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Abstract

This paper is concerned with the estimation of the regression coe�cients for

a count data model when one of the explanatory variables is subject to hete�

roscedastic measurement error� The observed values W are related to the true

regressor X by the additive error model W�X�U� The errors U are assumed to

be normally distributed with zero mean but heteroscedastic variances� which

are known or can be estimated from repeated measurements� Inference is done

by using quasi likelihood methods� where a model of the observed data is spe�

ci�ed only through a mean and a variance function for the response Y given W

and other correctly observed covariates� Although this approach weakens the

assumption of a parametric regression model� there is still the need to determine

the marginal distribution of the unobserved variable X� which is treated as a

random variable� Provided appropriate functions for the mean and variance are

stated� the regression parameters can be estimated consistently� We illustrate

our methods through an analysis of lung cancer rates in Switzerland� One of

the covariates� the regional radon averages� cannot be measured exactly due

to the strong dependency of radon on geological conditions and various other

environmental sources of in	uence� The distribution of the unobserved true

radon measure is modelled as a �nite mixture of normals�

Keywords� measurement error� quasi likelihood� Poisson regression� radon data

� Introduction

When ordinary regression techniques are applied to a model where one or several

predictors are subject to measurement error� the regression parameter estimates are

asymptotically biased� For nonlinear models the monograph of Carroll� Ruppert and

Stefanski 	�

�� gives a fundamental introduction into the di
erent methods to adjust

for this e
ect� In this article we will focus on estimation and inference of a Poisson

regression model with heteroscedastic measurement error in one of the predictors�

Let the true model relate the response Y � given in counts� to the predictors 	X�Z��

where X denotes a continuous covariate that cannot be measured directly and is only

observed through a proxy W � and Z is a set of covariates measured without error�
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Throughout this paper we will focus on a structural model for the unobserved pre�

dictor X� which means that X is treated as a random variable and its distribution

is parametrically modeled� Furthermore we make the assumption of nondi
erential

measurement error� which means that the conditional distribution of Y given X and

Z is independent of W � fY jZ�X�W � fY jZ�X � The observed predictor W is then called

a surrogate� This includes the frequently used additive measurement error model

W � X � U � where the measurement error U � 	O���
u� is independent of 	Y�X��

Quasilikelihood methods for regression models with covariate measurement error re�

quire information on the posterior distribution of the true predictor X given the

observed covariates 	W�Z�� If validation data for X are at hand and an assumption

for the error distribution of U is made� one can proceed to estimate the distribution

of X jW�Z� This is very often not the case and one has to make a strong assumption

on the distribution of X and use the observations ofW to estimate it� Therefore some

knowledge about the error process U that generated the observations W is needed�

In contrast to most applications which assume the error variances to be constant� we

allow for heteroscedastic measurement errors� that is� Var 	Ui� � ��
i � i � �� � � � � n�

Our work was mainly motivated by a data set from a Swiss study 	Minder and V�olkle�

�

��� where registered 	mortal� lung cancer cases 	Y � were related to regional ave�

rage radon measurements 	W � and other predictors 	Z�� The observed mean values

W for regional radon exposure have to be regarded as proxy variables for an existing

true mean X of each region� Since the number of individual radon measurements

that were used to compute the average W for each region ranged from �� to ���� the

errors cannot be assumed to be homoscedastic�

The aim of this paper is to show how a quasilikelihood approach can be used for a

count data model when one of the explanatory variables is subject to heteroscedastic

measurement error� The assumption of a �nite mixture of normal distributions as the

marginal distribution for the latent variable X is very �exible and it is shown that

the derivation of a regression model in the observable variables remains tractable�

In the following section we will introduce the quasilikelihood model for a Poisson re�

gression and derive appropriate mean and variance functions when the latent variable
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X follows a normal mixture distribution� In section three we will apply this approach

to the Swiss data� The impact of measurement error on the estimation results and

other related aspects will be discussed in the last section�

� The Quasilikelihood Approach

The use of quasilikelihood techniques for regression models with covariate measu�

rement error has been widely discussed in the literature� One of the �rst general

approaches has been described by Armstrong 	�
���� Asymptotic results and a very

detailed discussion of quasilikelihood methods for di
erent observed data structures

can be found in Carroll and Stefanski 	�

���

For i � �� � � � � n let Yi and Zi be the response and a vector of covariates measured

without error� Xi denotes the unobservable regressor variable and Wi the measured

surrogate� We assume an additive heteroscedastic error model�

Wi � Xi � Ui with Ui � N	�� ��
i � for i � �� � � � � n� 	��

where the Ui�s are mutually independent� Ui and 	Yi�Xi� are independent and the

error variances ��
i are known or can be estimated from independent replications of

Wi� The quasilikelihood approach only requires the speci�cation of a mean and

variance function for the regression model� which will be denoted by fm and fv� The

�rst step to obtain a quasilikelihood model in the observable variables is to set up

the �unobservable� mean and variance function as it is implied by the distribution of

Yi given Zi and Xi� We will write those �rst two conditional moments as

E 	Yi j Zi�Xi� � � 	Zi�Xi� �� for the mean and 	��

V 	Yi j Zi�Xi� � �� 	Zi�Xi� �� for the variance 	��

function� where � is the vector of the regression parameters� In a more general formu�

lation the variance function depends on additional variance parameters � or�and is

expressed as a function of �� but as we will concentrate on a Poisson regression

merely� there is no need for a more general notation� To proceed to the mean
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and variance functions for the observed data� fm 	Zi�Wi� �� � E 	Y j Zi�Wi� and

fv 	Zi�Wi� �� � V 	Yi j Zi�Wi�� one iterates expectations and uses the nondi
erential

error property� A quasilikelihood model in the observable variables can therefore be

stated as

fm 	Zi�Wi� �� � E 	E 	Yi j Zi�Xi�Wi� j Zi�Wi�

� E 	� 	Zi�Xi� �� j Zi�Wi� and 	��

fv 	Zi�Wi� �� � V 	E 	Yi j Zi�Xi�Wi� j Zi�Wi� � E 	V 	Yi j Zi�Xi�Wi� j Zi�Wi�

� V 	� 	Zi�Xi� �� j Zi�Wi� � E 	�� 	Zi�Xi� �� j Zi�Wi�� 	��

An unbiased estimating equation for � � 	��� �
�

Z� �X�
�

is given by the �quasi� score�

function

s�n� 	�� �
nX
i��

�fm 	Zi�Wi� ��

��

Yi � fm 	Zi�Wi� ��

fv 	Zi�Wi� ��
�

nX
i��

si	��

and the consistent quasilikelihood estimator ��ql is found as the root of the equation

s 	�� � �� Its asymptotic normality is also established via the theory of unbiased

estimating equations and it holds that

��ql
a
� N

�
�� n��F��	��V 	��F��	��

�
� 	��

The parts of the asymptotic covariance matrix of ��ql are given by

F 	�� � lim
n��

�

n
E

�
�
� s�n�	��

�� �

�
� lim

n��

�

n

nX
i��

E

�
�
� si	��

�� �

�
and 	��

V 	�� � lim
n��

�

n
cov

�
s�n� 	��

�
� lim

n��

�

n

nX
i��

E
�
si	�� 	si	���

�

�
� 	��

It is estimated by

dcov 	 ��ql� � n�� �F��	 ��ql� �V 	 ��ql� �F
��	 ��ql� with 	
�

�F 	 ��ql� �
�

n

�
nX
i��

�
� si	��

�� �

				
����ql



and �V 	 ��ql� �

�

n

�
nX
i��

si	�� 	si	���
�

			
����ql



�

	���

Both� mean 	�� and variance function 	�� make use of the conditional distribution

of X given Z and W � If this distribution can be speci�ed parametrically� it is in
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principle possible to calculate them directly� In our case� we will state fm and fv

under the assumption that the heteroscedastic error variances ��
i are given and that

the parameters of the marginal distribution of X can be estimated�

Model for the Poisson Regression

For i � �� � � � � n let Yi � Po		i� with 	i � exp 	�� � Z
�

i�Z � �XXi�� The underlying

�unobservable� regression model is given through

� 	Zi�Xi� �� � �� 	Zi�Xi� �� � exp 	�� � Z
�

i�Z � �XXi� 	���

and by using the formulas as given in 	�� and 	��� it is easily seen that the mean and

variance functions of the �observable� model is of the form

E 	Yi j Zi�Wi� � exp 	�� � Z
�

i�Z� � E 	exp 	�XXi� j Zi�Wi� and 	���

V 	Yi j Zi�Wi� � exp 	�� � Z
�

i�Z� � E 	exp 	�XXi� j Zi�Wi�

�exp 	��� � �Z
�

i�Z� � E 	exp 	��XXi� j Zi�Wi�

��exp 	�� � Z
�

i�Z� � E	exp 	�XXi� j Zi�Wi��
�� 	���

Now expectations of the form E 	exp 	cXi� j Zi�Wi� have to be computed� To derive

closed form expressions for fm and fv we will proceed in the following way� Under

the assumption of a structural model we state a parametric distribution for the latent

variables Xi� From these we �nd the conditional distribution of Xi given Wi and� as

only normal distributions are involved� it is then possible to compute the conditional

expectation E 	exp 	cXi� j Zi�Wi��

We will model the distribution of the i�i�d variables Xi� i � �� � � � � n� parametrically

as a mixture of normal distributions and write its density as

fXi
	xi� �

mX
k��


k �	xi j �k� �
�
k ��

where �	� j �k� � �k � denotes the normal density function with parameters �k and � �k �

Finite mixture distributions provide a �exible class of distributions and often repre�

sent a more realistic choice in practice as they do not demand that the observed
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variables come from one homogeneous population� As we will see later in the exam�

ple� the assumption of a mixture distribution was indicated by the observed data�

Additionally it is assumed that the latent variables Xi are independent of the other

covariates Zi� The random variable of the k�th component of the mixture distribution

of Xi will be denoted by Xki with density �	xi j �k� � �k �� Since we have an additive

error model Wi � Xi � Ui� Ui � N	�� ��
i �� it is easily seen that the distribution of

Wi is a mixture of normal distributions as well� Indeed we �nd that on each compo�

nent variance of that mixture distribution an heteroscedastic variance part induced

by the measurement error is added� Therefore the density of the k�th component

Wki of Wi is given by �	wi j �k� �
�
k � ��

i �� In order to �nd the conditional distribu�

tion of Xi j Wi� we simplify the notation and write the densities of Xi�Wi and Ui

as fXi
	xi� �

Pm

k�� 
k fXki
	xi�� fWi

	wi� �
Pm

k�� 
k fWki
	wi� and fUi

	ui�� respectively�

By applying a linear transformation to the joint density of Xi and Wi we �nd

fXijWi
	xi� �

fXi �Wi
	xi� wi�

fWi
	wi�

�
fXi

	xi�fUi
	wi � xi�

fWi
	wi�

�

Pm

k�� 
kfXki
	xi�fUi

	wi � xi�Pm

k�� 
kfWki
	wi�

�

mX
k��


kfWki
	wi�Pm

j�� 
jfWji
	wi�

fXki
	xi�fUi

	wi � xi�

fWki
	wi�

�

mX
k��

	kifCki
	xi�� 	���

As can be seen from 	��� the conditional distribution of Xi given Wi again is a

mixture of normally distributed random variables Cki� k � �� � � � �m with its associated

densities found by conditioning Xki on Wki for each k� The proportions 	ki� given by

	ki �

k � �	wi j �k� �

�
k � ��

i �Pm

j�� 
j � �	wi j �j � � �j � ��
i �
�

are the posteriori probabilities that the unobserved variable Xi belongs to compo�

nent k when Wi was observed� Furthermore it holds that Cki � N	�ki� ��
ki� with its

parameters de�ned as

�ki � �k �
� �k

� �k � ��
i

	Wi � �k� and

��
ki � � �k 	��

� �k
� �k � ��

i

��

K�uchenho
 and Carroll 	�

�� used a similar argumentation for a homoscedastic

measurement error model and a marginal mixture distribution with two components�
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Now since Xi given Wi is a mixture distribution� we can rewrite the conditional

expectations required for the de�nition of the mean and variance function of the

quasilikelihood model and it holds that

E 	exp 	cXi� jWi� Zi� �
mX
k��

	kiE 	exp 	cXki� j Wki� Zi��� 	���

The properties of the moment generating function for normal distributions enables

us to express these expectations as

E 	exp 	cXki� jWki� Zi� � E 	exp 	cCki�� � exp 	c �ki � c���
ki � ����� 	���

With this result and 	��� plugged into 	��� and 	��� the derived model in the obser�

vable variables is given by

fm	Zi�Wi� �� � exp 	�� � Z
�

i�Z�

�
mX
k��

	kiexp 	�X�ki � ��
X � ��

ki � ����

�
� 	���

fv	Zi�Wi� �� � fm	Zi�Wi� ��� �fm	Zi�Wi� ���
�

�exp 	��� � �Z
�

i�Z�

�
mX
k��

	kiexp 	��X�ki � ���
X � ��

ki�

�
� 	���

This model is clearly di
erent from the unobservable Poisson regression model

as stated in 	���� Estimation is carried out by the usual iteratively reweighted

least square algorithm for mean and variance models and requires to di
erentiate

fm	Zi�Wi� �� with respect to �� For details on �tting methods for such models see

Carroll and Ruppert 	�
����

� Lung Cancer Data

In a recent study 	Minder and V�olkle� �

�� the objective was to �nd out if there

exists a positive association between regional average radon measurements and regi�

stered� mortal lung cancer cases� The study was carried out in Switzerland� which

was divided into �� di
erent regions� In each region the numbers of registered lung

cancer cases were given for each of sixteen age groups� Regional average values of ra�

don were obtained by repeated indoor measurements from di
erent sites across each
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region� Besides location the sites di
ered from each other by the type of building

and the chosen �oor level� As the latent covariate Xi we de�ne the true average

radon concentration for region i� For each of the �� regions a mean value Wi was

obtained through ni single observations Wir� r � �� � � � � ni� The sample variances S�
i

from these repeated measurements were given as well� The concentration of the radon

gas strongly depends on local geological and atmospherical conditions� Furthermore

the physical property of radon to decompose into other substances makes it di�cult

to obtain exact values� The location of the measuring devices and the instruments

themselves are thus possible sources of measurement error� We will state the following

additive model for the measurement error process� each observation Wir is a proxy

variable for the true regional average Xi and therefore we de�ne for all i

Wir � Xi � 
ir with E 	
ir� � � and Var 	
ir� � ��
�i
for r � �� � � � � ni�

So we do not assume a particular distribution for the sampling errors 
ir� we only

require that they have expectation zero and equal variances� For the observed values

Wi � n��i
Pni

r��Wir � Xi � Ui with Ui � n��i
Pni

r�� 
ir the central limit theorem

permits us to assume a normal error distribution and we write

Wi � Xi � Ui with Ui � N	�� ��
i � for i � �� � � � � ���

Its easily seen that the error variances ��
i � ��

�i
�ni are di
erent for each region� even

when ��
�i
� ��

� for i � �� � � � � ��� since they depend on the number of measurements

ni as well� This number ni varies regionally from �� to ��� observations and for the

estimated error variances ���
i � S�

i �ni we �nd ���
i � �����
� ����
���� The estimates ���

i

will be treated as the variances ��
i � which we formerly assumed to be known� Figure �

shows a scatterplot of the regional radon averages versus the estimated standard de�

viations ��i of their error distributions� Marked by triangles and squares are averages

computed from less� respectively� equal or more than one hundred single measure�

ments� The plot clearly shows the heteroscedastic pattern of the error variances and

although it is obvious that ���
i will tend to zero if ni increases� this data show enough

variability within each region to produce nonignorable measurement error� In the ori�

ginal study a number of Poisson regression models for di
erent subgroups of the Swiss






population were estimated� We will restrict our analysis on that model that includes

all Swiss women only� The response variable is the number of registered mortal lung

cancer cases in region i and age interval j and will be denoted by Yij� As described

above the predictor of main interest� the regional average radon concentration Xi�

could only be observed through the surrogate Wi with known error variances ��
i �

Figure �� Scatterplot of the regional radon averages against their error standard

deviations� The triangles and squares indicate if ni � ��� or if ni � ����

The correctly observed covariables are the population under risk Nij and age Aj

measured as the transformed midpoint of the j�th age interval� which equals zero for

women between �� and �
 years� equals one for age between �� and �� years� a�s�o��

Additionally an indicator variable Ci of the regional structure 	� for urban� � for

rural� is given� The observed data structure for the regression model is summarized

in Table �� The �unobservable� loglinear o
set regression model relates the proportions

Yij�Nij to the covariates Zij � 	�� Aj� A
�
j � Ci�� and Xi� so that the logarithm of the

�rst conditional moment of Yij given Nij� Zij and Xi can be written as

ln 	� 	Nij � Zi�Xi� ��� � ln 	Nij� � �� � �A�Aj � �A�A
�
j � �CCi � �XXi

and 	��� holds�
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j�th age group 	j����������� Aj

i�th region 	i����������� Yij ��� registered lung cancer cases

Wi with ��
i � Ci Nij ��� population under risk

Table �� Data structure of Swiss Study� observed variables�

Figure � shows the regional radon averages plotted against ln 	Yij�Nij�� The regions

considered as urban are marked by triangles� The plot itself gives no clear hint for

the presence of an e
ect of radon on the occurrence of lung cancer� Markedly visible

is the characteristic of the radon averages to appear in three distinct clusters� The

main part of the data clusters around �� Bq�m�� the second group scatters around

��� Bq�m� and on the right hand side of the plot are four regions with averages above

��� Bq�m��

Figure �� Scatterplot of ln 	Yij�Nij� against the observed radon averages Wi�

Regions considered as urban�rural 	Ci � ���� are marked by triangles�stars�

As the marginal distribution of the true radon averages Xi we assume a normal

mixture distribution with three components� Maximum likelihood estimates of the
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parameters were obtained by applying an EM algorithm to the observed radon means

Wi The results are shown in Table �� for more details see Thamerus 	�

���

Component � Component � Component �

proportions 
k ������ 	������� ���
�� 	������� ������ 	�������

means �k �
����� 	���
��� 
������ 	����
�� �����
�� 	���
����

stand� dev� �k ������ 	������� ������� 	������� ������� 	��������

Table �� Estimation results for a three component normal mixture distribu�

tion of the true radon means� Standard errors are given in brackets�

A naive estimator for � � 	��� �A�� �A�� �C� �X�� was originally obtained by replacing

Xi with the observed averages Wi� It is well known� that this method yields incon�

sistent estimates� The estimated regression coe�cients of the quasilikelihood model

are found by applying an IRLS algorithm to the model given through the mean and

variance functions 	��� and 	���� These estimates are presented in Table � together

with those of the naive approach �

naive model quasilikelihood model

variable �� se p �� se p

��������� ������� ������� �����
�
� ������� �������

age ��
���� ������� ������� ��
���� ������� �������

age��� �������� ������� ������� �������� ������� �������

urban ������� ������� ������� �����
� �����

 �������

radon ������� ������� ������� ������� ������� �������

Table �� Estimation results for the regression model of the Swiss lung cancer

data� Given are the estimated regression coe�cients� their standard errors and

associated p values�
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For the naive procedure we found that the null hypothesis for the presence of a

radon e
ect could not be rejected on a � � signi�cance level� Note that the statisti�

cal inference is di
erent for the quasilikelihood model that considers the individual

measurement errors� Relative to their standard errors� both models produce similar

results for the correctly observed covariates age� age squared and the urbanization

indicator� The estimated radon e
ect of the quasilikelihood model however is greater

than the one obtained from the naive model and its accompanying p value con�rms a

signi�cant e
ect for the radon variable at the � � level� This di
erence in the p values

of the two models is explained by the almost identical values of their standard errors�

As a result we may state� that for this particular model� the naive estimation me�

thod �nds a non�signi�cant radon e
ect and that in comparison� the quasilikelihood

approach leads to a di
erent result�

� Discussion

Most epidemiologists will con�rm that age and smoking status have the strongest

e
ects on the occurrence of lung cancer and that in this data set the absence of an

appropriate smoking variable produces misleading results� This issue is also discussed

in the original paper of Minder and V�olkle 	�

��� They compared their estimation

results of separate models for distinct age groups under the alternative assumptions

whether the overall smoking behavior of the population remained constant or was

dynamic� Since there is no information that smoking will be a confounding factor for

radon we cannot contribute anything new to this discussion�

We will rather concentrate on two other topics� The �rst one is about the asymptotic

covariance matrix of ��ql� In our model the parameters of the distribution of Xi� for

simplicity denoted by �� are treated as known� The �sandwich� estimator 	
� that was

used to estimate the covariance of ��ql does not consider the estimation of �� According

to Liang and Liu 	�

�� an estimator of similar form as 	
� for the covariance can be

constructed if �V 	 ��ql� is replaced by a term that contains one part for the estimation

of � and an additional part for the estimation of �� It remains open whether the
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estimated standard errors for ��ql would increase signi�cantly if the additional part

was used�

A very common method to describe the degree of attenuation of the estimated regres�

sion coe�cients in the presence of measurement error is the de�nition of a ratio that re�

lates the error variance to the variance of the latent variableX� If the error variance is

homoscedastic� the so called noise�to�signal ratio of X� that is � � Var 	Ui��Var 	Xi��

is often used 	see e�g� Fuller� �
���� As our error model Wi � Xi �Ui� Ui � N	�� ��
i �

is heteroscedastic� we will use this idea to de�ne a mean noise�to�signal ratio of X

as �m � n��
Pn

i�� �
�
i �Var 	Xi� and estimate it by replacing Var 	Xi� � ��

X with an

estimate and make use of the known error variances ��
i �

The latent variables Xi� i � �� � � � � n were assumed to be i�i�d� variables of a mixture

of normal distributions� so we write Xi �MixNV 	
�� � � � � 
m� ��� � � � � �m� � �� � � � � � �
�
m�

and suggest two ways of estimating ��
X� The �rst method uses the estimated para�

meters of the mixture distribution from the EM algorithm� Let Hi be a classi�cation

variable that de�nes to which component of the mixture Xi belongs� Then the va�

riance of Xi can be found by

Var 	Xi� � E 	Var 	Xi j Hi�� � Var 	E 	Xi j Hi�� �
mX
k��


k �
�
k �

mX
k��


k	�k � ���

where � � E	Xi� �
Pm

k�� 
k�k� The ML estimate ���
X is simply obtained by replacing

the distribution parameters with its estimates� The method of moments uses the

sample variance S�
W of the observed variables Wi and an estimator for ��

X is found by

s�X � S�
W �

n� �

n�

nX
i��

��
i �

It is easily seen that s�X is unbiased� This estimator is of great practical use since it

can be computed without any knowledge of the distribution of the latent variable X�

Most variation in X is caused by the four radon means that constitute the third

component of the mixture distribution� To get an idea of the measurement error

e
ect on the estimation results we performed an experiment and removed the four

regions with radon averages above ��� Bq�m� from the data and �tted a normal

mixture distribution with two components to the remaining averages� Table � gives



��

the estimated variances and mean signal�to�noise ratios for the original Swiss radon

data 	three components� and the reduced data 	two components��

three components� n � �� two components� n � ��

variance ratio variance ratio

���
X ��������� ������ �������
 ������

s�X ��������� �����
 �������� ������

Table �� Estimated variances and mean noise�to�signal ratios of X for the

three components mixture model �full data	 and the two components mixture

modell �four data points omitted	�

The ratios for the full data model are rather small� a fact which is mainly caused by

the di
erent locations of the three components of the mixture� Therefore the impact

of measurement error on the estimated radon e
ect is small and the naive estimator

is only little biased� That the error variances in�uence the estimation results can be

seen from the model of the observed data� given in 	��� and 	���� Both functions

depend nonlinearily on the ratios ��
i ��

�
k and the location parameters �k through the

conditional moments �ki and �ki�

The mean noise�to�signal ratios for the reduced data 	two components� are appro�

ximately �ve times bigger than those for the original data and the biasing e
ect of

measurement error on the naive estimates should be seen more clearly� Indeed� we

computed the regression coe�cients for the naive and the quasilikelihood regression

for those data and got estimated radon e
ects of ��X�naive � �������� 	�������� for the

naive and ��X�ql � �������� 	�����
�� for the quasilikelihood model 	with standard

errors given in brackets�� Relative to their standard errors those two estimates di
er

from each other by a factor around two� Not surprisingly this example also reveals

that the positive e
ect of radon as it was found by the full data model� disappears

once the four highest radon exposed regions are not considered�



��

Quasilikelihood models are useful tools to analyze regression models when some of the

covariates are subject to measurement error� Collecting repeated measurements of

the erroneous regressor variable provides additional information on the measurement

error process and is recommended to the researchers� If the marginal distribution of

the latent variable is normal or a mixture of normal distributions� even a heterosce�

dastic error structure can be embedded into a quasilikelihood model for count data�

Especially weak e
ects like the discussed e
ect of radon exposure on lung cancer can

be detected by a model that considers the individual measurement error�
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