Ba$_2$AlSi$_5$N$_9$—A New Host Lattice for Eu$^{2+}$-Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra

Juliane A. Kechele,‡ Cora Hecht,† Oliver Oeckler,‡ Jörn Schmedt auf der Günne,‡ Peter J. Schmidt,‡ and Wolfgang Schnick*,†

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (D), D-81377 München, Germany, and Philips Technologie GmbH, Forschungslaboratorien, Solid State Lighting, Weissausstrasse 2, D-52066 Aachen, Germany

Received December 1, 2008. Revised Manuscript Received February 2, 2009

Ba$_2$AlSi$_5$N$_9$ was synthesized starting from Si$_3$N$_4$, AlN, and Ba in a radio-frequency furnace at temperatures of about 1725 °C. The new nitridoalumosilicate crystallizes in the triclinic space group $P1$ (no. 1), $a = 9.860(1)$ Å, $b = 10.320(1)$ Å, $c = 10.346(1)$ Å, $\alpha = 90.37(2)^\circ$, $\beta = 118.43(2)^\circ$, $\gamma = 103.69(2)^\circ$, $Z = 4$, $R1 = 0.0314$. All synthesized crystals were characteristically twinned by reticular pseudomerohedry with twin law (1 0 0, $-0.5 -1 0, -1 1 0$). The crystal structure of Ba$_2$AlSi$_5$N$_9$ was determined from single-crystal X-ray diffraction data of a twinned crystal and confirmed by Rietveld refinement both on X-ray and on neutron powder diffraction data. Statistical distribution Si/Al is corroborated by lattice energy calculations (MAPLE). 29Si and 27Al solid-state NMR are in accordance with the crystallographic results. Ba$_2$AlSi$_5$N$_9$ represents a new type of network structure made up of TN$_4$ tetrahedra. Highly condensed layers of dreier rings with nitrogen connecting three neighboring tetrahedral centers occur which are further crosslinked by dreier rings and vierer rings. The dreier rings consist of corner-sharing tetrahedra, whereas some of the vierer rings exhibit two pairs of edge-sharing tetrahedra. In the resulting voids of the network there are eight different Ba$^{2+}$ sites with coordination numbers between 6 and 10. Thermogravimetric investigations confirmed a thermal stability of Ba$_2$AlSi$_5$N$_9$ up to about 1515 °C (He atmosphere). Luminescence measurements on Ba$_2$AlSi$_5$N$_9$:Eu$^{2+}$ (2 mol % Eu$^{2+}$) with an excitation wavelength of 450 nm revealed a broadband emission peaking at 584 nm (FWHM = 100 nm) originating from dipole-allowed 4P(7F)5d$^1 \rightarrow 4f(^8$S$^{7/2}$)) transitions.

Introduction

In past years, (oxo)nitridosilicates and oxonitridoalumosilicates have received remarkable attention in materials science, because these thermally and chemically rather stable compounds exhibit particularly promising optical properties as well. A number of (oxo)nitridosilicates (e.g., M$_2$Si$_5$N$_8$ (M = Ca, Sr, Ba), MSi$_2$O$_2$N$_2$ (M = Ca, Sr, Ba)) are suited as host lattices for highly efficient rare-earth doped luminescent materials applied in phosphor-converted (pc-) light-emitting diodes (LEDs).7 The latter can be formally derived from oxosilicates by an exchange O/N, yielding Si$_4$N$_4$ tetrahedra. However, this substitution gives rise to a manifold of additional structural possibilities. While oxygen in classical oxosilicates usually occurs in terminal O[1] or simply bridging O[2] function, nitrogen can additionally act as a triply (N[3]) or even quadruply (N[4]) bridging atom. Consequently, nitridosilicates exhibit a more variable degree of condensation in the range $1:4 \leq \kappa \leq 3:4$ (i.e., the molar ratio Si:(N,O)) as compared with classical oxosilicates ($1:4 \leq \kappa \leq 1:2$).7,8 Furthermore, Si$_4$N$_4$ tetrahedra can share both common corners and edges while edge-sharing of SiO$_4$ tetrahedra has only been postulated for fibrous SiO$_2$, which was assumed to be isostructural with SiO$_2$. However, the existence and true nature of this unique silica polymorph has not been unequivocally confirmed as yet.

Edge-sharing of Si$_4$N$_4$ tetrahedra has only been observed in a few cases. Its relative stability is a consequence of the better polarizability of nitride anions compared to oxide cates.7 The latter can be formally derived from oxosilicates by an exchange O/N, yielding Si$_4$N$_4$ tetrahedra. However, this substitution gives rise to a manifold of additional structural possibilities. While oxygen in classical oxosilicates usually occurs in terminal O[1] or simply bridging O[2] function, nitrogen can additionally act as a triply (N[3]) or even quadruply (N[4]) bridging atom. Consequently, nitridosilicates exhibit a more variable degree of condensation in the range $1:4 \leq \kappa \leq 3:4$ (i.e., the molar ratio Si:(N,O)) as compared to classical oxosilicates ($1:4 \leq \kappa \leq 1:2$).7,8 Furthermore, Si$_4$N$_4$ tetrahedra can share both common corners and edges while edge-sharing of SiO$_4$ tetrahedra has only been postulated for fibrous SiO$_2$, which was assumed to be isostructural with SiO$_2$. However, the existence and true nature of this unique silica polymorph has not been unequivocally confirmed as yet.

Edge-sharing of Si$_4$N$_4$ tetrahedra has only been observed in a few cases. Its relative stability is a consequence of the better polarizability of nitride anions compared to oxide cates.7 The latter can be formally derived from oxosilicates by an exchange O/N, yielding Si$_4$N$_4$ tetrahedra. However, this substitution gives rise to a manifold of additional structural possibilities. While oxygen in classical oxosilicates usually occurs in terminal O[1] or simply bridging O[2] function, nitrogen can additionally act as a triply (N[3]) or even quadruply (N[4]) bridging atom. Consequently, nitridosilicates exhibit a more variable degree of condensation in the range $1:4 \leq \kappa \leq 3:4$ (i.e., the molar ratio Si:(N,O)) as compared to classical oxosilicates ($1:4 \leq \kappa \leq 1:2$).7,8 Furthermore, Si$_4$N$_4$ tetrahedra can share both common corners and edges while edge-sharing of SiO$_4$ tetrahedra has only been postulated for fibrous SiO$_2$, which was assumed to be isostructural with SiO$_2$. However, the existence and true nature of this unique silica polymorph has not been unequivocally confirmed as yet.

Edge-sharing of Si$_4$N$_4$ tetrahedra has only been observed in a few cases. Its relative stability is a consequence of the better polarizability of nitride anions compared to oxide cates.7 The latter can be formally derived from oxosilicates by an exchange O/N, yielding Si$_4$N$_4$ tetrahedra. However, this substitution gives rise to a manifold of additional structural possibilities. While oxygen in classical oxosilicates usually occurs in terminal O[1] or simply bridging O[2] function, nitrogen can additionally act as a triply (N[3]) or even quadruply (N[4]) bridging atom. Consequently, nitridosilicates exhibit a more variable degree of condensation in the range $1:4 \leq \kappa \leq 3:4$ (i.e., the molar ratio Si:(N,O)) as compared to classical oxosilicates ($1:4 \leq \kappa \leq 1:2$).7,8 Furthermore, Si$_4$N$_4$ tetrahedra can share both common corners and edges while edge-sharing of SiO$_4$ tetrahedra has only been postulated for fibrous SiO$_2$, which was assumed to be isostructural with SiO$_2$. However, the existence and true nature of this unique silica polymorph has not been unequivocally confirmed as yet.
anions and was observed in compounds like MSiN₂ (M = Ba, Sr),10 Ba₂Si₃N₁₀,11 and Ba₂Si₅N₁₂.12

Contrary to the (oxo)-nitridosilicates and oxonitridoalumosilicates the class of nitridoalumosilicates, which represents an intermediate between nitridosilicates and nitridoaluminates, is comparatively unexplored so far. The knowledge of nitridoalumosilicates is limited. No mineral is known in the system M–Si–Al–N, and only a few compounds have been synthesized and characterized. To the best of our knowledge, MSiAlN₃ (M = Be, Mg, Mn, Ca, Sr),13–15 Ca₃Si₅Al₇N₁₃,16 Ca₃Si₅Al₇N₁₃ filled α-Si₃N₄-type compounds,17 La₁₇Si₉Al₄N₃₃,18 Li₄Al₁₂₋₃Si₂ₓN₁₂ (1 ≤ x ≤ 3),19 and SrAl₃N₇20,2¹ are the only compounds of this class observed so far. Some of these compounds have particularly promising properties similar to those of nitridosilicates. In this context, several investigations of the luminescence properties of Eu²⁺-doped CaSiAlN₃ have been carried out and showed specifically promising luminescence properties so that this material has emerged as an important red phosphor for white light pc-LEDs.22–2⁵

In this contribution, we report the synthesis, crystal structure, and properties of the nitridoalumosilicate Ba₂AlSi₅N₉, which contains a novel, unusual silicate framework with corner- and edge-sharing tetrahedra.

Experimental Section

Synthesis. For the synthesis of Ba₂AlSi₅N₉, 1.0 mmol (41.5 mg) of AlN (Tokuyama, Tokyo, 99%), 0.7 mmol (95.3 mg) of Si₃N₄ (Ube Industries Ltd., Tokyo, 98%), and 0.8 mmol (113.4 mg) of Ba (A.B.C.R., 99.9 %) as small pieces were mixed in an agate mortar and filled into a tungsten crucible under argon atmosphere in a glove box (Unilab, MBraun; O₂ < 1 ppm, H₂O < 1 ppm). For the Eu doped samples 2% of the Ba amount was substituted by Eu (A.B.C.R., 99.9 %) as small pieces.

Under purified N₂ the crucible was heated to 800 °C with a rate of about 78 °C min⁻¹ in the reactor of a radio-frequency furnace before the temperature was increased to 1725 °C during 2 h. This maximum temperature was kept for 5 h. Subsequently, the crucible was cooled down to 1300 °C with a rate of about 85 °C h⁻¹ before quenching to room temperature by switching off the furnace. The samples contain Ba₂AlSi₅N₉ as colorless, air- and water-resistant crystals and microcrystalline by-products such as BaSi₂N₈2⁷ or BaSi₃N₁₂.1¹ These impurities could be removed by flotation with isopropyl alcohol.

Elemental analyses on selected crystals were performed by energy dispersive X-ray spectroscopy (EDX) using a JSM-6500F scanning electron microscope (Jeol) with a SiLi EDX detector (Oxford Instruments, model 7418). The determined composition is in accordance with the structure model within the typical error ranges (calcd Ba₂AlSi₅N₉ (in wt %) Ba 48, Al 5, Si 25, N 22; found (in wt %) Ba 48, Al 4, Si 22, N 26). The nitrogen and oxygen contents were determined by EELS measurements carried out with a Gatan Tridiem 863 P spectrometer attached to TEM Titan 80-300 (FEI Company, OR, USA). Only marginal amounts of oxygen could be detected, which might be explained either by small amounts of oxygen incorporated in the structure or by slight surface contamination. The results of the EDX and EELS measurements were confirmed by an elemental analysis (double determination, Mikroanalytisches Labor Pascher, Remagen, Germany). A sample doped with Eu (2%) was used for this analysis. The analysis is in accordance with the structure model within the typical error ranges (calcd Ba₂AlSi₅N₉ (in wt %) Ba 47.8, Al 4.7, Si 24.7, N 22.2, Eu 0.5; found (in wt %) Ba 47.6, Al 5.6, Si 24.3, N 20.6, O 0.7, Eu 0.5). The oxygen content determined is close to the detection limit; however, as the charge balance can easily be adjusted by the Si:Al ratio, minute amounts of oxygen can hardly be completely excluded in nitridoalumosilicates.

Single-Crystal X-ray Analysis. Single crystals of Ba₂AlSi₅N₉ were isolated and initially examined by Laue photographs recorded on a Buerger camera equipped with an image plate system (Fujif BAS-1800). Single-crystal X-ray data were collected on a STOE IPDS I diffractometer (Stoe & Cie., Darmstadt) with Mo Kα radiation (0.71073 Å, graphite monochromator). All investigated crystals were characterized twinned by reticular pseudomorph-hedry. The structure was solved by direct methods from data belonging to one domain orientation only. In the refinement, all reflections from both domain orientations were used, taking into account the twin law (1 0 0, –0.5 −1 0, −1 0 −1). The SHELX suite of programs was used for all calculations.2₈,2⁹ Displacement parameters for Ba, Si, and Al have been refined anisotropically (except for the split position (Si,Al)(8a) and (Si,Al)(8b)). The parameters for Si and Al mixed on the same sites were constrained to be equal, and the atom ratio was fixed to the value given by the chemical analysis on all (Si,Al) sites, as lattice energy calculations (cf. Crystal Structure Description) based on the MAPLE concept (Madelung part of lattice energy) indicated no Si–Al ordering. The site occupancies of neighboring split positions (Ba(6a), Ba(6b); Al(8a), Al(8b); Si(18a), Si(18b); N(25a), N(25b)) were constrained to add up to 1. Details concerning the data collection and refinement are summarized in Table 1. Further details of the crystal structure investigation(s) may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax, (+49)7241-806-666; e-mail, crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request_for_deposited_data.html) by quoting the reference number CSD-419994.
occupancies were fixed. Furthermore, all distances (Si,Al) were restrained so that their ordering was not analyzed. In the final refinement, the atomic coordinates and the unsymmetrical lattice impeded a completely unconstrained refinement of all parameters; thus, distances and angles from the powder refinement will not be discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample.

Neutron Powder Diffraction. Time-of-flight (TOF) neutron powder diffraction measurements have been carried out at the GEM diffractometer at ISIS (Rutherford Appleton Laboratory, Chilton, U.K.), which is well suited for diffraction measurements of small samples. About 100 mg of Ba₂Al₅Si₅N₉ were enclosed in a vanadium tube. For the refinement with GSAS,\(^{(33)}\) the back-scattering bank at 2θ = 154.4° has been used as it is characterized by good resolution and a large d-spacing range. Pronounced peak overlap impeded a detailed analysis; however, the structure model could well be confirmed. The starting model was again based on the single-crystal X-ray data. As the unsymmetrical lattice contains a large number of independent atom sites, a completely unrestrained refinement of the atomic coordinates was not possible. Therefore, most distances (Si,Al)–N were restrained to the values, which were obtained in the single-crystal X-ray analysis, allowing for variations of 0.01 Å. The large number of atomic coordinates and the unsymmetrical lattice impeded a completely unconstrained refinement of all parameters; thus, distances and angles from the powder refinement will not be discussed but in general agree with those from the single crystal analysis.

As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample.

Solid-State NMR. The NMR experiments were carried out on a Bruker Avance DSX 500 spectrometer equipped with a commercial 4 mm MAS NMR probe. The magnetic field strength included split positions) and a few distances N–N were restrained to the values, which were obtained in the single-crystal X-ray analysis, allowing for variations of 0.01 Å. The large number of atomic coordinates and the unsymmetrical lattice impeded a completely unconstrained refinement of all parameters; thus, distances and angles from the powder refinement will not be discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample. As a result of the similar scattering lengths of Si and Al and the peak overlap mentioned above, these atoms could not be differentiated so that their ordering was not analyzed. In the final refinement, their site occupancies were fixed in the same way as for X-ray data, according to the results of the lattice energy calculations. The Rietveld profile fit for the structure model with the split sites is discussed but in general agree with those from the single crystal analysis. However, the Rietveld refinement of the X-ray diffraction data confirmed unequivocally the purity of the sample.
Table 3. Crystallographic Data of Ba$_2$AlSi$_5$N$_9$ Derived from Rietveld Refinement of Neutron Diffraction Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice parameters in Å and deg</td>
<td>$a = 9.8680(5)$, $a = 90.352(2)$</td>
</tr>
<tr>
<td></td>
<td>$b = 10.3085(5)$, $β = 118.537(2)$</td>
</tr>
<tr>
<td></td>
<td>$c = 10.3552(6)$, $γ = 103.618(2)$</td>
</tr>
<tr>
<td>cell volume in Å3</td>
<td>890.66(10)</td>
</tr>
<tr>
<td>detector position (2º in deg)</td>
<td>154.4</td>
</tr>
<tr>
<td>observed reflections</td>
<td>10862</td>
</tr>
<tr>
<td>no. of refined parameters</td>
<td>255</td>
</tr>
<tr>
<td>no. of restraints</td>
<td>105</td>
</tr>
<tr>
<td>temperature in K</td>
<td>293(2)</td>
</tr>
<tr>
<td>structure refinement</td>
<td>Rietveld refinement, GSAS32</td>
</tr>
<tr>
<td>background function</td>
<td>shifted Chebyshev with 20 terms</td>
</tr>
<tr>
<td>profile function</td>
<td>W. I. F. David (convolution of the Ikeda–Carpenter and pseudo-Voigt functions)</td>
</tr>
<tr>
<td>$R_p/\sigma R_p$</td>
<td>0.0189/0.0232</td>
</tr>
<tr>
<td>R_{wp}^2</td>
<td>0.0228</td>
</tr>
<tr>
<td>GOF</td>
<td>1.86</td>
</tr>
</tbody>
</table>

* An overall displacement parameter was used. Standard deviations are in given in parentheses.

Figure 2. Observed (crosses) and calculated (line) neutron powder diffraction patterns as well as difference profile for the Rietveld refinement of Ba$_2$AlSi$_5$N$_9$.

was 11.75 T corresponding to 29Si and 27Al resonance frequencies of 99.5 and 130.5 MHz, respectively. The deshielding values reported for 29Si and 27Al refer to 1% Si(CH$_3$)$_4$ in CDCl$_3$ and a solution of Al(NO$_3$)$_3$ 1.1 mol kg$^{-1}$ in D$_2$O. The 1H resonance of 1% Si(CH$_3$)$_4$ in CDCl$_3$ served as an external secondary reference using the Ξ values for 29Si and 27Al as reported by the IUPAC. 34 Saturation combs were applied prior to all repetition delays. The 29Si spectrum was acquired with a repetition delay of 32 000 s ($\geq 3T_2$) at a sample spinning frequency of 10 kHz. A triple-quantum 27Al MQMAS 2D spectrum was acquired using a three-pulse sequence with a zero-quantum filter,35 a repetition delay of 10 s, and rotor-synchronized sampling of the indirect dimension. Phase cycling involved the States method for acquisition of pure absorption line shapes and a 48 step phase cycle for coherence transfer pathway selection. The SOQE parameters and isotropic chemical shift values were determined by moment analysis 35,36 from the extracted rows of the sheared MQMAS spectrum.

Photoluminescence Measurements. The excitation and emission spectra in the range of 230–800 nm were recorded using a spectrophluorimeter (built at Philips Technologie GmbH, Forschungslaboratorien, Aachen)37 equipped with a 150 W Xe lamp, two 500 mm Czerny-Turner monochromators, 1800 mm$^{-1}$ lattices, and 250/500 nm lamps. For recording of the reflection spectra a modified FS 920 system (Edinburgh Inst., Livingston, U.K.) was used.

Results and Discussion

Crystal Structure Description. Ba$_2$AlSi$_5$N$_9$ is a new type of framework silicate. The anionic framework is built up of (Si,Al)$_4$ tetrahedra, which are connected by bridging N$^{2-}$ and N$_3^-$ atoms. Neglecting less occupied alternative positions of split atoms, Figure 3b shows how the framework is built up of highly condensed silicate layers and both dreier and vierer rings38 that interconnect the layers. The layers consist exclusively of vertex sharing (Si,Al)$_4$ tetrahedra. Comparable highly condensed layers are known from layer silicates like MSi$_2$O$_2$N$_2$ (M = Ca, Sr, Ba, Eu)33,39–41 and also as partial structures in other frameworks like M$_2$Si$_2$N$_8$ (M = Ca, Sr, Ba)7,42. However, the up–down sequence of the tetrahedra in the layers of Ba$_2$AlSi$_5$N$_9$ (cf. Figure 3a) is unusual and has not been observed so far. The silicate layers are interconnected via dreier rings, which are built up of exclusively vertex-sharing tetrahedra. These rings are condensed via two shared corners to form pairs, building up one vierer ring per pair (cf. Figure 3c). The layers are further interconnected by a second kind of vierer rings built up of two vertex-sharing pairs of edge-sharing tetrahedra [T$_2$N$_4$] (cf. Figure 3c). Whereas [T$_2$N$_4$] entities are known from some nitridosilicates (e.g., BaSi$_3$N$_7$11, Ba$_2$Si$_2$N$_6$12, MSi$_2$N$_4$ (M = Sr, Ba)7,42) and some nitridoalumosilicates (e.g., Ca$_3$Si$_2$Al$_2$N$_8$, Sr$_2$AlSi$_2$N$_7$13,16,20) vierer ring formation by two pairs of edge-sharing tetrahedra has not been observed in silicates so far. However, the crystal structure of the nitridogallate Sr$_3$Ga$_3$N$_5$43 contains an iso-electronic variant of such vierer rings.

There are different possibilities to distribute the Al and Si atoms to the tetrahedra centers of the framework. As a result of the smaller ion charge, Al$^{3+}$ could be assumed to prefer the positions in the edge-sharing tetrahedra. The distances between tetrahedra centers of edge-sharing pairs are rather short so that the repulsion of the central ions is larger than in vertex-sharing tetrahedra pairs. Consequently, the Si$^{4+}$ ions would be assumed in the tetrahedra centers of the layers and of the dreier rings. However, as both positions are in principle suitable for both Si and Al and disorder is

(38) Liebau established the terms dreier, vierer, füller, and sechsers rings. Thereby, a dreier ring can be described as a six-membered ring with three tetrahedral centres (e.g., Si) and three electronegative atoms (e.g., N), for example. The terms derive from the German numbers drei, vier, fünf, and sechs. Liebau, F. Structural Chemistry of Silicates; Springer: Berlin, 1985.
The observed values can only be explained by AlN$_4$ but not those with vertices down dark gray (N black, Si/Al gray). b: Structure of Ba$_2$AlSi$_5$N$_9$, view along [100]. The (Si,Al)N$_4$ tetrahedra are shown as well as the unit cell (Ba dark gray, Al/Si light gray, N black). c: Interconnecting dreier and vierer rings of Ba$_2$AlSi$_5$N$_9$ ((Si,Al) light gray, N black).

Table 4. Results of the MAPLE Calculations [kJ/mol] for Both Idealized Ba$_2$AlSi$_5$N$_9$ Structure Models

<table>
<thead>
<tr>
<th></th>
<th>Ba$^{2+}$</th>
<th>Al$^{3+}$</th>
<th>Si$^{4+}$</th>
<th>N$^{23-}$</th>
<th>N$^{13-}$</th>
<th>total MAPLE</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>model 1</td>
<td>1712–2004</td>
<td>6758–7548</td>
<td>8511–10391</td>
<td>3571–5481</td>
<td>4497–6690</td>
<td>107384</td>
<td>0.7%</td>
</tr>
<tr>
<td>model 2</td>
<td>1654–1932</td>
<td>8107–10992</td>
<td>4719–5393</td>
<td>5472–6198</td>
<td>107437</td>
<td>0.7%</td>
<td></td>
</tr>
</tbody>
</table>

typical partial MAPLE values [kJ/mol]: Ba$^{2+}$, 1500–2000; Al$^{3+}$, 5500–6000; Si$^{4+}$, 9000–10200; N$^{23-}$, 4600–6000; N$^{13-}$, 5200–6300. 4
^4 In model 1 (Si–Al ordering with Al in edge-sharing tetrahedra) the Si$^{4+}$ and Al$^{3+}$ ions are ordered; in model 2 the centers of the tetrahedra are statistically occupied with Si$^{4+}$ and Al$^{3+}$ ions, Δ = difference.

Probably favored at high temperatures, the Al$^{3+}$ and Si$^{4+}$ ions may equally well be statistically distributed to all tetrahedra centers. Ordering at low temperatures would require a reconstructive mechanism and might thus be kinetically hindered. As both structure models could not be distinguished unequivocally both from X-ray and neutron diffraction data as a consequence of the similar atomic form factors of Al and Si, calculations of the lattice energy (MAPLE; Madelung part of lattice energy)30,31 were carried out. The results of these calculations are summarized in Table 4. Whereas the total MAPLE values for both models did not show significant differences, the partial MAPLE values differ significantly. In the ordered structure model, some values for N$^{2-}$ are too small in comparison to reference values. Furthermore, the partial MAPLE values of some Si and N$^{3-}$ are below the typical range, whereas for Al they are higher than typical values. For the disordered model, no unusual partial MAPLE value could be observed. According to our experience, this result favors a mixed occupancy of the tetrahedra centers.

Both 27Al and 29Si NMR resonances show broad non-resolved signals (cf. Figures 4 and 5), which are typical for disordered structures. The 2D 27Al-MQMAS spectrum reveals that Al atoms with different quadrupole coupling tensors are present in the material (cf. Figure 4). The isotropic chemical shift values which can be determined from the 27Al-NMR spectrum are all larger than 110 ppm. For four-fold coordinated Al atoms literature values44 indicate that the observed values can only be explained by AlN$_4$ but not by AlN$_{4-x}$O$_x$ tetrahedra (with 1 \leq x \leq 4). Since we would expect the 27Al-MQMAS experiment to resolve four Al sites in the ordered model, we conclude that 27Al NMR gives support for the disordered model. The 29Si NMR spectrum is less conclusive since the observed isotropic chemical shift range of about -43 to -58 ppm overlaps with known values for 29Si in SiN$_4$, SiN$_2$O$_2$, and SiN$_2$O$_3$ tetrahedra.36,45 The latter, SiN$_2$O$_3$, can only be excluded because then also AlN$_{4-x}$O$_x$ (with x > 0) would have to be present.

Bond lengths (Si,Al)–N depend on both the coordination of N atoms and the linkedness of the tetrahedra. In vertex-sharing tetrahedra, the distances (Si,Al)–N$^{2-}$ (1.633–1.739 Å) are in the typical range for Si–N$^{2-}$ in nitridosilicates (BaSi$_3$N$_{10}$ 1.64–1.69 Å),11 Ba$_2$Si$_5$N$_8$ 1.66–1.71 Å,27 Ba$_2$Nd$_2$Si$_3$N$_{23}$ 1.67–1.755 Å46 and slightly shorter than (Si,Al)–N$^{2-}$ bonds in CaSiAlN$_3$ (1.790 Å).13 The distances

(Si,Al)—N$^{[3]}$ range over a large interval (1.706—1.886 Å), the long distances involving either the rather imprecise split positions (Si,Al)(8a) and (Si,Al)(8b) or N$^{[3]}$ atoms that bridge the highly condensed silicate layers with interconnecting both dreier and edge-sharing vierer rings. All other distances (Si,Al)—N$^{[3]}$ are in the typical range for Si—N$^{[3]}$ (BaSi$_7$N$_{10}$ 1.69—1.79 Å, Ba$_2$Si$_5$N$_8$ 1.74—1.79 Å) and (Si,Al)—N$^{[3]}$ in CaSiAlN$_3$ (1.807—1.832 Å).13

The N—(Si,Al)—N bond angles are between 90.1 and 128.7°. Large deviations from the ideal angle for tetrahedra (109.5°) could only be observed for the Si or N split positions. All other values are close to the regular tetrahedral angle (102.0—117.1°). In the case of the angles (Si,Al)—N$^{[2]}$—(Si,Al) (105.4—130.1°) and (Si,Al)—N$^{[3]}$—(Si,Al) (86.5—131.4°), split positions also account for the highest and lowest values. Neglecting these values, the angles Si—N$^{[3]}$—Si in Ba$_2$Si$_5$N$_8$ are approximately in the same range (109.9—132.9°),11 and the reported range for the Si—N$^{[2]}$—Si angles in Ba$_4$Nd$_2$Si$_3$N$_{23}$ is even larger (117.9—180°).46 The angle at N(22)$^{[2]}$ of about 112° in the framework of Ba$_2$AlSi$_3$N$_9$ is the smallest one, disregarding the split positions, and is in the same range as the Si—N$^{[2]}$—Si bond angles in Sr$_3$Ln$_{10}$Si$_9$Al$_2$O$_{18}$N$_{36}$ (Ln = Ce (112.2°); Pr (111.8°); Nd (111.6°).47 However, the edge-sharing tetrahedra were not regarded in this discussion.

Within the pairs of edge-sharing tetrahedra (cf. Figure 6), the bond lengths (Si,Al)—N are between 1.644 and 1.879 Å, which is similar to the comparable distances in BaSi$_7$N$_{10}$ (1.64—1.77 Å),11 Ba$_2$Si$_5$N$_8$ (1.74—1.84 Å),12 and Ca$_2$Si$_3$Al$_2$N$_8$ ([Si$_3$N$_6$]$^{[10]}$—1.725—1.860 Å; [Al$_3$N$_6$]$^{[12]}$—1.833—1.952 Å).13,16 The angles (Si,Al)—N—(Si,Al) (85.1—91.5°) and N—(Si,Al)—N (89.5—92.2°) are also comparable to the angles in other nitrido(alu)mosilicates with edge-sharing tetrahedra (BaSi$_7$N$_{10}$ Si—N—Si 90.2 and 91.2°, N—Si—N 89.3°,11 Ba$_2$Si$_5$N$_8$ Si—N—Si 88.5 and 89.4°. N—Si—N 90.7 and 91.4°,12 Ca$_2$Si$_3$Al$_2$N$_8$ Si—N—Si 86.4°, Al—N—Al 89.1°, N—Si—N 93.6°, N—Al—N 90.7°).13,16 The distances between the centers of the edge-sharing tetrahedra (2.515 and 2.520 Å) are also in the typical range (BaSi$_7$N$_{10}$ 2.506 Å;11 Ba$_2$Si$_5$N$_8$ 2.556 Å;12 Ca$_5$Si$_2$Al$_2$N$_8$ 2.450 Å (Si—Si), 2.708 Å (Al—Al)).13,16

The framework of Ba$_2$AlSi$_3$N$_9$ hosts eight crystallographically independent Ba$^{2+}$ ions with coordination numbers between 6 and 10, which are shown in Figure 7. The distances of Ba—N are between 2.547 and 3.680 Å. Accordingly, these are shorter than the smallest sum of the ionic radii (2.81 Å;48 2.90 Å), but the distances are slightly shorter than in well known barium nitridosilicates (e.g., Ba$_2$Si$_5$N$_8$ 2.68—3.00 Å;27 Ba$_2$Si$_5$N$_8$ 2.61—3.40 Å;12 Ba$_2$Si$_7$N$_{10}$ 2.91—3.53 Å)13 and comparable with the short distances Ba—N in Ba$_2$VN$_3$ (2.50—3.16 Å)50 or Ba$_{10}$[Ti$_8$N$_{12}$] (2.56—3.59 Å).51

In Figure 7, the slightly different, but very similar coordination spheres of both sites of the split position Ba(6a)/Ba(6b) are depicted. These two alternative Ba sites correlate with an alternative position of tetrahedra. Ba(6b) is too close to (Si,Al)(8a), which is replaced by (Si,Al)(8b) if Ba(6b) is present. Consequently, two nitrogen sites (N(18), N(25)) also require splitting. When (Si,Al)(8b)N$_4$ tetrahedra are present, they are connected by a common corner with the tetrahedra around (Si,Al)(6).

Thermogravimetric Investigation. The TG measurement (cf. Figure 8) shows that Ba$_2$AlSi$_3$N$_9$ is stable up to about 1515 °C under He atmosphere. Above this temperature, the compound decomposes rapidly under formation of gaseous products. This result is similar to thermal analyses of other nitridosilicates, as, for example, the thermolysis of Ba$_2$Sm$_3$[Si$_2$N$_2$O][BN$_3$] starts at about 1410 °C.52 The thermal stability of Ba$_2$AlSi$_3$N$_9$ observed in the TG measurement is reduced in comparison to the temperature for the synthesis of this compound. This effect is probably due to the use of He instead of N$_2$. Furthermore, Ba$_2$AlSi$_3$N$_9$ also starts to decompose under N$_2$ atmosphere during the synthesis, if a long time for annealing is chosen at the maximum temperature.

Luminescence. For the investigation of photoluminescence, samples of Ba$_2$AlSi$_3$N$_9$ were doped with 2 mol % Eu$^{2+}$. Under daylight, the obtained crystals are colored light orange as a consequence of the 4f5 (6s2) \rightarrow 4f55d absorption
of Eu\(^{2+}\) in the blue to green spectral range. The excitation, emission, and reflection spectra of Ba\(_{1.96}\)AlSi\(_5\)N\(_9\):Eu\(_{0.04}\) are shown in Figure 9. For 450 nm excitation, a broadband emission spectrum peaking at 584 nm is obtained that shows a spectral width (FWHM) of \(\sim 100\) nm. Similar luminescence characteristics were found for yellow emitting Ba\(_2\)Si\(_5\)N\(_8\):Eu that shows an emission maximum in the same spectral range (\(\sim 580\) nm for 2 mol % Eu\(^{2+}\), FWHM \(\sim 90\) nm).\(^{1,53-57}\) CaAlSiN\(_3\):Eu, one of the first described Eu\(^{2+}\) doped nitridosilicate phosphors, shows an emission band peaking at 650 nm (FWHM \(\sim 90\) nm).\(^{23-25}\) The red shift of the emission of CaAlSiN\(_3\):Eu compared to Ba\(_2\)AlSi\(_5\)N\(_9\):Eu may be explained by the stronger N ligand field in the Ca compound that leads to a lowering of the energy separation between the Eu\(^{2+}\) 4f and 5d states and thus to a shift of absorption and emission bands toward lower energies.

The larger band width of the Eu\(^{2+}\) emission in Ba\(_2\)AlSi\(_5\)N\(_9\) compared to yellow emitting Ba\(_2\)Si\(_5\)N\(_8\):Eu and red emitting CaSiAlN\(_3\):Eu is most likely caused by the different number of crystallographically independent cation sites that may be populated with Eu\(^{2+}\). While there is only one Ca\(^{2+}\) site in CaSiAlN\(_3\)\(^{13}\) and two Ba\(^{2+}\) sites in Ba\(_2\)Si\(_5\)N\(_8\),\(^{27}\) the framework of Ba\(_2\)AlSi\(_5\)N\(_9\) hosts eight crystallographically independent Ba\(^{2+}\) ions that differ significantly in coordination (CN = 6–10); thus, a composed Eu\(^{2+}\) emission band originating from various sites can be expected.

Figure 7. Coordination spheres of Ba\(^{2+}\) in Ba\(_2\)AlSi\(_5\)N\(_9\) (Ba light gray, N black).

Figure 8. TG heating curve of Ba\(_2\)AlSi\(_5\)N\(_9\) recorded between RT and 1900 °C with a heating rate of 10 °C min\(^{-1}\). The weight of the sample was 62.3 mg.

Figure 9. Excitation (dark gray), emission (black, 450 nm excitation), and reflection spectra (light gray) of Ba\(_2\)AlSi\(_5\)N\(_9\).
The luminescence quantum efficiency of Ba$_{1.96}$AlSi$_5$N$_9$:Eu$_{0.04}$ has been determined to be relatively low (22.3 \%) compared with that of other red phosphors (e. g. Ba$_2$Si$_5$N$_8$ or CaAlSi$_3$N$_3$). However, within this investigation we have not optimized the samples concerning this matter.

Conclusion

With the synthesis of Ba$_2$AlSi$_5$N$_9$, the first compound in the system Ba–Si–Al–N could be obtained. This novel nitridoalumosilicate is characterized by its unusual silicate framework, which contains not only vertex-sharing tetrahedra but also edge-sharing tetrahedra. This framework is built up of highly condensed silicate layers, which are interconnected by different kinds of rings. In this anionic substructure eight Ba$^{2+}$ ions are situated with coordination numbers between 6 and 10. Ba$_2$AlSi$_5$N$_9$ is one of the first nitridoalumosilicate whose luminescence properties were investigated. As a result of the good thermal stability and the fact that an oxygen concentration could be almost excluded, the nitridoalumosilicates are suited as red rare earth-doped phosphors for white light LEDs. For an optimization of the luminescence properties, compounds with a higher symmetry could be valuable. In this context, Ba$_2$AlSi$_5$N$_9$ could trigger as initiation for a further systematic investigation of Ba containing nitridoalumosilicates.

Acknowledgment. The authors thank Dr. Stefanie Jakob and Thomas Miller for the collection of the single-crystal data, as well as Andreas Sattler for performing the DTA/TG measurement. Solid-state NMR measurements by Christian Minke as well as EELS analysis by Dr. Markus Döblinger are gratefully acknowledged. Furthermore, we thank Dr. Winfried Kockelmann for his assistance during the neutron measurements at the GEM diffractometer at ISIS/Rutherford Appleton Laboratory. This work was financially supported by the Fonds der Chemischen Industrie.

Supporting Information Available: The atomic coordinates, (equivalent) isotropic and anisotropic displacement parameter, and site occupancy factors of Ba$_2$AlSi$_5$N$_9$ as well as selected bond length and angles. This material is available free of charge via the Internet at http://pubs.acs.org.

CM803233D