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Fig. 7. PMN adhesion in small and large venules in reperfused hearts.
Controlsno ischemia; Ischemias15 min of warm ischemia; Ischemia
qCilas15 min of warm ischemia in the presence of 2 mM cilazaprilat,
Ischemiaq NOLAGs15 min of ischemia in the presence of 10 mM
nitro-L-arginine. Mean"SEM. ) s p-0.05 v. paired small venule quan-
tity, as p-0.05 v. Control in small venules; qs p-0.05 v. Ischemia
qCila in small venules; §s p-0.05 v. Control in big venules.

hesion to more than 13-fold the control level. Fig. 8A and
B show two representative examples of postcapillary adhe-

Ž .sion in small venules with either cilazaprilat Fig. 8A or
Ž .NOLAG Fig. 8B added to the perfusate.

3.2.2.2. Large Õenules. Very few PMN were localized in
Ž 2large venules of control hearts 6"1 PMN per mm

.vessel surface area . Ischemia induced a rise of PMN
adhesion in this class of venules to 37"8 PMN per mm2

Žsurface area. Cilazaprilat slightly reduced this value 21"5
2 .PMN per mm surface area , although no significant effect

could be obtained. NOLAG, in contrast, tended to increase
postischemic PMN adhesion in the large venules to 48"9

2 Ž .PMN per mm surface area Fig. 7 . Taken together, these
findings suggest that postcapillary adhesion rather than
capillary plugging accounts for increased coronary PMN
retention after ischemia in the present model. ACE-inhibi-
tion reduces, while NOLAG increases adhesion, indicating
an antiadhesive effect of nitric oxide.

3.2.3. Leukocyte actiÕation
Activation of human leukocytes was further analyzed

by quantifying CD11b surface expression. As shown in
Ž .Fig. 9, PMN of control experiments without ischemia

displayed almost no difference in CD11b surface expres-
sion before and after coronary passage. Postischemically,
however, a 2.6 fold elevation of CD11b expression had
occurred on PMN emerging from the coronary system.

Fig. 8. Examples of postischemic PMN adhesion in small venules. Upper
Panel: FITC–fluorescence picture, 1.2 mm2 field. Lower Panel: Rho-
damine 6G fluorescence picture showing PMN in venules. A: Representa-
tive example of the IschemiaqCila group; B: Representative example of
the IschemiaqNOLAG group.
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ŽFig. 9. Leukocyte activation by CD11b expression FACScan, Becton
. Ž .Dickenson . PMN before coronary passage hatched bars and after

Ž .coronary passage solid bars were analyzed. as p-0.05 v. paired
pre-passage value.

When cilazaprilat was present, this increase in CD11b-as-
sociated fluorescence intensity was completely abolished,
whereas NOLAG further enhanced CD11b expression.
These findings indicate that cilazaprilat prevents activation
and subsequent postcapillary adhesion, most likely through
a nitric oxide mediated mechanism.

4. Discussion

Early implementation of ACE inhibition after myocar-
dial infarction has proven beneficial in several models
w x19–23 . In search of a possible ‘local’ action to explain
this effect, we have previously found ACE-inhibitors to
mitigate postischemic functional damage in saline-perfused
hearts via a bradykinin and, ultimately, nitric oxide medi-

w xated pathway 31 . NO, in turn, is known to mitigate
adhesion of PMN in various vascular beds. Since PMN
strongly exacerbate post-ischemic damage in the isolated

w xheart model 27,28,31 , we set out to investigate the simul-
taneous occurrence and interdependence of four phenom-

Ž .ena: First, the ability of an ACE inhibitor cilazaprilat to
alleviate postischemic loss of myocardial performance in-
duced by PMN, as opposed to the action of an inhibitor of

Ž .NO-synthase nitro-L-arginine . Second, the actual effect
of these interventions on postischemic coronary release of
nitric oxide. Third, the corresponding changes in PMN
adhesion according to specific localization in capillaries,
small venules and collecting veins. Fourth, PMN activation
during coronary passage in post-ischemic hearts in the
presence of cilazaprilat or nitro-L-arginine.

4.1. Influence of ischemia and reperfusion

As a result of ischemia and reperfusion alone, isolated
hearts suffered from compromised external heart work

Ž .Fig. 3 , i.e. myocardial stunning, and a general decline in
Ž .production of NO Fig. 4 . Both phenomena were aggra-

vated by application of PMN during reperfusion. Reactive
oxygen species play a crucial role in this type of reperfu-

w xsion injury, as shown by others 32 as well as in our
w xmodel 27,28 . Beyond an inherent detrimental effect on

cellular processes, reactive oxygen species may enhance
interactions between endothelium and PMN by externaliza-

w xtion of stored P-selectin and PAF 29,33 as well as by
activation and translocalization of the leukocyte receptor

Ž . w xMac-1 CD11brCD18 34 . The latter parameter was the
Ž .one we chose to observe Fig. 9 . Indeed, we found CD11b

expression to be markedly elevated on PMN after passage
through the coronary system of post-ischemic hearts. These
effects may explain the fast and significant rise of venular
leukocyte adhesion immediately after resumption of coro-
nary perfusion, a time at which de novo synthesis of
adhesion molecules cannot yet have taken place. We can-
not rule out a contribution of plugging leukocytes, which

Ž .has approximately doubled postischemically Fig. 6 , al-
though the myocardial stunning and loss of endothelial

Ž .NO-release after ischemia Figs. 3 and 4 fits best to the
Ž .steep increase of postcapillary PMN adhesion Fig. 7 .

4.2. Influence of ACE-inhibition on PMN dependent reper-
fusion injury

Several studies have shown a cardioprotective effect of
ACE-inhibition after limited ischemia in vivo and in situ
w x19–23 . However, this work for the first time presents
direct microscopic observations that ACE-inhibition by
cilazaprilat can acutely reduce ischemia-induced PMN ad-
hesion and activation in the coronary venules independent
of any coronary hemodynamic influence. In parallel exper-
iments, cilazaprilat was capable of blunting PMN depen-

Ž .dent loss of myocardial external heart work and endothe-
Ž .lial function reduced production of NO .

In the presence of the ACE-inhibitor ramiprilat,
Schoelkens and coworkers found an increase in bradykinin
concentration immediately after ischemia in isolated rat

w xhearts 35 . Decreased bradykinin degradation due to ACE
inhibition leads to a stimulation of endothelial nitric oxide

w xsynthase 31 . In this context it is important to point out
that NO may act as an antioxidant and radical scavenger,
which may interfere with the reperfusion-induced release
of oxygen free radicals and, thus, prevent subsequent

w xactivation of endothelial cells and PMN 36 . The depen-
dence on NO is made even more probable by the fact that
cilazaprilat does not exert a radical scavenging effect itself
Ž . w xdata not shown , in contrast to e.g. captopril 37 . With

Ž .the concentration of cilazaprilat used 2 mM , no effects
were seen on recovery of external heart work during
cell-free reperfusion, as opposed to findings with higher

w xconcentrations of a similar drug 24 . The negative effect
of NOLAG on myocardial recovery is counteracted by

Ž .cilazaprilat Fig. 3 suggesting that in fact cilazaprilat
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really does activate nitric oxide synthase. Interestingly, NO
release was maintained by cilazaprilat at a higher level
even after PMN application, i.e., the time at which adher-
ent PMN produce tissue damaging radicals and oxidants.

How does the observed impact of cilazaprilat on my-
ocardial and endothelial recovery relate to PMN retention
of the hearts? A multitude of factors is able to change the
balance of pro- and antiadhesive behaviour of coronary

w xendothelial cells, notably NO 26 . In the presence of
cilazaprilat, we observed slightly increased nitric oxide
release during early reperfusion, the period in which PMN

Ž .were injected Fig. 4 . Indeed, PMN, given in the early
reperfusion, adhered less in the presence of cilazaprilat
Ž .Fig. 7 , while, in contrast, capillary plugging was barely

Ž .influenced Fig. 6 . At this point, however, it cannot be
ruled out that nitric oxide formation in the presence of
cilazaprilat has additional, indirect effects inhibiting proad-
hesive mediators formed during reperfusion, e.g. endothe-

w xlin-1 38,39 .
Since NO release from the whole intact heart is a ‘net’

effect of nitric oxide production and consumption, the
local increase of NO might have been higher but, in part,
consumed by oxygen free radicals. The crucial importance
of NO for leukocyte adhesion in our model is demon-
strated by application of NOLAG, which increased adhe-

Ž .sion and activation of PMN Figs. 8 and 9 . NOLAG is a
nonspecific NO synthase inhibitor which affects endothe-

Ž . Ž .lial eNOS and inducible nitric oxide synthase iNOS .
However, in primary cultured endothelial cells from iso-
lated rat hearts, we could not detect iNOS by Western

Ž .blotting data not shown . Therefore NOLAG most likely
affects the eNOS, the same enzyme which is activated in
the presence of cilazaprilat.

5. Conclusions

In summary, we have investigated the influence of
ACE-inhibition on PMN adhesion and myocardial and
endothelial function after a PMN bolus given early in
reperfusion of isolated hearts. Cilazaprilat mitigated postis-
chemic increase in PMN adhesion, foremost in postcapil-
lary venules. Concomitantly, PMN-induced loss of exter-
nal heart work and reduction of endothelial nitric oxide
release were prevented by cilazaprilat. ACE-inhibition also
prevented activation of PMN during passage of the coro-
nary system of postischemic hearts. Inhibition of NO-syn-
thase caused the exact opposite in each case. Thus, the
protective effects of ACE inhibition may well be mediated
by the oxygen radical scavenging ability of NO and evolve
from reduced adhesion of PMN in the presence of NO.

The findings of the present study underscore the impor-
tance of leukocyte adhesion and activation after ischemia.
Pharmacological interventions aimed at reducing leukocyte
induced reperfusion injury may well benefit those patients
who already suffer from compromised myocardial contrac-

tility. Recent clinical investigations showing leukocyte ac-
tivation in man as a potential risk factor of recurrent

w xcoronary events enforce this approach 40 .
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