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Abstract

This paper is concerned with the estimation of the regression coe�cients for

a count data model when one of the explanatory variables is subject to hete�

roscedastic measurement error� The observed values W are related to the true

regressor X by the additive error model W�X�U� The errors U are assumed to

be normally distributed with zero mean but heteroscedastic variances� which

are known or can be estimated from repeated measurements� Inference is done

by using quasi likelihood methods� where a model of the observed data is spe�

ci�ed only through a mean and a variance function for the response Y given W

and other correctly observed covariates� Although this approach weakens the

assumption of a parametric regression model� there is still the need to determine

the marginal distribution of the unobserved variable X� which is treated as a

random variable� Provided appropriate functions for the mean and variance are

stated� the regression parameters can be estimated consistently� We illustrate

our methods through an analysis of lung cancer rates in Switzerland� One of

the covariates� the regional radon averages� cannot be measured exactly due

to the strong dependency of radon on geological conditions and various other

environmental sources of in	uence� The distribution of the unobserved true

radon measure is modelled as a �nite mixture of normals�

Keywords� measurement error� quasi likelihood� Poisson regression� radon data

� Introduction

When ordinary regression techniques are applied to a model where one or several

predictors are subject to measurement error� the regression parameter estimates are

asymptotically biased� For nonlinear models the monograph of Carroll� Ruppert and

Stefanski 	�

�� gives a fundamental introduction into the dierent methods to adjust

for this eect� In this article we will focus on estimation and inference of a Poisson

regression model with heteroscedastic measurement error in one of the predictors�

Let the true model relate the response Y � given in counts� to the predictors 	X�Z��

where X denotes a continuous covariate that cannot be measured directly and is only

observed through a proxy W � and Z is a set of covariates measured without error�
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Throughout this paper we will focus on a structural model for the unobserved pre�

dictor X� which means that X is treated as a random variable and its distribution

is parametrically modeled� Furthermore we make the assumption of nondierential

measurement error� which means that the conditional distribution of Y given X and

Z is independent of W � fY jZ�X�W � fY jZ�X � The observed predictor W is then called

a surrogate� This includes the frequently used additive measurement error model

W � X � U � where the measurement error U � 	O���
u� is independent of 	Y�X��

Quasilikelihood methods for regression models with covariate measurement error re�

quire information on the posterior distribution of the true predictor X given the

observed covariates 	W�Z�� If validation data for X are at hand and an assumption

for the error distribution of U is made� one can proceed to estimate the distribution

of X jW�Z� This is very often not the case and one has to make a strong assumption

on the distribution of X and use the observations ofW to estimate it� Therefore some

knowledge about the error process U that generated the observations W is needed�

In contrast to most applications which assume the error variances to be constant� we

allow for heteroscedastic measurement errors� that is� Var 	Ui� � ��
i � i � �� � � � � n�

Our work was mainly motivated by a data set from a Swiss study 	Minder and V�olkle�

�

��� where registered 	mortal� lung cancer cases 	Y � were related to regional ave�

rage radon measurements 	W � and other predictors 	Z�� The observed mean values

W for regional radon exposure have to be regarded as proxy variables for an existing

true mean X of each region� Since the number of individual radon measurements

that were used to compute the average W for each region ranged from �� to ���� the

errors cannot be assumed to be homoscedastic�

The aim of this paper is to show how a quasilikelihood approach can be used for a

count data model when one of the explanatory variables is subject to heteroscedastic

measurement error� The assumption of a �nite mixture of normal distributions as the

marginal distribution for the latent variable X is very �exible and it is shown that

the derivation of a regression model in the observable variables remains tractable�

In the following section we will introduce the quasilikelihood model for a Poisson re�

gression and derive appropriate mean and variance functions when the latent variable
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X follows a normal mixture distribution� In section three we will apply this approach

to the Swiss data� The impact of measurement error on the estimation results and

other related aspects will be discussed in the last section�

� The Quasilikelihood Approach

The use of quasilikelihood techniques for regression models with covariate measu�

rement error has been widely discussed in the literature� One of the �rst general

approaches has been described by Armstrong 	�
���� Asymptotic results and a very

detailed discussion of quasilikelihood methods for dierent observed data structures

can be found in Carroll and Stefanski 	�

���

For i � �� � � � � n let Yi and Zi be the response and a vector of covariates measured

without error� Xi denotes the unobservable regressor variable and Wi the measured

surrogate� We assume an additive heteroscedastic error model�

Wi � Xi � Ui with Ui � N	�� ��
i � for i � �� � � � � n� 	��

where the Ui�s are mutually independent� Ui and 	Yi�Xi� are independent and the

error variances ��
i are known or can be estimated from independent replications of

Wi� The quasilikelihood approach only requires the speci�cation of a mean and

variance function for the regression model� which will be denoted by fm and fv� The

�rst step to obtain a quasilikelihood model in the observable variables is to set up

the �unobservable� mean and variance function as it is implied by the distribution of

Yi given Zi and Xi� We will write those �rst two conditional moments as

E 	Yi j Zi�Xi� � � 	Zi�Xi� �� for the mean and 	��

V 	Yi j Zi�Xi� � �� 	Zi�Xi� �� for the variance 	��

function� where � is the vector of the regression parameters� In a more general formu�

lation the variance function depends on additional variance parameters � or�and is

expressed as a function of �� but as we will concentrate on a Poisson regression

merely� there is no need for a more general notation� To proceed to the mean



�

and variance functions for the observed data� fm 	Zi�Wi� �� � E 	Y j Zi�Wi� and

fv 	Zi�Wi� �� � V 	Yi j Zi�Wi�� one iterates expectations and uses the nondierential

error property� A quasilikelihood model in the observable variables can therefore be

stated as

fm 	Zi�Wi� �� � E 	E 	Yi j Zi�Xi�Wi� j Zi�Wi�

� E 	� 	Zi�Xi� �� j Zi�Wi� and 	��

fv 	Zi�Wi� �� � V 	E 	Yi j Zi�Xi�Wi� j Zi�Wi� � E 	V 	Yi j Zi�Xi�Wi� j Zi�Wi�

� V 	� 	Zi�Xi� �� j Zi�Wi� � E 	�� 	Zi�Xi� �� j Zi�Wi�� 	��

An unbiased estimating equation for � � 	��� �
�

Z� �X�
�

is given by the �quasi� score�

function

s�n� 	�� �
nX
i��

�fm 	Zi�Wi� ��

��

Yi � fm 	Zi�Wi� ��

fv 	Zi�Wi� ��
�

nX
i��

si	��

and the consistent quasilikelihood estimator ��ql is found as the root of the equation

s 	�� � �� Its asymptotic normality is also established via the theory of unbiased

estimating equations and it holds that

��ql
a
� N

�
�� n��F��	��V 	��F��	��

�
� 	��

The parts of the asymptotic covariance matrix of ��ql are given by

F 	�� � lim
n��

�

n
E

�
�
� s�n�	��

�� �

�
� lim

n��

�

n

nX
i��

E

�
�
� si	��

�� �

�
and 	��

V 	�� � lim
n��

�

n
cov

�
s�n� 	��

�
� lim

n��

�

n

nX
i��

E
�
si	�� 	si	���

�

�
� 	��

It is estimated by

dcov 	 ��ql� � n�� �F��	 ��ql� �V 	 ��ql� �F
��	 ��ql� with 	
�

�F 	 ��ql� �
�

n

�
nX
i��

�
� si	��

�� �

				
����ql



and �V 	 ��ql� �

�

n

�
nX
i��

si	�� 	si	���
�

			
����ql



�

	���

Both� mean 	�� and variance function 	�� make use of the conditional distribution

of X given Z and W � If this distribution can be speci�ed parametrically� it is in
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principle possible to calculate them directly� In our case� we will state fm and fv

under the assumption that the heteroscedastic error variances ��
i are given and that

the parameters of the marginal distribution of X can be estimated�

Model for the Poisson Regression

For i � �� � � � � n let Yi � Po		i� with 	i � exp 	�� � Z
�

i�Z � �XXi�� The underlying

�unobservable� regression model is given through

� 	Zi�Xi� �� � �� 	Zi�Xi� �� � exp 	�� � Z
�

i�Z � �XXi� 	���

and by using the formulas as given in 	�� and 	��� it is easily seen that the mean and

variance functions of the �observable� model is of the form

E 	Yi j Zi�Wi� � exp 	�� � Z
�

i�Z� � E 	exp 	�XXi� j Zi�Wi� and 	���

V 	Yi j Zi�Wi� � exp 	�� � Z
�

i�Z� � E 	exp 	�XXi� j Zi�Wi�

�exp 	��� � �Z
�

i�Z� � E 	exp 	��XXi� j Zi�Wi�

��exp 	�� � Z
�

i�Z� � E	exp 	�XXi� j Zi�Wi��
�� 	���

Now expectations of the form E 	exp 	cXi� j Zi�Wi� have to be computed� To derive

closed form expressions for fm and fv we will proceed in the following way� Under

the assumption of a structural model we state a parametric distribution for the latent

variables Xi� From these we �nd the conditional distribution of Xi given Wi and� as

only normal distributions are involved� it is then possible to compute the conditional

expectation E 	exp 	cXi� j Zi�Wi��

We will model the distribution of the i�i�d variables Xi� i � �� � � � � n� parametrically

as a mixture of normal distributions and write its density as

fXi
	xi� �

mX
k��


k �	xi j �k� �
�
k ��

where �	� j �k� � �k � denotes the normal density function with parameters �k and � �k �

Finite mixture distributions provide a �exible class of distributions and often repre�

sent a more realistic choice in practice as they do not demand that the observed
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variables come from one homogeneous population� As we will see later in the exam�

ple� the assumption of a mixture distribution was indicated by the observed data�

Additionally it is assumed that the latent variables Xi are independent of the other

covariates Zi� The random variable of the k�th component of the mixture distribution

of Xi will be denoted by Xki with density �	xi j �k� � �k �� Since we have an additive

error model Wi � Xi � Ui� Ui � N	�� ��
i �� it is easily seen that the distribution of

Wi is a mixture of normal distributions as well� Indeed we �nd that on each compo�

nent variance of that mixture distribution an heteroscedastic variance part induced

by the measurement error is added� Therefore the density of the k�th component

Wki of Wi is given by �	wi j �k� �
�
k � ��

i �� In order to �nd the conditional distribu�

tion of Xi j Wi� we simplify the notation and write the densities of Xi�Wi and Ui

as fXi
	xi� �

Pm

k�� 
k fXki
	xi�� fWi

	wi� �
Pm

k�� 
k fWki
	wi� and fUi

	ui�� respectively�

By applying a linear transformation to the joint density of Xi and Wi we �nd

fXijWi
	xi� �

fXi �Wi
	xi� wi�

fWi
	wi�

�
fXi

	xi�fUi
	wi � xi�

fWi
	wi�

�

Pm

k�� 
kfXki
	xi�fUi

	wi � xi�Pm

k�� 
kfWki
	wi�

�

mX
k��


kfWki
	wi�Pm

j�� 
jfWji
	wi�

fXki
	xi�fUi

	wi � xi�

fWki
	wi�

�

mX
k��

	kifCki
	xi�� 	���

As can be seen from 	��� the conditional distribution of Xi given Wi again is a

mixture of normally distributed random variables Cki� k � �� � � � �m with its associated

densities found by conditioning Xki on Wki for each k� The proportions 	ki� given by

	ki �

k � �	wi j �k� �

�
k � ��

i �Pm

j�� 
j � �	wi j �j � � �j � ��
i �
�

are the posteriori probabilities that the unobserved variable Xi belongs to compo�

nent k when Wi was observed� Furthermore it holds that Cki � N	�ki� ��
ki� with its

parameters de�ned as

�ki � �k �
� �k

� �k � ��
i

	Wi � �k� and

��
ki � � �k 	��

� �k
� �k � ��

i

��

K�uchenho and Carroll 	�

�� used a similar argumentation for a homoscedastic

measurement error model and a marginal mixture distribution with two components�
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Now since Xi given Wi is a mixture distribution� we can rewrite the conditional

expectations required for the de�nition of the mean and variance function of the

quasilikelihood model and it holds that

E 	exp 	cXi� jWi� Zi� �
mX
k��

	kiE 	exp 	cXki� j Wki� Zi��� 	���

The properties of the moment generating function for normal distributions enables

us to express these expectations as

E 	exp 	cXki� jWki� Zi� � E 	exp 	cCki�� � exp 	c �ki � c���
ki � ����� 	���

With this result and 	��� plugged into 	��� and 	��� the derived model in the obser�

vable variables is given by

fm	Zi�Wi� �� � exp 	�� � Z
�

i�Z�

�
mX
k��

	kiexp 	�X�ki � ��
X � ��

ki � ����

�
� 	���

fv	Zi�Wi� �� � fm	Zi�Wi� ��� �fm	Zi�Wi� ���
�

�exp 	��� � �Z
�

i�Z�

�
mX
k��

	kiexp 	��X�ki � ���
X � ��

ki�

�
� 	���

This model is clearly dierent from the unobservable Poisson regression model

as stated in 	���� Estimation is carried out by the usual iteratively reweighted

least square algorithm for mean and variance models and requires to dierentiate

fm	Zi�Wi� �� with respect to �� For details on �tting methods for such models see

Carroll and Ruppert 	�
����

� Lung Cancer Data

In a recent study 	Minder and V�olkle� �

�� the objective was to �nd out if there

exists a positive association between regional average radon measurements and regi�

stered� mortal lung cancer cases� The study was carried out in Switzerland� which

was divided into �� dierent regions� In each region the numbers of registered lung

cancer cases were given for each of sixteen age groups� Regional average values of ra�

don were obtained by repeated indoor measurements from dierent sites across each
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region� Besides location the sites diered from each other by the type of building

and the chosen �oor level� As the latent covariate Xi we de�ne the true average

radon concentration for region i� For each of the �� regions a mean value Wi was

obtained through ni single observations Wir� r � �� � � � � ni� The sample variances S�
i

from these repeated measurements were given as well� The concentration of the radon

gas strongly depends on local geological and atmospherical conditions� Furthermore

the physical property of radon to decompose into other substances makes it di�cult

to obtain exact values� The location of the measuring devices and the instruments

themselves are thus possible sources of measurement error� We will state the following

additive model for the measurement error process� each observation Wir is a proxy

variable for the true regional average Xi and therefore we de�ne for all i

Wir � Xi � ir with E 	ir� � � and Var 	ir� � ��
�i
for r � �� � � � � ni�

So we do not assume a particular distribution for the sampling errors ir� we only

require that they have expectation zero and equal variances� For the observed values

Wi � n��i
Pni

r��Wir � Xi � Ui with Ui � n��i
Pni

r�� ir the central limit theorem

permits us to assume a normal error distribution and we write

Wi � Xi � Ui with Ui � N	�� ��
i � for i � �� � � � � ���

Its easily seen that the error variances ��
i � ��

�i
�ni are dierent for each region� even

when ��
�i
� ��

� for i � �� � � � � ��� since they depend on the number of measurements

ni as well� This number ni varies regionally from �� to ��� observations and for the

estimated error variances ���
i � S�

i �ni we �nd ���
i � �����
� ����
���� The estimates ���

i

will be treated as the variances ��
i � which we formerly assumed to be known� Figure �

shows a scatterplot of the regional radon averages versus the estimated standard de�

viations ��i of their error distributions� Marked by triangles and squares are averages

computed from less� respectively� equal or more than one hundred single measure�

ments� The plot clearly shows the heteroscedastic pattern of the error variances and

although it is obvious that ���
i will tend to zero if ni increases� this data show enough

variability within each region to produce nonignorable measurement error� In the ori�

ginal study a number of Poisson regression models for dierent subgroups of the Swiss






population were estimated� We will restrict our analysis on that model that includes

all Swiss women only� The response variable is the number of registered mortal lung

cancer cases in region i and age interval j and will be denoted by Yij� As described

above the predictor of main interest� the regional average radon concentration Xi�

could only be observed through the surrogate Wi with known error variances ��
i �

Figure �� Scatterplot of the regional radon averages against their error standard

deviations� The triangles and squares indicate if ni � ��� or if ni � ����

The correctly observed covariables are the population under risk Nij and age Aj

measured as the transformed midpoint of the j�th age interval� which equals zero for

women between �� and �
 years� equals one for age between �� and �� years� a�s�o��

Additionally an indicator variable Ci of the regional structure 	� for urban� � for

rural� is given� The observed data structure for the regression model is summarized

in Table �� The �unobservable� loglinear oset regression model relates the proportions

Yij�Nij to the covariates Zij � 	�� Aj� A
�
j � Ci�� and Xi� so that the logarithm of the

�rst conditional moment of Yij given Nij� Zij and Xi can be written as

ln 	� 	Nij � Zi�Xi� ��� � ln 	Nij� � �� � �A�Aj � �A�A
�
j � �CCi � �XXi

and 	��� holds�
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j�th age group 	j����������� Aj

i�th region 	i����������� Yij ��� registered lung cancer cases

Wi with ��
i � Ci Nij ��� population under risk

Table �� Data structure of Swiss Study� observed variables�

Figure � shows the regional radon averages plotted against ln 	Yij�Nij�� The regions

considered as urban are marked by triangles� The plot itself gives no clear hint for

the presence of an eect of radon on the occurrence of lung cancer� Markedly visible

is the characteristic of the radon averages to appear in three distinct clusters� The

main part of the data clusters around �� Bq�m�� the second group scatters around

��� Bq�m� and on the right hand side of the plot are four regions with averages above

��� Bq�m��

Figure �� Scatterplot of ln 	Yij�Nij� against the observed radon averages Wi�

Regions considered as urban�rural 	Ci � ���� are marked by triangles�stars�

As the marginal distribution of the true radon averages Xi we assume a normal

mixture distribution with three components� Maximum likelihood estimates of the
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parameters were obtained by applying an EM algorithm to the observed radon means

Wi The results are shown in Table �� for more details see Thamerus 	�

���

Component � Component � Component �

proportions 
k ������ 	������� ���
�� 	������� ������ 	�������

means �k �
����� 	���
��� 
������ 	����
�� �����
�� 	���
����

stand� dev� �k ������ 	������� ������� 	������� ������� 	��������

Table �� Estimation results for a three component normal mixture distribu�

tion of the true radon means� Standard errors are given in brackets�

A naive estimator for � � 	��� �A�� �A�� �C� �X�� was originally obtained by replacing

Xi with the observed averages Wi� It is well known� that this method yields incon�

sistent estimates� The estimated regression coe�cients of the quasilikelihood model

are found by applying an IRLS algorithm to the model given through the mean and

variance functions 	��� and 	���� These estimates are presented in Table � together

with those of the naive approach �

naive model quasilikelihood model

variable �� se p �� se p

��������� ������� ������� �����
�
� ������� �������

age ��
���� ������� ������� ��
���� ������� �������

age��� �������� ������� ������� �������� ������� �������

urban ������� ������� ������� �����
� �����

 �������

radon ������� ������� ������� ������� ������� �������

Table �� Estimation results for the regression model of the Swiss lung cancer

data� Given are the estimated regression coe�cients� their standard errors and

associated p values�
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For the naive procedure we found that the null hypothesis for the presence of a

radon eect could not be rejected on a � � signi�cance level� Note that the statisti�

cal inference is dierent for the quasilikelihood model that considers the individual

measurement errors� Relative to their standard errors� both models produce similar

results for the correctly observed covariates age� age squared and the urbanization

indicator� The estimated radon eect of the quasilikelihood model however is greater

than the one obtained from the naive model and its accompanying p value con�rms a

signi�cant eect for the radon variable at the � � level� This dierence in the p values

of the two models is explained by the almost identical values of their standard errors�

As a result we may state� that for this particular model� the naive estimation me�

thod �nds a non�signi�cant radon eect and that in comparison� the quasilikelihood

approach leads to a dierent result�

� Discussion

Most epidemiologists will con�rm that age and smoking status have the strongest

eects on the occurrence of lung cancer and that in this data set the absence of an

appropriate smoking variable produces misleading results� This issue is also discussed

in the original paper of Minder and V�olkle 	�

��� They compared their estimation

results of separate models for distinct age groups under the alternative assumptions

whether the overall smoking behavior of the population remained constant or was

dynamic� Since there is no information that smoking will be a confounding factor for

radon we cannot contribute anything new to this discussion�

We will rather concentrate on two other topics� The �rst one is about the asymptotic

covariance matrix of ��ql� In our model the parameters of the distribution of Xi� for

simplicity denoted by �� are treated as known� The �sandwich� estimator 	
� that was

used to estimate the covariance of ��ql does not consider the estimation of �� According

to Liang and Liu 	�

�� an estimator of similar form as 	
� for the covariance can be

constructed if �V 	 ��ql� is replaced by a term that contains one part for the estimation

of � and an additional part for the estimation of �� It remains open whether the
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estimated standard errors for ��ql would increase signi�cantly if the additional part

was used�

A very common method to describe the degree of attenuation of the estimated regres�

sion coe�cients in the presence of measurement error is the de�nition of a ratio that re�

lates the error variance to the variance of the latent variableX� If the error variance is

homoscedastic� the so called noise�to�signal ratio of X� that is � � Var 	Ui��Var 	Xi��

is often used 	see e�g� Fuller� �
���� As our error model Wi � Xi �Ui� Ui � N	�� ��
i �

is heteroscedastic� we will use this idea to de�ne a mean noise�to�signal ratio of X

as �m � n��
Pn

i�� �
�
i �Var 	Xi� and estimate it by replacing Var 	Xi� � ��

X with an

estimate and make use of the known error variances ��
i �

The latent variables Xi� i � �� � � � � n were assumed to be i�i�d� variables of a mixture

of normal distributions� so we write Xi �MixNV 	
�� � � � � 
m� ��� � � � � �m� � �� � � � � � �
�
m�

and suggest two ways of estimating ��
X� The �rst method uses the estimated para�

meters of the mixture distribution from the EM algorithm� Let Hi be a classi�cation

variable that de�nes to which component of the mixture Xi belongs� Then the va�

riance of Xi can be found by

Var 	Xi� � E 	Var 	Xi j Hi�� � Var 	E 	Xi j Hi�� �
mX
k��


k �
�
k �

mX
k��


k	�k � ���

where � � E	Xi� �
Pm

k�� 
k�k� The ML estimate ���
X is simply obtained by replacing

the distribution parameters with its estimates� The method of moments uses the

sample variance S�
W of the observed variables Wi and an estimator for ��

X is found by

s�X � S�
W �

n� �

n�

nX
i��

��
i �

It is easily seen that s�X is unbiased� This estimator is of great practical use since it

can be computed without any knowledge of the distribution of the latent variable X�

Most variation in X is caused by the four radon means that constitute the third

component of the mixture distribution� To get an idea of the measurement error

eect on the estimation results we performed an experiment and removed the four

regions with radon averages above ��� Bq�m� from the data and �tted a normal

mixture distribution with two components to the remaining averages� Table � gives



��

the estimated variances and mean signal�to�noise ratios for the original Swiss radon

data 	three components� and the reduced data 	two components��

three components� n � �� two components� n � ��

variance ratio variance ratio

���
X ��������� ������ �������
 ������

s�X ��������� �����
 �������� ������

Table �� Estimated variances and mean noise�to�signal ratios of X for the

three components mixture model �full data	 and the two components mixture

modell �four data points omitted	�

The ratios for the full data model are rather small� a fact which is mainly caused by

the dierent locations of the three components of the mixture� Therefore the impact

of measurement error on the estimated radon eect is small and the naive estimator

is only little biased� That the error variances in�uence the estimation results can be

seen from the model of the observed data� given in 	��� and 	���� Both functions

depend nonlinearily on the ratios ��
i ��

�
k and the location parameters �k through the

conditional moments �ki and �ki�

The mean noise�to�signal ratios for the reduced data 	two components� are appro�

ximately �ve times bigger than those for the original data and the biasing eect of

measurement error on the naive estimates should be seen more clearly� Indeed� we

computed the regression coe�cients for the naive and the quasilikelihood regression

for those data and got estimated radon eects of ��X�naive � �������� 	�������� for the

naive and ��X�ql � �������� 	�����
�� for the quasilikelihood model 	with standard

errors given in brackets�� Relative to their standard errors those two estimates dier

from each other by a factor around two� Not surprisingly this example also reveals

that the positive eect of radon as it was found by the full data model� disappears

once the four highest radon exposed regions are not considered�



��

Quasilikelihood models are useful tools to analyze regression models when some of the

covariates are subject to measurement error� Collecting repeated measurements of

the erroneous regressor variable provides additional information on the measurement

error process and is recommended to the researchers� If the marginal distribution of

the latent variable is normal or a mixture of normal distributions� even a heterosce�

dastic error structure can be embedded into a quasilikelihood model for count data�

Especially weak eects like the discussed eect of radon exposure on lung cancer can

be detected by a model that considers the individual measurement error�
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