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A Combined GEE /Buckley-James Method for
Estimating an Accelerated Failure Time Model
of Multivariate Failure Times

Ulrich Hornsteiner and Alfred Hamerle *

Abstract

The present paper deals with the estimation of a frailty model of multivariate
failure times. The failure times are modeled by an Accelerated Failure Time
Model including observed covariates and an unobservable frailty component. The
frailty is assumed random and differs across elementary units, but is constant
across the spells of a unit or a group. We develop an estimator (of the regression
parameters) that combines the GEE approach (Liang and Zeger, 1986) with the
Buckley-James estimator for censored data. This estimator is robust against
violations of the correlation structure and the distributional assumptions. Some
simulation studies are conducted in order to study the empirical performance of
the estimator. Finally, the methods are applied to data of repeated appearances
of malign ventricular arrhythmias at patients with implanted defibrillator.

Key words: Multivariate failure times; accelerated failure time model; gener-
alized estimating equations; censored data; simulation study.

1 Introduction

Failure time data are collected in follow-up studies, retrospective studies, and some-
times in longitudinal panels. The data record qualitative changes over time in some
important variables. The main purpose of the statistical analysis of such failure times
is to investigate the time it takes before a certain event occurs. In addition, it is impor-
tant to evaluate the association of exposure, treatment and prognostic factors with the
distribution of time until the event occurs. The statistical theory of failure time data
is described in standard textbooks including Kalbfleisch and Prentice (1980), Lawless
(1982), Cox and Oakes (1984), Breslow and Day (1987), Blossfeld, Hamerle and Mayer
(1989), Harris and Albert (1991), Collett (1994), or in a counting process framework
for example Fleming and Harrington (1991) and Andersen et al. (1993).

Sometimes there is only one spell for each individual measuring the time interval
between an initial event and a termination event. This applies in particular to survival
analysis where the detection of a disease is the initial event and the patient’s death
is the termination event. However, the event of interest in clinical studies need not
necessarily be death, but could, for example, be the end of a period spent in remission
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2 2. THE MODEL

from a disease, relief from symptoms or the recurrence of a particular condition. In other
areas such as economics, sociology, psychology or industrial engineering, study subjects
can also experience more than one event or failure as time elapses and, moreover, these
events or failures may be of various kinds.

Several researchers have studied models for multivariate failure times: Cox’s pro-
portional hazards regression model has been extended to the multivariate case e.g. by
Prentice, Williams and Peterson (1981), Wei, Lin and Weissfeld (1989) and Prentice
and Hsu (to appear). Prentice and Cai (1992) developed an estimator for bivariate
survivor functions using the counting process theory. Linear models for multivariate
failure times have been considered by Lin and Wei (1992), Lee, Wei and Ying (1993)
and Murphy, Bentley and O’Hanesian (1995).

In the present paper two kinds of multivariate failure time data are considered. In
the first case data arise from successive spells between recurrent events for the same
study subject. Here the last spell of each unit is typically censored. Examples are
successive unemployment spells, repeated purchases of a certain brand by a household,
repeated appearances of malign ventricular arrhythmias at patients with implanted
defibrillator, or the durations from one discharge to the next arrest of ex-prisoners
who could not be reintegrated in society. In the second case we consider different but
related elementary units (for example, two or more organs of one organism). For each
unit a single spell is observed, and the spells within a cluster or block are dependent.
Moreover, all spells may be censored.

We assume an Accelerated Failure Time Model where the logarithm of each failure
time depends linearily on a vector of covariates. The most frequently used methods for
estimating the model parameters begin by specifying the hazard function (correspond-
ing to the specification of the error distribution in the linear model for InT" where T' is
the failure time) up to a finite set of parameters, after which the values of the regression
coefficients and any further unknown parameters are estimated by maximum likelihood.
Our approach is not to specify the error distribution of the linear model in In7T" and
thus the hazard function. Moreover, it is assumed that the dependence between the
successive spells of an individual or the spells within a cluster can be modeled by an
unobserved heterogeneity component that is person or cluster specific respectively. So
the error term of the linear model consists of two additive components. We shall inves-
tigate in some detail an estimation method of the regression parameters that is robust
against violations of the dependence structure and the distributional assumptions. For
the construction of the estimator the GEE approach developed by Liang and Zeger
(1986) for the analysis of longitudinal data is combined with the Buckley-James esti-
mator to accommodate censored data. The performance of the proposed estimator is
investigated in several simulation experiences. Finally, the method is applied to the

defibrillator data.

2 The model

We consider an extension of an Accelerated Failure Time Model which is able to describe
both the mentioned constellations of data. We have observed N groups or elementary
units (n = 1,..., N, henceforth: "blocks”) and assume that the failure times are inde-
pendent from block to block but are correlated within one block. The data consist of



K, spells in the n'" block (k =1,..., K,).

The logarithm of every failure time
Ynk = lﬂ(Tnk) = w;kﬁ + o0y, + 0Enk

depends linearily on a vector x,, of P covariates (including a 1 for the intercept)
— which may partly be constant within the block and partly vary from member to
member or from spell to spell — and a P-dimensional vector of regression parameters
B=(01,....0p), p=1,..., P (Fahrmeir, Hamerle and Tutz, 1996, p. 310).

The stochastic component consists of a block effect «,, which absorbs non-observed
block-constant covariates and an error term ¢,;. The «, are assumed to be indepen-
dently and identically distributed as N(0,1) (other distributions are also thinkable).
The €, can but need not be independent, their distribution is assumed to be one of
the usual distributions in Accelerated Failure Time Models: The normal distribution
leads to the Log-normal model, the logistic distribution to the Log-logistic model, and
the extreme value distribution to the Weibull model. In the special case of independent
€nx We have an equicorrelation structure with

Cov(Ynky Ymi) =0 if n#£m,

Cov(Ynks Yni) = 02 if k=#£1,

and

Var(y.) = o2 + o’ Yn=1,....,.N Vk=1,...,K,.

Instead of T, we observe
Znke = min(Tog, Cuk)

where ¢, is a censor value, together with an indicator variable

5 . 1 if Tnkgcnk
I I T Y AN

We imagine various realizations of the censor value (Fahrmeir, Hamerle and Tutz, 1996,
p. 303f): In the case of N groups the ¢,; may be random variables which are indepen-
dent of each other, of a,,, e, and T, (random censoring) or can be an amount of time
ok =cVn=1,...,N Yk =1,..., K, fixed before the beginning of the study (type I
censoring). The effect that ¢, = ¢ is the same if all the spells begin at the same time
and the rate of units to be censored is fixed before the beginning of the study (type II
censoring).

In the case of recurrent events of N units, however, it is usually the limited observa-
tion period (', which is responsible for censoring. In this context we speak about type I
censoring if ¢, = C ¥Vn = 1,..., N and about random censoring if (', are random
variables. In each of these cases we assume for simplicity that the beginning of the
observation period coincides with an event, that yields

k-1
Cnk = Cn_ZTnl Vn = 1,...,N Vk = 1,...,[&%.

=1

Thus the last spell of each unit is censored almost surely.



4 3. THE ESTIMATION METHOD

3 The estimation method

3.1 The GEE part

Our aim was to develop an estimator of the regression parameters which is robust also if
we can not be sure about the correlation structure and the distribution assumptions. In
the absence of censoring the solution of the problem appears to be the GEFE approach
for longitudinal data (Liang and Zeger, 1986). The generalized estimating equations
are

N
>NV Y — XuB) =0,
n=1

where X, is the matrix containing the lines 2/ ,, k=1,..., K,, and
Yo = (Yniy.--»Ynk,). Furthermore V,, = Rk, (v)/¢, where Rk, (v) is a working
correlation matrix, 4 a vector that fully characterizes the correlation structure, and
1/¢ = Var(yu,) := v is constant under suitable assumptions for «,, and &,;.

The iterative estimation procedure consists of a modified Fisher scoring for g and a
moment estimation of v and v. Given current estimates 4 and © the iteration steps are

e = 5004 (S, (30 (- %))

n=1

w=1,2,..., where V,(8) = V,(%(3,9(8))).
Unlike Liang and Zeger (1986) we follow Spiefl (1995), p. 32f, and Spiefi and Hamerle
(1995), p. 7, and estimate v by

Kn

len—P”““ ZAn

where 7,5 = Y — 2. 5.

In general we consider three types of working correlation matrices. The equicor-
relation type (equ) corresponds with independent £,; in the model. In this case
v = Corr(Ynk, Yni ), and ¢ := Cov(Yuk, yn) = v - v is estimated similar to v. The sim-
plest type (ind) is calculated under the restriction ¥ = 0 which corresponds with o, = 0
in the model. The third specification (arl) is characterized by Corr(yue, yn) = p~!l,
| p|< 1 and v = p (for details about the calculation of p see Spiefl, 1995, p. 33).

3.2 The Buckley-James part

However, in the case of censoring the y,; are partially unknown. We solve this problem
by replacing y,i. by

Yre = Opp In 2zt + (1 = 8,0 E (ynk | Yo > In 201).

This substitution is according to the iterative Least Squares method of Buckley and
James (BJ, 1979) that was developed for estimating parameters in Accelerated Failure



Time Models where the residuals are independent but their distribution is unspecified.
From this point of view, our method can be seen as a multivariate extension of the BJ
procedure. For asymptotic properties of estimators of BJ type see e.g. Lai and Ying
(1991).

In the absence of censoring the substitute equals y,; but for censored data we esti-
mate the conditional expectation of y,; using the nonparametric product limit estimator

(Kaplan and Meier, 1958).

3.3 The combined GEE/BJ method

As we have
By, = x;kﬁ

in the next step we apply the GEE method to y%,. In doing so we ignore some problems
that appear in connection with the variance/covariance structure of the y, hoping that
the robustness of the GEE estimator gets them under control.

Altogether, the estimation algorithm consists of at least three iteration steps. We
get an initial estimation simply by B(O) = ()N(’)N()_I)N(’yN where X and § solely include

the uncensored spells. The first step of the u'M iteration (u = 1,2,...) is the BJ part in

which [3 “=1) is used for computing the residuals and the (renewed) y_ Eg Y. Both [3 u-1)

*(u)

and 7" enter into the second step, the moment estimation 4(*). All these are the basis
for the third part, the Fisher scoring for B(“).

We have to get along with the property of estimators of BJ type that they often do
not converge but oscillate between two or even more points. Therefore, if after a given
maximum number of iterations the convergence criteria are not fulfilled, the algorithm
has to search for the loop in which the estimation procedure is trapped. The usual
solution then is to take the averages of the relevant values as estimators (Miller, 1981,
p. 152).

There is remaining one decisive point in the transfer from y,; to y7,. The deriva-
tion of the Fisher scoring step as well as the asymptotic covariance matrix use that

1 X a
Z 75 (yn — 2., 3) — 0 almost surely for N — oo (see SpieB, 1995, p. 66). Similar

to Murphy, Bentley and O’Hanesian (1995), p. 1848, we have to consider that this is
not valid for y so that

N N -t N ~ N N
et = 0 (0 S (3 ) (o - ) ).

n=1

u=1,2,..., and an estimator of the asymptotic covariance matrix of the parameter
estimations is

-1

N N ay* N N ay*
COU (Z X'yt n) (Z X'V 1001} (yr) n_an) (Z X;an_l—n) ;
= ap st ap

where C/;v(yZ) = (yZ - :1;;1[3) (yZ - 51?;15)/
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4 The simulation and estimation program

To study the properties of the developed estimator in finite samples under various
conditions a simulation and estimation program was written in SAS/IML, version 6
(SAS Institute Inc., 1989, 1990).

In one running of the program S data sets are generated according to several input
options. Mostly we work with S = 200 simulations. In every simulation, N blocks
of covariates and failure times are produced. There are several options about the
generation of the failure times and the censoring mechanism. One of them is the
generation of parallel processes of K, related elementary units (PPRU) in the n'h
group, n = 1,...,N. Another specification is the modeling of K, successive spells
separated by recurrent events (SSRE) of the n™™ unit, n = 1,..., N. In the latter case
the total observation period C,, decides about the number of spells K, and about the
censoring of the last spell. For purposes of comparison we mention a third option which
is similar to SSRE but does not generate censored data as each unit is observed until
the last spell is completed (SSRE without censoring).

The design matrices consist of the column of ones and four stochastic regressors,
two of them (x2 and x3) constant within one block, the second two (x4 and x5) varying
from unit to unit or from spell to spell, respectively. In each of the two cases, one of
the two is a metric, normally distributed variable having mean and variance one (x2
and x4), the other one is a dichotomous variable taking the two values zero and one
with probability 0.5 each (x3 and x5). The regression coefficients s, ..., 35 as well as
the intercept (3 are specified as 0.5 each.

Several assumptions about the distribution of «, and ¢,; are possible: The inde-
pendence case (ind) where «,, = 0, the equicorrelation case (equ) with the «, being
normally N(0,c2), loggamma or weibull distributed and the &, — independent from
each other — normally N(0,02), logistic or extreme value distributed, the arl case with
a, = 0, and a combination of the latter two, the arh case.

Finally, the estimation part of the program requires convergence criteria, a maximum
number of iterations, and the specification of the type of the working correlation matrix
(ind, equ or arl) as described in section 3.1.

The output contains the mean of the estimated parameter vectors,

~

@

1
- g SZ:; 657
and the root mean square error
) . s 1/2
RMSE(B,) = (ﬁ

(B — 8,) )

s=1

and the standard deviation

= (g2 (7))

s=1

of each estimated parameter (p = 1,..., P), estimated over the S simulations. The
latter is used as quality criterion in comparison with the mean of the estimated standard



deviations of 3,,

A LS
o(Bp) = g (U(ﬁp))s
s=1
(p =1,...,P), which we get as the roots of the diagonal elements of the covariance

matrix estimation in section 3.3.

In addition to the numerical assessment of these values we apply statistical tests
to control normality and bias of the parameter estimates. The SAS procedure PROC
UNIVARIATE provides us with the p-values of the Shapiro-Wilk statistics testing each
component of the estimated parameter vector if it is a random sample from a normal
distribution. To test if a bias can be explained by the random character of the sim-
ulations or if it is significant, an F-test for the null hypothesis E(B) = 3 and t-tests
for the null hypotheses E(Bp) = 0B,, p =1,..., P, are implemented in the IML pro-
gram. Moreover, we yield statistics about convergence or oscillation of the iterations
and about computation time.

5 Simulation results

The possibilities of varying the input options of the described simulation and estimation
program are manifold. The most remarkable facts will be discussed in this section.

Firstly, it should be mentioned that there are no numerical or convergence problems
with the GEE/BJ estimator as far as the censoring rate in the total data set does not
exceed a value of about 60%. Indeed, with higher censoring rates we state an increasing
occurrence of BJ-specific oscillations, and longer loops as well (see e.g. table 1), but it
seems to be no problem to get them under control if we do not worry about the clearly
increasing computation time.

The distributions of a,, and £,; seem to have no decisive influence on the results.
For reasons of simplicity and comparable results in this paper we let «, iid N(0,1) and
Enk iid N(0,1). Corresponding to this kind of data generation (and the most plausible
correlation assumption within the scope of failure time analysis) we use the "equ”
working correlation matrix in the estimation part, that means, we specify it correctly
apart from some problems basing on the transformation from y to y*. For a discussion
on its misspecification see later in this section.

The first group of simulation results (table 1) intends to show some general prop-
erties of the estimation method especially in dependence of the censoring rate. We
generated data of a medium sample size of N = 200 groups of K,, = 3 related elemen-
tary units each (PPRU). The true structure was the equicorrelation structure with a
moderate correlation of 0.5. The failure times were type Il censored with various values
of the censoring rate.

The differences of the means of the estimated parameters and the true parameters
are small, not systematic and not significant. This result remained true for increasing
censoring rates and was confirmed in all simulations of parallel processes of related
elementary units. An effect is that the bias component of the root mean square errors
is very small in relation to the variance component.

The parameter estimations are in nearly all cases compatible with the hypothesis
that they are a sample of normal distributed variables (with one clear exception in



8 5. SIMULATION RESULTS

Table 1: N = 200 groups of related elementary units of K, = 3 parallel processes
each, data generation and estimation by equicorrelation structure, o2 = o = 0.05 =

v = 0.10, ¢ = 0.05, type Il censoring with various censoring rates: Mean, RMSE
and standard deviation of the regression estimations, mean of the estimated standard

deviations, p-values and convergence statistics over S = 200 simulations

‘ censoring rate 0 1/6 2/6 3/6 4/6 ‘

B =0. ... 4948 4943 4937 4931 4928

By=0. ... 5018 5019 5025 5029 5030

By =0. ... 5040 5042 5060 5055 5050

Bi=0. ... 4998 4997 4994 4998 4993

Bs=0. ... 5002 5012 5008 5016 5013

RMSE(Bl) =0..... 0350 0374 0398 0416 0486

RMSE(BQ) =0..... 0175 0189 0209 0245 0333

RMSE([%) =0..... 0394 0421 0451 0469 0563

RMSE(@) =0..... 0113 0136 0157 0192 0275

RMSE([%) =0..... 0200 0216 0256 0304 0423

3(51) =0..... 0347 0370 0393 0411 0481

3(52) =0..... 0174 0188 0207 0243 0331

3(53) =0..... 0392 0419 0447 0465 0561

3(54) =0..... 0113 0136 0156 0192 0275

3(55) =0..... 0200 0216 0256 0303 0423

&(31) =0..... 0348 0418 0438 0451 0482

5(3y) =0. ... 0182 0213 0228 0252 0301

&(33) =0..... 0364 0407 0456 0533 0673

&(34) =0..... 0105 0135 0158 0184 0230

&(35) =0..... 0211 0250 0298 0368 0494
p-values Hg: ~ N

e 0. ....) 9902 9711 9428 9518 9025

3, 0. ....) 6935 5461 4105 5555 4662

By 0. ....) 4358 3347 5650 6153 7121

B4 0. ....) 8386 3108 0269 2692 0001

B3 0. ....) 0547 2279 2920 4695 4344

p-value Ho: p=p0 (0. ....) 3793 3350 1782 2216 1670

b=0.... 0994 0896 0770 0623 0449

¢=0. ... 0495 0414 0324 0236 0145

number of convergent runnings 200 131 70 19 33

number of formations of BJ-loops 0 69 130 181 167

average iteration number until convergence | 3.7 8.1 11.8 22.6 48.7

average length of BJ-loops - 20 21 25 41

computation time in minutes 6 17 23 40 140




Figures 1 - 5: N = 200 groups of related elementary units of K, = 3 parallel processes
each, data generation and estimation by equicorrelation structure, o2 = o2 = 0.05 =
v = 0.10, ¢ = 0.05, type II censoring: Standard deviation of the regression estima-
tions (straight lines) and mean of the estimated standard deviations (dashed lines) over

S = 200 simulations vs. censoring rate

Figure 1: 3(31) (straight line) and &(31) (dashed line) (By: intercept)
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Figure 2: 3(32) (straight line) and &(32) (dashed line)

(x4: constant within block, metric)
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Figure 3: 3(33) (straight line) and &(Bg) (dashed line)

(x5: constant within block, dichotomous)
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Figure 4: 3(34) (straight line) and &(34) (dashed line)

(x4: varying from unit to unit, metric)
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Figure 5: 3(35) (straight line) and &(35) (dashed line)
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standard deviation

0.07 |
0.06 -
0.05 -
0.04 -
0.03 -
0.02 -
0.01 -
0.00 -

0.

00 0.15 0.30 0.45 0.60 0.75

censoring rate



11

the case of an extreme censoring rate). This result was confirmed in all simulations of
PPRU as well as in such of SSRE.

Of course, the standard deviations of the estimated parameters and the rmse in
their wake increase with higher censoring rates as an effect of less information in the
data. Additionally, the differences between the standard deviations and the means of
the estimated standard deviations become larger with higher censoring rates and we
observe a tendency of over-estimating the variance of the estimators in the case of
higher censoring rates whereas the variance seems to be estimated without bias in the
absence of censoring. This result is visualized in figures 1 - 5. A starting point for an
explanation could be the fact that in reality we misspecify the correlation structure of
the y* in the case of censored data as there are different correlations within censored,
within uncensored, and between censored and uncensored spells, and the variance of
yr;. is smaller in the censored cases than in the uncensored cases. As a consequence,
the moment estimations of v and ¢ decrease with higher censoring rates. In spite of this
flaw the results on the whole are quite satisfactory in the case of PPRU.

In table 2 comparable results for the situation of N = 200 units with K, successive
spells each are given. Fach unit is observed at least for a fixed observation period
(Cn, = 16.9). In the case of SSRE without censoring every unit is observed further
on until the momentary spell is completed. In the other case observation is broken
off and the last spell of each unit is censored. The number of spells K, is a random
variable but we chose the length of the observation period so that the average number
of observations was about 600, the same as in the PPRU case.

In the SSRE case with censoring we recognize a disposition for a moderate bias
of the intercept and of the parameters corresponding with spell-varying covariates (34
and fs). This is not the case for parameters corresponding with constant covariates.
In spite of that the differences of the values of rmse and the corresponding standard
deviations are negligible. These results were confirmed in studies with a higher number
of simulations (S = 500).

The p-values for the hypothesis of normal distribution (not given in the table) are
higher than 0.05 without exception.

We state the same results as in the PPRU case that for censored data the standard
deviations of the estimated parameters are higher, the differences to the means of the
estimated standard deviations are larger and there is a tendency to over-estimate these
standard deviations.

The third group of simulations (table 3) shows the behaviour of the estimator in
the SSRE case with various sample sizes. Of course, with increasing sample size the
standard deviations of the parameters decrease. In the sequence, the bias of the inter-
cept and of the parameters corresponding with spell-varying covariates becomes more
obvious. On the other hand we state quite good properties in the estimation of param-
eters corresponding with constant covariates and in the case of a small sample size of
N =50.

We get similar results when we examine the behaviour of the estimator under var-
ious values of o2 relative to o2 and thus of the correlation between y,x and y,;. At
fixed o2 = 0.05 we varied o2 from 0.01 to 0.25 and got correlations of 1/6 and 5/6
respectively (table 4). In the case of high correlations there is an evident bias of the
parameters corresponding with spell-varying covariates. For constant covariates the
properties remain good also in the extreme case.
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Table 2: N = 200 units with successive spells, separated by recurrent events, data gener-
ation and estimation by equicorrelation structure, o2 = o = 0.05 = v = 0.10, ¢ = 0.05,
left column: no censoring, each unit is observed until the last spell (at time C,, = 16.9)

is completed, right column: type I censoring after observation period C,, = 16.9: Mean,
RMSE and standard deviation of the regression estimations, mean of the estimated
standard deviations, p-values and convergence statistics over S = 200 simulations

‘ censoring ‘ no yes ‘

B =0. .. 5008 4948

By =0. ... 4995 5005

By =0. ... 4995 5001

By=0. ... 5013 5027

Bs=0. ... 5001 5013

RMSE((;) =0. ... 0299 0361

RMSE((3;) = 0. ... 0179 0209

RMSE((33) = 0. ... 0361 0420

RMSE(34)=0. ... 0111 0148

RMSE((35) = 0. ... 0208 0276

s(31)=0. ... 0299 0358

s(B2) = 0. ... 0179 0209

s(Bs) = 0. ... 0361 0420

s(B1) = 0. ... 0111 0146

s(Bs) = 0. ... 0208 0276

5(3)=0. ... 0349 0460

5(32) =0. ... 0192 0274

5(3s) =0. ... 0377 0505

5(34)=0. ... 0105 0157

5(3s)=0. ... 0210 0296

p-value Ho: p=p0 (0. ....) 5281 1093
p-values Hpy:

=01 (0....) 7167 0426

=0y (0...) 7065 7262

s =PFs (0. ....) 8490 9849

pa =0y (0....) 1032 0083

ws = fFs (0. ....) 9619 5188

5=0. .. 1007 0752

e=0. ... 0547 0367

]&n (observations) 599.2  599.2

average censoring rate 0 0.334

number of convergent runnings 200 96

number of formations of BJ-loops 0 104

average iteration number until convergence 5.8 9.9

average length of BJ-loops - 2.2

computation time in minutes 14 27
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Table 3: N wunits with successive spells, separated by recurrent events, data generation
and estimation by equicorrelation structure, o2 = ¢ = 0.05 = v = 0.10, ¢ = 0.05,
type I censoring after observation period C,, = 16.9: Mean, RMSE and standard devia-
tion of the regression estimations, mean of the estimated standard deviations, p-values

and convergence statistics over S = 200 simulations

N 50 200 500 1000 2000 ‘

B =0. .. 4812 4948 4961 4955 4951

By=0. ... 5010 5005 4990 5006 5001

Bg =0..... 5016 5001 4997 5003 5001

Bi=0. ... 5037 5027 5016 5019 5020

Bs=0. ... 5096 5013 4997 5022 5018

RMSE(Bl) =0..... 0810 0361 0266 0174 0133

RMSE(BQ) =0..... 0441 0209 0137 0091 0069

RMSE([%) =0..... 0828 0420 0275 0188 0128

RMSE(@) =0..... 0316 0148 0098 0065 0051

RMSE([%) =0..... 0595 0276 0157 0118 0081

5(51) =0..... 0788 0358 0264 0168 0124

5(52) =0..... 0441 0209 0136 0091 0069

5(53) =0..... 0828 0420 0275 0188 0128

5(54) =0..... 0314 0146 0097 0062 0047

5(55) =0..... 0587 0276 0157 0116 0079

&(31) =0..... 0941 0460 0292 0205 0146

5(By) =0. ... 0461 0274 0170 0122 0086

&(33) =0..... 1043 0505 0320 0227 0160

&(34) =0..... 0305 0157 0099 0070 0050

&(35) =0..... 0565 0296 0186 0132 0093

p-value Ho: p=p0 (0. ....) 0030 1093 0006 0000 0000
p-values Hy:

pr=p1 (0. ...) 0009 0426 0368 0002 0000

pe =By (0. ....) 7430 7262 2784 3393 8856

ps = Fs (0. ....) 7783 9849 8626 8072 9045

pa =By (0. ...0) 0937 0083 0173 0000 0000

s = Bs (0. ....) 0220 5188 7949 0089 0016

0=0. ... 0706 0752 0751 0750 0750

é=0. ... 0287 0367 0369 0367 0371

SN K, (observations) 150.4  599.2 1502.2 2995.4 5992.4

average censoring rate 0.335 0.334 0.333 0.334  0.334

number of convergent runnings 78 96 89 99 97

number of formations of BJ-loops 122 104 111 101 103

average iteration number until convergence 9.4 9.9 10.1 10.6 11.1

average length of BJ-loops 2.3 2.2 2.0 2.0 2.0

computation time in minutes 7 27 79 181 948
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Table 4: N = 200 units with successive spells, separated by recurrent events, data gen-
eration and estimation by equicorrelation structure, o> = 0.05, type I censoring after
observation period C, = 16.9: Mean, RMSE and standard deviation of the regres-
sion estimations, mean of the estimated standard deviations, p-values and convergence
statistics over S = 200 simulations

| ol | 0.01 0.05 0.25]

Bi=0. .. 4987 4948 4945

By =0. ... 5007 5005 4961

By =0. ... 4970 5001 5004

By=0. .. 5004 5027 5089

Bs=0. ... 5000 5013 5092

RMSE(3)=0. ... 0277 0361 0694

RMSE((;) = 0. ... 0152 0209 0426

RMSE(f3s) = 0. ... 0303 0420 0820

RMSE((4) = 0. ... 0122 0148 0197

RMSE(35) =0. ... 0252 0276 0334

s(31)=0. ... 0277 0358 0692

s(B2) = 0. ... 0152 0209 0425

s(Bs) = 0. ... 0302 0420 0820

s(B4)=0. ... 0122 0146 0176

s(Bs)=0. ... 0252 0276 0321

5(B) =0. ... 0288 0460 0986

5(By) =0. ... 0159 0274 0630

5(Bs) =0. ... 0313 0505 1189

5(Bs) =0. ... 0130 0157 0210

5(Bs) =0. ... 0251 0296 0390

p-value Ho: p=p0 (0. ....) 2362 1093 0000
p-values Hy:

=05 (0. 5030 0426 2585

p =03 (0....) 5294 7262 1986

ps =035 (0. ..) 1559 9849 9452

pa =034 (0...) 6197 0083 0000

ps = 0Bs (0. ...) 9836 5188 0001

0=0. ... 0434 0752 2532

e=0. ... 0059 0367 2688

SN K, (observations) 592.7 599.2 6494

average censoring rate 0.338 0.334 0.309

number of convergent runnings 100 96 35

number of formations of BJ-loops 100 104 165

average iteration number until convergence 8.8 9.9 1438

average length of BJ-loops 2.1 2.2 3.0

computation time in minutes 27 27 77
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The choice of the working correlation structure

There is remaining one open question: When we analyze an empirical data set we
usually do not know if actually there is any correlation within the blocks and if there is,
which correlation assumption comes nearest to the real one. By simulation studies we
can assess the consequences of misspecifying the correlation structure. As an example,
in table 5 we give the simulation results of the SSRE model with N = 200 units which
was already estimated in tables 2, 3 and 4, but now in comparison to the estimation
using the independence assumption.

We learn that this kind of misspecification leads to a bias of a relative high extent for
nearly all parameters and to higher standard deviations of the estimations in all cases.
Another group of simulations (not documented here) showed that if there is really no
correlation in the data, the estimations of the regression parameters and their standard
deviations differ only marginally if we specify different working correlation matrices. So
it is no mistake to use the equ option if we are not sure.

The decision is not so easy if the real correlation structure is a kind of autoregressive
process or a mixture of heterogeneity and autoregressive process. But simulations (not
documented here) let us suppose that it is the worse case to misspecify an equicorrelation
structure as pure AR(1) process than vice versa. So the recommendation for the analysis
of empirical data sets is to believe the "equ” estimator most.

Summary

With the developed GEE/BJ estimator we have a tool for estimating the regression
parameters of constant and spell-varying covariates in an Accelerated Failure Time
Model with unobserved heterogeneity when we are not sure about the distributions
of the heterogeneity and of the error term and when we are not quite sure about the
correlation structure.

The estimator works very well in the case of parallel processes of related elementary
units. The simulation studies do not speak against the hypothesis that the estimator
is unbiased also in extreme circumstances and for small sample sizes.

In the case of successive spells censored by a total observation period there are
some problems in the combination of spell-varying covariates and larger sample sizes or
higher correlation between the failure times of one unit.

In all cases with censoring we have to consider a tendency to an over-estimation of
the variance of the regression estimators. In the usual t-tests on the significance of the
effect of a covariate this over-estimation leads to p-values which are too large. So it can
happen that an effect which is present in reality is not recognized as significant by the
test.

Nevertheless, in comparison with a maximum likelihood method for estimating the
considered model the GEE/BJ method is robust, needs much less computation time
and has no numerical problems. A comparison of the properties of both estimation
methods with regard to bias and efficiency will be carried out by further simulation
studies (Hornsteiner and Hamerle, in preparation).
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5. SIMULATION RESULTS

Table 5: N = 200 units with successive spells separated by recurrent events, data gen-
eration by equicorrelation structure, o2 = ¢ = 0.05 = v = 0.10, ¢ = 0.05, type [
censoring after observation period C,, = 16.9, left column: estimation by (mcorrect) in-

dependence assumption, right column: estimation by equicorrelation assumption: Mean,
RMSFE and standard deviation of the regression estimations, mean of the estimated stan-
dard deviations, p-values and convergence statistics over S = 200 simulations

‘ working correlation matrix ‘ ind equ ‘

Bi=0. .. 4568 4948

By =0. ... 5076 5005

By =0. ... 5082 5001

By=0. ... 5029 5027

Bs=0. ... 5001 5013

RMSE((;) =0. ... 0598 0361

RMSE((3;) = 0. ... 0265 0209

RMSE((33) = 0. ... 0466 0420

RMSE(34)=0. ... 0162 0148

RMSE((35) = 0. ... 0307 0276

s(31)=0. ... 0414 0358

s(B2) = 0. ... 0253 0209

s(Bs) = 0. ... 0459 0420

s(B1) = 0. ... 0159 0146

s(Bs) = 0. ... 0307 0276

5(3)=0. ... 0471 0460

5(32) =0. ... 0280 0274

5(3s) =0. ... 0516 0505

5(34)=0. ... 0173 0157

5(3s)=0. ... 0334 0296

p-value Ho: p=p0 (0. ....) 0000 1093
p-values Hpy:

=05 (0. 0000 0426

=0y (0...) 0000 7262

ps =035 (0. ..) 0128 9849

pa =034 (0...) 0103 0083

ps = 0Bs (0. ...) 9808 5188

5=0. .. 0749 0752

e=0. ... - 0367

]&n (observations) 599.2  599.2

average censoring rate 0.334 0.334

number of convergent runnings 107 96

number of formations of BJ-loops 93 104

average iteration number until convergence 8.8 9.9

average length of BJ-loops 2.1 2.2

computation time in minutes 24 27
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6 Application to defibrillator data

The described methods were applied to a clinical study which contains data of N = 74
patients suffering from malign ventricular arrhythmias, an irregularity of the heartbeat.
In the terms of this paper it is a typical SSRE data set. The persons have got implanted
a defibrillator. This appliance is a kind of cardiac pacemaker but takes action only when
necessary. In this case a shock is triggered and the date of this shock is recorded. We
take the date of the implantation as the beginning of the first spell together with the
beginning of the observation period. The observation ends with the previous control
examination of the patient when the collected data could be taken. So we have the total
observation period (), as a random censor value and the last spell is typically censored.
We assume that C), is independent from the failure times and the error terms.

The characteristics of the study population are shown in table 6. The mean of the
observation periods is 411 days. There are cases in the data set in which the defibrillator
had no reason for a shock all the time, that means one long censored spell. The other
extreme is a patient with 30 shocks that means 31 spells in the observation period. The
average 1s about four spells per patient that means a censoring rate of about 25%.

The data set further contains ten covariates partly taken from medicinal examina-
tions like a 24-hours-electrocardiogram which in general describe the risk of the patient
(see table 7). They are treated as constant over the observation period. Four of them
are metric, four others are counting variables, one (MED) is dichotomous and one (EPU)
is nominally scaled in five categories (and was transformed in dummy variables). We
want to give an answer to the question which of the covariates have an effect on the
occurrence of the shocks. To be more concrete, we apply the discussed Accelerated Fail-
ure Time Model with unobserved heterogeneity to the data and expect results about
the significance of the given covariates in modeling the lengths of the spells between
every two shocks.

Table 6: Characteristics of defibrillator data

cases mean std dev min  max
number of spells K, 74 3.9 5.0 1 31
observation period C, (days) 74 411 308 4 1244
spell ¢, (days) 286 106 181 1 1107
KHK 68 1.75 1.33 0 3
EF (%) 67 42.1 18.6 15 84
VES 4 3267 7954 1 51691
COUPLET 74 115 407 0 3288
VTACHY 74 8.49 29.8 0 192
ASIN 72 0.198 0.135 -0.029 0.714
AVES 65 2.59 0.88 0.25  4.03
SDNN 73 118 52.3 29.9 370
MED 1 0
64 37.5%  62.5%
EPU NA VT VF SVT VHF
63 27.0% 65.1% 9.6% 1.6% 3.2%
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Table 7: Covariates in defibrillator data and p-values of univariate analyses

covariate | explanation p-values
EF left ventricular ejection fraction (metric) 0.267
KHK coronary heart disease (0/1/2/3) 0.199
VES number of ventricular premature complexes in 24 hours 0.047
COUPLET | number of couplets in 24 hours E-6
VTACHY | number of salvos in 24 hours 0.030
ASIN aSin (metric) 0.832
AVES aVES (metric) 0.585
SDNN (metric) 0.874
MED medication (1: yes/ 0: no) 0.418
EPU result of electro-physiological examination in five categories:
EPUNA dummy for "no arrhythmias” 0.446
EPUVT dummy for ”ventricular tachycardie” 0.890
EPUVF dummy for ”ventricular fibrillation” 0.866
EPUSVT | dummy for ”supra-ventricular tachycardie” E-10
EPUVHF | dummy for "atrial fibrillation” E-8

There are dispersed missing values in the design matrix so that it is impossible to
estimate a model with all the covariates in a complete case analysis. Assuming that the
values are missing at random we did a stepwise forward selection and in each step we
included as many cases as possible. In table 6 for each covariate the number of patients
(cases) is given where it is not missing.

The beginning of the forward selection is the computing of F-to-enter-values for each
of the 14 covariates. In the first step we have 14 models of the kind

Ynk = In Tnk — 60 + ﬁpxnkp + o0 + Oclnk,

n=1,....,7, k=1,...,K,, T, the (partly observed) failure times and p = 1,..., 14,
the covariates of tables 6/7. We apply the GEE/BJ method specifying the working
matrix of equicorrelation type. The resulting p-values of the univariate t-tests on the
hypothesis that 3, = 0, p = 1,...,14 correspond to the F-to-enter-values of the first
step. They are given in the right column of table 7.

The results show that the covariates EPUVT, SDNN, EPUVF, ASIN, AVES, MED,
EF and KHK seem to have no or just little effect on the lengths of the spells whereas
EPUSVT, EPUVHF, COUPLET, VTACHY and VES (in this order) are candidates for a
model with significant covariates.

Further analyses with various combinations yield that with entering the second
covariate the stepwise selection in every case comes to the end. A third covariate is in
no case significant. The results showed that the five candidates can be divided into two
groups: EPUSVT is significant in every combination with one of the four others, whereas
COUPLET, EPUVHF, VTACHY and VES seem to be correlated so that the inclusion of
one of them excludes the others.

Finally, the model which is the one with the lowest p-values contains COUPLET and
EPUSVT. The estimation results applying the GEE/BJ method with equicorrelation
structure are given in the left column of table 8.
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Table 8: Estimation results of defibrillator data: Fstimated regression parameters, es-
timated standard deviations, p-values and moment estimations of the GEE/BJ method
with three specifications of the working correlation matrix

equ ind arl
g
CONST 5.23 3.53 3.76
COUPLET | -0.000859 -0.000211 -0.000236
EPUSVT | -2.48 -0.775 -0.992
#(8)
CONST 0.258 0.375 0.372
COUPLET | 0.000145  0.000263  0.000265
EPUSVT | 0.378 0.416 0.429
p-values
CONST E-29 E-13 E-14
COUPLET | E-7 0.426 0.377
EPUSVT | E-8 0.067 0.024
v 6.04 4.84 4.83
¢ 3.83 - -
p - - 0.204

Basing on the analyzed dataset it is shown that patients with a high number of
couplets in a 24-hours-electrocardiogram and/or supra-ventricular tachycardie in the
electro-physiological examination have a definitely higher risk of short spells between
the shocks than patients with a low number of couplets and/or other results in EPU
(with the exception of atrial fibrillation). The estimated variance and covariance of the
spells of one patient give a correlation of about 0.6 that means the assumption of the
equicorrelation matrix seems plausible in comparison to the independence assumption.
The correctness of the results is based on the simulation studies in the case of a low
sample size, a medium correlation and especially time-constant covariates.

The results should be interpreted with some caution. We have to consider that the
standard deviations of the regression parameters are tendencially over-estimated. So
it is possible that the effects are a bit higher than we recognize by looking just at the
p-values. Beyond that, the relative small sample size may be responsible if we do not
detect effects which are present in reality. On the other hand the small sample size is
the reason that some outliers in the data influence the observed significances. Addi-
tionally, significance disappears or becomes weaker when we use the independence or
the AR(1) working correlation matrix as we have higher estimated standard deviations
in these cases. But this fact could also be interpreted as a sign that the equicorrelation
assumption is more plausible.

Further studies will be carried out with a more detailed dataset containing demo-
graphic covariates and more precise information about medication. We also plan the
inclusion of time-dependent covariates so that the workday or seasonal influence on
ventricular arrhythmias (see e.g. Peters et al., 1996) can be investigated in the context

of the described model.
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