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Abstract

This paper is concerned with the estimation of the regression coefficients for
a count data model when one of the explanatory variables is subject to hete-
roscedastic measurement error. The observed values W are related to the true
regressor X by the additive error model W=X+U. The errors U are assumed to
be normally distributed with zero mean but heteroscedastic variances, which
are known or can be estimated from repeated measurements. Inference is done
by using quasi likelihood methods, where a model of the observed data is spe-
cified only through a mean and a variance function for the response Y given W
and other correctly observed covariates. Although this approach weakens the
assumption of a parametric regression model, there is still the need to determine
the marginal distribution of the unobserved variable X, which is treated as a
random variable. Provided appropriate functions for the mean and variance are
stated, the regression parameters can be estimated consistently. We illustrate
our methods through an analysis of lung cancer rates in Switzerland. One of
the covariates, the regional radon averages, cannot be measured exactly due
to the strong dependency of radon on geological conditions and various other
environmental sources of influence. The distribution of the unobserved true
radon measure is modelled as a finite mixture of normals.

Keywords: measurement error; quasi likelihood; Poisson regression; radon data

1 Introduction

When ordinary regression techniques are applied to a model where one or several
predictors are subject to measurement error, the regression parameter estimates are
asymptotically biased. For nonlinear models the monograph of Carroll, Ruppert and
Stefanski (1995) gives a fundamental introduction into the different methods to adjust
for this effect. In this article we will focus on estimation and inference of a Poisson
regression model with heteroscedastic measurement error in one of the predictors.
Let the true model relate the response Y, given in counts, to the predictors (X, 7),
where X denotes a continuous covariate that cannot be measured directly and is only

observed through a proxy W, and Z is a set of covariates measured without error.



Throughout this paper we will focus on a structural model for the unobserved pre-
dictor X, which means that X is treated as a random variable and its distribution
is parametrically modeled. Furthermore we make the assumption of nondifferential
measurement error, which means that the conditional distribution of ¥ given X and
Z is independent of W: fyz xw = fyv|zx. The observed predictor W is then called
a surrogate. This includes the frequently used additive measurement error model
W = X + U, where the measurement error U ~ (O, c?) is independent of (Y, X).
Quasilikelihood methods for regression models with covariate measurement error re-
quire information on the posterior distribution of the true predictor X given the
observed covariates (W, 7). If validation data for X are at hand and an assumption
for the error distribution of U is made, one can proceed to estimate the distribution
of X | W, Z. This is very often not the case and one has to make a strong assumption
on the distribution of X and use the observations of W to estimate it. Therefore some
knowledge about the error process U that generated the observations W is needed.
In contrast to most applications which assume the error variances to be constant, we
allow for heteroscedastic measurement errors, that is, Var (U;) = o?,i = 1,...,n.
Our work was mainly motivated by a data set from a Swiss study (Minder and Vélkle,
1995), where registered (mortal) lung cancer cases (Y) were related to regional ave-
rage radon measurements (W) and other predictors (7). The observed mean values
W for regional radon exposure have to be regarded as proxy variables for an existing
true mean X of each region. Since the number of individual radon measurements
that were used to compute the average W for each region ranged from 16 to 511, the
errors cannot be assumed to be homoscedastic.

The aim of this paper is to show how a quasilikelihood approach can be used for a
count data model when one of the explanatory variables is subject to heteroscedastic
measurement error. The assumption of a finite mixture of normal distributions as the
marginal distribution for the latent variable X is very flexible and it is shown that
the derivation of a regression model in the observable variables remains tractable.
In the following section we will introduce the quasilikelihood model for a Poisson re-

gression and derive appropriate mean and variance functions when the latent variable



X follows a normal mixture distribution. In section three we will apply this approach
to the Swiss data. The impact of measurement error on the estimation results and

other related aspects will be discussed in the last section.

2 The Quasilikelihood Approach

The use of quasilikelihood techniques for regression models with covariate measu-
rement error has been widely discussed in the literature. One of the first general
approaches has been described by Armstrong (1985). Asymptotic results and a very
detailed discussion of quasilikelihood methods for different observed data structures
can be found in Carroll and Stefanski (1990).

For : = 1,...,n let Y; and Z; be the response and a vector of covariates measured
without error, X; denotes the unobservable regressor variable and W; the measured

surrogate. We assume an additive heteroscedastic error model,
W; = X; + U; with U; ~ N(0,0%) fori=1,...,n, (1)

where the U;’s are mutually independent, U; and (Y;, X;) are independent and the
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error variances o; are known or can be estimated from independent replications of
W;. The quasilikelihood approach only requires the specification of a mean and
variance function for the regression model, which will be denoted by f,, and f,. The
first step to obtain a quasilikelihood model in the observable variables is to set up
the "unobservable’” mean and variance function as it is implied by the distribution of

Y; given Z; and X;. We will write those first two conditional moments as

EY, | Zi,X:) = wu(Zi,Xi,3) for the mean and (2)

V(Y| Zi,X:) = o*(Z;,X;,3) for the variance (3)

function, where 3 is the vector of the regression parameters. In a more general formu-
lation the variance function depends on additional variance parameters v or/and is
expressed as a function of u, but as we will concentrate on a Poisson regression

merely, there is no need for a more general notation. To proceed to the mean



and variance functions for the observed data, f, (Z;,W;,8) = E(Y | Z;,W;) and
fo (Zi s Wi, 8) = V(Y. | Z;, W;), one iterates expectations and uses the nondifferential
error property. A quasilikelihood model in the observable variables can therefore be

stated as

E ILL(ZZ7XZ76) | ZHVVZ) and (4)
An unbiased estimating equation for g = (ﬂo,ﬂ/Z,ﬂX)/ is given by the ’quasi’ score-

function

= Ofun (Zi Wi ) Yi = fu (2 Wi B) N
(n) 6 — 9 9 9 9 — ) 6
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and the consistent quasilikelihood estimator Bql is found as the root of the equation

s(#) = 0. Its asymptotic normality is also established via the theory of unbiased

estimating equations and it holds that

Bu AN (B0 FTHBVB)IFTN(B)). (6)

The parts of the asymptotic covariance matrix of Bql are given by

P(@) = lim %E (_%22@) = lim lzn:E (-asm)> and  (7)

V(5) = lim eov (s (5)) = lim = S7E (s(9) (s(9) ). (3
It is estimated by
C/()V(Bql) = n_IF_l(Bql)v(gql)ﬁ_l(gql) with (9)
F(y) = - (z e ﬁ:@) and V(i) = - (z S |, )
(10)

Both, mean (4) and variance function (5) make use of the conditional distribution

of X given Z and W. If this distribution can be specified parametrically, it is in



principle possible to calculate them directly. In our case, we will state f,, and f,
under the assumption that the heteroscedastic error variances o? are given and that

the parameters of the marginal distribution of X can be estimated.

Model for the Poisson Regression

Fori=1,...,nlet Y; ~ Po(\;) with A\; = exp (8o + Z: 87 + BxX;). The underlying

‘unobservable’ regression model is given through
1 (Ziy Xi, B) = 0% (2, Xi, B) = exp (Bo + Z; 87 + Bx Xi) (11)

and by using the formulas as given in (4) and (5), it is easily seen that the mean and

variance functions of the ’observable’ model is of the form

E(Y | Z,Wi) = exp(fo+ Z:8z) - Elexp (Bx Xi) | Zi, Wi) and  (12)
V(Yi| Z,Wi) = exp(Bo+ ZiBz) - E(exp(xXy) | Zi, Wi)

+exp (280 + 27, 87) - B (exp (28x Xi) | Zi, Wh)

—[exp (Bo + ZiBz) - Elexp (Bx Xi) | Zi, Wi)]". (13)

Now expectations of the form E (exp (¢X;) | Z;, W;) have to be computed. To derive
closed form expressions for f,, and f, we will proceed in the following way: Under
the assumption of a structural model we state a parametric distribution for the latent
variables X;. From these we find the conditional distribution of X; given W; and, as
only normal distributions are involved, it is then possible to compute the conditional
expectation E (exp (¢X;) | Z;, W;).

We will model the distribution of the i.i.d variables X; ;¢ = 1,...,n, parametrically

as a mixture of normal distributions and write its density as
le(l'Z) = Z Ay @(xi |tk 7—13)7
k=1

where ¢(- | g, 77) denotes the normal density function with parameters p; and 2.
Finite mixture distributions provide a flexible class of distributions and often repre-

sent a more realistic choice in practice as they do not demand that the observed



variables come from one homogeneous population. As we will see later in the exam-
ple, the assumption of a mixture distribution was indicated by the observed data.
Additionally it is assumed that the latent variables X; are independent of the other
covariates Z;. The random variable of the k-th component of the mixture distribution
of X; will be denoted by Xj; with density ¢(z; | pr, 7). Since we have an additive
error model W; = X; 4+ U;, U; ~ N(0,0?), it is easily seen that the distribution of
W; is a mixture of normal distributions as well. Indeed we find that on each compo-
nent variance of that mixture distribution an heteroscedastic variance part induced
by the measurement error is added. Therefore the density of the k-th component
Wy of W, is given by p(w; | g, 72 + 0?). In order to find the conditional distribu-
tion of X; | W;, we simplify the notation and write the densities of X;, W; and U,
as fx,(x:i) = D50 ar fx (@), fw, (wi) = 2201, ar fw, (wi) and fu, (u;), respectively.
By applying a linear transformation to the joint density of X; and W, we find

fxowi(@iwi) _ Fxo(@i) foi(wi — @) 34 orfxp (@) fo(wi — @)
S (wi) S (w:) EZL 1 kS (wi)

Z EOékakl wz) kaz( )fU Wi — Z Z)\;mfckl (14)

7=1 a]fwjl( ) fsz(wZ

Ixaw, (@)

As can be seen from (14) the conditional distribution of X; given W; again is a
mixture of normally distributed random variables Cy;, &k = 1,. .., m with its associated
densities found by conditioning Xj; on Wy, for each k. The proportions Ag;, given by
Ay = Sk p(wi | p, 7 + 07F)
Sl agpwi |y, T 0?)

are the posteriori probabilities that the unobserved variable X; belongs to compo-

nent k when W; was observed. Furthermore it holds that Cy; ~ N(ug;, o) with its

parameters defined as

Tk
fri = [+ T o? (Wi — ) and
2
2 2 T
. = 1 — .
O Ty ( Tk2 n 0_22 )

Kiichenhoff and Carroll (1997) used a similar argumentation for a homoscedastic

measurement error model and a marginal mixture distribution with two components.



Now since X; given W, is a mixture distribution, we can rewrite the conditional
expectations required for the definition of the mean and variance function of the

quasilikelihood model and it holds that

E(exp (CXZ) | VVZ,ZZ) == Z )\sz (exp (CX]W) | Wk“ZZ)) (15)

k=1
The properties of the moment generating function for normal distributions enables

us to express these expectations as
E (exp (¢ Xpi) | Wi, Zi) = E(exp (¢ Cri)) = exp (e pug; + c*op; - 0.5). (16)

With this result and (15) plugged into (12) and (13) the derived model in the obser-

vable variables is given by

Ful Ze, Wi, B) = exp(Bo+ ZiBz)

Z Akiexp (Bx i + By - o7 - 0-5)] . (A7)

k=1

fU(ZhVVivﬂ) = fm(ZHVVMﬂ)_[fm(ZHVVMﬂ)]z
Z)‘kiexp (28x pi + 28% 'UZZ')] - (18)

k=1

+exp (280 + 27, 8z7)

This model is clearly different from the unobservable Poisson regression model
as stated in (11). Estimation is carried out by the usual iteratively reweighted
least square algorithm for mean and variance models and requires to differentiate
fm(Z;, Wi, 3) with respect to 5. For details on fitting methods for such models see
Carroll and Ruppert (1988).

3 Lung Cancer Data

In a recent study (Minder and Volkle, 1995) the objective was to find out if there
exists a positive association between regional average radon measurements and regi-
stered, mortal lung cancer cases. The study was carried out in Switzerland, which
was divided into 46 different regions. In each region the numbers of registered lung
cancer cases were given for each of sixteen age groups. Regional average values of ra-

don were obtained by repeated indoor measurements from different sites across each



region. Besides location the sites differed from each other by the type of building
and the chosen floor level. As the latent covariate X; we define the true average
radon concentration for region :. For each of the 46 regions a mean value W; was
obtained through n; single observations W;,, r = 1,...,n;. The sample variances S?
from these repeated measurements were given as well. The concentration of the radon
gas strongly depends on local geological and atmospherical conditions. Furthermore
the physical property of radon to decompose into other substances makes it difficult
to obtain exact values. The location of the measuring devices and the instruments
themselves are thus possible sources of measurement error. We will state the following
additive model for the measurement error process: each observation W;, is a proxy

variable for the true regional average X; and therefore we define for all ¢
Wi = X; + €, with E(¢;,) = 0 and Var (¢;,) = U?i forr=1,...,n;.

So we do not assume a particular distribution for the sampling errors ¢;,., we only
require that they have expectation zero and equal variances. For the observed values
W; = ni! Yo Wy = Xo + U with U; = n;t >t €, the central limit theorem

permits us to assume a normal error distribution and we write

W: = X; + U; with UZ'NN(O,UZZ) fore=1,...,46.

Its easily seen that the error variances o2 = UZ /n; are different for each region, even

. =

2

when o2 = o2 for i = 1,...,46, since they depend on the number of measurements
n; as well. This number n; varies regionally from 16 to 511 observations and for the
estimated error variances 67 = S?/n; we find 67 € [0.769,426.983]. The estimates &7
will be treated as the variances o7, which we formerly assumed to be known. Figure 1
shows a scatterplot of the regional radon averages versus the estimated standard de-
viations &; of their error distributions. Marked by triangles and squares are averages
computed from less, respectively, equal or more than one hundred single measure-
ments. The plot clearly shows the heteroscedastic pattern of the error variances and
although it is obvious that &7 will tend to zero if n; increases, this data show enough

variability within each region to produce nonignorable measurement error. In the ori-

ginal study a number of Poisson regression models for different subgroups of the Swiss



population were estimated. We will restrict our analysis on that model that includes
all Swiss women only. The response variable is the number of registered mortal lung
cancer cases in region ¢ and age interval 5 and will be denoted by Y;;. As described
above the predictor of main interest, the regional average radon concentration X;,

could only be observed through the surrogate W; with known error variances o?.
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Figure 1. Scatterplot of the regional radon averages against their error standard

deviations. The triangles and squares indicate if n; < 100 or if n; > 100.

The correctly observed covariables are the population under risk N;; and age A;
measured as the transformed midpoint of the j-th age interval, which equals zero for
women between 15 and 19 years, equals one for age between 20 and 24 years, a.s.o..
Additionally an indicator variable C; of the regional structure (1 for urban, 0 for
rural) is given. The observed data structure for the regression model is summarized
in Table 1. The 'unobservable’ loglinear offset regression model relates the proportions
Yi;/Ni; to the covariates Z;; = (I,Aj,A?,Ci)’ and X, so that the logarithm of the

first conditional moment of Y}; given N;;, Z;; and X; can be written as
In (g (Nij, Zi, X, 3)) = In(Nij) + Bo 4 Bar Aj + BazA? + BeCi + Bx X,

and (11) holds.
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j-th age group (j=1,...,16): A;

i-th region (i=1,...,46): | Yi; ... registered lung cancer cases

W; with o2, C; | N;; ... population under risk
Table 1. Data structure of Swiss Study: observed variables.

Figure 2 shows the regional radon averages plotted against In (Yi;/N;;). The regions
considered as urban are marked by triangles. The plot itself gives no clear hint for
the presence of an effect of radon on the occurrence of lung cancer. Markedly visible
is the characteristic of the radon averages to appear in three distinct clusters. The
main part of the data clusters around 50 Bq/m?, the second group scatters around
100 Bq/m? and on the right hand side of the plot are four regions with averages above
200 Bq/m®.
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Figure 2. Scatterplot of In(Y;;/N;;) against the observed radon averages W;.
Regions considered as urban/rural (C; = 1/0) are marked by triangles/stars.
As the marginal distribution of the true radon averages X; we assume a normal

mixture distribution with three components. Maximum likelihood estimates of the
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parameters were obtained by applying an EM algorithm to the observed radon means

W; The results are shown in Table 2, for more details see Thamerus (1996).

Component 1 Component 2 Component 3

proportions ay  0.6225  (0.0815) 0.2905 (0.0776)  0.0870 (0.0416)
means 497573 (1.8943) 94.2082 (6.4696) 254.5958 (13.9715)

stand. dev. 7, 8.4732  (1.4605) 15.5282 (5.3460) 25.3031  (11.4102)

Table 2. FEstimation results for a three component normal mixture distribu-
tion of the true radon means. Standard errors are given in brackets.
A naive estimator for 3 = (o, Ba1, Baz, Bc, fx) was originally obtained by replacing
X; with the observed averages W;. It is well known, that this method yields incon-
sistent estimates. The estimated regression coefficients of the quasilikelihood model
are found by applying an IRLS algorithm to the model given through the mean and
variance functions (17) and (18). These estimates are presented in Table 3 together

with those of the naive approach .

naive model quasilikelihood model

variable B se P B se P

-11.78876  0.15535 0.00000 -11.79294 0.15522 0.00000
age 0.98625 0.03276 0.00000 0.98624 0.03276  0.00000
age**2 -0.03688  0.00172 0.00000  -0.03688 0.00172 0.00000
urban 0.42568 0.03223  0.00000 0.42693 0.03199 0.00000

radon 0.00072  0.00038 0.05652 0.00078 0.00037 0.03387

Table 3. FEstimation results for the regression model of the Swiss lung cancer
data. Given are the estimated regression coefficients, their standard errors and

associated p values.
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For the naive procedure we found that the null hypothesis for the presence of a
radon effect could not be rejected on a 5 % significance level. Note that the statisti-
cal inference is different for the quasilikelihood model that considers the individual
measurement errors. Relative to their standard errors, both models produce similar
results for the correctly observed covariates age, age squared and the urbanization
indicator. The estimated radon effect of the quasilikelihood model however is greater
than the one obtained from the naive model and its accompanying p value confirms a
significant effect for the radon variable at the 5 % level. This difference in the p values
of the two models is explained by the almost identical values of their standard errors.
As a result we may state, that for this particular model, the naive estimation me-
thod finds a non-significant radon effect and that in comparison, the quasilikelihood

approach leads to a different result.

4 Discussion

Most epidemiologists will confirm that age and smoking status have the strongest
effects on the occurrence of lung cancer and that in this data set the absence of an
appropriate smoking variable produces misleading results. This issue is also discussed
in the original paper of Minder and Volkle (1994). They compared their estimation
results of separate models for distinct age groups under the alternative assumptions
whether the overall smoking behavior of the population remained constant or was
dynamic. Since there is no information that smoking will be a confounding factor for
radon we cannot contribute anything new to this discussion.

We will rather concentrate on two other topics. The first one is about the asymptotic
covariance matrix of Bql- In our model the parameters of the distribution of X;, for
simplicity denoted by ¢, are treated as known. The ’sandwich’ estimator (9) that was
used to estimate the covariance of Bql does not consider the estimation of 6. According
to Liang and Liu (1991) an estimator of similar form as (9) for the covariance can be
constructed if V(Bql) is replaced by a term that contains one part for the estimation

of # and an additional part for the estimation of 6. It remains open whether the
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estimated standard errors for Bql would increase significantly if the additional part
was used.

A very common method to describe the degree of attenuation of the estimated regres-
sion coefficients in the presence of measurement error is the definition of a ratio that re-
lates the error variance to the variance of the latent variable X. If the error variance is
homoscedastic, the so called noise-to-signal ratio of X, that is v = Var (U;)/Var (X;),
is often used (see e.g. Fuller, 1987). As our error model W; = X; + U;, U; ~ N(0,0?)
is heteroscedastic, we will use this idea to define a mean noise-to-signal ratio of X
as Y, = n~ 'Yy of/Var (X;) and estimate it by replacing Var (X;) = o% with an

estimate and make use of the known error variances o?.

The latent variables X;,72 = 1,...,n were assumed to be 1.i.d. variables of a mixture
of normal distributions, so we write X; ~ Miax NV (1, ..., Qo fi1y .o fluny Toye ooy T2)

and suggest two ways of estimating c%. The first method uses the estimated para-
meters of the mixture distribution from the EM algorithm. Let H; be a classification
variable that defines to which component of the mixture X; belongs. Then the va-

riance of X; can be found by
Var (X;) = E(Var (X; | Hi)) + Var (E(X; | Hi)) =Y axmi + > axlpe — p)’
k=1 k=1

where p = E (X;) = Y1, agpg. The ML estimate 6% is simply obtained by replacing
the distribution parameters with its estimates. The method of moments uses the

sample variance S, of the observed variables W; and an estimator for % is found by

1 n

n —

2 Q2 § 2
=1

n

It is easily seen that s% is unbiased. This estimator is of great practical use since it
can be computed without any knowledge of the distribution of the latent variable X.
Most variation in X is caused by the four radon means that constitute the third
component of the mixture distribution. To get an idea of the measurement error
effect on the estimation results we performed an experiment and removed the four
regions with radon averages above 200 Bq/m® from the data and fitted a normal

mixture distribution with two components to the remaining averages. Table 4 gives
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the estimated variances and mean signal-to-noise ratios for the original Swiss radon

data (three components) and the reduced data (two components).

three components: n =46 two components: n = 42

variance ratio variance ratio
oy 3448.6645 0.0137 554.2709 0.0675
33( 3383.6864 0.0139 554.5751  0.0675

Table 4. Estimated variances and mean noise-to-signal ratios of X for the
three components mixture model (full data) and the two components mixture

modell (four data points omitted).

The ratios for the full data model are rather small, a fact which is mainly caused by
the different locations of the three components of the mixture. Therefore the impact
of measurement error on the estimated radon effect is small and the naive estimator
is only little biased. That the error variances influence the estimation results can be
seen from the model of the observed data, given in (17) and (18). Both functions
depend nonlinearily on the ratios o?/7? and the location parameters p;, through the
conditional moments py; and o;.

The mean noise-to-signal ratios for the reduced data (two components) are appro-
ximately five times bigger than those for the original data and the biasing effect of
measurement error on the naive estimates should be seen more clearly. Indeed, we
computed the regression coefficients for the naive and the quasilikelihood regression
for those data and got estimated radon effects of BXMM'U@ = —0.00086 (0.00087) for the
naive and BX,ql = —0.00048 (0.00091) for the quasilikelihood model (with standard
errors given in brackets). Relative to their standard errors those two estimates differ
from each other by a factor around two. Not surprisingly this example also reveals
that the positive effect of radon as it was found by the full data model, disappears

once the four highest radon exposed regions are not considered.
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Quasilikelihood models are useful tools to analyze regression models when some of the
covariates are subject to measurement error. Collecting repeated measurements of
the erroneous regressor variable provides additional information on the measurement
error process and is recommended to the researchers. If the marginal distribution of
the latent variable is normal or a mixture of normal distributions, even a heterosce-
dastic error structure can be embedded into a quasilikelihood model for count data.
Especially weak effects like the discussed effect of radon exposure on lung cancer can

be detected by a model that considers the individual measurement error.
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