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ABSTRACT

In contrast to aspirin, salicylate, its active metabolite, pos-
sesses profound anti-inflammatory properties without blocking
cyclooxygenase. Inhibition of the transcription factor nuclear
factor-kB (NF-«B) has been discussed to play a role in the
anti-inflammatory profile of salicylate. However, NF-«B-inde-
pendent effects of salicylate have been assumed but have up to
now been poorly investigated. Therefore, the aim of the present
study was to investigate NF-«B-independent anti-inflammatory
mechanisms of salicylate in human umbilical vein endothelial
cells using interleukin-4 (IL-4) as NF-«B-independent proin-
flammatory stimulus and P-selectin as inflammatory read-out
parameter. Using quantitative real-time reverse transcription-
polymerase chain reaction, we found that salicylate decreases
IL-4-induced P-selectin expression. As judged by Western blot
analysis, salicylate increased endothelial heme oxygenase-1

(HO-1) protein levels. Using both the HO-1 inhibitor tin(ll) pro-
toporphyrin IX and HO-1 antisense oligonucleotides, we caus-
ally linked the induction of HO-1 to the decrease of P-selectin.
Moreover, we were interested in the signaling mechanisms
leading to the up-regulation of HO-1 by salicylate. c-dJun NH,-
terminal kinase (JNK) was found to be activated by salicylate,
and we could causally link this activation to the induction of
HO-1 by using the JNK inhibitor 1,9-pyrazoloanthrone. By ap-
plying activator protein-1 (AP-1) decoys, it was shown that the
transcription factor AP-1 is crucially involved in the up-regula-
tion of HO-1 downstream of JNK. In summary, our study intro-
duces HO-1 as novel NF-«B-independent anti-inflammatory
target of salicylate in human endothelial cells. Moreover, we
elucidated the JNK/AP-1 pathway as crucial for the induction of
HO-1 by salicylate.

Aspirin—acetyl salicylic acid—is the most widely used
drug in the world because it possesses profound analgesic,
anti-thrombotic, and anti-inflammatory properties (Vane
and Botting, 2003). For many years, these properties have
been ascribed to the ability of aspirin to block prostaglandin
synthesis by inhibition of cyclooxygenase (COX) (Vane and
Botting, 2003). However, several lines of evidence point to
COX-independent anti-inflammatory effects: The doses of
aspirin needed to medicate chronic inflammatory disorders
are much higher than those required to inhibit prostaglandin
synthesis. Salicylate, the active metabolite of aspirin, rather

Article, publication date, and citation information can be found at
http://jpet.aspetjournals.org.
doi:10.1124/jpet.106.102251.

than the rapidly deacetylated aspirin is considered to exert
anti-inflammatory effects and does not inhibit COX (Tegeder
et al., 2001). In fact, salicylate is known to impair the acti-
vation of the transcription factor NF-kB (Kopp and Ghosh,
1994), which plays a crucial role in the regulation of many
proinflammatory genes. Nevertheless, the inhibition of
NF-«kB was not proven to be of importance for the anti-
inflammatory effects of salicylate in vivo (Cronstein et al.,
1999). Therefore, NF-«B-independent effects of salicylate
have been assumed but have as yet been poorly investigated.

The endothelium is an important regulator of inflamma-
tory events because it plays a crucial role in the attraction,
adhesion, and migration of leukocytes to sites of inflamma-
tion (Biedermann, 2001). Due to this important role for en-
dothelial cells in inflammatory events, we aimed to investi-

ABBREVIATIONS: COX, cyclooxygenase; NF-«B, nuclear factor-kB; IL-4, interleukin-4; HO-1, heme oxygenase-1; AP-1, activator protein-1;
HUVEC, human umbilical vein endothelial cell(s); TNF-«, tumor necrosis factor-«; SnPP, tin(ll) protoporphyrin IX; NaSal, sodium salicylate;
SP600125, 1,9-pyrazoloanthrone; PCR, polymerase chain reaction; JNK, c-Jun N-terminal kinase; EMSA, electrophoretic mobility shift assay;

MAPK, mitogen-activated protein kinase; RT, reverse transcription.
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gate NF-«kB-independent effects of salicylate in human
endothelial cells. We chose interleukin-4 (IL-4) as the proin-
flammatory stimulus. IL-4 is an immunomodulatory cytokine
secreted by activated T cells, eosinophils, and mast cells, and
it plays an important role in the pathology of chronic inflam-
matory disorders such as asthma (Bradding et al., 1992) or
atherosclerosis (Sasaguri et al., 1998). Moreover, IL-4 is
known to induce genes that are generally associated with an
activated, proinflammatory status of the endothelium, such
as P-selectin (Yao et al., 1996). We chose this molecule as
inflammatory read-out parameter to analyze the effects of
salicylate on the IL-4-induced, NF-«B-independent activa-
tion of human endothelial cells.

Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in
heme degradation. It catalyzes the cleavage of heme to
yield free iron, carbon monoxide, and biliverdin. HO-1 has
increasingly been recognized to possess a wide range of
biological effects because it is tightly involved in both
physiological as well as pathophysiological processes, such
as atherogenesis (Ishikawa and Maruyama, 2001) and
ischemia-reperfusion injury (Tsuchihashi et al., 2004). Re-
cently, there has been accumulating evidence that HO-1
possesses profound anti-inflammatory features (Alcaraz et
al., 2003). Because the transcription factor AP-1 has been
shown by ourselves to induce HO-1 expression in endothe-
lial cells (Kiemer et al., 2003) and aspirin in principle is able
to increase AP-1 activity (Vartiainen et al., 2003), we hypothe-
sized that salicylate could exert its anti-inflammatory proper-
ties via induction of HO-1.

Thus, the aim of the present study was to investigate an
NF-«kB-independent anti-inflammatory mechanism of salicy-
late in primary human umbilical vein endothelial cells
(HUVEC) using IL-4 as proinflammatory stimulus and P-
selectin as inflammatory read-out parameter. We hypothe-
sized that salicylate is able to induce HO-1 and that this
induction is able to attenuate the IL-4-evoked increase of
P-selectin. Moreover, we sought to clarify the underlying
signaling pathways by which HO-1 is induced by salicylate.

Materials and Methods

Materials. Human recombinant IL-4 and TNF-a were from Sig-
ma-Aldrich (Taufkirchen, Germany). The HO-1 inhibitor tin(II) pro-
toporphyrin IX (SnPP) (for reference, see Drummond and Kappas,
1981) was from Alexis (Griinberg, Germany), and sodium salicylate
(NaSal) was from Fluka (Buchs, Switzerland). The JNK inhibitor
1,9-pyrazoloanthrone (SP600125) (for reference, see Bennett et al.,
2001) was from Calbiochem (Schwalbach, Germany). Mouse mono-
clonal anti-human HO-1 antibody (clone 23) was from BD Bio-
sciences (Heidelberg, Germany). Mouse monoclonal anti-human
phospho-JNK (Thr183/Tyr185) antibody (clone G9) and horseradish
peroxidase-conjugated goat anti-mouse antibody were from Cell Sig-
naling/New England Biolabs (Frankfurt/Main, Germany). Primers
for P-selectin and GAPDH were from Invitrogen (Karlsruhe, Ger-
many). TagMan probes for P-selectin and GAPDH were from Applied
Biosystems (Hamburg, Germany).

Cell Culture. HUVEC were prepared by digestion of umbilical
veins as described previously (Kiemer et al., 2002a). Cells were
cultured in endothelial cell growth medium (Promocell, Heidelberg,
Germany) supplemented with 10% heat-inactivated fetal calf serum
(Biochrom, Berlin, Germany) and used for all experiments at passage 3.
Cells were routinely tested for mycoplasma contamination with the
PCR detection kit VenorGeM (Minerva Biolabs, Berlin, Germany).

Measurement of P-Selectin mRNA Levels by Quantitative
Real-Time Reverse Transcription-Polymerase Chain Reac-
tion. Cells were grown in six-well plates until confluence and treated
as indicated in the respective figure legends. Extraction of total
mRNA was performed with the RNeasy Mini Kit (Qiagen, Hilden,
Germany). RNase-free DNase was applied for DNase digestion
(RNase-free DNase Set; Qiagen). Reverse transcription was carried
out using the RNA PCR Core Reagent Kit (Applied Biosystems,
Hamburg, Germany) in a GeneAmp PCR system 9700 (Applied Bio-
systems). Real-time PCR was performed using the TagMan PCR
Core Reagent Kit (Applied Biosystems) in a GeneAmp 5700 Se-
quence Detection System (Applied Biosystems). P-selectin forward
primer: 5'-TGAAGGAAGGTTTTCTCCACTTTG-3’; reverse primer:
5'-AGACTCCAGAAGATGCTACAGGAATT-3'; probe: 5'-TGGAAA-
GCAGGTGGCATCTCTAATTGGA-3'. GAPDH forward primer: 5'-G-
GGAAGGTGAAGGTCGGAGT-3’; reverse primer: 5'-TCCACTTTA-
CCAGAGTTAAAAGCAG-3'; probe: 5'-ACCAGGCGCCCAATACGAC-
CAA-3'. Results were quantified based on the relative expression of the
P-selectin gene versus the housekeeping gene GAPDH using the math-
ematical model for relative quantification according to Pfaffl (2001).

Measurement of HO-1 and Phospho-JNK Protein Expres-
sion by Western Blot Analysis. Cells were grown in six-well plates
until confluence and were treated as indicated in the respective
figure legends. Western blot analysis was performed as described
previously (Kiemer et al., 2002a). HO-1 antibody and phospho-JNK
antibody (see Materials) were diluted 1:250 and 1:1000, respectively.
For densitometric analysis, the Kodak 1D software version 3.5.4
(Eastman Kodak, Rochester, NY) was used.

Measurement of NF-«kB and AP-1 DNA-Binding Activity by
Electrophoretic Mobility Shift Assay. Cells were grown in six-
well plates until confluence and were treated as indicated in the
respective figure legends. Nuclear extracts were prepared, and elec-
trophoretic mobility shift assay (EMSA) was performed as described
previously (Kiemer et al., 2002b). Consensus binding sequence for
AP-1 is 5'-CGCTTGATGAGTCAGCCGGAA-3' (Promega, Mann-
heim, Germany) and for NF-«B is 5'-AGTTGAGGGGACTTTC-
CCAGGC-3’ (Promega). For densitometric analysis, the OptiQuant
software version 4.00 (PerkinElmer Life and Analytical Sciences,
Boston, MA) was used.

HO-1 Antisense and AP-1 Decoy Experiments. Cells were
grown in six-well plates until 80% confluence and were transfected
with HO-1 antisense phosphorothioate oligonucleotides (antisense:
5'-CGCCTTCATGGTGCC-3’; sense: 5'-GGCACCATGAAGGCG-3")
according to Wagener et al. (1999) or AP-1 decoy phosphorothioate
oligonucleotides (decoy: 5'-CGCTTGATGACTCAGCCGGAA-3'; scram-
bled decoy: 5'-CGCTTGATGACTTGGCCGGAA-3’) according to Jan et
al. (2000) by using the jetPEI-RGD transfection reagent (Polyplus-
Transfections/Biomol, Hamburg, Germany). Cells were treated for 4 h
with the DNA-jetPEI-RGD complexes. Experiments were performed
24 h (HO-1 antisense) or 3 h (AP-1 decoy) after transfection.

Statistical Analysis. Unless stated otherwise, all experiments
were done from at least three different cell preparations in at least
duplicates. Data are expressed as mean = S.E.M. Statistical analysis
was performed with the GraphPad Prism software version 3.03
(GraphPad Software Inc., San Diego, CA). To compare three or more
groups, one-way analysis of variance followed by Newman-Keuls
post hoc test was used.

Results

IL-4 Does Not Influence NF-«kB DNA-Binding Activ-
ity. To confirm the lack of NF-«B activation for our experi-
mental setting, we treated HUVEC with IL.-4 and analyzed
NF-«B DNA-binding activity. TNF-«, a well known activator
of NF-kB, served as a positive control: TNF-a dramatically
increased NF-kB activity (Fig. 1A). However, IL.-4 did not
alter NF-«kB DNA-binding activity at any time point (Fig.
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Fig. 1. A, IL-4 does not influence NF-«B DNA-binding activity. Cells were
either left untreated (Co) or were treated with IL-4 (10 ng/ml) for the
indicated times. Treatment with TNF-a (10 ng/ml, 30 min) served as
positive control. NF-«kB DNA-binding activity was analyzed by EMSA as
described under Materials and Methods. B, the induction of P-selectin by
IL-4 is reduced by NaSal. Cells were either left untreated (Co) or were
treated with IL-4 (10 ng/ml) for 20 h with or without pretreatment with
NaSal (10 mM) for 60 min. Levels of P-selectin mRNA were determined
by quantitative real-time RT-PCR as described under Materials and
Methods. *,p < 0.001 compared with Co. #, p < 0.001 compared with IL-4.

1A). This finding confirms that IL-4 does not activate NF-«B
in human endothelial cells.

The IL-4-Evoked Increase of P-Selectin Is Reduced
by NaSal. P-selectin, a product of a gene involved in endo-
thelial inflammation, is known to be induced by IL-4 in
HUVEC. We confirmed this in our experimental setting (Fig.
1B). Pretreatment with sodium salicylate (NaSal, 10 mM)
strongly reduced the expression of P-selectin (Fig. 1B).

NaSal Induces Endothelial HO-1. Because we hypoth-
esized that HO-1 could be responsible for the observed NF-
kB-independent actions of NaSal, we first investigated
whether NaSal is able to induce HO-1 protein expression in
primary human endothelial cells. In fact, treatment with
NaSal led to an increase of HO-1 protein expression with
maximal protein levels at approximately 60 min (Fig. 2A)
and 10 mM (Fig. 2B).
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Fig. 2. Induction of HO-1 protein expression by NaSal. A, cells were
either left untreated (Co) or were treated with NaSal (10 mM) for the
indicated times. B, cells were either left untreated (Co) or were treated
with the indicated concentration of NaSal for 60 min. HO-1 protein levels
were determined by Western blot analysis as described under Materials
and Methods. *, p < 0.01 compared with Co.

HO-1 Is Involved in the Decrease of IL-4-Induced
P-Selectin by NaSal. Because we observed an up-regula-
tion of HO-1 by NaSal, we assumed that HO-1 might be
involved in the decrease of IL-4-induced P-selectin expres-
sion by NaSal. We treated HUVEC with the HO-1 blocker
SnPP and found that the NaSal-evoked inhibition of P-selec-
tin expression was clearly diminished (~50% reversal) (Fig.
3A). Moreover, we performed HO-1 antisense experiments
and revealed that an attenuated induction of HO-1 protein
expression due to the presence of antisense oligonucleotides
leads to a diminished reduction of P-selectin levels (~30%
reversal) (Fig. 3B). Control experiments confirmed that the
used HO-1 antisense oligonucleotides are in fact able to at-
tenuate endothelial HO-1 protein levels (Fig. 3C). Our find-
ings suggest an involvement of NaSal-induced HO-1 in the
decrease of IL-4-evoked P-selectin expression.

NaSal Induces HO-1 Protein Expression via JNK. We
aimed to elucidate the underlying signaling mechanism by
which salicylate leads to an up-regulation of endothelial
HO-1 protein levels. We hypothesized that MAPK could be
involved. Indeed, as shown by the detection of the phosphor-
ylated form of the MAPK JNK (phospho-p54/JNK2 and phos-
pho-p46/JNK1), NaSal activated JNK after 15 min. The
amount of phosphorylated JNK returned to almost basal
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Fig. 3. A, the HO-1 inhibitor SnPP reduces the NaSal-evoked decrease of
IL-4-induced P-selectin expression. Cells were either left untreated or
were treated with IL-4 (10 ng/ml) for 20 h with or without pretreatment
with NaSal (10 mM) for 60 min. SnPP (10 uM) was applied 30 min before
NaSal. Levels of P-selectin mRNA were determined by quantitative real
time RT-PCR as described under Materials and Methods. B, silencing of
HO-1 reduces the NaSal-evoked decrease of IL-4-induced P-selectin ex-
pression. Cells were either left untreated or were treated with NaSal (10
mM) for 60 min in the presence of HO-1 antisense or sense oligonucleo-
tides. Levels of P-selectin mRNA were determined by quantitative real
time RT-PCR as described under Materials and Methods. C, functionality
of the HO-1 antisense approach. Cells were either left untreated or were
treated with NaSal (10 mM) for 60 min in the presence of HO-1 antisense
or sense oligonucleotides. HO-1 protein levels were determined by West-
ern blot analysis as described under Materials and Methods. Antisense
experiments were performed as described under Materials and Methods.
#, p < 0.001 compared with the IL-4/IL-4 + HO-1 sense group. #, p <
0.001 compared with the IL-4 + NaSal + SnPP/HO-1 antisense group. +,
p < 0.05 compared with the only HO-1 sense-treated group.

levels after 60 min (Fig. 4A). Activation of JNK was found to
be crucial for the up-regulation of HO-1 because the pharma-
cological JNK inhibitor SP600125 abrogated the NaSal-in-
duced increase of HO-1 protein levels (Fig. 4B). These find-
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Fig. 4. A, NaSal activates JNK. Cells were either left untreated (Co) or
were treated with NaSal (10 mM) for the indicated times. TNF-« (10
ng/ml, 30 min) served as positive control. B, JNK is crucially involved in
the induction of HO-1 by NaSal. Cells were either left untreated or were
treated with NaSal (10 mM) for 60 min. The JNK inhibitor SP600125 (SP,
10 M) was added 60 min before NaSal. Phospho-JNK and HO-1 protein
levels were determined by Western blot analysis as described under
Materials and Methods. *, p < 0.01 compared with the untreated group.
#, p < 0.001 compared with NaSal.

ings point to an involvement of JNK in the mechanism by
which NaSal induces HO-1.

NaSal Induces HO-1 Protein Expression via AP-1.
Downstream of JNK, we wanted to clarify whether the tran-
scription factor AP-1 might be involved in the induction of
HO-1 by NaSal. In fact, treatment of HUVEC with NaSal led
to strong time-dependent activation of AP-1 DNA-binding
activity (Fig. 5A). Furthermore, transfection of HUVEC with
AP-1 decoys completely blocked the ability of NaSal to induce
HO-1 (Fig. 5B), suggesting that AP-1 activation is crucial for
the salicylate-induced increase of HO-1 protein expression.

Discussion

Salicylate possesses profound anti-inflammatory effects,
but it does not inhibit COX (Tegeder et al., 2001). Therefore,
COX-independent pathways have been postulated. Most at-
tention has been paid to a salicylate-evoked inhibition of
the proinflammatory transcription factor NF-«B (Kopp and
Ghosh, 1994), although an influence of salicylate on other
signal transduction systems commonly associated with in-
flammatory events, like the MAPK pathway (Pillinger et al.,
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Fig. 5. A, NaSal activates AP-1. Cells were either left untreated (Co) or
were treated with NaSal (10 mM) for the indicated times. AP-1 DNA-
binding activity was assessed by EMSA as described under Materials and
Methods. B, AP-1 is crucially involved in the induction of HO-1 by NaSal.
Cells were either left untreated or were treated with NaSal (10 mM) for
60 min in the presence of AP-1 decoys or scrambled (scr) decoys. Decoy
experiments were performed as described under Materials and Methods.
HO-1 protein levels were determined by Western blot analysis as de-
scribed under Materials and Methods. #, p < 0.01 compared with Co. #,
p < 0.001 compared with the NaSal + scr AP-1 decoy group.

1998), the AP-1 pathway (Dong et al., 1997), and the nuclear
factor of activated T cell pathway (Aceves et al., 2004) have
also been shown to contribute to the anti-inflammatory pro-
file of salicylate. In the present work, we provide for the first
time evidence that HO-1 is a further NF-«kB-independent
player in the complex concert of anti-inflammatory mecha-
nisms evoked by salicylate.

For the following reasons, we applied sodium salicylate at
high concentrations (10 mM): according to Amann and Pes-
kar (2002), anti-inflammatory therapy with aspirin (which
rapidly deacetylates to its active metabolite salicylate) re-
sults in plasma salicylate concentrations of approximately 2
mM. Moreover, salicylate is known to accumulate in inflamed
tissue (Brune, 1977). Unfortunately, no data exist about the
precise concentrations of salicylates in inflamed tissue, but it
seems obvious that high concentrations of salicylate—as
used in our in vitro model—are required to mimic the in vivo
situation of an effective anti-inflammatory action. To inves-
tigate potential cytoxic effects evoked by 10 mM salicylate,

Induction of Endothelial HO-1 by Salicylate 393

we performed CellTiter Blue cell viability assays (Promega)
and, thus, excluded remarkable cytotoxicity at this concen-
tration (data not shown).

Aiming to identify NF-«B-independent mechanisms, we
used IL-4 as proinflammatory stimulus and confirmed that
no influence on NF-«kB was exerted by IL-4. This is in accor-
dance with data from other groups showing no alteration of
NF-«B activity upon treatment of endothelial cells with IL-4
(McCarty et al., 1995; Xia et al., 1998). Importantly, salicy-
late was found to block the IL-4-induced increase of the used
read-out parameter for endothelial inflammation, P-selectin.
Inhibition of P-selectin by salicylate has previously been
observed (Xia et al., 1998) and was confirmed in our experi-
mental setting.

In terms of the salicylate-evoked inhibition of P-selectin
expression, we show for the first time that salicylate is able to
induce HO-1 protein expression in primary human endothe-
lial cells and that the observed HO-1 induction is a feature
linked to the inhibition of P-selectin by salicylate. However,
it should be kept in mind that neither the HO-1 inhibitor nor
the HO-1 antisense approach completely reversed the effect
of salicylate. Although additional NF-«B-independent anti-
inflammatory pathways targeted by salicylate have to be
discussed in the context of our data, our study introduces
HO-1 as a novel NF-kB-independent molecular target of sa-
licylate in endothelial inflammatory processes. This finding
is in line with many studies that link HO-1 to anti-inflam-
matory features (Wagener et al., 2003) and is strengthened
by observations made in the case of HO-1 deficiency (Yachie
et al., 1999). Two recently published studies (Grosser et al.,
2003; Nascimento-Silva et al., 2005) showing the ability of
aspirin to induce HO-1 in ECV304 also support our data.

Based on the novel role for salicylate-induced HO-1 in the
endothelium, the underlying signaling mechanisms were of
interest. We could show that salicylate increases HO-1 pro-
tein expression in human endothelial cells via activation of
JNK and the transcription factor AP-1. Experiments using a
pharmacological JNK inhibitor (SP600125) (Bennett et al.,
2001) and inhibiting DNA binding of AP-1 by decoy oligonu-
cleotides (Jan et al., 2000) in fact indicate a crucial role for
the JNK/AP-1 pathway in the signaling events responsible
for the up-regulation of HO-1. In support of our findings,
JNK activation by salicylate has also been observed in hu-
man eosinophils (Wong et al., 2000), HO-29 colon cancer
(Schwenger et al., 1999), and COS-1 cells (Schwenger et al.,
1999). Interestingly, salicylate inhibits an already activated
JNK in fibroblasts and mouse epidermal cells (Huang et al.,
1997; Schwenger et al., 1997), suggesting that the effects of
salicylate on JNK activity highly depend both on the cellular
context and on the activity status of JNK in the current
experimental setting. Our results are also supported by the
finding that the human HO-1 gene contains AP-1 binding
sites (Lavrovsky et al., 1994) and by corresponding data for
some other stimuli of HO-1 induction (Terry et al., 1998;
Kiemer et al., 2003). However, our finding that salicylate
induces DNA binding of AP-1 differs from most of the pub-
lished data, which describe an inhibitory effect of salicylates
on AP-1. In mouse epidermal cells, aspirin and salicylate
have been shown to inhibit epidermal growth factor-induced
AP-1 activation and basal AP-1 levels (Dong et al., 1997). In
addition, in human cell systems, salicylates have shown in-
hibitory action on AP-1, for instance, in human cervical can-
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cer cells (Murono et al., 2000). All this seems to be in contrast
to our findings. However, all these opposing studies show
inhibitory effects of salicylates only in settings where the
cells have already been activated by diverse stimuli. Publi-
cations reporting basal stimulatory effects on the JNK/AP-1
pathway are rare (Schwenger et al., 1999; Wong et al., 2000;
Vartiainen et al., 2003), and none are available for the hu-
man endothelium. Thus, to the best of our knowledge, this is
the first report proving that activation of the JNK/AP-1 sig-
naling pathway is crucial for the salicylate-induced HO-1
expression in the human endothelium.

Due to this involvement of the JNK/AP-1 pathway, the
question raises how salicylate is able to activate JNK. Inter-
estingly, salicylate has recently been described to evoke oxi-
dative stress (Battaglia et al., 2005), which could account for
the activation of JNK that represents a classic stress-acti-
vated protein kinase (Adler et al., 1999). To test this hypoth-
esis, we measured the generation of reactive oxygen species
as described previously (Furst et al., 2005). However, we
could not detect an increase in reactive oxygen species for-
mation upon salicylate treatment (data not shown). We can
only speculate that salicylate might activate a kinase up-
stream of JNK or inhibit a MAPK phosphatase.

In summary, the present study identifies HO-1 as an NF-
kB-independent mediator in the anti-inflammatory signaling
concert triggered by salicylate in primary human endothelial
cells. Thereby, the JNK/AP-1 pathway is crucially involved in
the up-regulation of endothelial HO-1. The data add further
evidence to the fact that salicylate causes anti-inflammatory
effects independent of COX activity and, moreover, not re-
lated to NF-kB inhibition.
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