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CONS P EC TU S

S ynthetic small interfering RNA (siRNA) presents an exciting novel medical
opportunity. Although researchers agree that siRNA could have a great

therapeutic impact, the required extracellular and intracellular delivery of these
molecules into the disease-associated target cells presents the primary roadblock
for the broader translation of these molecules into medicines. Thus, the design of
adequate delivery technologies has utmost importance. Viruses are natural
masterpieces of nucleic acid delivery and present chemists and drug delivery
experts with a template for the design of artificial carriers for synthetic nucleic
acids such as siRNA. They have been developed into gene vectors and have
provided convincing successes in gene therapy. Optimized by biological evolu-
tion, viruses are programmed to be dynamic and bioresponsive as they enter living cells, and they carry out their functions in a
precisely defined sequence. However, because they are synthesized within living cells and with naturally available nucleotides
and amino acids, the chemistry of viruses is limited. With the use of diverse synthetic molecules and macromolecules, chemists
can provide delivery solutions beyond the scope of the natural evolution of viruses.

This Account describes the design and synthesis of “synthetic siRNA viruses.” These structures contain elements that mimic the
delivery functions of viral particles and surface domains that shield against undesired biological interactions and enable specific
host cell receptor binding through the presentation of multiple targeting ligands. For example, cationic polymers can reversibly
package one or more siRNA molecules into nanoparticle cores to protect them against a degradative bioenvironment. After
internalization by receptor-mediated endocytosis into the acidifying endosomes of cells, synthetic siRNA can escape from these
vesicles through the activation of membrane-disruption domains as viruses do and reach the cytoplasm, the location of RNA
interference.

This multistep task presents an attractive challenge for chemists. Similar to the design of prodrugs, the functional domains of
these systems have to be activated in a dynamic mode, triggered by conformational changes or bond cleavages in the relevant
microenvironment such as the acidic endosome or disulfide-reducing cytoplasm. These chemical analogues of viral domains are
often synthetically simpler and more easily accessible molecules than viral proteins. Their precise assembly into multifunctional
macromolecular and supramolecular structures is facilitated by improved analytical techniques, precise orthogonal conjugation
chemistries, and sequence-defined polymer syntheses. The chemical evolution of microdomains using chemical libraries and
macromolecular and supramolecular evolution could provide key strategies for optimizing siRNA carriers to selected medical
indications.

1. Introduction
Novel RNA therapeutics such as synthetic small interfering

RNA (siRNA)1,2 and microRNA,3,4 longer double-stranded

and conditional cytotoxic RNA,5,6 or chemically modified

mRNA7 have created exciting medical opportunities. For

translation into medical use, carriers for extracellular and

intracellular delivery are required, as the free forms are only

inefficiently taken up by target cells and rapidly cleared or

degraded by the host. Viral vectors, where therapeutic

nucleic acid replaces most of the virus genome, have

dominated classical gene therapies for good reasons, they

are far more potent than synthetic systems. Adenovirus

associated viral vectors have recently proven to correct

genetic forms of blindness in patients,8 and genetic
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modification of blood stem cells by retroviral vectors has

rescued children affected by severe combined immunodefi-

ciency.9 Thus, viruses present natural masterpieces of nu-

cleic acid delivery with recently proven clinical benefit for

patients. Further genetic and chemical modifications of viral

vectors10,11 will provide potent molecular medicines.

The optimization of viruses however is also caughtwithin

the limits of their protein and lipid biosynthesis in living cells.

Viral vectors are limited to certain sizes and type of their

payload (natural nucleic acids); viral protein antigens and

several viral nucleic acids are constitutively recognized by

the host immune system. Thus, synthetic carriers,12 if effec-

tive,may have distinct advantages over viral vectors and are

the only delivery option for chemically modified medical

nucleic acids. In the design of such synthetic carriers, wemay

learn from natural viruses.13�15 Viruses are programmed to

be dynamic and bioresponsive in their infection process.

They activate different delivery functions at the different

times when needed. During their biosynthesis, they have

their nucleic acid packaged into nanosized cores, but the

cores disassemble after cell entry. Viruses learned to sur-

vive in the host, they contain surface proteins which are

recognized by host cell receptors. Alternatively, they may

also capture host proteins at their surface which then

mediate receptor-mediated uptake of the virus into

endolysosomal vesicles of cells. From there, in a Trojan

horse approach and triggered by special viral domains,

the nucleic acid core is able to escape the rather hostile,

degradative endolysosomal compartment and enter the

cytoplasm of target cells.

Chemists can design “synthetic viruses” containing

domains which mimic viral functions.11,13�17 Capitalizing

on the diverse space of synthetic molecules, the chemical

mimics of functional virus domains can be simpler and

synthetically easier accessible than viral proteins, as already

demonstrated in several examples.17�19 Chemists may also

learn from the sequence-defined precision of the assembly

of functional virus domains into macromolecular and

supramolecular structures. The million years biological

evolution of viruses by gene shuffling and mutations

cannot be directly translated into chemistry, but the in-

dividual functional delivery domains can be optimized

using combinatorial chemistry and library screening.20,21

Further on, macromolecular evolution can be persued

by shuffling the obtained delivery domains into various

defined precise sequences.22,23 High throughput micro-

reactors24 can be used for screening supramolecular syn-

thetic virus architectures.

2. Packaging Nucleic Acids Into Compact
Nanoparticles
Reversible nucleic acid condensation by cationic proteins is

a common natural process, for example, in packaging of

whole mammalian genomes into chromatin, or RNA into

organelles. Compaction is also a key function of viral cores

for protection against the degradative environment during

infection. Reversibility is important; the delivered nucleic

acid has to be accessible for subsequent transcription. Poly-

ionic interactions, hydrogen bonding, and hydrophobic in-

teractions control the condensation of nucleic acids. In

electrostatic complexes of plasmid DNA (pDNA) with poly-

cations such as polylysine (pLys)25 or polyethylenimine

(PEI),26 neutralization of approximately 10 ,000 negative

phosphate charges of one pDNA molecule by approxi-

mately 100 polycation molecules27 results in compaction

into “polyplexes”with sizes of 20 to >100 nm (depending on

aggregation events).While such compaction is important for

delivery of large pDNA, it is not relevant for themuch smaller

siRNA (8 nm in length); small pLys or PEI polyplexes of

10�20 nm can be easily generated upon proper stabiliza-

tion.28,29 Electrostatic stabilization of siRNApolyplexes how-

ever is weaker than thatfor pDNA; with only 42�46 anionic

charges, siRNA cannot present the stabilizing polyanionic

string that pDNA provides with 10000 charges. Addition of

0.5 M sodium chloride is sufficient for dissociation of siRNA

polyplexes with 25 kDa branched PEI (BPEI), whereas the

2-fold salt concentration is required for dissolving pDNA

polyplexes.30 For pDNA transfer, 22 kDa linear PEI (LPEI)

presents one of the most effective transfection agent. De-

spite a slightly lower polyplex stability, it is more effective

than BPEI;31,32 intracellular polyplex disassembly appeared

as decisive factor. For siRNA, the low stability of standard

siRNA polyplexes of LPEI makes siRNA transfer far less

effective.33

Strategies for stabilization of siRNA polyplexes include

(i) multimerization of siRNA into larger polyanions by RNA

hybridization34 or chemical ligation,35 (ii) coformulation of

siRNA with pDNA36 or other polyanions, (iii) cross-linking of

electrostatically bound polycations by bioreversible disul-

fide bonds23,37 or covalent linkage of siRNA,38,39 and (iv)

hydrophobic stabilization.23,40�43 Examples of hydrophobic

stabilization include modification of BPEI with the amino

acid tyrosine which provides an efficient siRNA transfection

agent.40 Modification of 20% of nitrogens reduces the

solubility of BPEI, thereby stabilizing siRNA polyplexes. Ana-

logously, modification of 800 Da oligoethylenimine with
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10hexyl acrylates41 or of triethylentetraminewith5dodecyl

acrylates42 resulted in effective hydrophobically stabilized

cores for siRNA delivery.

In our recent work, we compared defined triethylenete-

tramine (tt) and tetraethylenepentamine (tp) containing

polycations for their efficacy in siRNA delivery.23 Scheme 1

compares active polymer sequences (top) with analogous

ineffective structures (bottom). Oligo(aminoamides) includ-

ing three-armed (387) or four-armed (403) structureswith up

to 100 nitrogens cannot transfect siRNA. Modification with

two terminal cysteines (which form disulfide linkages within

polyplexes) and a hydrophobic domain, introduced for ex-

ample as di(linolic acid)-modified lysine, results in polymers

which efficiently package and deliver siRNA into cells, result-

ing in gene silencing (for example, polymer 230). Deletion of

the hydrophobic domain (polymer 377) or the cysteines

(379) results in loss of activity. Introduction of additional

cysteines, for example, a third cysteine into three-armed

structures (386), or introduction of a second hydrophobic

domain (279) provides potent siRNA carriers.23

The polymer/siRNA core may be regarded as the engine

of the delivery vehicle; for efficient and specific delivery, like

in natural viruses, additional domains for cell entry and

endosomal escape are required.

3. Targeting and Shielding: The Trojan Horse
Approach
Viruses are optimized for surviving in the relevant body

fluids. Their surface is decorated with ligands for attachment

to their target cell surface receptors. Often they use more

thanone receptor type for intracellular uptake intohost cells.

Sometimes viruses are coated with blood factors which then

act as endogenous targeting ligands for entry. Adenovirus

normally uses CAR receptor as primary and integrins as

secondary receptors; coating with coagulation factor X is

responsible for a third pathway resulting in transfection of

hepatocytes.44

Synthetic nanoparticles can utilize such multivalent reco-

gnition and cell uptakemechanisms for nucleic acid delivery.45

For example, active targeting of siRNA to liver hepatocytes

is possible with N-acetylgalactosamine ligands,38,46 or

endogenous LDL receptor-mediated targeting after asso-

ciation of lipid nanoparticles with plasma apolipoprotein E.46

Targeting ligands can influence cell entry kinetics. The

ligand epidermal growth factor (EGF), which actives macro-

pinocytosis of cells, accelerates cellular uptake, resulting

in 50% internalization of EGF/PEI/pDNA polyplexes with-

in 5 min.47 Synergistic dual targeting was observed with

PEI/pDNA polyplexes containing two different peptidic

ligands, a RGD peptide for integrin targeting and peptide

B6 for transferrin receptor targeting. RGD dominated in

cell surface binding, B6 in intracellular uptake.48

The chemist's Trojan horse approach provides opportu-

nities not available for natural viruses. First of all, hydrophilic

polymers such as polyethylene glycol (PEG) represent effi-

cient agents for nanoparticle surface shielding against unin-

tended interactions with the host.18,49,50 Interactions with

plasma complement and other proteins, or blood and im-

mune cells can extinguish any benefit of “active targeting”

ligands. Shielding is therefore indispensable for systemic

SCHEME 1. siRNA Carriers Containing Stabilizing Hydrophobic Domains and Disulfide-Forming Cysteinesa23

aTop: Active siRNA carriers (i-shape 230, three-arm 386, U-shape 279). Bottom: Ineffective siRNA carriers (377, 379 analogues of 230; 387 analogue of 386; four-arm
403). LinA: linolic acid.

http://pubs.acs.org/action/showImage?doi=10.1021/ar2002232&iName=master.img-001.jpg&w=370&h=177
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targeted delivery via the blood circulation. In cancer therapy,

PEGylated polyplexes with elongated plasma circulation

may take advantage of the “enhanced permeability and

retention” (EPR) effect.51 Long-term circulating nanoparticles

can extravasate andpassively accumulate at tumor sites due

to the leakiness of tumor vessels and ineffective lymphatic

efflux (“passive tumor targeting”).

A second advantageous chemical option is the use of

chemical ligands instead of immunogenic viral or other

targeting proteins. The prostaglandin I2 analogus Iloprost,

targeting the prostacyclin receptor IP1,19 has successfully

been applied for receptor-mediated transfection of lung

cells. Other examples include the vitamin folic acid ap-

plied covalently bound for tumor-targeted siRNA deli-

very52 or anisamide for targeting the tumor-associated

sigma receptor.53

4. Intracellular Barriers: Escape from the
Endosome
siRNA polyplex stability and endocytic uptake by target cells

are important delivery tasks, the entrapment in the hostile

endolysosomal vesicles presents the most critical hurdle,

and degradation by lysosomal enzymes in an acidic envi-

ronment is the dead end for a very significant fraction of

delivered nucleic acid. Endosomal escape is particularly

important for the delivery of nuclease-sensitive siRNAs

which have to reach the cytoplasm of ideally all target cells

in sufficient amounts. Viruses have acquired efficient solu-

tions for escaping from the maturating acidifying endo-

somes. For example, glycoproteins of enveloped viruses

such as influenza virus contain hidden fusion peptideswhich

are exposed after endocytosis, to trigger fusion of the viral

with the endosomal membrane. Endocytosed nonenve-

loped viruses such as rhinovirus or adenovirus expose lytic

domains which directly disrupt the endosomal membrane,

either (in case of rhinovirus) generating a pore large enough

for crossing of the viral RNA strand into the cytoplasm or (in

case of adenovirus) disrupting the whole endosome. Such

lytic domains have been utilized in artificial settings as

synthetic peptides for endosomal escape of polyplexes.13,54

Also other nature-derived or artificial lytic peptides were

applied.29,55�58 Beyond peptides, amphipathic lytic poly-

mers have been incorporated.38,59,60 To avoid premature

lysis of cell surfacemembraneswhichwould kill the host cell,

these synthetic agents should become lytic only after en-

dosomal entry, for example, triggered by endosomal acid-

ification (see section 5).

The antimalaria drug chloroquine, a weak lipophilic base

which can cross cell membranes but becomes entrapped in

the endolysosomes upon protonation, was first introduced

by Cotten et al. to prevent lysosomal degradation of pDNA

polyplexes.61 Impressive effects were seen in K562 leuke-

mia cells which due to a genetic defect have particularly

strong acidification and consequently also very high chloro-

quine accumulation in endosomes, triggering osmotic vesi-

cle swelling. Chloroquine was also found to synergize with

membrane-active peptides. Recently, a cell-penetrating pep-

tide was converted into an efficient siRNA carrier through

covalent attachment of a chloroquine analogue.57

To capitalize on endosomal buffering and osmotic swel-

ling, Behr and colleagues screened cationic polymers with

“proton sponge“ characteristics,17 that is, buffer capacity

between physiological neutral and endolysosomal pH. They

discovered polyethylenimine (PEI) as very potent transfec-

tion polymer.26 In contrast to polycations such as pLyswhich

are already fully protonated at neutral pH, the proton

sponge PEI displays incomplete protonation of nitrogens

(about 50% for PEI associated with pDNA).62 The increased

density of positive charges upon endosomal acidification

leads to an influx of chloride and water, resulting in osmo-

tically triggered vesicle burst.63 In contrast to unmodified

pLys, derivatives such as histidinylated pLys or Lys/His

copolymers also present proton sponges and efficient pDNA

and siRNA carriers.64,65

Proton sponge activity however is not sufficient for en-

dosomal escape; pDNA binding proton sponges are de-

scribed which do not efficiently transfect.66 Even for PEI

polyplexes, surface shielding by PEGylation strongly reduces

endosomal escape and transfection potency.16,29 Apparently,

in addition to endosomal buffering andosmotic pressurizing,

the protonated positively charged polymer has to be ex-

posed to directly interact with and destabilize the lipid

membrane. Thus, efficient endosomal escape still presents a

bottleneck and, especially for PEI, the window between

effective endosomolytic and cytotoxic dose is narrow. In

the case of BPEI, cytotoxicity can be reduced bymodification

of 10% nitrogens with succinic acids, thus converting nitro-

gens into negatively charged carboxylate groups. Suc-PEI is

still a proton sponge, containing protonable carboxylates

and nitrogens. Due to its biocompatibility, higher doses can

be applied and efficient siRNA delivery obtained under con-

ditions where BPEI is inactive.30 Similarly, tyrosine-modified

BPEI, which is less soluble at neutral pH but becomes sol-

uble upon endosomal protonation, mediates potent siRNA

transfer.40



Vol. 45, No. 7 ’ 2012 ’ 1005–1013 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 1009

Polymers for siRNA Delivery Inspired by Viruses Ernst

PEI has a special position within organic polymers; the

aminoethylene unit (if fully protonated) provides one of the

highest possible positive charge densities. As the diami-

noethane motif (Scheme 2) is only partly protonated at

physiological pH but further protonated within endosomes,

it has unique properties both as endosomal protone sponge

and inmembrane destabilization, responsible for high trans-

fection activity of PEI derivatives.26,31,67 Protonation of one

diaminoethane nitrogen triggers electronic and steric effects

on the neighboring nitrogens. The theoretical distribution of

distances between nearest neighbor nitrogens of LPEI62

shows a maximum of 0.29 nm for unprotonated and semi-

protonated PEI (presenting entangled gauche conforma-

tions, with two neighboring nitrogens sharing one proto-

nation), whereas fully protonated LPEI show exclusively

stretched, antiperiplanar conformation of nitrogens pre-

sented by a peak maximum of 0.38 nm. Not surprisingly,

the diaminoethane motif appears also in other potent

transfection agents (Scheme 2).42,43,68 For example, biode-

gradable polyapartamide (pAsp) amidated in the side chain

carboxyl groups with diethylentriamine (DET) is a highly

effective pDNA carrier, with far superior activity over analo-

gous polyapartamide modified with diaminopropane (DPT)

units.68 Similarly, oligoethylenimine-modified polypropyle-

nimine dendrimers (containing the diaminoethane motif)

were far more potent in transfection than analogous poly-

propylenimine (i.e., diaminopropane units)-modified dendri-

mers.67 The diaminoethane motif is also present in carriers

98N12-5(1),
42 and C12�200,43 (see section 6).

5. Optimizing the Timing: Dynamic and Bio-
degradable Polymers
Like natural viruses, their synthetic analogues have to acti-

vate their different delivery functions just at the right time

and location. As mentioned, nanoparticle shielding by PE-

Gylation is beneficial in the blood circulation before attach-

ment to the target cell, but can be a serious impediment for

cell-surface binding and endosomal escape. Conversely,

lytic activity may be required within endosomes, but can

trigger severe toxicity if acting already at the cell surface.

Polymer/siRNA cores should be stable in the extracellular

environment, but should disassemble within the cytoplasm

to release the siRNA in an accessible form required for gene

silencing. Such location- and time-triggered sequence of acti-

vities can be programmed into nanoparticles69 by utilizing

chemistries which sense their microenvironment (for exam-

ple, pH-labile bonds cleavable in the endosome, disulfide

bonds reduced in the cytoplasm). Kinetics of such chemis-

tries have to be compatible with the individual and the

whole delivery process: for example, endosomal cleavage

to occur within 30 min, but extracellular stability to last for

hours.

Dynamic shieldingwith PEGandpH-triggered endosomal

deshielding of polyplexes has been achieved by incorporat-

ing acetal linkages,59,70 pyridylhydrazone,16,71 or dialkyl-

maleic acid38 bonds into polymer�PEG conjugates (see

Scheme 3). Such a reversible PEGylation was crucial in

receptor-targeted delivery of PEI polyplexes, formaintaining

endosomal escape and efficient transfection which was

10�100-fold higher than with irreversibly PEGylated

polyplexes.16,71 A dialkylmaleic acid linker (CDM) was ap-

plied for reversibly PEG shielding and receptor targeting of

the amphipathic poly(butyl/amino-vinylether) pBAVE.38

Upon pH-triggered endosomal deshielding the amphipathic

lytic polymer is unmasked, resulting in endosomolysis and

delivery of covalently attached siRNA into the cytoplasm.

SCHEME 2. Proton-Sponge Diaminoethane Motif in Efficient Nucleic
Acid Carriersa

aPEI,26 pAsp(DET),68 98N12-5(1),
42 C12�200,43 Stp unit.23,74

http://pubs.acs.org/action/showImage?doi=10.1021/ar2002232&iName=master.img-002.jpg&w=190&h=340
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A disulfide linkage between siRNA and polymer was ap-

plied cleavable in the reducing cytoplasm. Another dynamic

siRNA conjugate with dual-responsive characteristics was

designed by covalent disulfide linkage of siRNA to a PEG-

pLys conjugate.39 As pLys does not significantly mediate

endosomal escape, its conjugate with pH-reversibly masked

melittin peptides (modified with dimethylmaleic acid anhy-

dride, DMMAn) was applied. Exposure to endosomal pH

recovers the lytic activity of melittin, resulting in effective

cytoplasmic delivery and release of siRNA.

6. Chemical Evolution: Find the Needle in the
Haystack
In searching for synthetic carriers which aremost suitable for

a specific medical application (with a defined tissue and

disease indication), for obvious reasons chemists cannot

rely on the natural and genetic evolution of viruses. Never-

theless, important underlying principles can be extracted:

discovery of potent microdomains by chemical evolution

(this section), combined with shuffling of these functional

microdomains into macromolecular and supramolecular

structures (next section).

Optimization of cationic lipid/pDNA complexes (lipoplexes)

for therapy of cystic fibrosis presents an early example of

chemical evolutionwhich resulted in a synthetic formulation

applied in clinical gene therapy studies.72,73 Screening of the

numerous cationic lipid formulations in a relevant system

(instillation into the mouse lung in vivo) was important to

discover the most effective lipid #67, a cholesterol deriva-

tive conjugated with spermine in a T-shape configuration,

which was coformulated with a stabilizing PEG-lipid. Clini-

cally less relevant in vitro screening using cultured cells did

not provide the same results.

During the past decade Akinc, Anderson, Langer, Lynn,

and colleagues20,21,42,43 reported impressive achievements

in chemical evolution of polymeric and lipopolymeric car-

riers. Semiautomated syntheses of thousands of polymers

were combinedwith high-throughput transfection screening

of pDNA or siRNA complexes. Applying robust Michael

addition chemistry, multiple combinations of amines and

hydrophobic (di)acrylates were evaluated, resulting in li-

braries of poly(β-aminoesters) for pDNA delivery and lipo-

philic modified oligoamines (lipidoids) for siRNA delivery.

Alternatively, lipidoid libraries were generated by addition

of oligoamines to lipophilic alkyl-epoxides. Interesting siR-

NA carriers were coformulated with stabilizing lipids and

evaluated in vivo for gene silencing in mouse livers. Two

potent structures, 98N12-5(1)
42 and C12-20043 contain the

diaminoethane motif (Scheme 2).

7. Molecular Evolution: Precise Macromole-
cular Sequences and Supramolecular
Assemblies
Further molecular evolution into multifunctional supra-

molecular structures goes beyond classical combinatorial

or parallel chemistry. However, like in “gene shuffling” of

genetic evolution, identified functional delivery microdo-

mains can be organized into various assembly sequences

and structures, followed by screening and selection of the

most effective assemblies. Such a molecular evolution only

can work if the process occurs in defined, reproducible form.

For example, based on recent technology of solid-phase

supported synthesis of sequence-defined polymers22,74 and

the knowledge of the high potency of the oligomeric diami-

noethanemotif (sections 2and4), our grouphas synthesized

libraries of precise, sequence-defined pDNA and siRNA

carriers (Scheme 1). These carriers include additional

SCHEME 3. pH-Sensitive Linkages and Dynamic
Conjugatesa16,29,38,39,70,71

aAcid-labile linkages highlighted with dashed circles.

http://pubs.acs.org/action/showImage?doi=10.1021/ar2002232&iName=master.img-003.jpg&w=233&h=332
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functional domains, such as stabilizing disulfide-forming

cysteines or hydrophobicmodifications in defined sequence

and topologies (T-shapes, i-shapes, U-shapes).23 Extending

the concept, also PEGmodules and receptor targeting ligands

can be incorporated for targeted delivery.

In addition to precise covalent assembly, novel technol-

ogies for supramolecular assembly are expected to greatly

impact further optimization of synthetic virus architectures.

These include layer-by-layer assemblies75 and microfluidic

assemblies.24 Using amicroreactor, a supramolecular library

of 648 pDNA nanoparticles was generated extremely fast

(within <3 h).

8. Conclusion and Perspective
Now is the golden age for designing synthetic viruses. The

present knowledge on molecular structure and function of

natural viruses and a more than two decades rising learning

curveonsynthetic carriersprovidesanexcellent startingposition.

Importantly, modern chemistry with refined orthogonal conju-

gations and highly sensitive, high-resolution analytics in vitro

and in vivo is able to tackle the challenging tasks of macro-

molecular and supramolecular assembly of synthetic viruses.

Not to forget that they are strongly needed for further develop-

ment of nucleic acid medicines. There, beyond chemistry, the

early definition of the appropriate host target tissue and relevant

pharmacological disease model presents a key necessity in the

evolutionof synthetic siRNAcarrier for the intendedmedical use.
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