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CONSPECTUS

S ynthetic small interfering RNA (siRNA) presents an exciting novel medical
opportunity. Although researchers agree that siRNA could have a great
therapeutic impadt, the required extracellular and intracellular delivery of these
molecules into the disease-associated target cells presents the primary roadblock
for the broader translation of these molecules into medicines. Thus, the design of
adequate delivery technologies has utmost importance. Viruses are natural
masterpieces of nucleic acid delivery and present chemists and drug delivery
experts with a template for the design of artificial carriers for synthetic nucleic
acids such as siRNA. They have been developed into gene vectors and have
provided convincing successes in gene therapy. Optimized by biological evolu-
tion, viruses are programmed to be dynamic and bioresponsive as they enter living cells, and they carry out their functionsina
precisely defined sequence. However, because they are synthesized within living cells and with naturally available nucleotides
and amino acids, the chemistry of viruses is limited. With the use of diverse synthetic molecules and macromolecules, chemists
can provide delivery solutions beyond the scope of the natural evolution of viruses.

This Account describes the design and synthesis of “synthetic SiRNA viruses.” These structures contain elements that mimic the
delivery functions of viral particles and surface domains that shield against undesired biological interactions and enable specific
host cell receptor binding through the presentation of multiple targeting ligands. For example, cationic polymers can reversibly
package one or more siRNA molecules into nanoparticle cores to protect them against a degradative bioenvironment. After
internalization by receptor-mediated endocytosis into the acidifying endosomes of cells, synthetic SiRNA can escape from these
vesicles through the activation of membrane-disruption domains as viruses do and reach the cytoplasm, the location of RNA
interference.

This multistep task presents an attractive challenge for chemists. Similar to the design of prodrugs, the functional domains of
these systems have to be activated in a dynamic mode, triggered by conformational changes or bond cleavages in the relevant
microenvironment such as the acidic endosome or disulfide-reducing cytoplasm. These chemical analogues of viral domains are
often synthetically simpler and more easily accessible molecules than viral proteins. Their precise assembly into multifunctional
macromolecular and supramolecular structures is facilitated by improved analytical techniques, precise orthogonal conjugation
chemistries, and sequence-defined polymer syntheses. The chemical evolution of microdomains using chemical libraries and
macromolecular and supramolecular evolution could provide key strategies for optimizing siRNA carriers to selected medical
indications.
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1. Introduction

Novel RNA therapeutics such as synthetic small interfering
RNA (siRNA)'# and microRNA,*>* longer double-stranded
and conditional cytotoxic RNA,>® or chemically modified
mRNA’ have created exciting medical opportunities. For
translation into medical use, carriers for extracellular and
intracellular delivery are required, as the free forms are only
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inefficiently taken up by target cells and rapidly cleared or
degraded by the host. Viral vectors, where therapeutic
nucleic acid replaces most of the virus genome, have
dominated classical gene therapies for good reasons, they
are far more potent than synthetic systems. Adenovirus
associated viral vectors have recently proven to correct
genetic forms of blindness in patients® and genetic
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modification of blood stem cells by retroviral vectors has
rescued children affected by severe combined immunodefi-
ciency.? Thus, viruses present natural masterpieces of nu-
cleic acid delivery with recently proven clinical benefit for
patients. Further genetic and chemical modifications of viral
vectors'®'" will provide potent molecular medicines.

The optimization of viruses however is also caught within
the limits of their protein and lipid biosynthesis in living cells.
Viral vectors are limited to certain sizes and type of their
payload (natural nucleic acids); viral protein antigens and
several viral nucleic acids are constitutively recognized by
the host immune system. Thus, synthetic carriers,'? if effec-
tive, may have distinct advantages over viral vectors and are
the only delivery option for chemically modified medical
nucleic acids. In the design of such synthetic carriers, we may
learn from natural viruses.®>~"* Viruses are programmed to
be dynamic and bioresponsive in their infection process.
They activate different delivery functions at the different
times when needed. During their biosynthesis, they have
their nucleic acid packaged into nanosized cores, but the
cores disassemble after cell entry. Viruses learned to sur-
vive in the host, they contain surface proteins which are
recognized by host cell receptors. Alternatively, they may
also capture host proteins at their surface which then
mediate receptor-mediated uptake of the virus into
endolysosomal vesicles of cells. From there, in a Trojan
horse approach and triggered by special viral domains,
the nucleic acid core is able to escape the rather hostile,
degradative endolysosomal compartment and enter the
cytoplasm of target cells.

Chemists can design “synthetic viruses” containing
domains which mimic viral functions."”'*~'7 Capitalizing
on the diverse space of synthetic molecules, the chemical
mimics of functional virus domains can be simpler and
synthetically easier accessible than viral proteins, as already
demonstrated in several examples.'”~'® Chemists may also
learn from the sequence-defined precision of the assembly
of functional virus domains into macromolecular and
supramolecular structures. The million years biological
evolution of viruses by gene shuffling and mutations
cannot be directly translated into chemistry, but the in-
dividual functional delivery domains can be optimized
using combinatorial chemistry and library screening.?%2"
Further on, macromolecular evolution can be persued
by shuffling the obtained delivery domains into various
defined precise sequences.?*?3 High throughput micro-
reactors®* can be used for screening supramolecular syn-
thetic virus architectures.
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2. Packaging Nucleic Acids Into Compact
Nanoparticles
Reversible nucleic acid condensation by cationic proteins is
a common natural process, for example, in packaging of
whole mammalian genomes into chromatin, or RNA into
organelles. Compaction is also a key function of viral cores
for protection against the degradative environment during
infection. Reversibility is important; the delivered nucleic
acid has to be accessible for subsequent transcription. Poly-
ionic interactions, hydrogen bonding, and hydrophobic in-
teractions control the condensation of nucleic acids. In
electrostatic complexes of plasmid DNA (pDNA) with poly-
cations such as polylysine (pLys)*> or polyethylenimine
(PEI),?° neutralization of approximately 10,000 negative
phosphate charges of one pDNA molecule by approxi-
mately 100 polycation molecules®” results in compaction
into “polyplexes” with sizes of 20 to >100 nm (depending on
aggregation events). While such compaction is important for
delivery of large pDNA, it is not relevant for the much smaller
siRNA (8 nm in length); small pLys or PEI polyplexes of
10—20 nm can be easily generated upon proper stabiliza-
tion.?®2° Electrostatic stabilization of siRNA polyplexes how-
ever is weaker than thatfor pDNA; with only 42—46 anionic
charges, siRNA cannot present the stabilizing polyanionic
string that pDNA provides with 10 000 charges. Addition of
0.5 M sodium chloride is sufficient for dissociation of siRNA
polyplexes with 25 kDa branched PEI (BPEI), whereas the
2-fold salt concentration is required for dissolving pDNA
polyplexes.?® For pDNA transfer, 22 kDa linear PEI (LPEI)
presents one of the most effective transfection agent. De-
spite a slightly lower polyplex stability, it is more effective
than BPEI;3'32 intracellular polyplex disassembly appeared
as decisive factor. For siRNA, the low stability of standard
SiRNA polyplexes of LPEI makes siRNA transfer far less
effective.33

Strategies for stabilization of siRNA polyplexes include
(i) multimerization of siRNA into larger polyanions by RNA
hybridization®* or chemical ligation,?* (i) coformulation of
siRNA with pDNA>® or other polyanions, (iii) cross-linking of
electrostatically bound polycations by bioreversible disul-
fide bonds®>37 or covalent linkage of siRNA,*®3° and (iv)
hydrophobic stabilization.?34°~43 Examples of hydrophobic
stabilization include modification of BPEI with the amino
acid tyrosine which provides an efficient siRNA transfection
agent.*® Modification of 20% of nitrogens reduces the
solubility of BPEI, thereby stabilizing siRNA polyplexes. Ana-
logously, modification of 800 Da oligoethylenimine with
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SCHEME 1. siRNA Carriers Containing Stabilizing Hydrophobic Domains and Disulfide-Forming Cysteines
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9Top: Active siRNA carriers (i-shape 230, three-arm 386, U-shape 279). Bottom: Ineffective SiRNA carriers (377, 379 analogues of 230; 387 analogue of 386; four-arm

403). LinA: linolic acid.

10 hexyl acrylates*' or of triethylentetramine with 5 dodecyl
acrylates®? resulted in effective hydrophobically stabilized
cores for siRNA delivery.

In our recent work, we compared defined triethylenete-
tramine (tt) and tetraethylenepentamine (tp) containing
polycations for their efficacy in siRNA delivery.?* Scheme 1
compares active polymer sequences (top) with analogous
ineffective structures (bottom). Oligo(@aminoamides) includ-
ing three-armed (387) or four-armed (403) structures with up
to 100 nitrogens cannot transfect siRNA. Modification with
two terminal cysteines (which form disulfide linkages within
polyplexes) and a hydrophobic domain, introduced for ex-
ample as di(linolic acid)-modified lysine, results in polymers
which efficiently package and deliver siRNA into cells, result-
ing in gene silencing (for example, polymer 230). Deletion of
the hydrophobic domain (polymer 377) or the cysteines
(379) results in loss of activity. Introduction of additional
cysteines, for example, a third cysteine into three-armed
structures (386), or introduction of a second hydrophobic
domain (279) provides potent siRNA carriers.>

The polymer/siRNA core may be regarded as the engine
of the delivery vehicle; for efficient and specific delivery, like
in natural viruses, additional domains for cell entry and
endosomal escape are required.

3. Targeting and Shielding: The Trojan Horse
Approach

Viruses are optimized for surviving in the relevant body
fluids. Their surface is decorated with ligands for attachment
to their target cell surface receptors. Often they use more

than one receptor type for intracellular uptake into host cells.
Sometimes viruses are coated with blood factors which then
act as endogenous targeting ligands for entry. Adenovirus
normally uses CAR receptor as primary and integrins as
secondary receptors; coating with coagulation factor X is
responsible for a third pathway resulting in transfection of
hepatocytes.**

Synthetic nanoparticles can utilize such multivalent reco-
gnition and cell uptake mechanisms for nucleic acid delivery.*>
Forexample, active targeting of siRNA to liver hepatocytes
is possible with N-acetylgalactosamine ligands,334° or
endogenous LDL receptor-mediated targeting after asso-
ciation of lipid nanoparticles with plasma apolipoprotein E.*®
Targeting ligands can influence cell entry Kinetics. The
ligand epidermal growth factor (EGF), which actives macro-
pinocytosis of cells, accelerates cellular uptake, resulting
in 50% internalization of EGF/PEI/pDNA polyplexes with-
in 5 min.*” Synergistic dual targeting was observed with
PEI/pDNA polyplexes containing two different peptidic
ligands, a RGD peptide for integrin targeting and peptide
B6 for transferrin receptor targeting. RGD dominated in
cell surface binding, B6 in intracellular uptake.*®

The chemist's Trojan horse approach provides opportu-
nities not available for natural viruses. First of all, hydrophilic
polymers such as polyethylene glycol (PEG) represent effi-
cient agents for nanoparticle surface shielding against unin-
tended interactions with the host.'®49°° Interactions with
plasma complement and other proteins, or blood and im-
mune cells can extinguish any benefit of “active targeting”
ligands. Shielding is therefore indispensable for systemic
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targeted delivery via the blood circulation. In cancer therapy,
PEGylated polyplexes with elongated plasma circulation
may take advantage of the “enhanced permeability and
retention” (EPR) effect.>' Long-term circulating nanoparticles
can extravasate and passively accumulate at tumor sites due
to the leakiness of tumor vessels and ineffective lymphatic
efflux (‘passive tumor targeting’).

A second advantageous chemical option is the use of
chemical ligands instead of immunogenic viral or other
targeting proteins. The prostaglandin 12 analogus lloprost,
targeting the prostacyclin receptor IP1,'° has successfully
been applied for receptor-mediated transfection of lung
cells. Other examples include the vitamin folic acid ap-
plied covalently bound for tumor-targeted siRNA deli-
very>? or anisamide for targeting the tumor-associated
sigma receptor.>3

4. Intracellular Barriers: Escape from the
Endosome

SiRNA polyplex stability and endocytic uptake by target cells
are important delivery tasks, the entrapment in the hostile
endolysosomal vesicles presents the most critical hurdle,
and degradation by lysosomal enzymes in an acidic envi-
ronment is the dead end for a very significant fraction of
delivered nucleic acid. Endosomal escape is particularly
important for the delivery of nuclease-sensitive SiRNAs
which have to reach the cytoplasm of ideally all target cells
in sufficient amounts. Viruses have acquired efficient solu-
tions for escaping from the maturating acidifying endo-
somes. For example, glycoproteins of enveloped viruses
such as influenza virus contain hidden fusion peptides which
are exposed after endocytosis, to trigger fusion of the viral
with the endosomal membrane. Endocytosed nonenve-
loped viruses such as rhinovirus or adenovirus expose lytic
domains which directly disrupt the endosomal membrane,
either (in case of rhinovirus) generating a pore large enough
for crossing of the viral RNA strand into the cytoplasm or (in
case of adenovirus) disrupting the whole endosome. Such
lytic domains have been utilized in artificial settings as
synthetic peptides for endosomal escape of polyplexes.'>>*
Also other nature-derived or artificial Iytic peptides were
applied.?®>>~>8 Beyond peptides, amphipathic lytic poly-
mers have been incorporated.®®>9€° To avoid premature
lysis of cell surface membranes which would kill the host cell,
these synthetic agents should become Iytic only after en-
dosomal entry, for example, triggered by endosomal acid-
ification (see section 5).
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The antimalaria drug chloroquine, a weak lipophilic base
which can cross cell membranes but becomes entrapped in
the endolysosomes upon protonation, was first introduced
by Cotten et al. to prevent lysosomal degradation of pDNA
polyplexes.®’ Impressive effects were seen in K562 leuke-
mia cells which due to a genetic defect have particularly
strong acidification and consequently also very high chloro-
quine accumulation in endosomes, triggering osmotic vesi-
cle swelling. Chloroquine was also found to synergize with
membrane-active peptides. Recently, a cell-penetrating pep-
tide was converted into an efficient siRNA carrier through
covalent attachment of a chloroquine analogue.>”

To capitalize on endosomal buffering and osmotic swel-
ling, Behr and colleagues screened cationic polymers with
“proton sponge” characteristics,'” that is, buffer capacity
between physiological neutral and endolysosomal pH. They
discovered polyethylenimine (PEI) as very potent transfec-
tion polymer.2® In contrast to polycations such as pLys which
are already fully protonated at neutral pH, the proton
sponge PEI displays incomplete protonation of nitrogens
(about 50% for PEI associated with pDNA).®* The increased
density of positive charges upon endosomal acidification
leads to an influx of chloride and water, resulting in osmo-
tically triggered vesicle burst.®® In contrast to unmodified
pLys, derivatives such as histidinylated pLys or Lys/His
copolymers also present proton sponges and efficient pDNA
and siRNA carriers.®*®>

Proton sponge activity however is not sufficient for en-
dosomal escape; pDNA binding proton sponges are de-
scribed which do not efficiently transfect.®® Even for PEI
polyplexes, surface shielding by PEGylation strongly reduces
endosomal escape and transfection potency.'®?° Apparently,
in addition to endosomal buffering and osmotic pressurizing,
the protonated positively charged polymer has to be ex-
posed to directly interact with and destabilize the lipid
membrane. Thus, efficient endosomal escape still presents a
bottleneck and, especially for PEI, the window between
effective endosomolytic and cytotoxic dose is narrow. In
the case of BPEI, cytotoxicity can be reduced by modification
of 10% nitrogens with succinic acids, thus converting nitro-
gens into negatively charged carboxylate groups. Suc-PEl is
still a proton sponge, containing protonable carboxylates
and nitrogens. Due to its biocompatibility, higher doses can
be applied and efficient siRNA delivery obtained under con-
ditions where BPEI is inactive.?° Similarly, tyrosine-modified
BPEI, which is less soluble at neutral pH but becomes sol-
uble upon endosomal protonation, mediates potent siRNA
transfer.*°



PEI has a special position within organic polymers; the
aminoethylene unit (if fully protonated) provides one of the
highest possible positive charge densities. As the diami-
noethane motif (Scheme 2) is only partly protonated at
physiological pH but further protonated within endosomes,
it has unique properties both as endosomal protone sponge
and in membrane destabilization, responsible for high trans-
fection activity of PEI derivatives.?®3'%7 Protonation of one
diaminoethane nitrogen triggers electronic and steric effects
on the neighboring nitrogens. The theoretical distribution of
distances between nearest neighbor nitrogens of LPEI®?
shows a maximum of 0.29 nm for unprotonated and semi-
protonated PEI (presenting entangled gauche conforma-
tions, with two neighboring nitrogens sharing one proto-
nation), whereas fully protonated LPEI show exclusively
stretched, antiperiplanar conformation of nitrogens pre-
sented by a peak maximum of 0.38 nm. Not surprisingly,
the diaminoethane motif appears also in other potent
transfection agents (Scheme 2).4#43%8 For example, biode-
gradable polyapartamide (pAsp) amidated in the side chain
carboxyl groups with diethylentriamine (DET) is a highly
effective pDNA carrier, with far superior activity over analo-
gous polyapartamide modified with diaminopropane (DPT)
units.®® Similarly, oligoethylenimine-modified polypropyle-
nimine dendrimers (containing the diaminoethane motif)
were far more potent in transfection than analogous poly-
propylenimine (i.e., diaminopropane units)-modified dendri-
mers.®” The diaminoethane motif is also present in carriers
98N;,-5(1),*? and C12—200,** (see section 6).

5. Optimizing the Timing: Dynamic and Bio-
degradable Polymers

Like natural viruses, their synthetic analogues have to acti-
vate their different delivery functions just at the right time
and location. As mentioned, nanopatrticle shielding by PE-
Gylation is beneficial in the blood circulation before attach-
ment to the target cell, but can be a serious impediment for
cell-surface binding and endosomal escape. Conversely,
lytic activity may be required within endosomes, but can
trigger severe toxicity if acting already at the cell surface.
Polymer/siRNA cores should be stable in the extracellular
environment, but should disassemble within the cytoplasm
to release the siRNA in an accessible form required for gene
silencing. Such location- and time-triggered sequence of acti-
vities can be programmed into nanoparticles® by utilizing
chemistries which sense their microenvironment (for exam-
ple, pH-labile bonds cleavable in the endosome, disulfide
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SCHEME 2. Proton-Sponge Diaminoethane Motif in Efficient Nucleic
Acid Carriers”
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bonds reduced in the cytoplasm). Kinetics of such chemis-
tries have to be compatible with the individual and the
whole delivery process: for example, endosomal cleavage
to occur within 30 min, but extracellular stability to last for
hours.

Dynamic shielding with PEG and pH-triggered endosomal
deshielding of polyplexes has been achieved by incorporat-
ing acetal linkages,>>”° pyridylhydrazone,'®”" or dialkyl-
maleic acid®*® bonds into polymer—PEG conjugates (see
Scheme 3). Such a reversible PEGylation was crucial in
receptor-targeted delivery of PEI polyplexes, for maintaining
endosomal escape and efficient transfection which was
10-100-fold higher than with irreversibly PEGylated
polyplexes.'®”" A dialkylmaleic acid linker (CDM) was ap-
plied for reversibly PEG shielding and receptor targeting of
the amphipathic poly(butyl/amino-vinylether) pBAVE.3®
Upon pH-triggered endosomal deshielding the amphipathic
Iytic polymer is unmasked, resulting in endosomolysis and
delivery of covalently attached siRNA into the cytoplasm.
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SCHEME 3. pH-Sensitive Linkages and Dynamic
Conjugatesa16,29,38,39,70,71
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A disulfide linkage between siRNA and polymer was ap-
plied cleavable in the reducing cytoplasm. Another dynamic
SiRNA conjugate with dual-responsive characteristics was
designed by covalent disulfide linkage of siRNA to a PEG-
pLys conjugate.®® As pLys does not significantly mediate
endosomal escape, its conjugate with pH-reversibly masked
melittin peptides (modified with dimethylmaleic acid anhy-
dride, DMMAnN) was applied. Exposure to endosomal pH
recovers the lytic activity of melittin, resulting in effective
cytoplasmic delivery and release of siRNA.

6. Chemical Evolution: Find the Needle in the
Haystack

In searching for synthetic carriers which are most suitable for
a specific medical application (with a defined tissue and
disease indication), for obvious reasons chemists cannot
rely on the natural and genetic evolution of viruses. Never-
theless, important underlying principles can be extracted:
discovery of potent microdomains by chemical evolution
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(this section), combined with shuffling of these functional
microdomains into macromolecular and supramolecular
structures (next section).

Optimization of cationic lipid/pDNA complexes (lipoplexes)
for therapy of cystic fibrosis presents an early example of
chemical evolution which resulted in a synthetic formulation
applied in clinical gene therapy studies.”>”3 Screening of the
numerous cationic lipid formulations in a relevant system
(instillation into the mouse lung in vivo) was important to
discover the most effective lipid #67, a cholesterol deriva-
tive conjugated with spermine in a T-shape configuration,
which was coformulated with a stabilizing PEG-lipid. Clini-
cally less relevant in vitro screening using cultured cells did
not provide the same results.

During the past decade AKinc, Anderson, Langer, Lynn,
and colleagues®®?'4%43 reported impressive achievements
in chemical evolution of polymeric and lipopolymeric car-
riers. Semiautomated syntheses of thousands of polymers
were combined with high-throughput transfection screening
of pDNA or siRNA complexes. Applying robust Michael
addition chemistry, multiple combinations of amines and
hydrophobic (di)acrylates were evaluated, resulting in li-
braries of poly(s-aminoesters) for pDNA delivery and lipo-
philic modified oligoamines (lipidoids) for siRNA delivery.
Alternatively, lipidoid libraries were generated by addition
of oligoamines to lipophilic alkyl-epoxides. Interesting siR-
NA carriers were coformulated with stabilizing lipids and
evaluated in vivo for gene silencing in mouse livers. Two
potent structures, 98N;,-5(1)** and C12-200*® contain the
diaminoethane motif (Scheme 2).

7. Molecular Evolution: Precise Macromole-
cular Sequences and Supramolecular
Assemblies

Further molecular evolution into multifunctional supra-
molecular structures goes beyond classical combinatorial
or parallel chemistry. However, like in “gene shuffling” of
genetic evolution, identified functional delivery microdo-
mains can be organized into various assembly sequences
and structures, followed by screening and selection of the
most effective assemblies. Such a molecular evolution only
can worKk if the process occurs in defined, reproducible form.

For example, based on recent technology of solid-phase
supported synthesis of sequence-defined polymers**”4 and
the knowledge of the high potency of the oligomeric diami-
noethane motif (sections 2 and 4), our group has synthesized
libraries of precise, sequence-defined pDNA and SiRNA
carriers (Scheme 1). These carriers include additional
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functional domains, such as stabilizing disulfide-forming
cysteines or hydrophobic modifications in defined sequence
and topologies (T-shapes, i-shapes, U-shapes).?®> Extending
the concept, also PEG modules and receptor targeting ligands
can be incorporated for targeted delivery.

In addition to precise covalent assembly, novel technol-
ogies for supramolecular assembly are expected to greatly
impact further optimization of synthetic virus architectures.
These include layer-by-layer assemblies’> and microfluidic
assemblies.>* Using a microreactor, a supramolecular library
of 648 pDNA nanoparticles was generated extremely fast
(within <3 h).

8. Conclusion and Perspective

Now is the golden age for designing synthetic viruses. The
present knowledge on molecular structure and function of
natural viruses and a more than two decades rising leaming
curve on synthetic carriers provides an excellent starting position.
Importantly, modern chemistry with refined orthogonal conju-
gations and highly sensitive, high-resolution analytics in vitro
and in vivo is able to tackle the challenging tasks of macro-
molecular and supramolecular assembly of synthetic viruses.
Not to forget that they are strongly needed for further develop-
ment of nudleic acid medicines. There, beyond chemistry, the
early definition of the appropriate host target tissue and relevant
pharmacological disease model presents a key necessity in the
evolution of synthetic siRNA carrier for the intended medical use.

I thank my Ph.D. students for designing siRNA carriers and Olga
Brtick for skillful assistance. Our work was supported by Excellence
cluster NIM, Roche Kulmbach, and the Biotech Cluster m4T12.
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