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Abstract

Dynamic models extend state space models to non�normal observations� This pa�

per suggests a speci�c hybrid Metropolis�Hastings algorithm as a simple� yet �exible

and e�cient tool for Bayesian inference via Markov chain Monte Carlo in dynamic

models� Hastings proposals from the 	conditional
 prior distribution of the unknown�

time�varying parameters are used to update the corresponding full conditional distribu�

tions� Several blocking strategies are discussed to ensure good mixing and convergence

properties of the simulated Markov chain� It is also shown that the proposed method

is easily extended to robust transition models using mixtures of normals� The applica�

bility is illustrated with an analysis of a binomial and a binary time series� known in

the literature�
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� Introduction

Markov chain Monte Carlo �MCMC� simulation in dynamic models with non�normal ob

servation model is an ongoing problem� Such dynamic models relate observations yt� t �

�� � � � � T � to unobserved state parameters �t with a so called observation model� typically a

generalized linear model� Temporal dependence is modelled within a transition model� an

autoregressive Gaussian prior for the latent parameters � � ���
�� � � � � �

�
T �

�� Hyperparameters

are included in a third level of hierarchy and some conditional independence assumptions

complete the model speci�cation�

Such models are known as state space models if the observations yt are Gaussian� MCMC

simulation in state space models is discussed in several papers� Carlin� Polsen � Sto�er

��		�� discuss Gibbs sampling and update �t with a sample from the corresponding full

conditional� However� Carter � Kohn ��		�� and Fruehwirth�Schnatter ��		�� observe bad

mixing and convergence behavior in such a �single move� blocking strategy� They propose

to update � all at once instead� again using a Gibbs step� i� e� a sample from the �now

high dimensional� full conditional� Special properties of this Gaussian distribution ensure

an e�cient algorithm�

Corresponding work for the more general class of dynamic �generalized linear� models is

rather rudimentary
 the full conditionals are now fundamentally non�Gaussian due to the

non�Gaussian observation model� Knorr�Held ��		�� uses a speci�c Hastings proposal to

update the �t�s one at a time� when there is a large number of observations yti for a given

time t� The resulting algorithm is appealing due to its simplicity and �exibility� However�

it may show signs of slow mixing and convergence when the prior is tight relative to the

information of the observation yt� such as for binary time series�

Gamerman ��		�� tries to counter this problem through a reparameterization of the model

to a priori independent system disturbances� A Gaussian Hastings proposal� based on an ap

proximation of the full conditional with additonal Fisher scoring type steps� is used� Gamer

man reports considerably improved mixing and convergence behavior� However� the simple

structure of the full conditional is distroyed� leading to an algorithm of quadradic computa
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tional complexity in T � The algorithm also involves several evaluations of �rst and second

order derivatives of the observation model for every updating step�

Also Shephard � Pitt ��		�� use �� to �� Fisher scoring type steps and analytic Taylor ex

pansions to calculate the moments of a Gaussian Hastings proposal that tries to approximate

a speci�c full conditional� In contrast to Gamerman� they propose to divide � into several

blocks ��block move�� as an intermediate strategy between updating � one at a time and

all at once�

Both algorithms have in common proposals which try to approximate the full conditional�

imitating a Gibbs step with acceptance probability close to �� However� this is not necessary

at all� as already mentioned in Besag� Green� Higdon � Mengersen ��		��� For example� the

widely used Metropolis updating step has optimal performance for average acceptance rates

below ��� �Gelman� Roberts � Gilks� �		���

For MCMC simulation in dynamic models we propose a speci�c proposal that re�ects the

autoregressive prior speci�cation but is independent of the chosen observation model� The

resulting algorithm is conceptually simple� since all proposals are Gaussian with known

moments� Furthermore� it is derivative�free� which is a major advantage concerning both

implementation and computation time� Updating is done within a certain blocking strategy

to ensure good mixing and convergence of the simulated Markov chain� Tuning of the

algorithm is done by choosing a block con�guration� rather then the spread of the proposal

as in the Metropolis case�

The next section reviews dynamic models as a useful framework for the analysis of categorical

time series or panel�data� MCMC simulation by conditional prior proposals is discussed in

Section �� Some simulation results are given for a dataset� known to be problematic for

the single move algorithm� Finally� extensions of the transition model to errors within the

class of t�distributions are discussed in Section �� Such models allow abrupt jumps in the

transition model� also known as innovative outliers� As a �nal example� we analyze a binary

time series with an additional hyperprior on the degrees of freedom of the t�distribution�
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� Dynamic Models

Let y � �y�� � � � � yT � denote the sequence of observations and � � ���
�� � � � � �

�
T �

� the sequence

of state parameters� We assume that p��tj��t� Qt� �t � z � �� � � � � T � has a Gaussian distri

bution with mean �F��t���F��t��� � � ��Fz�t�z and dispersion Qt� Here ��t denotes the

sequence ���
t�z� � � � � �

�
t���

�� the matrices F�� � � � � Fz are assumed to be known� So

p��jQ� �
TY

t�z��

p��tj��t� Qt�

denotes a Gaussian �vector� autoregressive prior of lag z for �� It is often called the transition

model� We write short Q for the sequence of dispersions Qz��� � � � � QT 
 if Q is assumed to

be time�constant we just write Q � Qt�

Conditional independence of ytj�t� t � �� � � � � T � leads to the following posterior distribution�

p���Qjy� �
TY

t��

p�ytj�t�� p��jQ�� p�Q�


here p�Q� is some hyperprior� independent of � and y�

Typical examples of such transition models �with time�constant variance Q� are �rst �z �

�� and second �z � �� order random walks

�tj��t� Q � N��t��� Q�

�tj��t� Q � N���t�� � �t��� Q�

or seasonal models �tj��t� Q � N���t�� � �t�� � � � �� �t�z� Q� with period z � ��

It is always possible to write Gaussian autoregressive priors within a penalty formulation

p��jQ� � exp��
�

�
��K���

Note� that p��jQ� is improper due to implicitly assumed di�use priors for the initial pa

rameters ��� � � � � �z
 therefore K�� does not exist� For the random walks given above the
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corresponding penalty matrices are

K �
�

Q

�
BBBBBBBBBBBBBBBBBB�

� ��

�� � ��

�� � ��
� � � � � � � � �

�� � ��

�� � ��

�� �

�
CCCCCCCCCCCCCCCCCCA

and

K �
�

Q

�
BBBBBBBBBBBBBBBBBBBBBBBB�

� �� �

�� � �� �

� �� � �� �

� �� � �� �
� � � � � � � � � � � � � � �

� �� � �� �

� �� � �� �

� �� � ��

� �� �

�
CCCCCCCCCCCCCCCCCCCCCCCCA

�

respectively�

The penalty matrix K plays a key role in the derivation of the conditional distribution of a

subvector of �� De�ning

F �

�
BBBBBBB�

Fz Fz�� � � � F� F�

Fz Fz�� � � � F� F�

� � � � � �

Fz Fz�� � � � F� F�

�
CCCCCCCA

and the block�diagonal matrix

Q �

�
BBBBBBB�

Qz��

Qz��

� � �

QT

�
CCCCCCCA
�
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it follows that K � F �Q��F �

Since Q is symmetric� so is K� Furthermore� it can be shown that the elements of

K �

�
BBBBBBB�

k�� k�� � � � k�T

k�� k��
���

� � �
���

kT� � � � kT�T�� kTT

�
CCCCCCCA

are given by

kt�t�s �
min�z�z�s�T�t�X

j�max���s���z�t�

F �
jQ

��
t�jFj�s�

Note that K has zero blocks outside the z o� diagonals�

Applications of dynamic models are widespread� Fahrmeir � Tutz ��		�a� discuss smoothing

of categorical time series� panel� and survival data� Fahrmeir � Tutz ��		�b� introduce

dynamic models for ordered paired comparison data� Duration data is covered in Fahrmeir

� Knorr�Held ��		��� Breslow � Clayton ��		�� and Clayton ��		�� discuss biostatistical

applications with second order random walk priors in mixed models� which is somewhat

related� Berzuini � Clayton ��		�� propose second order random walk priors in survival

models with multiple time scales� Also Besag� Green� Higdon � Mengersen ��		�� use

second order random walk priors in age�period�cohort models�

Most of the references above have bi� or multinomial logistic or log�linear Poisson models in

the observation model� If several units i � �� � � � � nt are observed� then p�ytj�t� �
ntQ
i��

p�ytij�t�

is usually assumed by suitable additional conditional independence assumptions�

� MCMC Simulation with Conditional Prior Propos�

als

Our MCMC implementation is based on updating using full conditionals as described in full

detail in Besag� Green� Higdon �Mengersen ��		��
 we also use their terminology� We denote

full conditionals by p��tj �� for example� We start this Section with a technical note about
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the conditional distribution of a subvector �a� � � � � �b� given ��� � � � � �a�� and �b��� � � � � �T �

Then the single and the block move with conditional prior proposals is introduced� Blocking

strategies� necessary for the implementation of the block move� are sketched� We close with

some simulation results�

��� Conditional properties of autoregressive priors

The conditional distribution of a subvector of �� given the rest of � plays a key role in our

algorithm� Let �ab denote the subvector ��a� �a��� � � � � �b� and Kab denote the submatrix

out of K� given by the rows and columns a to b� Finally� let K��a�� and Kb���T denote the

matrix left and right of Kab� respectively�

K �

�
BBBB�

K �
��a��

K��a�� Kab Kb���T

K �
b���T

�
CCCCA

Then the following result can be proved by simple matrix manipulations� The conditional

distribution of �ab� given ���a�� and �b���T is normal N��ab��ab� with moments

�ab �

������
�����
�K��

ab Kb���T�b���T a � �

�K��
ab K��a�����a�� b � T

�K��
ab �K��a�����a�� �Kb���T�b���T � otherwise

and �ab � K��
ab �

Note that apart from hyperparameters� only �a�z� � � � � �a�� and �b��� � � � � �b�z enter in �ab�

since all blocks in K outside the z o�diagonals are zero�

��� Single move

The most natural blocking strategy for � is to update �t one at a time� The main advantage

is that the full conditional has a simple form� achieved by the hierarchical structure of the

model�

p��tj � � p�ytj�t�p��tj�s ��t� Q��
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One way to update �t is to use a proposal ��
t � distributed as p��tj�s��t� Q�� Such a �condi

tional prior proposal� is independent of the current state of �t but� in general� depends on

the current states of all other parameters �here �s��t and Q�� Note� that �Gibbs proposals��

i�e� samples from the full conditional� have exactly the same �conditional independence�

property�

It is illustrative to discuss di�erences between conditional and unconditional independence

proposals �Tierney� �		��� It is often very di�cult� at least for higher dimensions and non�

normal models� to construct an �unconditional� independence proposal with good acceptance

rates� In contrast� a conditional independence proposal depends on the current state of

neighboring parameters� it is therefore far more constrained then the unconditional version�

being already in the right part of the state space� On the other hand� its distribution changes

in every iteration step �if neighboring parameters are updated and accepted�� it is therefore

still very �exible �Unconditional independence proposals are generated from exactly the same

distribution in every iteration step��

The Hastings acceptance probability simpli�es for the conditional prior proposal to

min

	
��
p�ytj�

�
t �

p�ytj�t�



�

the likelihood ratio for observation yt� Conditional prior proposals have a natural interpre

tation� ��
t is drawn independently of the observation model and just re�ects the speci�c

autoregressive prior speci�cation� If it produces improvement in the likelihood at time t� it

will always be accepted� if not� then the acceptance probability is equal to the likelihood

ratio� The �t�s should be visited in random order to avoid an arti�cial drift of the simulated

Markov chain�

Of course� a simple random walk proposal can be used instead� but it has to be tuned� Other

single move updating schemes are more demanding in their proposals and therefore are likely

to be slower in CPU time� slower also due to the fact that the computation of the acceptance

probability gets more complicated� Gamerman ��		�� and Shephard � Pitt ��		�� construct

proposals that try to approximate the full conditional using additional Fisher scoring steps

and Taylor approximations� These procedures involve the evaluation of score functions and
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information matrices at every update step� A real Gibbs step requires additional iterations

via a rejection sampling procedure and is likely to be ine�cient�

However� the single move blocking scheme might be very slow converging� especially if neigh

boring parameters are highly correlated� This is typically the case when the likelihood at

time t is very �at in �t and does not give much information relative to the autoregressive

prior speci�cation� Binary time series are a typical example� A simple modi�cation of the

single move conditional prior algorithm addresses this problem without losing its simplicity

both in programming and computing time�

��� Block move

Instead of updating one parameter �t at a time� the block move is based on updating one

block �rs � ��r� � � � � �s� at a time� The number of blocks may range from � up to T � which

corresponds to the single move� Consider the breakpoints that divide � into blocks as �xed

for the moment� The idea of this blocking strategy is to use blocks that are large enough�

so that the corresponding likelihood provides enough information to ensure a good mixing

and convergence behavior� So what kind of proposals are useful for the block move 

It is generally not clear how to choose the spread of a multivariate Metropolis proposal�

But� in contrast� the generalization of the conditional prior proposal is straightforward�

The simple structure of the full conditional is retained� since p��rsj���r��� �s���T � Q� is still

normal with known moments �see Section ����� Therefore a conditional prior proposal can

be implemented similarly as in the previous section �using the Cholesky decomposition��

Generate ��
rs distributed as p��rsj���r��� �s���T � Q� to update the full conditional

p��rsj � �
sY

t�r

p�ytj�t�p��rsj���r��� �s���T � Q��

Note� that both for the single and the block move� the conditional prior distribution

p��rsj���r��� �s���T � Q� depends on not more then � � z state parameters and the hyperpa

rameter Q� a convenient fact for implementation of the conditional prior proposal� The

	



acceptance probability simpli�es again to a likelihood ratio

min

����
�����

sQ
t�r

p�ytj�
�
t �

sQ
t�r

p�ytj�t�

����
�� �

Typically a bigger block size coincidences with smaller acceptance rates� since the likelihood

is more informative for an increasing number of units� Shephard � Pitt ��		�� propose a

di�erent proposal in the block move� It is again based on a Taylor approximation of the full

conditional like their version of the single move proposal� Furthermore they propose �� to ��

additional Fisher scoring iterations to get a reasonable approximation and perform a pseudo

rejection sampling step �Tierney� �		��� In contrast� conditional prior proposals bene�t of

block updating without spending too much e�ort in constructing appropriate proposals and

calculating acceptance probabilities�

��� Blocking strategies

The block move provides a considerable improvement in situations where the single move

has bad mixing behavior� However� �xed blocks still cause convergence and mixing problems

for parameters close to a breakpoint� Changing the block con�guration in every iteration

cycle is a simple remedy� This can be done either by a deterministic or a random scheme�

The random mechanism has to be independent from the MCMC output� though� In all

following examples we used random blocking with �xed standard block size� The �rst block

has uniform random block size between � and the standard block length� So� most of the

updating involves blocks of a �xed block length� which has computational advantages� since

the dispersion matrix of the standard block size full conditional can be computed in advance�

at least for Gaussian transition models with constant variance� Block sizes proportional to

the number of observations nt per block may also be considered in situations where nt is

changing over time as in survival models �Fahrmeir � Knorr�Held� �		���
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��� An example� Tokyo rainfall data

To illustrate the gain of the block move� we analyze the Tokyo rainfall data �e�g� Fahrmeir

� Tutz� �		�a�� which is known to be problematic for single move algorithms� This data

consists of a single binomial time series of length T � ���� We assume a binomial logit

model

ytj�t �

���
��

B��� �t� t �� ��

B��� �t� t � ��
� �t � ���� � exp���t���

with a second order random walk prior for f�tg� A highly dispersed� but proper gamma prior

was chosen for the random walk precision �a � �� b � ������� This choice re�ects su�cient

prior ignorance about Q but avoids problems arising with improper posteriors� Figure �

displays the data and some characteristics of the posterior distribution of f�tg�

We separate our empirical analysis into two parts� speed of convergence and e�ciency of

estimation� First we focus on the empirical convergence behavior� For block size �� �� ��

and �� we computed the average trajectories of ��� parallel chains after ��� ��� ��� and ���

iterations� For every chain� the state parameters were initialized to zero and the variance

Q to ���� We also computed the average acceptance rate of the Hastings steps� averaged

over all �t�s� Figure � shows clear empirical evidence that the block move converges much

faster for bigger block sizes� at least for this data set and model� The single move algorithm

does not converge at all� at least for the �rst ��� iterations� The algorithm with blocksize

�� seems to have reached equilibrium after only �� iterations� The corresponding empirical

average acceptance rates have been 		�� ! �block size ��� 	��� ! �size ��� ���� ! �size ���

and ���� ! �block size ����

We repeated the same analysis� assuming a random walk of �rst order instead� Conver

gence was a bit faster and� again� the block move algorithm exhibits superior convergence

performance�

A measure of e�ciency of estimation are the autocorrelations of parameters of the simulated

Markov chain after reaching equilibrium� The larger these correlations are� the larger the

variances of the estimate of the posterior mean� Intuitively it is clear that other posterior
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characteristics are less e�ciently estimated as well� We started the chain in equilibrium�

ran it for ���� iterations and stored every ��th sample until we had ������ samples� We

calculated autocorrelations for �� parameters� namely for t ��� ��� ��� ���� ���� ���� ����

���� ���� ���� ���� ��� and for the hyperparameter Q� We did this analysis twice� for

blocksize � and blocksize ��� both assuming a second order random walk prior� The results

can be summarized as follows� For block size �� all autocorrelations up to lag �� of these

parameters and hyperparameters were all larger than ���� In contrast� for blocksize ���

the autocorrelations of all parameters considered were close to zero for lag � and bigger�

Autocorrelations for the hyperparameter Q were somewhat bigger �around zero for lag ��

and more� but still much smaller than for blocksize ��

Figure � shows trajectories of the last ���� iterations for three representative parameters ���

����� ���� and the variance Q� Whereas the mixing behavior of the blocksize � algorithm is

catastrophic� the blocksize �� algorithm shows well�behaved mixing� The plots for the other

parameters look very similar�

� Incorporating model uncertainty

The temporal variation of underlying parameters may have jumps� so called innovative out

liers� The Gaussian distributional assumption in the autoregressive prior� however� does not

allow such abrupt movement� Distributions with heavier tails such as t�distributions are

more adequate� In this section we will sketch how autoregressive priors can be extended via

an hierarchical t�formulation with unknown degrees of freedom �Besag� Green� Higdon �

Mengersen� �		���
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��� Hierarchical t�autoregressive priors

Introducing hyperparameters � � ��z��� � � � � �T �� the autoregressive prior formulation can be

extended to

�tj��t� Q� �t � N

�
�

zX
l��

Fl�t�l� Q��t

�
� �t � z � �� � � � � T ��

Assuming �t to be independent gamma distributed �t � G��
�
� �
�
�� �tj��t� Q has a t�distribution

with 	 degrees of freedom�

The distribution p��j��Q� can be expressed again in a penalty formulation with a penalty

matrix K� now depending on �� too� The blocks in K have the form

kt�t�s �
min�z�z�s�T�t�X

j�max���s���z�t�

F �
jQ

��
t�jFj�s

with Qt�j � Q��t�j� For example� the matrix

K �
�

Q

�
BBBBBBBBBBBBBBBBBBBBB�

�� ���

��� �� � �� ���

��� �� � �	 ��	

� � � � � � � � �

��T�� �T�� � �T�� ��T��

��T�� �T�� � �T ��T

��T �T

�
CCCCCCCCCCCCCCCCCCCCCA

corresponds to a univariate �rst order random walk hierarchical t�formulation� Updating of

� can be done again by single or block moves� Also the model can be extended via a prior

speci�cation for 	�

The full conditionals of the hyperparameters are given by

�tj � G
�
	

�
�

�

�
�
	

�
�

�

�
�u�tQ

��ut�
�
�

and p�	j � � p�	��

�
��	

�
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��� A second example� Sleep data

Carlin � Polsen ��		�� present an analysis of a binary time series of length T � ��� minutes�

The outcome variable yt corresponds to the sleep status �REM �yt � �� or non�REM� of a spe

ci�c child� We reanalyze this data to illustrate the hierarchical t�formulation� The response

variable is assumed to depend on a latent �sleep status� �t via an dynamic logistic model� We

place an equally weighted hyperprior p�	� on the values
n
�k� k � ������	���� �� � � � � ��	� ���

o
and assume �t to follow a hierarchical t random walk� For updating 	� we used a discrete

random walk�type proposal which gave equally weight to the two neighbors of the current

value� Note that for the limit cases 	 � ��� and 	 � ���� this proposal becomes determinis

tic� proposing the only neighbor� The acceptance probability has to be modi�ed adequately

for proposed jumps to or away from these limit values�

The following analysis is based on a run of length ������� discarding the �rst ���� values

and storing every ���th thereafter� The chosen block length was �� which resulted in an

average acceptance rate of ���� !� Starting values were zero for all �t�s� Since the posterior

might be multimodal the chain might stay in one part of the posterior for a long time� To

account for that we started several chains with di�erent values for 	 over the whole range of

the prior� ��� to ���� However� all of these chains moved after not more than ���� iterations

into the region around 	 � ��

Figure � shows the data and estimates� Note that our model formulation gives a signi�cant

better �t to the data then the analysis by Carlin � Polsen ��		�� Figure �� p� ����� The

resulting posterior for the hyperparameter 	 has its mode at 	 � �k����� 	 ����� The 	�

and 	� ! credible regions for 	 are #����� ���$ and #����� ����$� respectively� showing strong

evidence for highly non�normal system disturbances� The estimates of the sequence f�tg�

the latent sleep status� exhibit some huge abrupt jumps� e�g� around t � �� and t � ���

Note that the posterior for some values of t is highly skewed�

��



minutes

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

•

•

•

•

•

• •

•

• •

•

• • •

• •

•

•

•

• •

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • •

•

• • •

•

• • •

• • • • • • • • • • • • • • • • • • • • •

•

•

• •

•

• • • • • • • • • • • • • • • • • • • • • • • • • •

• •

• • • • •

data and fitted probabilities (posterior median within 50, 80 and 95 % 
pointwise credible regions)

minutes

0 20 40 60 80 100 120

-1
0

-5
0

5
10

latent sleep status, posterior median + pointwise credible regions (50 and 80 %)

0 2 4 6

0
10

0
20

0
30

0
40

0

k

posterior distribution of hyperparameter k = log2(nu)
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� Discussion

Conditional prior proposals re�ect the dependence of underlying parameters and therefore

provide a useful tool for highly dependent parameters in dynamic models� The resulting

algorithm is appealing since all proposals are easy to generate and all acceptance probabilities

are easy to calculate� The choice of a blocking strategy serves as a tuning device�

We also experimented with conditional prior proposals in dynamic models� where p��� is a

product of several autoregressive prior speci�cations� For example� each component of �t

may correspond to a certain covariate e�ect �plus intercept� and independent random walk

priors are assigned to all components� Here two generalizations are possible� either updating

each component within its own blocking strategy or updating all components within one

blocking strategy� The former approach provides more �exibility in tuning the algorithm

and has been successfully implemented for duration time data� However� the latter is faster�

especially for large dimension of �t and is usually su�cient accurate�

There might also be a wide �eld of applications in models for non�normal spatial data� Here

intrinsic �or undirected� autoregressions replace directed autoregressions� Conditional prior

proposals can be implemented in similar lines� since intrinsic autoregressions can be written

in a penalty formulation as well� see Besag � Kooperberg ��		���
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