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Summary

We propose a new method for estimation of unknown functions within the gen�

eralized linear model framework	 The estimator leads to an adaptive economical

description of the results in terms of basis functions	 Our proposal extends the

soft�thresholding strategy from ordinary wavelet regression to generalized linear

models and multiple predictor variables	 Several sets of basis functions� tailored

to speci�c purposes� can be incorporated into our methodology	 We discuss

semiparametric statistical inference based on generalized soft�thresholding	 An

algorithm which produces a sequence of estimates corresponding to increasing

model complexity is developed	 Advantages of our approach are demonstrated

by an application to German labour market data	

Some key words� Generalized additive models
 Penalized Likelihood
 Semipara�

metric models
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� Introduction

During the last decade� developing �exible statistical models and methods to

analyze them have been a topic of very active statistical research interest	 There

have been at least two main directions of methodological investigation	 On the

one side� smoothing procedures have been developed to allow for multiple pre�

dictors x�� � � � � xp and response variables y distributed according to a simple

exponential family	 For example� roughness penalty approaches are discussed

in Hastie and Tibshirani ������ ������� Wahba ������� Green and Silverman

������ and Wahba� Wang� Gu� Klein and Klein ������	 One alternative is the

principle of local likelihood estimation� which has been considered by Tibshirani

and Hastie ������� Staniswalis ������� Fan� Heckman and Wand ������ and Tutz

and Kauermann ������	 As a common feature� smoothing methods incorporate a

smoothing parameter that controls model complexity� i	e	 the smoothness of the

predictor functions	 This bias�variance trade�o� parameter acts continuously on

the estimate	 By continuous� we mean� that a small change of the smoothing

parameter has only limited impact on the estimate	

On the other side� adaptive basis function approaches have been proposed in

Friedman and Silverman ������� Friedman ������� and Stone� Hansen� Kooper�

berg and Troung ������	 Those techniques select an appropriate set of basis

functions by forward selection � backward deletion strategies	 For a given set

of basis functions� corresponding coe�cients are determined by least�squares or

maximum likelihood estimation	 The bias�variance trade�o� is governed by the

selection procedure� that controls the number of basis functions included	

Basis function approaches have several attractive features� They give a com�

pact output in terms of few basis coe�cients contributing to the estimate	 Models

reduce to simple parametric form� if the data suggest that such models are ad�

equate	 Due to their parsimonious representation� familiar quantities� such as

correlation measures� can be transferred from classical parametric models	 By

specifying an appropriate set of basis functions� the procedure can easily be tai�

lored to speci�c purposes	 For example� basis functions allowing for jumps and

breakpoints within the estimates might be supplied to the estimator	

There are also some disadvantages of adaptive basis function methods� as
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with many variable selection techniques	 They tend to produce highly variable

estimates	 Moreover� a small change of the parameter governing the selection

process may result in a rather di�erent model	 When interpreting the estimate�

this variability might lead to substantially wrong conclusions	 Since the selection

process and the estimation is based on the same data set� the estimates can be

seriously biased	 Once a basis function is selected� its contribution tends to be

overestimated	

In this paper� we propose a general method for estimating functions within

the generalized linear model setup	 The proposed estimator yields an adaptive

economical description of the estimates in terms of basis functions	 However it

shares the stability of smoothing procedures	 Our proposal is based on soft�

thresholding estimators� which have become popular in the context of wavelet

regression� compare Donoho and Johnstone ������� Nason and Silverman �������

Donoho� Johnstone� Kerkyacharian and Picard ������ and Bruce and Gao ������	

This work transfers the soft�thresholding idea to generalized linear mod�

els and multiple predictor variables	 In contrast to variable selection� soft�

thresholding provides a uni�ed framework for selection of basis functions and

estimation of corresponding coe�cients	 The trade�o� parameter acts contin�

uously on the estimate	 As will be demonstrated in the subsequent sections�

the generalized soft�thresholding methodology nicely combines the stability of

smoothing procedures with the adaptivity and interpretability of basis function

approaches	

��� Varying�coe�cient models

Suppose� we observe a one� or multidimensional response variable y and a set

of metrical and categorical explanatory variables X	 We assume that y given X

follows a simple exponential family with density function

f�y� �� � exp

�
y� � b���

�
� c�y� ��

�
� �����

where b and c are given functions with b twice continuously di�erentiable and the

natural parameter � � ����X�� depends on the predictor values	 The nuisance

parameter � is considered as �xed and may be estimated separately� if necessary	
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Generalized linear models are discussed in detail in McCullagh and Nelder ������

and in Fahrmeir and Tutz ������� for multivariate responses	 Models of this type

include� for example� the logit and probit models for binomial responses� log�

linear models for count data and cumulative logistic models for discrete ordinal

responses	

Flexible extensions of generalized linear models start with a linear parametric

speci�cation

��X� � � � ��x� � � � �� �pxp

for the predictor	 Weakening the stringent assumption of linearity we obtain

generalized additive models or GAM�s� �Hastie and Tibshirani �������	 The

predictor for GAM�s have additive structure

��X� � � � ���x�� � � � �� �p�xp�� �����

with e�ects �j varying smoothly in xj� for j � �� � � � � p	

Combining GAM�s with state�space extensions of generalized linear models

�Fahrmeir and Kaufmann ������� Fahrmeir and Tutz ������� Ch	 �	� leads to

varying�coe�cient models as introduced by Hastie and Tibshirani ������	 This

framework assumes the e�ects of covariates zj� j � �� � � � � p� possibly constructed

from basic covariates xl � X� l �� j� as smooth functions �j�xj�� xj � X j �

�� � � � � p	 Extending the predictor of generalized linear models to

��X� � ���x�� � ���x��z� � � � � � �p�xp�zp� �����

varying�coe�cient models are a valuable tool for exploring interactions between

covariates zj and their e�ect�modi�ers xj	 Semiparametric models� where x� �

� � � � xp � �� generalized linear models for time series or event history data and

generalized additive models are obtained as important special cases of �����	

��� Outline of the paper

A basis function approach is used for estimating varying coe�cients in �����	

Each single function is described by

�j�xj� �
X
k

cjk	k�xj�
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in terms of basis functions 	k�xj�	 Basis coe�cients cjk� which are not evident

from the data become thresholded to zero	 Remaining coe�cients contribute to

the estimate ��j�xj�	

In preparation� we review the basic idea of soft�thresholding of wavelet coef�

�cients in Section �	 To transfer the wavelet estimator to non�Gaussian situa�

tions� an alternative de�nition of soft�thresholding using estimating equations is

introduced	 For simplicity� we consider �rst estimation of a univariate response

function in the generalized linear model framework	

The generalized soft�thresholding estimator proposed in Section ��� is derived

by incorporating log�likelihood score functions into the estimating equations	 By

its general de�nition� the estimator can be used in connection with any set of

basis functions	 Orthogonality is not required and di�erent sets of basis functions

can even be combined to describe a varying coe�cient	 Based on an equivalence

of generalized soft�thresholding and absolute penalized likelihood estimation we

propose an analogue to spline smoothing	 This analogue provides results similar

to smoothing splines� by having an economical representation in terms of basis

functions	 Along with the methodological development we illustrate the �nite

sample performance of the estimator by presenting simulation studies within a

log�linear Poisson model	 Locally adaptive function estimation using one�sided

spline basis and wavelets is discussed brie�y	

In Section � the concept of generalized soft�thresholding is extended to allow

for simultaneous estimation of several functions within the varying�coe�cient

model	 Some attention is directed to keep the number of trade�o� parame�

ters small	 We propose a scaling procedure in Subsection ���	 This procedure

determines the smoothness of the varying coe�cients by employing score test

statistics	

To obtain further insight into the model and its e�ects� we derive a quadratic

approximation to maximum likelihood tests in Section �	 In a semiparametric

fashion� this test can be used formally when basis functions used to test are

speci�ed in advance	 Informally� we use the resulting test statistics to suggest

presence of certain components in the model	 The parsimonious form of the

estimator allows to compute an inverse information matrix with respect to basis
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coe�cients cjk	 Further insight into estimation results is provided by analyzing

the corresponding correlation matrix	

We propose to look at the estimator as a function of the trade�o� parameter	

This parameter controls the complexity of all e�ects simultaneously	 An e�cient

algorithm for computing a sequence of estimates corresponding to increasing

model complexity is developed in Section �	

The advantages of our approach in practical data analysis are demonstrated in

Section �� where we apply the proposed methodology to German labour market

data	 Our main interest is the e�ect of gender on the probability for leaving

unemployment	 Where possible� the output of generalized soft�thresholding is

presented as a function of the trade�o� parameter	 Hereby we achieve more

transparency in communicating results	

� soft�thresholding estimates for Gaussian errors

To review the basic ideas of soft�thresholding� suppose we are given n observa�

tions �xi� yi� satisfying

yi � ��xi� � 
i�

where the 
i are independently distributed as N��� ���	 To recover ��x� from the

data� let us assume that ��x� can be well approximated by a few basis functions

from a set of orthogonal basis functions f	k�x�gnk��	 If ��x� is homogeneously

smooth in the sense of the some squared derivative� orthogonal Demmler�Reinsch

splines� as discussed in Subsection ���� yield a parsimonious approximation	 More

generally� a wide variety of functions� e	g	 those that are piecewise smooth having

some discontinuities and those having inhomogeneous smoothness properties can

be parsimoniously approximated by the set of wavelet basis functions� see Donoho

and Johnstone ������ and Donoho et al	 ������ for details	 Periodicity of ��x�

may easily be employed using orthogonal trigonometric polynomials as described

in the example	

Let Z be a n � n matrix with i�th column created by evaluating

	��x�� � � � � 	k�x� at the i�th sample point	 In case of Demmler�Reinsch splines

Z is an orthonormal matrix	 For wavelet functions� orthonormality of Z holds

provided n is a power of �� xi � i�n� and appropriate boundary conditions are
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incorporated	 Applying the orthogonal transform �c � Z �y� for y � �y�� � � � � yn��

we obtain empirical coe�cients �ck of the basis functions satisfying

yi �
nX

k��

�ck	k�xi��

With ��xi� �
Pn

k�� ck	k�xi� we have �ck � ck � �
k� where �
k are independently

identically distributed N��� ���	 Hence� if an empirical coe�cient is small com�

pared to �� then it consists mainly of noise	 Moreover� due to the parsimonious

approximation of ��x�� we know that only a small fraction of the ck�s are substan�

tially di�erent from zero	 This leads to the following continuous soft�thresholding

estimator
�ck � sgn��ck� max��� j�ckj � 
��

� sgn��ck��j�ckj � 
����
�����

where �ck are pulled towards zero by 
�� 
 � �	 Empirical coe�cients �ck with

absolute value smaller than the noise level 
� are exactly set to zero	 The

estimate ���x� of ��x� is easily obtained by back transforming �� � Z�c� �� �

����x��� � � � � ���xn���	

To extend soft�thresholding to more general models in section ���� it is conve�

nient to express the estimator ����� in terms of estimating equations	 Introducing

ek � �ck � �ck� soft�thresholding �c � ��c�� � � � � �cn�� implicitly is de�ned by

jekj � 
� if �ck � ��

ek � 
� if �ck � �� �����

ek � �
� if �ck � ��

Compared to normal equations from linear models� where ek � �� the estimating

equations ����� allow for ek �  �
�� 
�!	 When the absolute ek is smaller than

the threshold 
� for �ck � �� we use �ck � � as estimate	 Otherwise� we chose from

all �ck having ek �  �
�� 
�! that one which comes closest to �	

Donoho and Johnstone ������ study the risk of soft�thresholding of the form

����� measured by quadratic loss at the sample points	 From their work we

conclude that soft�thresholding has superior performance when only few basis

functions 	k�x� contribute essentially to ��x� as assumed above	 In case of

correlated errors� where �c is distributed as N��� V �� Johnstone and Silverman
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������ derive similar results for a coordinate�wise soft�thresholding with � in

����� replaced by �Vkk�
��� � �V ar��ck��

���	

� Estimation of a univariate regression function in generalized

linear models

For simplicity� we consider �rst a model where E�yijxi� � h���xi�� for i �

�� � � � � n� and h is a prespeci�ed response function	 Our aim is to recover ��x�

from the data	 Assuming that yi is distributed according to a given exponential

family as in ������ the log�likelihood contributions of each observation have the

form li��i� � �yi�i � b��i����i� where �i is some function of the predictor i	e	

�b��i����i � h���xi��	 Summing up over i yields the log�likelihood of ��x� given

the data�

l��� �
nX
i��

fyi����xi��� b�����xi���g��i� �����

Unrestricted maximum likelihood estimation of ��xi� is then obtained by equat�

ing the score functions

si��� � �l������xi�

� D���xi����
����xi��fyi � h���xi��g� �����

to zero	 Here �����xi�� denotes the variance of yi and D���xi�� �

�h���xi�����xi�	 From ����� follows that an unrestricted maximum�likelihood

estimator satis�es h��ML�xi�� � yi when it exists and thus stochastic errors from

the observations are not eliminated leading to large variances of �ML�xi�	 To

suppress the noise in the estimator� modi�cations of the maximum likelihood

principle are necessary	

��� Generalized Soft�thresholding

Analogous to Section � let us assume that ��x� can be parsimoniously represented

by a set of basis coe�cients for 	k�x� as ��x� �
Pn

k�� ck	k�x� and let

sk�c� � �l�����ck

�
nX
i��

	k�xi�si��� �����
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denote score functions for each basis coe�cient	 Now suppose that� ch � � for

some h� then by ��x� �
P

k ��h ck	k�x� and E��si���� � � we have E��sh�c�� � �	

Thus we expect that sk�c� varies around zero� if ck is not very distinct from

zero	 This gives a �rst intuition about the generalized soft�thresholding es�

timator	 For generalized linear models with non increasing score functions

��si�������xi� � �� the estimator �c � ��c�� � � � �cn�� is de�ned by its components

�ck� satisfying simultaneously one of the following conditions

jsk��c�j � 
�k if �ck � ��

sk��c� � 
�k if �ck � �� �����

sk��c� � �
�k if �ck � ��

with 
 � � a given trade�o� parameter	 In the modi�ed score equations ������

we have replaced the left side of the estimating equations ����� by the score func�

tions sk��c�	 The de�nition ����� is general in the sense� that it applies to response

variables distributed according to an arbitrary exponential family	 Moreover� we

no more assume orthogonality of a design matrix built up by point evaluations

of basis functions	 Basically� generalized soft�thresholding has two ingredients�

A set of basis functions together with a sequence of possibly di�erent thresh�

olds� ��� � � � � �n	 Since in general� the score functions sk�c� are not identically

distributed random variables we allow for separate thresholds for each basis func�

tion as in the coordinate�wise thresholding of Johnstone and Silverman ������	

For �k � �� the conditions ����� reduce to the common maximum likelihood

score equation sk��c� � � for coordinate k	 Possible speci�cations for �k will be

discussed subsequently in the text	

Figure � �a� illustrates generalized soft�thresholding for a logit model with

n � �	 The estimator corresponds to the intersection of the score functions with

the step function 
�ksgn�ck�	 In Figure � �b� we plotted the generalized soft�

thresholding estimate against maximum likelihood estimates	 For the outer left

and outer right intersection point� corresponding to y � � and y � ��� respec�

tively� the maximum likelihood estimator diverges	 The heuristic of generalized

soft�thresholding is that� if a coe�cient �ck in ����� is set to zero� its score func�

tion or slope of the log�likelihood sk�c� evaluated at �ck � � is smaller than 
�k	

Hence a maximum likelihood estimator cML
k given �c�� � � � � �ck��� �ck��� � � � � �cn is also
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Figure �� Univariate generalized soft�thresholding in a logit model	 Score func�

tions corresponding to a B���� p� distribution are drawn in �a� for y � �� � � � � ��	

In �b� the generalized soft�thresholding estimator with 
�k � ��� is plotted

against maximum likelihood estimates	

close to zero� or the likelihood is �at in this direction leading to a big variance

of cML
k 	 Therefore including this coe�cient cannot increase the likelihood more

than inclusion of a covariate contributing mainly noise� and thus this coe�cient

is omitted	 By adding a noise level 
�k to the score function� non�zero coef�

�cients are pulled towards zero compared to cML
k � which causes some bias	 In

������ the bias variance trade�o� is explicitly expressed by the parameter 
	 We

distinguish between two sources of bias� Some bias is due to the approximation

of ��x� by only some basis functions� regardless of the estimation procedure used	

This kind of bias is referred to as approximation bias	 Considering only the set

of non�zero coe�cients� additional bias is caused by equating the score functions

as sk��c� � 
�ksgn��ck�	 In the following� this kind of bias is termed estimation

bias	 Both sources of possible bias are controlled by the trade�o� parameter 
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��� Penalized likelihood estimation and spline smoothing

In this subsection we discuss a speci�c set of basis functions together with a

threshold sequence that mimics generalized spline smoothing	 Within the penal�

ized likelihood setting one tries to balance between �delity to the data measured

by the log�likelihood and roughness of the estimate	 A popular penalized likeli�

hood estimator is de�ned as the maximizer of

l���� 

Z

��m�u���du �����

over all functions in

Wm � f� � � has m� � absolutely continuous derivatives andZ
���m��u���du ��g�

O�Sullivan� Yandell and Raynor ������ and Green and Silverman ������ showed

that the maximizer of ����� is a natural spline with knots at the design points

x�� � � � � xn	 A speci�c basis for such smoothing splines was introduced by Demm�

ler and Reinsch ������� see also Eubank ������� Ch	�	 This orthogonal Demmler�

Reinsch basis f	k�x�gnk�� consists of natural splines satisfying

nX
i��

	k�xi�	j�xi� � �kj�

Z
	
�m�
k �u�	

�m�
j �u�du � �kj�

�
k� �����

� � �� � � � � � �m � �m�� � � � � � �n�

where �kj � Ifk � jg	

Figure � shows some of the Demmler�Reinsch functions computed by solving

the corresponding eigenvalue problem as described in Eubank�s book	 The �rst

basis functions 	�� � � � � 	m with ��� � � � � �m � � span the space of polynomials of

order m	 For k � m� 	k has exactly k� � oscillations and its contribution to the

penalty �k increases with k	

Assuming ��x� �
Pn

k�� ck	k�x� together with ����� yields
R

���m��u���du �P
��kc

�
k and the penalized likelihood criterion ����� can be written as

lp�c� � l���� 

nX

k��

��kc
�
k� �����

��
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Figure �� Demmler�Reinsch basis functions 	�� 	� �solid� 	�� 		� 	�� �dashed�

and 		� �dotted� for m � �� n � ���	 �a� Equidistant design points	 �b�

Integrated squared curvature of 	k for equidistant xi	 �c� Uniformly distributed

design points	 �d� Integrated squared curvature of 	k for uniformly distributed

xi	
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By ����� spline smoothing has the form of a generalized ridge estimator for the

basis coe�cients ck� where no shrinkage applies to the null space spanned by

polynomials of order m	 Now� as inherent with smoothness� suppose that ��x�

is not too rough in the sense of
R

���m��u���du	 Since ��k increases rapidly with k�

it follows from ����� that most coe�cients are near zero	 As a consequence we

get a parsimonious approximation of smooth ��x� by only some of the �rst basis

functions characterizing few sign changes or lower frequencies	

Figure � is typical for this situation� For the �rst function� having one max�

imum� the main systematic is described by the �rst three 	k having up to two

sign changes	 The second� more complex shaped function is well approximated

by the basis functions f	�� � � � � 	
g	 In both situations� only few basis functions

are necessary to keep the approximation bias reasonable small	

To recover systematics of the unknown function ��x�� we proceed by selecting

only those basis functions which contribute essentially to ��x� and estimate their

coe�cients ck	 This problem can be approached by introducing positive weights

wk in ������ leading to the weighted penalized likelihood criterion

lp�c� w� � l���� 

nX

k��

��kc
�
k�wk�

nX
k��

wk � �� �����

In ����� a coe�cient having small weight is strongly penalized� leading to ck � �

as wk 	 �� whereas a coe�cient with relatively big weight is less penalized

compared to �����	 Incorporating evidence from the data� we choose �wk as max�

imizer of lp�c� w� over w � IRn	 Langrangian calculus shows� that �wk becomes

proportional to �kjckj for ck �� �� �k � �	 Substituting wk � �kjckj into ����� and

demanding for a continuous penalty not penalizing ck � �� we obtain an absolute

penalized likelihood estimator maximizing

lo�c� � l���� 

nX

k��

�kjckj� �����

which is also considered in Tibshirani ������ in the context of variable selection

and shrinkage	 The connection to soft�thresholding can be stated as follows�
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Figure �� Coe�cients of Demmler�Reinsch splines interpolating at hundred uni�

formly distributed sample points xi	 �a� ���x� � x������x� �solid� and approxi�

mation to ���x� using 	�� 	�� 	� �dashed�	 �b� coe�cients of ���x� plotted versus

number of oscillations	 �c� ���x� � sin���x�� � ��� and approximation to ���x�

using 	�� � � � � 	
 �dashed�	 �d� coe�cients of ���x� plotted versus the number of

oscillations	
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Proposition �� A maximizer of the absolute penalized log�likelihood ����� is nec�

essarily a generalized soft�thresholding estimator as de�ned in �����	 Moreover�

let ZB be a design matrix with columns composed by only those basis functions

	j�xi� where j � fk � �ck �� �g and let H��� � ��l���
�����

be the Hessian with respect

to �	 Then� if �Z �
BH����ZB is positive de�nite at �c� generalized soft�thresholding

is su�cient for a strict local maximum of the absolute penalized log�likelihood

�����	 �Proof in Appendix�

Since generalized soft�thresholding can be described as a penalized likelihood

estimator incorporating a convex penalty function� existence and uniqueness is

guaranteed also in cases where unrestricted likelihood estimation fails	 As stated

in Proposition �� full rank is only required for a submatrix ZB of the actual

design matrix Z� which is de�ned by non�zero coe�cients �ck �� �	 Therefore� it

is even possible to supply a design matrix Z where columns are not independent

and also di�erent sets of basis functions can be combined in one design matrix	

In practice� the non�zero pattern of the coe�cient vector �c depends in a complex

way on the threshold sequence and on the actual data	 Consequently� uniqueness

conditions are di�cult to check a priori and we recommend to watch convergence

of the algorithm proposed in Section �	

So far� we have restricted attention to spline�smoothing	 If we were in fa�

vorite of an alternative smoothing operator� we can adopt the ideas in Hastie

������ leading to pseudo splines	 Basically� any linear smoother providing a

symmetric smoothing matrix S�
� can be used in connection with generalized

soft�thresholding	 Within this framework� the point evaluations of the basis

functions� 	k�xi� correspond to the eigenvectors of S�
�� and the threshold se�

quence is built up by the eigenvalues ��k � ��� �! of S�
� as 
�k �
�
����k � �

����
	

Avoiding expensive eigendecompositions� Hastie gives an e�cient algorithm for

approximating the �rst eigenvalues and eigenvectors based only on applications

of a given smoother	 Computing the pseudo eigendecomposition of a speci�ed

smoother having desirable characteristics� generalized soft�thresholding can be

customized in many ways	 When many design points xi are involved� compu�

tation of Demmler�Reinsch splines by expensive eigenvalue decompositions be�

comes too demanding	 Then the pseudo spline algorithm provides an attractive

��



alternative for approximating the �rst basis functions and thresholds needed	

To assess properties of the estimator� we compare it to spline�smoothing in

a log�linear Poisson model	 The observations yi are distributed according to

yi 
 Po fexp���xi��g and hundred xi were drawn from the uniform distribution

U��� ��	 Figure � shows the results computed from ���� simulations using the

"true� functions ���x� and ���x� already considered in Figure �	 To neglect in�u�

ences of the trade�o� parameter in interpreting results� the smoothing parameter

is chosen to minimize
P

�����xi�� ��xi��
� over 
 in each run	 In Figure � �c� we

can see� that for a function having constantly low second derivative� apart from

the boundaries the bias is quite small for both methods	 At the right boundary�

soft�thresholding has a slightly lower bias compensated by a bigger variance�

shown in Figure � �e�	 For the more wiggly function ���x�� Figure � �d� re�ects

the well�known fact� that the bias of cubic smoothing�splines is higher in areas

with high curvature of ���x�� compare Figure � �c�	 This high curvature region

at x � ��� mainly is described by 	k with k between � and � having rather big

coe�cients ck	 Generalized soft�thresholding shows reduced bias there� because

it penalizes those coe�cients less	 Considering the representation as weighted

penalized likelihood estimator from ������ generalized soft�thresholding puts in�

creased weights on those ck contributing to the curvature at x � ���	 Conse�

quently� we observe a local reduction of bias and an increase of variance in this

region� shown in Figure � �f�	 As conclusion we state that by reducing the ex�

plicit dimension� the soft�thresholding methodology produces estimates having

about the same mean squared error than spline�smoothing	 In the simulation

shown� the median number of non�zero coe�cients for estimating ���x� was ��

whereas for ���x� a median number of �� coe�cients were estimated unequal to

zero	

��� Locally adaptive function estimation

In the last subsection� we considered ��x� to be homogeneously smooth and

obtained a parsimonious approximation by Demmler�Reinsch splines	 Now� sup�

pose we want to recover another though simply structured function of the form

��x� � Ifx � xkg for some k	 In the Demmler�Reinsch domain� such a ��x�

��
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Figure �� Squared bias and variance of generalized soft�thresholding and spline�

smoothing computed from ���� simulations	 One simulated data set and true

mean function exp����x�� in �a� and exp����x�� in �b�� respectively	 Squared bias

of generalized soft�thresholding �solid� and spline�smoothing �dashed� are drawn

in �c� for ���x� and in �d� for ���x�	 Corresponding variances of the estimates

are showm in �e� and �f�� respectively	

��



has a quite disadvantageous representation	 Similarly to the approximation of a

heaviside function by trigonometric polynomials� a high frequency component is

needed to describe the jump at xk� whereas for compensating this high frequency

component outside of xk many non�zero coe�cients have to be employed	

Clearly� the set of indicator functions itself� 	I
k�x� � Ifx � xkg provides

a most parsimonious approximation for such problems and one simply might

supply f	I
k�x�g� k � �� � � � n to the generalized soft�thresholding estimator �����	

By ��xi� �
P
ck	

I
k�xi� �

P
k�i ck we have ci � ��xi� � ��xi��� and therefore�

generalized soft�thresholding corresponds to a maximizer of the penalized log�

likelihood criterion

lo��� � l���� 

nX
i��

�ij��xi�� ��xi���j � 
��jc�j� ������

in this situation	 The threshold sequence may be chosen constantly� �i � ��

i � �� � � � � n or according to the distance of the design points� as �i � �xi�xi���
���

for example	 For the �rst basis function �� � � is a suitable choice� since

	I
��x� � � corresponds to a global intercept term	 Examining a representa�

tion as weighted penalized log�likelihood estimator as in ������ the adaptivity

of estimator ������ becomes obvious	 Compared to a discrete version of spline�

smoothing� where the log�likelihood is penalized by 

Pn

i�� ���xi�� ��xi����
��

soft�thresholding ������ implicitly incorporates weights varying over x propor�

tional to j���xi� � ���xi���j	 In the context of penalized least squares estimation�

Mammen and van de Geer ������ study general total variation penalties similar

to ������ and derive essentially optimal rates of convergence in spatially inhomo�

geneous bounded variation function classes	 The authors also propose general

locally adaptive regression splines� where the total variation of the m�th deriva�

tive� ��m��x� is penalized	 In our framework� we analogously extend the concept

of indicator functions to one�sided splines by supplying 	k�x� � �x� xk�
m
� � with

	k�x��m� � 	I
k�x�� together with non penalized polynomial terms up to order m	

By its selective property� our estimator provides a spline function having adap�

tively chosen knot points	 In this con�guration� generalized soft�thresholding is

an alternative to the adaptive regression spline methodology of Stone et al	 ������

for estimation in extended linear models	 The ability of doing knot selection and

parameter estimation simultaneously appears to be of particular attraction for

��



splined models of this kind	

Suppose further� that ��x� is well approximated by piecewise polynomials�

where pieces are not smoothly joint together� i	e	 ��x� contains jumps	 For this

class of functions� one�sided splines as considered above are not a best choice�

since 	I
k�x� is doing well in describing the jump� but badly in approximating

the polynomial elsewhere� whereas for higher order splines the polynomial is

approximated perfectly but many knots have to be employed for approximat�

ing the jump	 In this situation� wavelet basis functions provide a parsimonious

approximation as stated e	g	 in Donoho and Johnstone ������	 Very brie�y�

wavelets refer to an orthogonal system of compactly supported basis functions	

Their main contribution is to combine exact representation of polynomials and

local support	 By this property� a wide variety of functions� including piecewise

polynomials� have a parsimonious representation in the wavelet domain� com�

pare Daubechies ������� Ch	�	 When n is a power of two and the design points

are equidistant� wavelet coe�cients are extremely fast computable by the fast

wavelet transform	 In other cases� some extra interpolation has to be incorpo�

rated	 We then replace ��xi� by the linear interpolant between ��xl� and ��xl����

where xl and xl�� are two adjacent neighbours in a dyadic grid on  x�� xn!	 In

principle non�equidistant design points can be handled in the same way	 For

very irregularly spaced xi however� this procedure may degenerate and spline

functions should be considered	 Threshold sequences can be based on the dyadic

structure of wavelet functions	 Usually a coarse resolution level J� corresponding

to some kind of trend is not penalized� i	e �k � � for k � �� � � � � �J� � �	 For

the remaining coe�cients� one can use one global threshold or alternatively� one

uses di�erent thresholds according to the resolution level J � as e	g	 ��J 	 The

latter choice puts higher penalties on high frequencies and thus produces results

of smooth appearance	

As will be demonstrated by the application in Section �� one can make use

of advantages that di�erent sets of basis functions o�er	 By supplying them

jointly to the estimator� appropriate basis functions from each set are selected	

For example� smooth functions having only few jumps are well described by

Demmler�Reinsch splines together with indicator functions	 A similar strategy

��



is proposed by Chen and Donoho ������ for obtaining optimal signal decom�

positions	 When con�guring the estimator with basis functions from di�erent

sets� one has to account for their scaling	 We allow for di�erent scalings of ba�

sis functions� by adjusting the threshold values �k appropriately as described in

Subsection ���	 For ordinally scaled xi� the set of indicator functions 	I
k�x� can

be supplied� and generalized soft�thresholding trys to join adjacent categories to

obtain a parsimonious representation	

� Estimation of varying coefficients

Let �i � ��Xi� denote the predictor� connected by E�yijXi� � h��i� to an obser�

vation yi which is distributed according to a speci�ed exponential family	 The

varying coe�cient�model assumes linearity of the predictor given the covariate

values xij� zij � Xi� j � �� � � � � p as

�i � ���xi�� � ���xi��zi� � � � � � �p�xip�zip� �����

Unrestricted maximum likelihood estimation of the coe�cients �j�xij� usually

yields highly variable estimates as pointed out in the function estimation setting

in Section �	 Hence further assumptions are incorporated	 In our framework

we assume� that each varying coe�cient �j�xj�� j � �� � � � � p can parsimoniously

be well approximated by possibly di�erent sets of basis functions f	jkg� k �

�� � � � � nj as �j�xij� �
P

k cjk	jk�xij�	

Incorporating the multiplicative covariates zij and zi� � �� the basis coe��

cients are linked by

�i �
pX

j��

njX
k��

cjk	jk�xij�zij

to the predictor and the score functions for each basis coe�cient� sjk�c� �

�l�����cjk are given by

sjk�c� �
nX
i��

zij	jk�xij�si��i� �����

where si��i� � �li������i are individual score contributions	

��



��� Generalized Soft�thresholding

For varying�coe�cient models� the generalized soft�thresholding estimator from

����� extends to

jsjk��c�j � 
�jk if �cjk � ��

sjk��c� � 
�jk if �cjk � �� �����

sjk��c� � �
�jk if �cjk � �

and estimates of the varying coe�cients are obtained as ��j�xj� �
P

k �cjk	jk�xj�	

The threshold sequence �jk is based on thresholds for univariate function esti�

mation� considered in the previous section	 Since inclusion of multiplicative co�

variates zij e�ects the magnitude of the the score functions in ������ appropriate

choice of �jk becomes more crucial for varying�coe�cient models	 In Subsection

��� we propose a scaling procedure to account for the covariate design	

The connection between generalized soft�thresholding and absolute penal�

ized likelihood estimation� stated in Proposition �� remains unchanged and the

estimator corresponds to a maximizer of

lo�c� � l���� 

pX

j��

njX
k��

jcjkj� �����

For a su�ciently large trade�o� parameter 
� generalized soft�thresholding

����� becomes a maximum likelihood estimator of a common generalized linear

model� where only coe�cients cjk � M� with M� � fjk � �jk � �g are included	

We refer to that model as the embedded model ���� and assume that a maximum

likelihood estimator for corresponding coe�cients exists	 This embedded model

is contained in any generalized soft�thresholding estimate and represents a coarse

frame of the varying coe�cient model	 Often the embedded model is set up by

linear interaction terms as

�
���
i � ��� � ���xi� � ���zi� � ���zi� � ���xi�zi� � � � � � �p�zip � �p�xipzip� �����

When describing each varying e�ect by cubic Demmler�Reinsch splines�

the model ����� corresponds to the null space of the penalty function



Pp

j��

Pnj
k�� jcjkj� which is set up by all basis functions not penalized	 In the

��



case of purely additive terms� e	g	 � � ���x�� � ���x��� or when multiplicative

covariates zij appear several times in the predictor� appropriate constant terms

have to be removed from the set of basis functions to ensure identi�ability of the

embedded model �����	 This strategy leads to centered estimates of �j�xj� which

are known from additive models� see e	g	 Hastie and Tibshirani ������	

��� Scaling of the thresholds

In the modi�ed score equations ������ the variation of the score function sjk��c�

depends on the scaling of the basis functions and the multiplicative covariates zj

as well as on the true predictor �i	 A simple way to make the estimator more

invariant against di�erent scalings of covariates and basis functions is to use

standardized versions of Zjk � fz�j	jk�x�j�� � � � � znj	jk�xnj�g� having #Zjk � �

and Z �
jkZjk � �	 This strategy accounts for single covariates� but not for the

global structure of the model	 Therefore� additional information from the actual

design is incorporated	 We avoid blowing up the number of trade�o� parameters

by appropriate scaling of the threshold values �k as introduced in Section �	

Our scaling procedure is based on connecting the modi�ed score equations

����� to score tests for a null hypotheses cjk � �	 We start with a maximum

likelihood estimate of the embedded model �c��� having design matrix Z� and

consider a test for inclusion of another basis function 	jk	 This is done by using

the score statistic

Ujk � �sjk��c
����� �Fjk��c

�������sjk��c
����� �����

as approximation to the likelihood ratio	 In ������ �sjk denotes a score vector

composed by all coe�cients used in the embedded model together with one sup�

plementary basis function to test on� i	e	

�sjk � �Z�� Zjk�
��l��

����

��
�

The matrix �Fjk is the matching Fisher information matrix

�Fjk�c
���� � ��Z�� Zjk�

�E

�
�l������

�c�c�

�
�Z�� Zjk��

Since �sjk��c
���� � � for jk � M� the test statistic ����� reduces to Usk �

s�jk��c
�������jk ��c����� where ���jk ��c���� is the last diagonal element of �Fjk��c

������	 Sub�

��



stituting �jk in ����� by �jk��c
����� the �rst modi�ed score equation can be regarded

as a test on cjk � �� where 
 is some quantile of the standard normal distribution	

To adjust the thresholds� let f�k�j�g denote the threshold sequence corre�

sponding to the set of basis functions f	jkg as in Section �	 When �Fjk is non�

singular� the scaled threshold �jk � �jk������k�j� is used in the modi�ed score

equations ����� to account for the variation of the score function sjk	 In the

case of singular �Fjk� the additional basis function explains variation already ex�

plained by the embedded model and thus� we remove 	jk from the set of possible

basis functions	 In contrast to simple standardization� this strategy addition�

ally accounts for correlations to the embedded model as a coarse frame of the

varying�coe�cient model	

When di�erent sets of basis functions are used� additional considerations for

appropriate scaling can become necessary	 Consider for example� that f	jkg is

built up by the set of indicator functions 	I
jk together with Demmler�Reinsch

splines	 For these splines� �k�j� increases with the basis functions frequency and

we adjust the thresholds �Ik�j� for 	I
jk on one �k�j� corresponding to a speci�ed

number of sign changes	 In principle� this strategy can be regarded as an addi�

tional trade�o� between the coe�cients frequency component and its tendency

to have distinct breakpoints	

Some attention has to be drawn in choosing the embedded model	 When

splines are employed� it is quite natural to use polynomial terms	 In the case of

wavelet or Fourier representations for the varying e�ects� a proper choice of the

embedded model becomes more crucial	 For example� when wavelets are used�

the choice of the coarse resolution level J� can have some impact on the estimates	

For ordinary soft�thresholding of wavelet coe�cients� this phenomenon has been

studied in detail in Marron� Adak� Johnstone� Neumann and Patil ������	

We close this section by demonstrating the �nite sample performance of the

estimator in a simulation study that will be continued in Section �	 In each

of the ���� runs� ��� observations were drawn according to yi 
 Po�exp��i���

where �i � ���xi� � ���xi�zi	 For xi we used an equidistant grid ����� ����� � � � � �

and for each grid point we simulated two observations yi by setting zi � � and

zi � �� respectively	 The varying e�ects are derived from the functions already

��



���x� ���x�

�I Spline Indicator Spline Indicator

�� �	��� ��	���� �	��� ��	���� �	��� ��	���� ��	��� ��	����

��� �	��� ��	���� �	��� ��	���� �	��� ��	���� �	��� ��	����

��� ��	��� ��	���� �	��� ��	���� �	��� ��	���� �	��� ��	����

Table �� Average number of coe�cients for Demmler�Reinsch splines and in�

dicator functions that are estimated unequal zero	 The numbers in brackets

correspond to the standard deviation computed from ���� simulations	

considered in Figure � by adding two breakpoints on ���x� and one breakpoint

on ���x�	 Both e�ects were estimated by combining cubic Demmler�Reinsch

splines with the set of indicator functions 	I
k	 We removed the constant term

from 	I
k� since it is already contained in the set of orthogonal splines	 The

embedded model consists of four coe�cients� representing linear terms for ���x�

and ���x�� respectively	 As threshold for the indicator functions we used the

values �I � ��� ���� ���� corresponding approximately to ������ and ��� from the

spline basis	 The global threshold is set to 
 � �����I� resulting in about ��

basis functions used in total to represent the predictor	 Table � shows� how the

basis functions not contained in the embedded model are distributed over the

estimates	

For all simulations� the breakpoints were found properly	 When �I � �� is

used� the descent of ���x� in  ���� ���! is represented by the indicator functions

and the maximum at x � ��� is not recognized� see Figure � �b� and the last

column in Table �	 Obviously� �I � ���� where about the same number of spline

and indicator functions are used� is a better choice	 For �I � ��� the estimates

tend to be too wiggly� compare Figures � �e� �f�	 When mainly Demmler�Reinsch

splines are used� the estimation error at the boundary for ���x� at  ���� ���! is

higher� see Figures � �d� �f�	

��
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Figure �� Estimation number ��� �dotted� and ��� �solid� from ���� simulations

ordered by the total estimation error
P

ij� ��j�xi� � �j�xi��
�� when �I � ��� was

used	 The true functions �� � �� � Ifx �  ���� ����!g and �� � �� � Ifx � ���g

are drawn as dashed lines	
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� Inference

Considering generalized soft�thresholding as a preprocessor for selecting an ap�

propriate parametric model� analysis of deviance can be based on maximum

likelihood estimates using only the obtained non�zero coe�cients in a second

step	 In more complex situations� however� the maximum likelihood estimator

becomes highly variable or even diverges due to the high number of parame�

ters involved	 Then� using a submodel consisting of very few basis functions

only may lead to increased approximation bias caused by a too parsimonious

approximation of �j�xj�	

To obtain more stability without increasing approximation bias� we propose

to base inference directly on the generalized soft�thresholding estimate	 More

speci�cally� suppose to test for the hypothesis cjk � � for some of the coe�cients	

This covers following interesting applications�

Situation �� Test on any linear or nonlinear e�ect of covariate zj�

cj� � � � � � cjnj � �	

Situation �� Test on nonlinearity of �j�xj�� cj� � � � � � cjnj � � when cubic

Demmler�Reinsch splines are used	

Situation �� Test on a breakpoint of �j�xj� in xk� cjk � � when indicator func�

tions are used	

Situation �� Semiparametric models� cj� � � when only 	I
��xj� � � is supplied

for covariate zj

Formally� the hypothesis of the tests has to be �xed in advance� regardless of

the soft�thresholding estimate	 In this sense� our approach can be regarded as

semiparametric	 The coe�cients under test are speci�ed parametrically and the

procedure accounts for not explicitly speci�ed factors	 Informally� we use test

statistics based on estimated non�zero coe�cients to suggest presence of speci�c

e�ects	

In the following� we derive a quadratic approximation to the maximum like�

lihood test for a general linear hypothesis Ac � � comprising all four situations	

First� assume that a good set of basis functions approximating the true varying

��



coe�cients is found by generalized soft�thresholding and the approximation bias

becomes neglectable	 Usually� this assumption can be ful�lled by using a rea�

sonable small trade�o� parameter 
 leading to possible over�t of the data	 In

this setting it is su�cient to base inference only on the coe�cients under test

together with selected non�zero coe�cients	 Let B be the set of all coe�cients

estimated unequal zero and let BA be the set of coe�cients� that are used to

formulate the hypothesis Ac � �	 Note that BA is not necessarily a subset of

B	 Suppose that the true model can be represented by basis functions from the

set B� � B � BA with corresponding coe�cient vector c�	 Subsequently� we con�

sider only coe�cients with basis functions from the set B�	 Soft�thresholding

estimates are stored in the coe�cient vector �cS composed by basis coe�cients

from f�cjk � jk � B�g	 The test statistic is then derived using the quadratic

approximation

Q�c� � l��cS� � s���cS���c� � �cS� �
�

�
�c� � �cS��H���cS��c� � �cS� �����

to the log�likelihood	 Here H��c� � ��l�c����c��c
�
�� denotes the negative Hes�

sian or observed information with respect to the basis coe�cients and s��c� �

�s�c���c�	 Maximizing the quadratic form Q�c� over all coe�cients in the set B�

under the restriction Ac � � and without restriction yields the following modi�ed

Wald test�

Proposition �� Let H��c� be the negative Hessian with respect to c� and let

H���cS� be positive de�nite� then

�  Q��c���Q��c��! � �A�c��
� AH���cS���A�!���A�c��� �����

where

�c� � �cS � H���cS���s���cS� �����

�c� � �c� �H���cS���A� AH���cS���A�!��A�c�

are estimates based on the quadratic form ����� satisfying A�c� � �	 �Proof in

Appendix�

Generally� ����� can be regarded as a Wald test on corrected estimates �c�	

In the case when all coe�cients to test on are estimated to zero� we have �c� �

��



�I ����x� ��cor
� �x� ����x� ��cor

� �x�

�� �	��� ��	���� �	��� ��	���� �	��� ��	���� �	��� ��	����

��� �	��� ��	���� �	��� ��	���� �	��� ��	���� �	��� ��	����

��� �	��� ��	���� �	��� ��	���� �	��� ��	���� �	��� ��	����

Table �� Average mean squared error for generalized soft�thresholding with bias

correction	 The numbers in brackets correspond to the averaged squared bias

computed from ���� simulations	

H���cS���s���cS� and the test statistic is similar to a score test	 The correction

of the estimates is equivalent to one step of a Fisher scoring iteration for a

maximum likelihood estimate of c�	 As consequence� corrected estimates are

closer to corresponding maximum likelihood estimators and estimation bias is

decreased	 For normally distributed data� �c� coincides with the least squares

estimate of c� and might be regarded as a hard�threshold estimator	 In Table

� we report averaged mean squared errors for the parameter estimates shown in

Figure � together with the corresponding bias part	 For the estimation in�uenced

mainly by indicator functions� the bias reduces drastically� resulting in a lower

averaged mean squared error	 The reduction of bias is smaller when orthogonal

splines are dominant	 Here the averaged mean squared error increases	 Due to

the increasing threshold sequence� more correction is done on high frequency basis

functions representing less variation of the true �j�xj�	 This causes an increase

of variance for high frequency spline basis functions	 Consequently� the bias

corrected estimates tend to be more wiggly and are visually less favourable then

generalized soft�thresholding estimates	 In contrast to parameter estimation or

recovery� where one focuses on mean squared error� bias has to be reduced for

inferential purposes� as pointed out e	g	 by Speckman ������ in the context of

semiparametric models	

Recall the de�nition of generalized soft�thresholding ����� based on the slope

of log�likelihood and suppose that 
 is su�ciently small	 Then� following Subsec�

tion ���� one might argue� that measured by the log�likelihood� the estimator �c�

is close to a maximum likelihood estimator of c�	 This encourages to approximate

��



the distribution of the test statistic

T � �A�c��
� AF���cS���A�!���A�c��� �c� � �c � F��

� ��cS�s���cS� �����

by the distribution of a corresponding maximum likelihood ratio test	 In �����

the observed information is replaced by the expected information� as conven�

tional in generalized linear models	 Provided a rather small dimension of the

null hypothesis �i	e	 rank�A� � �� for situations considered in this paper�� we

observed in simulation studies that a �� distribution having rank�A� degrees of

freedom works well as approximation	 When the number of parameters involved

is bigger� or the main interest of investigation is testing� bootstrap approaches

should be used to assess the distribution of T under the null hypothesis	 For nor�

mally distributed response variables� of course� the �� approximation is correct

when no approximation bias occurs	

Biased estimation of coe�cients contained in the hypothesis can also be due

to correlated biased estimates of coe�cients not formulated in the hypothesis	

Therefore� one should also investigate in the matrix F���c�
�� to detect possible

correlations in the estimates	 For test situations � and � a considerable increase

of power can be obtained by imposing smoothness restrictions	 Then� the hy�

pothesis is set up only by coe�cients of Demmler�Reinsch splines having up to

a moderate number of zero crossings	 For example� we use only the �rst �� basis

functions� regardless of the number of observation points	

Figure � shows results of a simulation study for test situation �	 Considering

the model used in Figure �� we tested the hypothesis c���	� � � corresponding to

an e�ect of the basis function 	I
��	��x� � Ifx � ���g	 We asses the approximative

distribution under the null hypothesis by using ���x� � ���x� and ���x� as in

Figure �	 In Figure � p�values gained from ���� simulations are plotted versus

quantiles of a uniform distribution	 All lines are close to the diagonal in Figure �

�a� indicating� that the �� approximation works well	 Figure � �b� shows quan�

tiles for the alternative ���x� � ���x� � Ifx � ���g	 Considering a signi�cance

level of �	�� for example� the test for no breakpoint in x � ��� rejects in about

��$ of the cases for this true ���x�	

��
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Figure �� Rejection probabilities of the modi�ed Wald test� using a �� distribu�

tion	 �I � �� �dashed�� �I � ���� �solid� �I � ���� �dotted�

� An Algorithm for Generalized Soft�thresholding

In this section we propose an e�cient algorithm which produces a sequence of

estimates corresponding to a speci�ed set of trade�o� parameters 
	 We start

designing the algorithm by connecting generalized soft�thresholding to absolute

penalized likelihood estimation as stated in Proposition �	 Following the pro�

posal of Tishler and Zang ������ in context of nonlinear L��norm estimation� we

approximate the absolute penalty
Pp

j��

Pnj
k�� jcjkj in ����� by the continuously

di�erentiable function

jcjkj 
 g�cjk� �� �

����	
���

�cjk� if cjk � ��
c�
jk
���

��
� if �� � cjk � �

cjk� if cjk � �

� �����

For a moderate number of basis functions� this spline approximation allows a

Newton type algorithm to compute an approximation c� to �c which maximizes

lo��c� � l�c�� 

pX

j��

njX
k��

g�cjk� ��� �����

��



Working out the �rst derivatives of ����� yields a vector s�c� � 
�d��c� � d��c��

having components

�lo��c�
�cjk

� sjk�c�� 
 �d��cjk� � d��cjk�� �

d��cjk� � �jksgn�cjk�Ifjcjkj � �g�

d��cjk� �
	jkcjk

�
Ifjcjkj � �g�

The negative second derivative matrix of ����� is given by

��lo��c�

�c�c�
� H�c� � 
D�c� ��� D�c� �� � diag�

�jk
�
Ifjcjkj � �g��

In following modi�ed Gauss�Newton or Fisher scoring procedure we replace the

observed information H�c� by its expectation F �c� and simplify by D�c� ��c �

d��c� ��	

Algorithm �

�	 Initialize the coe�cient vector c�m�� m � � and repeat

�a� Compute the Fisher matrix F �c�m�� and the score vector s�c�m�� for

the current coe�cient vector c�m�	

�b� Solve the system

 F �c�m�� � D�c�m�� ��!c�m��� � F �c�m��c�m� � s���m��� d��c
�m�� ��

to obtain updated values c�m���	

�c� Trim steps crossing the zero�

If fc�m�
jk �� � and sgn�c

�m���
jk � �� sgn�c

�m�
jk �g� set c

�m���
jk � �	

�	 Until the coe�cients c
�m�
jk do not change	

Trimming of coe�cients in step ��c� ensures that the coe�cients cjk do not

alternate around �������	 For c
�m�
jk 
 � the quadratic approximation for jcjkj � �

results in a rather small step length and therefore enables convergence to some

c�jk � ���� ��	 At convergence of Algorithm � we have

sjk�c
�� � d��c

�
jk� �� � 
�jksgn�c�jk� if jc�jkj � �

sjk�c
�� � 
�jkc

�
jk�� � 
�jk if jc�jkj � � �����

��



and the conditions for the generalized soft�thresholding estimator ����� are ful�

�lled up to �	 From ����� we see� that the algorithm collects coe�cients c�jk�

having jsjk�c
��j � 
�jk in the interval ���� ��	 The approximation c� is improved

and checked by removal of those coe�cients	 In the improved version� we set

�cjk � � when jc�jkj � � and proceed with Newton type loops	

Algorithm � �Improved version�

�	 Compute an approximation c� to generalized soft�thresholding by Algo�

rithm �	

�	 Let M be the set of basis functions 	jk� de�ned by

M � fjk � jc�jkj � �g �M��

�	 Compute improved estimates �c by applying Algorithm � only to basis func�

tions from M	 Use fc�jk� jk � Mg as initialization	

�	 Check the results by verifying jsjk��c�j � 
�jk for all jk �� M	

Usually� Algorithm � adds only one extra iteration to Algorithm �	 If the

check in Step � is passed� we have a generalized soft�thresholding estimator�

satisfying the conditions ����� up to a prespeci�ed termination criterion for the

Newton�type iterations	 Otherwise� when jsjk��c�j � 
�jk for some jk �� M� a

slightly smaller value of � helps to overcome this problem	

In varying�coe�cient models the number of possible basis functions is often

very large and direct use of Algorithm � becomes ine�cient or even impossible

due to linear dependencies	 Based on the knowledge that the estimate consists

of few non�zero coe�cients only� we apply Algorithm � to an appropriate small

fraction of basis functions	 We start with a trade�o� parameter 
��� su�ciently

big� so that the generalized soft�thresholding estimator �c��� coincides with a

maximum likelihood estimator for coe�cients from the embedded model M�	

Decreasing 
� we arrive at some 
��� � 
��� where jsjk��c����j � 
����jk for some jk	

Using the corresponding 	jk together with the basis functions from the embedded

model in Algorithm �� we obtain a generalized soft�thresholding estimator �c���

��



for 
���	 Continuing this principle leads to Algorithm �� which computes the

estimator for a sequence of threshold parameters 
��� � � � � � 
�l� � � � � � 
�L�	

Since Algorithm � starts with estimation of the embedded model� we can easily

incorporate the scaling of the threshold values as discussed in Subsection ���	

Algorithm ��

�	 Estimate the embedded model c��� using only coe�cients in M� by maxi�

mizing the log�likelihood	 Set M � M�	

�	 Select the threshold values �jk based on this estimate as described in Sub�

section ��� 	

�	 Do while l � L�

�a� If �jk �� M � jsjk��c�j � 
�l��jk then add the index jk with

jk � arg max jsjk��c�j��jk to M	

�b� Compute current estimates �cjk by applying steps ����� of Algorithm �

only to coe�cients from M	

�c� Let M � fjk � �cjk �� �g �M�

�d� If jsjk��c�j � 
�l��jk for all jk �� M�

Keep the result �c�l� � �c as estimate for 
�l� and set l � l � �	

Algorithm � adds successively basis coe�cients to the set of non�zero coef�

�cients	 When the score function sjk��c� is smaller than the threshold value for

all zero coe�cients� we have an estimator for 
�l� and the algorithm proceeds

with the next smaller 
�l��� � 
�l�	 Initializing Algorithm � in step � �b� with

current estimates� only few Newton�type iterations are necessary	 Due to the

comparable small number of basis functions supplied in step � �b� to Algorithm

�� computation of the score vector in step � �d� is often the most expensive part of

Algorithm �	 By employing e�cient algorithms� speci�c for the set of basis func�

tions used� computational cost is greatly reduced	 For example� for wavelet basis

functions computation of � is based on the inverse wavelet transform� whereas

sjk�c� can be gained by the fast wavelet transform	 In case of orthogonal splines

��



it is su�cient to use only basis functions having up to a moderate number of

sign changes	

Since Algorithm � produces a sequence of estimates for di�erent values of


 it is particularly convenient for exploring the estimator as a function of the

trade�o� parameter 
	

For all computations shown in the paper we speci�ed the approximation in

Algorithm � by � � ���� and used max jc�m�
jk � �c

�m���
jk j � ���� as termination

criterion for the Newton�type algorithm	 Finally� we remark� that algorithms for

generalized soft�thresholding can be based on most of the algorithms designed

for nonlinear L��norm estimation	 See Gonin and Money ������� Ch	 �	� for a

survey of procedures� leading to alternatives for Algorithm �	

	 Application to Unemployment Data

As an illustrative application of the proposed method� we investigate in the e�ect

of gender on duration of unemployment periods	 Our dataset consists of monthly

unemployment periods from January ���� through December ���� recorded in

the German socio�economic panel GSOEP �Hanefeld �������	 Here we consider

only spells starting with a transition from full�time employment to unemployed	

An unemployment period ends� when the individual under study switches from

unemployment to some di�erent state such as part�time employment� house�

wife%husband� or to a full�time job	

To study the characteristics of unemployment we consider the terminations

of each period as realizations of a stochastic process in calendar time t	 We

introduce an event indicator distinguishing between

yi�t� �

����	
���


�� period i ends with full�time employment at t � ��

�� period i ends with anything but full�time employment at t � ��

�� period i continues to t � ��

and regard each process yi�t� as the outcome of a series of multinomial ex�

periments	 Thus� �conditional� probabilities �ir�t� of the disjunctive events

fyi�t� � rg� r � �� �� � are used to describe the dynamics of the labour mar�

ket	 A common choice of models relating those probabilities or time�discrete

��



hazard functions to general event�speci�c predictors �r�Xi� t� is the multinomial

logit model where

�ir�t� � hf���Xi� t�� � � � � �m�Xi� t�g

�
expf�r�Xi� t�g

� �
Pm

q�� expf�q�Xi� t�g
� �����

see Allison ������� Fahrmeir and Wagenpfeil ������ and Fahrmeir and Knorr�

Held ������ for details	 Furthermore� since censoring occurs� we also make use

of a risk indicator

ci�t� �

�	

 �� period i has been under study all the time until t

�� else�

which masks unobserved transitions	 Using this notation� the dataset is expressed

by observed response variables �yi�t� � ci�t�yi�t� and ci�t� together with a set

of possibly time�varying covariates xij�t� � Xi�t�	 The model speci�cation is

completed by assuming multiplicative structure

Pf�yi�t� � rj�yi�t� ��� Xi�s�� ci�s�
 s � �� � � � � t
 i � �� � � � � ng � ci�t��ir�t��

for censoring mechanisms� as conventional in event history analysis� see e	g	 An�

dersen� Borgan� Gill and Keiding ������� Ch	 �	

Figure � gives a �rst summary of the data	 The naive estimate of �ir�t��

the ratio of the number of transitions to the number of individuals at risk�P
i Ifyi�t� � rg�

P
i ci�t� for each subpopulation is plotted versus calendar time	

Some periodicity of �ir�t� is evident from Figure � �a� and Figure � �d�	 Males

seem to have lower propensity to leave unemployment to the �other
 category

than females have	

Also� the probability of leaving unemployment can be described by the unem�

ployment duration time� d � di�t�	 To take this into account we use a multinomial

varying�coe�cient model ����� with event�speci�c predictors

�r�Xi�t�� t� � ��r�t� � ��r�d� � f��r�t� � ��r�d�g � gender� �����

where gender is � for females and �� for males� respectively	 In ����� the e�ect

��r�t� explores trends as well as seasonal aspects of female unemployment dur�

ing the observation period� whereas ��r�d� distinguishes between long�term and

��
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Figure �� Relative proportions of observed transitions from the unemployment

state	 Proportions of �a� males and �c� females who found a full�time job to

the number unemployed	 Analogous proportions of �b� males and �d� females

switched to the �other
 category	
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short�term unemployment with regard to gender	 When interested mainly in

duration e�ects� calendar time e�ects have to be incorporated to adjust for the

current speci�c situation on the labour market	 We avoid systematic bias due to

omission of left�censored periods and include only ���� periods terminating after

January ����	 Furthermore� �� periods lasting longer than � years are censored

after �� months	

Assuming the varying coe�cients in ����� to be homogeneously smooth might

cover important features	 There are many reasons for possible abrupt changes in

the propensity for re�employment� e	g	 changes in labour legislation	 Accounting

for possible breakpoints� we decompose calendar time e�ects in

�jr�t� � �smo
jr �t� � �jmp

jr �t� � �per
jr �t��

Cubic Demmler�Reinsch splines are used for �smo
jr �t� and the set of indicator

functions f	I�t�g describes �jmp
jr �t�	 The periodical component� �per

jr �t� is based

on trigonometric polynomials from the set

fcos���t����k��� sin���t����k��� k � �� � � � � �g

with period up to �� months	 Analogously� duration e�ects �jr�d� are decom�

posed into a smooth part� �smo
jr �d�� and a part that modells jumps� �jmp

jr �d�	

Alltogether a catalogue of ��� basis functions are allowed to contribute to the

predictor	 The embedded model is set up by �� parameters representing lin�

ear functions for calendar time and duration e�ects� respectively	 We found

that �I � ��� as threshold for indicator functions as well as for trigonometric

functions provides a good trade�o� between the smoothness� the jumps and the

period	

Generalized soft�thresholding is carried out� starting Algorithm � with the

threshold sequence 
 � ���� ����
���	� � � � � ����
	 by using grouped data	 The out�

put consists of ���� estimates having between �� and ��� coe�cients contribut�

ing to the predictor ���
�	 In Figure � �a� the deviance of the generalized soft�

thresholding estimates ���
� to the embedded model D��
� � ��fl������ l����
��g

is plotted as a function of the trade�o� parameter 
	 Figure � �b� displays the

usual deviance D�
� � ��fl����
��� l�y�g as the criterion for goodness of �t	 We

observe that goodness of �t increases monotonically with 
 and is acceptable for

��
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Figure �� Deviance of generalized soft�thresholding estimates for unemployment

data to embedded model �a� and deviance to the unrestricted log�likelihood �b�	

The dotted lines indicate the number of non�zero coe�cients �a� in the model

and the corresponding degrees of freedom for the error �b�	

all estimates	 Especially� thresholds with 
 � ���� provide a good �t compared

to the number of parameters involved	

Figures � and �� plot estimates for multiple 
 in the spirit of the family

approach of Marron and Chung ������	 In models where several functions are

estimated simultaneously� the family approach provides insight in how varying

e�ects interact and the spread of the e�ects gives an idea of the precision of the

estimate in speci�c regions	 We show the results obtained by using a set of ��

trade�o� parameters 
 �  ������� �����!	 The corresponding estimates consist of

�� to ��� basis functions contributing to the predictor	 For ease of interpretation

all varying coe�cients shown are centered to have mean zero	

To support the analysis� we computed test statistics according to the ��

approximation suggested in Section �	 We test for the hypotheses whether all

included basis coe�cients from a single set of basis functions are zero	 This

test is performed for each varying e�ect� separately	 The hypothesis of those

tests is based on estimated non�zero coe�cients	 Therefore� p�values obtained
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Figure �� Centered e�ects modelling transitions to full�time employment	 The

thick line corresponds to 
 � ������	 Remaining constants are ��	���� for the

population e�ect and ��	����� for the e�ect of gender� respectively	
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Population mean Gender

E�ect T df p�value T df p�value

Intercept ��	���� � �	������ �	���� � �	������

Calendar time

Linear �	���� � �	������ �	���� � �	������

Smooth ��	���� � �	������ ��	���� � �	������

Jumps ��	���� � �	������ & � &

Period ��	���� � �	������ ��	���� � �	������

Duration

Linear ��	���� � �	������ �	���� � �	������

Smooth �	���� � �	������ �	���� � �	������

Jumps �	���� � �	������ �	���� � �	������

Table �� Tests on components of the varying coe�cients modelling transitions to

full�time employment	

are formally incorrect	 However� we use them in an informal way to obtain an

impression of the evidence of certain components in the model	 In Tables � and

� these tests are reported for the trade�o� parameter 
 � ������ resulting in

�� non�zero coe�cients	 Corresponding estimates are plotted as thick line in

Figures � and ��	

First� we discuss e�ects contributing to transitions for full�time employment	

In Figure � �a� we observe a distinct maximum for getting re�employed in summer

���� and two distinct lows at the beginning between July and October ���� and

between October ���� and February ����	 The e�ect of gender over calendar

time shown in Figure � �b� has a similar coarse structure	 This supports the

hypothesis� that in times of more pressure on the labour market it is even more

di�cult for female to �nd a full�time job	 Referring to the p�value for smooth

components of the calendar time e�ects in Table �� this phenomenon is quite

evident from the data	 Clear periodicity of the probability of being re�employed

is obvious from �gure � �c�� compare also Table �	 In Figure � �d� the periodic

e�ect of gender is anticyclic during the �rst half of the year	 This might be caused

by fewer females working in the building trade� where often seasonal workers
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Population mean Gender

E�ect T df p�value T df p�value

Intercept ��	���� � �	������ �	���� � �	������

Calendar time

Linear �	���� � �	������ �	���� � �	������

Smooth ��	���� � �	������ �	���� � �	������

Jump �	���� � �	������ �	���� � �	������

Period ���	���� � �	������ ��	���� � �	������

Duration

Linear �	���� � �	������ �	���� � �	������

Smooth �	���� � �	������ �	���� � �	������

Jump �	���� � �	������ �	���� � �	������

Table �� Teststatistics for components of the varying coe�cients modelling tran�

sitions to anything but full�time employment	

are employed	 The population e�ect of duration on terminating unemployment

is approximatively linear in Figure � �e�	 We conclude� that it becomes more

di�cult to �nd a full�time job the longer one is unemployed	 Except for the

linear component of the population e�ect� all other components modelling the

e�ects of duration have rather high p�values in Table �	

Considering the termination of unemployment for �other
 reasons in Figure

�� �a�� we observe a steep increase in the population e�ect during ����	 In

contrast to transitions for full�time work� this e�ect stays at a high level after

summer ���� and shows an additional jump in June ����	 The e�ect of gender

has a slightly negative trend over calendar time and shows a distinct jump in

April ���� just before East German labour participated in the panel
 compare

also the corresponding p�values in Table �	 The family plot in Figure �� �b�

displays a scattering e�ect in ���� and during the second half of ����	 During

those periods only very few transitions to other states were observed in total�

compare Figure � �b� and �d�	 The sparseness of the data provides little infor�

mation about the corresponding e�ect of gender� which causes scattering in the

estimates	 Clear periodicity is evident in Figure �� �c� indicating that considered
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Figure ��� Centered e�ects modelling transitions to other terminations	 The

thick line corresponds to 
 � ������	 Remaining constants are ������� for the

population e�ect and �	���� for the e�ect of gender� respectively	
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periods terminate with high probability in December	 A closer look at the data

shows� that this e�ect is mainly in�uenced by transitions to housewife%husband	

Therefore� it is even stronger for females �Figure �� �d��	 Again� p�values for

duration e�ects indicate no evident in�uence of duration on transitions to other

states	

To obtain further insight into the in�uence of duration� we assume duration

e�ects to be smooth	 We represent them by the �rst � orthogonal Demmler�

Reinsch splines excluding the constant	 The corresponding basis coe�cients

were estimated using Algorithm � together with the same threshold sequence

as above	 For each duration e�ect separately� a test on the hypothesis cj� �

� � � � cj
 � � is performed	 Resulting p�values are displayed in Figure �� �a� as

a function of the trade�o� parameter 
	 The p�value for the population e�ect�

modelling transitions to full�time employment is not shown� since it is smaller

�	����� regardless of 
	 For thresholds bigger than �	��� an e�ect of gender

on transitions to a full�time job is signi�cant up to �$	 With increasing model

complexity this e�ect becomes less evident	 In contrast� we observe that p�values

for duration e�ects on other transitions are increasing with 
	 Not accounting

for nonlinearities over calendar time may cover a possible e�ect of duration here	

In a follow�up paper we will stratify transitions to other states for a more re�ned

investigation in the interaction of gender with duration	

Figure �� �b� gives insight into correlations between the estimated basis co�

e�cients	 In the image plot we see the quantities of a correlation matrix com�

puted from the inverse of the estimated Fisher matrix F ��cS� corresponding to the

threshold 
 � ������	 High correlations are visible particularly in the diagonal

blocks	 These intra�e�ect correlations correspond to basis functions contributing

to the same varying e�ect	 Apart from intra�e�ect correlations� we observe high

correlations for coe�cients contributing to the estimated duration e�ects �����d�

and �����d�	 Both estimated e�ects consist of several basis coe�cients correlated

to corresponding calendar time e�ects	 This helps explaining the variability of

the p�values in Figure �� �a�	 Let us pick out correlations between �����d� and

�����t�	 The increase of �����d� is mainly caused by females unemployed for a long

period who found full�time work in times of the good global job situation between

��



0.2 0.5 1 2 5 10 20 50 100
0

0.2

0.4

0.6

0.8

1
(a) P−values

100λ

p−
va

lu
e

nonzero coefficient number

(b) Correlation

β
11

β
31

β
21

β
41

β
12

β
32

β
22β
42

20 40 60 80

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure ��� �a� P�values for a test on smooth e�ects of the duration of an unem�

ployment period	 Lines correspond to �gender � full�time
 �dotted�
 �population

� other
 �dashed�
 �gender � other
 �solid�	 �b� Estimated correlation between

basis coe�cients	

���� and ����	 As consequence� we cannot reject the hypotheses of no interac�

tion between duration and gender	 A simpler parametric model� not accounting

for more complex calendar time e�ects� would yield a di�erent conclusion	


 Discussion

We believe that generalized soft�thresholding should belong to every statisti�

cians toolbox	 It produces compact results which can be handled and analyzed

similarly to more classical parametric approaches	 The estimator can be cus�

tomized simply by supplying di�erent sets of basis functions	 Estimated e�ects

inherit their properties from the basis functions	 The technique is more stable

than approaches based on variable selection and the smoothing parameter acts

continuously on the estimated coe�cients	

Allthough we embedded generalized soft�thresholding in the framework of

the varying�coe�cient models� it can be used in connection with many other

structures	 Future research will include interactions between metrical covariates	

��



Those interactions can be modelled by bivariate functions� which are described

using tensor product basis functions	

The selective property of generalized soft�thresholding also allows for simul�

taneous variable selection within the varying�coe�cient model	 Results� stated

in Tibshirani ������ for the lasso procedure� strongly suggest this extension	

Appendix

Proof of Proposition �

The proof proceeds similarly to conditions for nonlinear L��norm estimation�

compare e	g	 Gonin and Money ������� Ch	 �	 Let c�k � max��� ck�� c
�
k �

max����ck� and Z a design matrix consisting of the point evaluations 	k�xi�	

Using ck � c�k � c�k and jckj � c�k � c�k � we rewrite the absolute penalized log�

likelihood criterion lo�c� from ����� as

lo�c� � c�� � l�c� � c��� 
���c� � c���

where c� � �c�� � � � � � c
�
n �� c� � �c�� � � � � � c

�
n � and � � ���� � � � � �n�	 Now� we can

reformulate the maximum absolute penalized likelihood estimator as

maximize lo�c� � c�� subject to c�k � �� c�k � �� k � �� � � � � n� �A���

and derive Kuhn�Tucker necessary conditions as stated e	g	 in Gill� Murray

and Wright ������� Ch	 �	 The concept is based on the active constraint sets

A� � fk � c�k � �g� A� � fk � c�k � �g� their complements C� and C��

respectively and the partial derivatives�

�lo�c� � c����c�k � sk�c�� 
�k�

�lo�c� � c����c�k � �sk�c�� 
�k�

According to Kuhn�Tucker� at a maximum �c�� �c� of �A���� the set A �

fk � �ck � �g � A� � A� is formed by all k corresponding to non�positive

partial derivatives� i	e	 sk��c� � 
�k � � and �sk��c� � 
�k � �� which results

in A � fk � jsk��c�j � 
�kg	 The set of positive coe�cients necessarily satis�es

sk��c�� 
�k � � and �sk��c�� 
�k � � leading to C� � A� � fk � sk��c� � 
�kg	

For ck � � we analogously arrive at C� � A� � fk � sk��c� � �
�kg	

��



To derive su�cient conditions� let ek be a n dimensional unit vector and let

EA� be a matrix with rows e�k� k � A�� EA� respectively	 Then� the set of active

constraints matches with the rows of

EA �

�
� EA� �

� EA�



A �

and the projected Hessian on the null space of active constraints whose columns

form a basis for the set of vectors orthogonal to the rows of EA can be created

from B � fek � k � �C� � A�� � �C� � A��g	 Since �C� � A�� � �C� �

A�� � �� we can use the actual coe�cients ck instead of c�k � c�k and form a

matrix EB having column vectors in B	 The su�cient condition known from

constrained optimization� requires �E �
BH�c�EB to be positive de�nite� where

H�c� � �ls�c�� ��c�c��	 By E �
BH�c�EB � E �

BZ
�H���ZEB and ZEB � ZB� this

is equivalent to the condition formulated in Proposition �	

Proof of Proposition �

To simplify notation in the proof� we skip the index � and S in s�� H�� cS and refer

to as s� H and �c	 First we derive the maximizer of the quadratic approximation

Q�c� � l��c� � s��c���c� �c� �
�

�
�c� �c��H��c��c� �c� �A���

without restriction ��c�� and under the restriction Ac � � denoted by �c�	 Equating

�Q�c���c � s��c��H��c�c � H��c��c

to zero yields

�c� � �c � H��c���s��c��

Introducing Langrangian multipliers as Q��c� � Q�c�� 
�Ac results in

�Q��c���c � s��c��H��c�c � H��c��c� A�


and we obtain

�c� � �c � H��c��� s��c�� A�
! �A���

as maximizer of �A��� under the restriction Ac � �	 Multiplying both sides in

�A��� by A yields

A�
 � G��c� �c � H��c���s��c�!�

��



where

G��c� �  AH��c���A�!��

and the maximizer is obtained as

�c� � �c � H��c���s��c��H��c���G��c� �c � H��c���s��c�!

� �c� �H��c���G��c��c��

Straight forward calculus shows� that

Q��c�� � l��c� �
�

�
s��c��H��c���s��c�

Q��c�� � l��c� �
�

�
s��c��H��c���s��c��

�

�
�c��G��c��H��c���G��c��c�

and therefore�

� Q��c���Q��c��! � �c��G��c��H��c���G��c��c�

� �c��A
� AH��c���A�!��A�c�

by de�nition of G��c�	
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