, (V) and the p x p
-Hessian matrix W,,(9) = (d?/d9dd™)1,(9) are given by

L) = > {0 —b(d0)}, d = ulne), ne = Xod,
t=1



U.(0) = ﬁ;X?Dt(ﬂ)Eil(ﬂ)(Yt—m(ﬂ)) (12)

Wal0) = Ra(9)— 30 X7 D)7 () DI (9) X,

t=1

where we have set Dy(0) = (d/dn)hT(n;),2¢(0) = (d*/dIdI)b(9;),9; =
u(n:), R,(¥) as in Fahrmeir and Tutz (1994, App. Al), and where we have
neglected additive terms of [,(J) not depending on ¢. In the case of an
M, (1, p)-distribution, where p; = p;, Kaufmann (1987) gave conditions un-

der which there exists a consistent m.l. estimate ¢,, for ¢, which is asymptot-
ically normally distributed in the sense that the distributional convergence

=1, —9) > N,(0,V~'(¥)) (13)

takes place for n — oo, where

if the latter limit exists for a sequence I';, = I',,(¥),n > 1, of invertible norm-
ing matrices tending towards 0.

2. Secondly, let us assume an ordinally scaled response variable W; as
in Ex. 3.2 . Then p;;(¥) = pre(W; = j|H;) and we can write

L) = > logpiu(?),
t=1

Ua0) = 3 wan9), wes9) = (/D) (0) s (),

and W, (V) similarly. Assuming the model (5)-(7) we can make use of re-
currence relations of p;(¥) and its derivatives (instead of exploiting the ex-
ponential family structure of the M,,(1, p;)-distribution). Using a distance-
diminishing theory for certain iterative function systems (Norman, 1972),
(13) can be proved under the assumptions that |sup,F’(n) v| < 1 and that



Z,t > 1, forms a Markov process (of some order) with compact state space
and with Lipschitz-bounded transition kernels (Pruscha, 1993).

3. Now we assume that, contrary to 1. and 2., a (conditional) density
for pr(Y; € - |H;) cannot be given, but that (conditional) first and second
moments

pe(V) = Eg(Ye | He) = h(ne),  cova(Ye | Hy) = Xi(me),  me = Xy,

can be specified. One still use U, (¥) = 0 as estimation equation with U, (¢})
as in (12). If the response variables Y;,t = 1,2,... are m-dimensional and
independent, we are in the case of longitudinal data and the asymptotic

covariance in (13) is of the form V=1(9)S(9)V~(¢), where

S() = pro-lim TT {3° X} D,(d,,) 371 (0,) cov(Vs) X710, DE(0,) X} T
=1

see Liang and Zeger (1986).

5 RESIDUAL ANALYSIS

5.1 Linear model residuals

The following derivation of global and partial residuals is inspired by linear
model theory. In a linear regression model of the form

Yt:nt—l—et, nt:Xﬂg, t:1,2,...,
global residuals are defined by

N

ét = Yt - Xﬂg, (14)

¥ Ls. estimator for ¥. Partial residuals from regression on Xi, where



Xt = (Xﬂ,XtQ) and 19T = (19’11‘,19’21‘)

are partitions, are given by

égpaT) — )/t — thlgl = ét —I— Xt21§2‘ (]‘5)

Note that éff‘”) can be gained from the “true partial residual” eEpm) =

U, (Y;) = Yi— Xyt by plugging in the estimator Dy for ¥1. Let the e,’s now
N(0,0?) -distributed, i.e. let pr(Y; <y) = ®,, ,2(y), with ®, > being the
N(u,0?) -distribution function. Then eEpm) = U,(Y}) can be gained from

pr(¥(Y;) <y)= (I)n;‘,cr2(y)7 ni = — Xath = Xpv,. (16)

In more general models like ours two different (partial) residual methods can
be established (falling together in the normal linear case above)

a) residual measures for diagnostic purposes which will be defined in anal-
ogy with (15)

b) residual variables, which have values on the same scale as the Y;-data
and which can be submitted to further time series analysis. They will be
gained in analogy with (16).

5.2 Partial residual measures

On the basis of the general model (1),(2) we build the global GLM-residuals
(cf. Fahrmeir and Tutz, 1994, p. 98)

éo= D7) (Vi — m()), (17)
with D; as in 4.1. Using (17) we define partial residuals from regression on

X; as in (15) by

égpar) — ét —|— thlgg. (18)



Often it is desirable to summarize the m-components éffj”) of (18) into a

one-dimensional measure. In the following two examples we will weight the
components é;; of (17) by the diagonal elements d; ;(V) = di; of Dy(¥),
i.e. we will build

ét — Z czm ét7j /Z cim. (19)
7=1 7=1

Then, defining Xy, in analogy,

e = & 4 Xy (20)

is a one-dimensional partial residual measure.

Ex. 1. If we have a response function h of the form (9), then Cit,j = hi(Ne ),
and we obtain from (17) and (19)

Eo= 2 (Yig = peg () [ D dij
7=1

i=1

which is a kind of average of the residual components.

Ex. 2. In the case of an ordinal response with response function % of the
form (6), i.e. hj(n) = F(ny) — F(ng-1y), we have dy; = F'(fy;)) , and

D71 (9) is a lower triangular matrix with j-th row
(1/F/(77t(]))7 sy 1/F/(77t(]))7 07 s 70) .
Hence the j-th component of (17) turns out to be
A j ~
¢y = (1/deg) D (Yiw — pen(9)),
k=1

and (19) takes the form

10



€ = — (1/2&4) (Wi —mi(D)), (21)

with the {1,...,m + 1} -valued ordinal variable Wy = >>74' jY;; as in (4)
and with the mean category m; = Z;”:"il Jpej (see Pruscha, 1994, sec 3.1).
Note that W, — m; is a really ordinal residual.

Partial residual measures like (18), (20) are usually plotted over the regres-
sion term Xy or Xio1)y to assess the significance of the regressor set X.

5.3 Partial residual variables

We restrict ourselves to univariate response variables with (up to parameter
¥ ) known distribution function. Putting

N = X, 7715* =Mm— Xnt = Xipvs,

we will call Yt* = U, (Y;, 19) partial residual variable (from regression on Xj),

if we have for Y;* = W(Y;,9), in analogy with (16),

pre(Y) <wy,ne) = pro(Ye <y,n)), forall y e R, (22)

where pri(-) = pr(- | Hy), and pr(- ,n) means that pri(-) is evaluated under
regression term n,n = n; or n = n;. Further we require

prt(}/t = i/t*v 7715) = 17 if 77? =7t (23)

We will use the notation Fi(y,n) = pri(Y; < y,n) and will distinguish the
cases where F} is continuous in y € IR or not.

a) Let Fi(y,n), vy € IR , continuous for each n . Put F~™'(z,n) =
inf{y: F(y,n) > x} and define Y;* = U,(Y;,9) via

11



Ue(y,0) = F7U(F(y,m), nf) -

Then, since Fy(Y:,n:) is U0, 1]-distributed under pri(- ,7:), one gets

pre(YT <y, m) = proF(Ye,m) < Fi(y,ng), ne)
Fi(y,n;) .

that is (22). Further, relation (23) is fulfilled, since F;'(Fy(Y:,n:), n:) < Vi
occurs with pry(- , 7;)-probability zero. In the example F'(y,n) = @, ,2(y),
we have

Uiy, v) = (I);fl,ﬂ(q)m,ﬂ(y)) = y— Xuvy,
such that \I/t(y,lg) as in (15) above.

b) Let Y; € J ={1,2,....,m+ 1} ordinally scaled (formerly denoted by
Wy for a purely categorical response, partial residual variables don’t seem
to be meaningful). Then we have Fy(j,n) = pri(Y; < J, 1), j € J, and (22)
cannot be satisfied with a function W, : J — J . Instead, we will define
transition probabilities W(k|7), > .c; Wi(k|7) = 1, such that

Y = k is selected with probability W,(k|y), if

Y, = j is the observed category (24)

Let pr; denote the (conditional) probability law governing the observed
process as well as the random experiment (24). Then, making use of the
model equation pry(Y; =j) = h;(n:) , we have

pri(Ye=3, Y =k) = hj(n:) Wi(k|j) .

12



Putting W(j,k) = hj(n:)W(k|j) , we have to define W, in such a way that

ke Vilg, k) = hji(m)
Yies Vilg, k) = he(n)), (25)

for the second equation see (22), and that, with respect to (23),

JjeJ

To this end, let H;y(n) = hi(n) + ... + hj(n) as in 3.2, Hg = 0, and
introduce for j, k € J the intervals

Li(g, k) = (Hp—ny(ny), HayOn)] 0 (Hgny(ne)s Hegy(ne)]-

Then we define W,(y, k) as the length of I;(j,k) , i.e.

Ui(g, k) = |15, k)| - (27)
Since 3op [1i(5, k)| = Hey(ne) — Hi—y(me) and 35 [L(5, k)| = Hgy(n) —

H—1y(n7), equations (25) are fulfilled. Since |[(j,7)] = H(n) —
H;_qy(ne) 5 it me = n7, (26) is also satisfied.

Partial residual variables Y,* are constructed with the intension to remove
the influence of the regressor set X; on the response variable. A typical
application is the removal of a trend in a time series.

6 FORECASTING METHODS

6.1 General method

Based on the model (1),(2) , i.e. py EY: | Hy) = h(n), n:= Xi0, and

given an observation up to time T, i.e.

13



Fr=(Z,Y,....20,Yr) = (Hp,Yr),

we define the [-step predictor for pri; by

fr(l) = E(pry | Fr), =1, (28)

In the following we will write

Er(-)= E(- | Fr), varr(-) = Er( - — Br(-))?%

and we will use a similar definition for the conditional covariance matrix
covr(-) . Due to Fr C Hyq we also have

fir(l) = Er(Yry).

We will compute fip(l) by the approximation jr(l) + Br(l), where fip(l) is
gained by interchanging conditional expectation and response function h ,
i.e. by

frr(l) = h(ir (1)), 7r(l) = Er(nr) (29)

and Br(l) is a correction term, to be developped below. The [-step predic-
tor (1) is, contrary to jir(l), computable for many models, especially for
models with a recursive structure. For the derivation of such computation
formulas we will distinguish between a continuous and a discrete response.
In any case we have to assume that [-step predictors

N

Zr(l) = Er(Zry1)

are available for the covariate process Z;,¢t > 1. This is the case, e.g., if
Z; forms an r-dimensional autoregressive process of some fixed order, see

Brockwell and Davies (1987, sec. 11.4).

14



6.2 Recursive forecast formulas

a) Continuous response.  For the m-variate model (8), with so = ¢o, one
starts with

q0 q0
Hr(l) = a+ > yiprsi—i + 2 Ao + 18 Z(1) (30)

=1 =1
and has, with fr(1) = h(f7(1)) + Br(1l), the 2-step predictor

q0

q0
Hr(2) = a+ > Yikrse—i + 2 AYrpo—i 4+ (11 + A)ir(1) + 18 727 (2)

and so on, until for [ > ¢q

Fr() = a4 320 + A (1 — i)+ 157 22 (0). (31)

=1

The classical Box and Jenkins (1976, p. 129f) forecast formulas are contained
as a special case. Indeed, one has to write (v + A)u + A(Y — p) instead of
v+ AY', and has to interpret py, Y; — p; as their z; and ay, respectively; see
also Lee (1994, p. 507).

b) Discrete response. We will use the extended version of model (7), i.e.
90 90
ne=a+ > vipei + Y ATAYiL) + 1877, (32)
=1 =1

While 77(1) is similar to (30), we have, with the probability vector pr(1) =
h(nr(1)) + Br(1), the 2-step predictor

90 90 X X
Ar(2) = a+ > viprea—i + 3 A A7) + v1pr(1) + AL Ar(1) + 18" Z7(2),

where AT(l) Z " pr(D)A(e;), €mpr = 0 € R™. Finally, for [ > gy and
with Ar(k) = 74 prj(k)A(ey)

15



B = a+ Sompr(— i)+ S A= 1)+ 187 2(1) . ()

In the special case of a simple Markov chain as in 3.1 we obtain pr;(l) =
Pl(i,5), if Wr =04 kY, =14, with P! the [-th power of the known or
estimated transition matrix.

6.3 Correction term

To give an estimate BT(Z) of the bias

Ba(t) = jir (1) — i)
produced by the approximation Er(h(nr4i)) ~ h(Er(nrir)) , we start with
expanding h(nr4;) and h(fr(l)) at fr(l—1), §7(0) = nr, up to the order 2.

To do this, we write h instead of h; for some fixed j, assume twice continuous
differentiability of A and introduce the abbreviations

A~ N

n=nr(l=1), zr(l) =nr—1, 2r(l) =nr(l) =7

Then, with remainder terms Ry (/) etc.,

Applying conditional expectation to (34) we obtain

Er(h(nr41)) = h(i) + 27(1) 1 (i) + % By{ap(l) h"(i) e2(1)} + Ra(l). (36)

16



Subtracting (35) from (36), neglecting remainder terms and introducing the
omitted subscript j again, we arrive at

BTJ(Z) = % ET{U%-H h;/(A) 77T-I—l} % (l) h”(ﬁ) 7 (l)

=5 Er{Opry —ar(0)" BIG) (g — (1) }-

[}

Denoting the eigenvalues of the m x m -matrix A% (7)) by )\gk), k=1,...,m,
and writing

1) = AT () Diag(\?) A;(7).

we finally obtain for y =1,...,m
B 1m)\k 7 ARG 5= hp(l
ri(l) =352 APT@) covr(nri) APG), G=dqrl—1)  (37)
k=1

where A;k)T stands for the k-th row of the m x m -matrix A; and covr(n) for
the conditional covariance matrix of 7.

For categorical responses, we have to define BT,m-I—l = =27 BTJ and (pos-
sibily) have to recalculate the BTJ(Z), j=1,...,m+1, in such a way that
the pr; (1) + BTJ(Z), j=1,...,m+1, form a probability vector.

To use correction term (37) estimates for covp(nry;) must be available.
Noting that covr(nr41) = covr(nr4r — nr) , one is led to build empirical
variances/covariances of the vectors nyyy —ny, t=1,...,7 — L.

Equation (37) will now be specialized in two examples.

Ex.1. For a response function h of the form (9) one obtains

. .
Br;(l) = 5 ho(hr (1 = 1)) varr(nry;) -

Ex.2. In the case of an ordinal response with response function h as in (5),
(6) we obtain for the bias Br(;)(l) = pr¢;(l) — pr(;)(l) the estimate

17



. 1
Brg(l) = 5

5 F (i (L= 1)) varr(nryg)) - (38)

Here, we are also interested in the mean category

m+1

Z gprg = - (1= piy)
7=0

and its [-step prediction
Z 1 - pT
For the bias By, (l) = mr(l) — rar(l) we obtain from (38) the estimate

Br(l) = — ZF” (U =1)) varr(nr4ii)) - (39)

6.4 Monte Carlo solution

Let us now assume that we are in the (most informative) situation, where the
conditional probability laws pr(Y; € - | Hy) and pr(Zip1 € - | Z1y..., Z4)
are explicitely given (see condition (10) above) and where estimates of all
model parameters are available. Then one can gain the following computer-
intensive solution 7y (/) for the I-step predictor fir(l) = Er(prs). Given
the observation (Z1,Y1,...,Zr,Yr) the succeeding outcomes are simulated
M times by the Monte-Carlo method. From

2 YA a v =1, M, (40)

one builds ngll, t=1,..., M, and the average

ﬁT(l Z/LT-H? :ug“:—l - h( () ) 9

=1

18



as the Monte-Carlo solution for jir (/). The mean squared error

Vru(l) = Er(Ar,(l) A, (1) = covr(pri),

where Ag (1) = pryr — fir(1), can be estimated from (40) by

M
3 7 1) T
Veull) = 57— LALLM AP (D),

where AP (1) = plfy, = 7 (0).

Up to now there seems to exist no approach to estimate VTM(Z) and related
mean squared errors outside the Monte-Carlo method.

7 Applications

7.1 Data sets

We will use two different data sets for illustrating the various methods pro-
posed above.

The first is a longitudinal data set on damages in beech, oak and pine trees,
gathered by Dr. A. Goettlein, University of Bayreuth, during the last years in
a forest district of the Spessart (Bavaria). The longitudinal structure of the
data is determined by the observation period of 12 years (1983 - 1994) and by
N sites (N = 80/25/14 sites with beech/oak/pine trees). The response vari-
able W; measures the percentage of leaves/needles lost on an ordinal scale
of m+41=8 categories. For each site and each year t a vector Z; of r=20
covariates were recorded concerning the trees (age, canopy), the site (gradi-
ent, height, exposition), the soil (moisture, pH-values) and the climate, see
Goettlein and Pruscha (1992) and (1996) for detailed information. The pa-
rameters of the cumulative logistic regression model (5)-(7) were estimated
by the m.l. method for each tree species separately. Concerning the A- func-
tion we made the special choice of lagged ordinal variables, see case (iii) in
3.2. Further we put v = 0. The covariate process Z; is assumed- as far as

19



forecasting methods are employed- to be driven by an AR(1)-equation.

The second data set concerns the aftershock series of the Friuli earthquake
(May-Sept. 1976), which were placed at my disposal by Dr. H. Gebrande,
University of Munich. The response variable W; gives the number of shocks
at day t, for + = 1,...,115 (corresponding to the period from 19** May to
10" Sept.), the covariates Z; are the magnitude ML of the shocks (daily
averages) and - in connection with trend analyses - the terms ¢{='/2 ¢=1/4,
The cumulative logistic model (5)-(7) was applied, with the m+1=6 cat-
egories 0,...,5 (i.e., instead w we took min(5,w) as response value), and
with a preselected A-matrix. The first two, middle two and last two rows of
the corresponding transition matrix P(-,-), see case (ii) in 3.1, was chosen as
(3,4,5.5,0,0), (0,1, 5,1 20)and (0,0, 1,1, 1, 1), respectively (actually, the
F~1transformed cumulative probability vectors entered regression equation

(7))

7.2 Partial residuals

For the forest damage data we want to plot one-dimensional partial resid-
ual measures (20) over the regression term thlgg, where ¢, 1s calculated on
the basis of a cumulative logistic model via formula (21). For the oak and
pine tree, the partial residual plot for the regressor set X; = topography
= (height, gradient, upper/lower part of slope) shows a clear upward trend
(Fig. 1) and gives evidence for the significance of this covariates in the model
equation. This is different with the beech tree, where the plot gives no hint
to a relevance of the topography (in agreement with related test results, see
Goettlein and Pruscha, 1996). The partial residual plot for X3 = W;_q, the
lagged ordinal response variable (Fig. 2), reveals the strong dependence of
the damage value W; on the value W;_; of the last year.

The method 5.3 b) of building ordinally scaled partial residual variables (from
regression on X7) is demonstrated for the Friuli earthquake data. The time-
series plot of the number of shocks per day shows a decreasing tendency
(see Fig. 3a). A trend function a(t) = art™? + ayt~Y* was incorporated
into the regression term 5, and a(t) was plotted in the form trend(t) =
co + cra(t), with appropriate scaling rates ¢, ¢;. Letting in the cumulative
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model with 6 categories, as described above, Xy, = (t‘l/z,t_l/‘l) and Xy =
(pi—1, A(Yiz1), ML), we can calculate partial residual variables Yt* according
o (24) and (27). The time-series plot of the Yvalues no longer reveals
an obvious trend (Fig. 3b), in agreement with the test result that a trend
component would no longer be a significant part of the regression term.

7.3 Forecasting

Fixing the observations of the Spessart data within the period 1983-1994 as
known, we try to forecast the damage values for the years 1995-2002. That
is, we put T=12, and we are interested in the [-step predictors my(l),[ =
1,....,8, of the mean damage category m; = Z;”:"il J ;. for each of the three
tree species separately. The calculations of Fig. 4 were performed for each
sitez =1,..., N, followed by an average over the N sites of the species. On
the basis of the cumulative logistic regression model with regression term
m) = o) + AWy + B1Z,, the I-step prediction rp(l) was computed by
(1) + Brn (1), with Br,,(1) as in (39) and with

(1 = pr»(), pry(l) = Flir)(1)
]:0
m+1 R
ir(y(1) = agy + A Y- kpral = 1) + 87 Ze(1).
k=1

The correction terms BTM(Z) were calculated in two different ways: The term
varr(nryr) in (39) was estimated by empirical variances, as indicated in 6.3,
and by the Monte-Carlo method 6.4, denoted by BFEFA)(Z) and B}M)(Z), respec-
tively.

To come close to the correct forecast F(mgy|Fr), the forthcoming paths
(40) were simulated M=600 times, assuming gaussian errors in the AR(1)-
law of the covariate process. As in 6.4 averages pr(;)(/) were built as well as

mr(l) = 3XTo(1 = Prg;(1)), together with the 95% confidence limits
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mr(l) £/ V(1) 1.960/V'N,

where ‘A/Tm(l) was calculated for each of the N sites as indicated in 6.4 and
then averaged.

The approximations my(l),l = 1,...,8 run within these confidence limits
mr(l) + s, see Fig. 4, the corrected forecasts rr(l) + BTM(Z) comes close
to mr(l) and hence close to the correct forecast of my4;. In the case of the

beech tree the correction term BF}A) performs bad in the period 1997-2000.
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Figure 1: Partial residuals for the regressor set topography plotted over
the regressor term betaxtopography, for each of the three tree species. A
smoothing curve was fitted to the scatterplot.
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Figure 2: Partial residuals for the regressor W;_1, the lagged (ordinally
scaled) damage category, plotted over the values of W;_y, for oak and pine
trees. A smoothing curve was fitted to the scatterplot.
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FRIULI EARTHQUAKE 1976 AFTERSHOCKS
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Figure 3: a) (top) Number Y; of shocks per day plotted over the aftershock
period of 115 consecutive days, together with a trend function. b) (bottom)
Ordinally scaled partial residual variable Y,* from trend, plotted over the 115
consecutive days.
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FORECASTED DAMAGES SPESSART
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Figure 4: Forecasted forest damages for the years 1995 - 2002, for each of the
three tree species. The approximation rap(l) [A] is plotted, together with the
corrections rp(l) + BFEFA)(Z) and mp(l) + BFEFM)(Z) [A+ BA and A+ BM] and
with the Monte-Carlo solution mp(l) [M]. At the beginning and the end of
the beech curves, a confidence interval M =+ s is indicated by vertical bars; in
the case of the oak and pine curves these bars would overlap the whole plot
area (s ~ 0.15 and s &2 0.30, resp.) and are therefore omitted.

27



